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Abstract

In this paper, we study a very general type of online network design problem, and generalize two
different previous algorithms, one for an online network design problem due to Berman and Coulston
[4] and one for (offline) general network design problems due to Goemans and Williamson [9]; we give
an O(log k)-competitive algorithm, where k is the number of nodes that must be connected. We also
consider a further generalization of the problem that allows us to pay penalties in exchange for violating
connectivity constraints; we give an online O(log k)-competitive algorithm for this case as well.

1 Introduction

Network design has been a fundamental application of techniques in combinatorial optimization for some
time; see the volume of Ball et al. [3] for an overview. Most models assume that all the connectivity
requirements are given in advance. However, it is sometimes the case that decisions in constructing the
network must be made as customers arrive over time; decisions to build network infrastructure must be
made at the time the customer arrives, and cannot be undone in later time steps. Such problems have been
studied under a model known as online decision making; algorithms in this model are measured in terms of
their competitive ratio, which gives a bound on how far away the algorithm’s solution can be away from an
optimal solution found when given all the connectivity information in advance. Problems in which all the
input (including connectivity information) is known in advance are then called offline problems.

As a running example, we define here the generalized Steiner tree problem, also known as the Steiner
forest problem. In the offline version of this problem, we are given an undirected graph G = (V,E), edge
costs ce ≥ 0 for all e ∈ E, and a set of k source-sink pairs si-ti as input. The goal of the problem is to find
a minimum-cost set of edges F ⊆ E such that for each i, si and ti are connected in (V, F ). This problem is
(as its name implies) a generalization of the Steiner tree problem: in the offline version of the Steiner tree
problem, we are given an undirected graph with edge costs as above, and also a set R ⊆ V of terminals.
The goal of the Steiner tree problem is to find a minimum-cost tree T that spans all the terminals in R.
The Steiner tree problem is one of Karp’s original NP-hard problems [18]. If we choose one of the terminals
r ∈ R arbitrarily, set si = r for all i, and let the sink vertices ti be the remaining vertices in R, then clearly
a Steiner tree instance can be expressed as a generalized Steiner tree problem instance.

In the online version of the generalized Steiner tree problem, we do not know the source-sink pairs in
advance. The online problem proceeds in a sequence of discrete time steps; in each time step i, a source-sink
pair si-ti arrives, and we must find a set of edges F such that each sj-tj pair that has arrived thus far is
connected in (V, F ). Furthermore, once we have decided to include an edge in F , we may not remove it at
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Figure 1: Example of the online generalized Steiner tree problem

later time steps; once we have constructed an edge in our network, the cost is sunk and we may not recover
it at future points in time.

The following simple example shows that in an online setting, we cannot in general find an optimal offline
solution, even given unlimited computational power. Consider the 4-cycle with vertices v1, v2, v3, v4 in Figure
1. All edges have cost 1. Suppose (v1, v3) is the first pair to arrive, in time step 1. We can choose either
path (v1, v2, v3) or path (v1, v4, v3) to connect it. Without loss of generality, we will choose path (v1, v2, v3).
Then, if (v1, v4) arrives in the second time step, we could have saved a cost of one if we had chosen the other
path in the first time step. However, even if we did that, (v1, v2) could be the pair arriving at time step 2
and we would face the same problem.

As mentioned above, the quality of an online algorithm is often measured in terms of its competitive
ratio: an α-competitive algorithm is one such that at any time step, the value of current solution is within
a factor of α of the value of an optimal offline solution. For the online generalized Steiner tree problem, an
α-competitive algorithm constructs a set of edges that at the current time step has cost at most α times the
cost of the optimal solution for the set of source-sink pairs that have arrived thus far. This notion should be
compared to that of an approximation algorithm. Approximation algorithms are given for offline problems;
an α-approximation algorithm is guaranteed to run in polynomial time and produce a solution with cost
at most α times the value of an optimal solution. Agrawal, Klein, and Ravi [1] give a 2-approximation
algorithm for the offline generalized Steiner tree problem.

Online algorithms are known for both the online Steiner tree problem and the online generalized Steiner
tree problem. In the online version of the Steiner tree problem, terminals arrive over time. At each time
step we must give a set of edges F that connects all of the terminals that have arrived thus far; we are
not allowed to remove any edges from F in future iterations. As stated above, in the online generalized
Steiner tree problem, source-sink pairs arrive in each time step, and we must find a set of edges F such
that each si-ti pair that has arrived thus far is connected in (V, F ). Imase and Waxman [16] give a greedy
O(log k)-competitive algorithm for the online Steiner tree problem, where k is the number of terminals; when
a terminal arrives, it finds the shortest path from the terminal to the tree already constructed, and adds that
set of edges to its solution. Imase and Waxman also show that the competitive ratio of any online algorithm
must be at least 1

2 log2 k; one can show this lower bound by repeatedly replacing each edge in the graph of
Figure 1 with a copy of the graph. Awerbuch, Azar, and Bartal [2] show that a similar greedy algorithm
for the online generalized Steiner tree problem has a competitive ratio of O(log2 k). Berman and Coulston
[4] give a more complicated algorithm that is an O(log k)-competitive algorithm for the online generalized
Steiner tree problem, matching the lower bound of Imase and Waxman to within constant factors.

Part of the contribution of this paper is to extend the types of network design problems for which online
algorithms are known. Goemans and Williamson [9] extended the offline algorithm of Agrawal, Klein, and
Ravi [1] to a large class of problems they called constrained forest problems; in doing so, they cast the
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algorithm of Agrawal et al. as a primal-dual algorithm, one that simultaneously constructs a feasible primal
solution to an integer programming formulation of the problem as well as a feasible solution to the dual of
a linear programming relaxation. A constrained forest problem is defined by a function f : 2V → {0, 1};
for any set S ⊆ V such that f(S) = 1, a feasible solution must select at least one edge in δ(S), the set of
edges with exactly one endpoint in S. The Goemans-Williamson algorithm works when the function f is
proper: that is, when f(S) = f(V − S) for all S ⊆ V , f(∅) = f(V ) = 0 and for all disjoint sets A,B ⊆ V ,
f(A ∪ B) ≤ max(f(A), f(B)); we also assume that f is polynomial-time computable. For instance, for
the case of the generalized Steiner tree problem f(S) = 1 if and only if there exists some i such that
|S ∩ {si, ti}| = 1, and this function is proper. Another example of a constrained forest problem given in
Goemans and Williamson [9] is the nonfixed point-to-point connection problem, in which a subset C of
vertices are sources, a disjoint subset D of vertices are destinations, and we must find a minimum-cost set of
edges such that each connected component has the same number of sources and destinations; this is modelled
by having f(S) = 1 if |S ∩ C| 6= |S ∩D|. Yet another example given in [9] is that of partitioning specified
vertices D into connected components such that the number of vertices of D in each connected component
C is divisible by some parameter `. This problem is given the proper function f such that f(S) = 1 if
|S ∩D| 6≡ 0(mod `).

In this paper, we show that by melding the ideas of Goemans and Williamson [8] with those of Berman
and Coulston [4], we can obtain an O(log k)-competitive algorithm for any online constrained forest problem.
In an online constrained forest problem, in each time step i we are given a proper function fi. We must
choose a set of edges F such that for all S ⊆ V , if maxj=1,...,i fj(S) = 1, then |δ(S)∩ F | ≥ 1 (one can verify
that the function maxj=1,...,i fj(S) is itself proper). In our case, k is the number of vertices v for which
fi({v}) = 1 for some i. This yields, for example, algorithms for online variants of the nonfixed point-to-point
connection problem and the partitioning problem given above.

Our techniques also extend to give an O(log k)-competitive algorithm for a very general set of network
design problems in which we may wish to pay a penalty instead of fulfilling a connectivity requirement. One
such example is that of the prize-collecting Steiner tree problem. In the offline version of the prize-collecting
Steiner tree problem, we are given an undirected graph G = (V,E), edge costs ce ≥ 0 for all e ∈ E, a root
vertex r ∈ V , and penalties πv ≥ 0 for all v ∈ V . The goal is to find a tree T spanning the root vertex that
minimizes the cost of the edges in the tree plus the penalties of the vertices not spanned by the tree; that
is, we want to minimize

∑
e∈T ce +

∑
v∈V−V (T ) πv, where V (T ) is the set of vertices spanned by T . In the

online version of the problem, initially every vertex v has penalty πv = 0. At each time step, the penalty
πv for some vertex v is increased from 0 to some positive value. We then must either connect the vertex
to the root by adding edges to our current solution or pay the penalty πv. The competitive ratio of the
algorithm compares the cost of our solution in each time step with the cost of the optimal solution of the
instance at the same time step. The offline version of this problem was studied by researchers at AT&T since
the problem models that of making decisions of when to extend the current network to new clients, where
each penalty represents the profits forgone by not connecting the client; see Johnson, Minkoff, and Phillips
[17]. Our techniques further extend to online versions of the prize-collecting generalized Steiner tree problem
introduced by Hajiaghayi and Jain [12]. The online prize-collecting generalized Steiner tree problem is as
follows: initially we are given an undirected graph G, and a penalty of zero for each pair of nodes. In each
time step i, a terminal pair (si, ti) arrives with a new penalty πi > 0. We have a choice to either connect si
to ti or pay the penalty πi for not connecting them. Our goal is to find a set of edges F that minimizes the
sum of edge costs in F plus the sum of penalties for terminal pairs that are not connected. Our technique
also extends to an online version of a problem of Hayrapetyan, Swamy, and Tardos [15], in which we must
minimize the cost of a tree spanning a root vertex r, plus a monotone submodular penalty function h on all
the unspanned vertices. In the online version, in each time step i, a new monotone submodular function hi
arrives. See Section 4 for more details. We obtain our results by giving an O(log k)-competitive algorithm
for an online version of the prize-collecting constrained forest problem introduced by Sharma, Swamy, and
Williamson [21], which generalizes the online prize-collecting Steiner tree problem, the online prize-collecting
generalized Steiner tree problem, and the online version of the problem of Hayrapetyan et al. We introduce
this general problem in Section 4.
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We now give a sketch of the algorithmic ideas and the analysis. The basic idea of the Berman-Coulston
algorithm (BC) is that it constructs many different families of nonoverlapping balls around terminals as they
arrive; in the jth family, balls are limited to have radius at most 2j . Each family of balls is a lower bound
on the cost of an optimal solution to the generalized Steiner tree problem; the balls can be seen as a feasible
solution to the dual of a linear programming relaxation of the problem. When balls from two different
terminals touch (corresponding to a tight dual constraint), the algorithm buys the set of edges connecting
the two terminals, and balls from one of the two terminals (in some sense the ‘smaller’ one) can be charged
for the cost of the edges, leaving the balls from the other terminal (the ‘larger’ one) uncharged and able to
pay for future connections. Thus by induction, it can be shown that the cost of the edges constructed can
be charged to the balls in all the families. One can show that the O(log k) largest families are essentially
all that are relevant for the charging scheme, so that the largest of these O(log k) families is within an
O(log k) factor of the cost of the constructed solution, thereby giving the competitive ratio. Our algorithm
for the online constrained forest problem extends the BC algorithm in several ways. First, our algorithm
explicitly uses solutions to the dual of the linear programming relaxation of the constrained forest problem,
as used by Goemans and Williamson, resulting in somewhat more complicated dual solutions than the balls
used by BC. Second, to ensure that we output a feasible solution, our algorithm uses a more sophisticated
dual construction in which the jth dual solution also takes into account edges that were added due to tight
constraints of the other dual solutions. In particular, our algorithm incorporates a “consolidate” step which
ensures that the algorithm only raises dual variables that correspond to a union of a collection of connected
components of F . However, we can then largely follow the outline of the BC analysis to obtain our O(log k)
competitive ratio.

The rest of this paper is structured as follows. In Section 2, we introduce the online constrained forest
problem more precisely and define some concepts we will need for our algorithm. In Section 3, we give the
algorithm and its analysis. In Section 4, we extend the algorithm to handle penalties, and explain how the
extension captures online versions of the prize-collecting Steiner tree and prize-collecting generalized Steiner
tree problem. We conclude in Section 5 with some open questions.

The online constrained forest problem and online prize-collecting Steiner tree were introduced in a pre-
liminary version of this paper [20]. However, the algorithm and analysis in this preliminary version were
later discovered to be flawed and we give a corrected version of the algorithm and proofs in Section 3. Since
the preliminary version appeared, there has been some additional work done on these problems and related
ones. Umboh [22] gives a new and simpler analysis of the Berman-Coulston algorithm for online generalised
Steiner tree via the idea of hierarchically well-separated trees. He also gives another O(log k)-competitive al-
gorithm for the prize-collecting version that is analysed in the same way. For the more general node-weighted
setting, in which costs are associated with nodes rather than edges, Hajiaghayi, Liaghat, and Panigrahi give
polylogarithmic-competitive algorithms for the online constrained forest problem [13] and the online prize-
collecting generalised Steiner tree problem [14]. For the edge-weighted setting, the algorithm of [13] yields
a O(log k)-competitive algorithm for the online constrained forest problem that is different from ours, and
[14] also gives an alternate O(log k)-competitive algorithm for the online prize-collecting Steiner tree prob-
lem. Because the preliminary version of this paper [20] was flawed, the paper of Hajiaghayi, Liaghat, and
Panigrahi [13] had the first correct O(log k)-competitive algorithm for the online constrained forest problem,
and their paper [14] had the first correct O(log k)-competitive algorithm for the prize-collecting Steiner tree
problem. To the best of our knowledge, there is no previous work that tackles the online prize-collecting
constrained forest problem.

2 Preliminaries

Recall that a function f : 2V → {0, 1} is proper if f(S) = f(V − S) for all S ⊆ V , f(∅) = f(V ) = 0,
and for disjoint sets A,B ⊆ V , f(A ∪ B) ≤ max(f(A), f(B)). Given an undirected graph G = (V,E),
edge costs ce ≥ 0 and a proper function f , the offline constrained forest problem studied in Goemans and
Williamson [9] is to find a set of edges F of minimum cost that satisfies a connectivity requirement function
f : 2V → {0, 1}; the function is satisfied if for each set S ⊆ V with f(S) = 1, we have |δ(S) ∩ F | ≥ 1,
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where δ(S) is the set of edges with exactly one endpoint in S. In the online version of this problem, we
have a sequence of connectivity functions f1, f2, ..., fi, arriving one at a time. Starting with F = ∅, for each
time step i ≥ 1, function fi arrives and we need to add edges to F to satisfy function fi. Once an edge
is added to F , it cannot be removed in a later time step. Let gi(S) = max{f1(S), ..., fi(S)} for all S ⊆ V
and i ≥ 1. Then our goal is to a find a minimum-cost set of edges F that satisfies function gi, that is, all
connectivity requirements given by f1, ..., fi that have arrived thus far. We require that each function fi be
a proper function, as defined above. It is easy to see that function gi is also proper.

Call a vertex v a terminal at time i if gi({v}) = 1. Let Ri = {s ∈ V | gi({s}) = 1} be the set of
terminals defined by function gi; that is, Ri is the set of all terminals that have arrived by time i. A special
case of this problem is the online generalized Steiner tree problem, in which terminal pairs (s1, t1), ..., (si, ti)
arrive one at a time. In this case, fi(S) = 1 iff |S ∩ {si, ti}| = 1 and (si, ti) is the pair of terminals that
arrive in time step i; then Ri = {sj , tj : j ≤ i}. Berman and Coulston [4] give an O(log |Ri|)-competitive
algorithm for the online generalized Steiner tree problem.

Let (IPi) be an integer program corresponding to the online proper constrained forest problem with set
of functions f1, ..., fi that have arrived thus far and the corresponding function gi. The integer programming
formulation is

Min
∑
e∈E

cexe

(IPi)
∑
e∈δ(S)

xe ≥ gi(S), ∀S ⊆ V,

xe ∈ {0, 1}, ∀e ∈ E.

We let (LPi) denote the corresponding linear programming relaxation in which the constraints xe ∈ {0, 1}
are replaced with xe ≥ 0. The dual of this linear program, (Di), is

Max
∑
S⊆V

gi(S)yS

(Di)
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

yS ≥ 0, ∀S ⊆ V.

We now define a number of terms that we will need to describe our algorithm. We will keep an infinite
number of feasible dual solutions yj , j = . . . ,−2,−1, 0, 1, 2, . . ., to bound the cost of edges in our solution F
over all time steps; we call yj the dual solution for level j. For each level j, we will maintain that for any
terminal s that has arrived thus far,

∑
S⊆V :s∈S y

j
S ≤ 2j . So we say that the limit of the dual in level j is 2j ,

and we say that a dual variable yjS reaches its limit if the inequality for level j is tight for any terminal
s ∈ S. An edge e ∈ E is tight in level j for dual vector yj if the corresponding constraint in dual problem
(Di),

∑
S:e∈δ(S) y

j
S ≤ ce, holds with equality.

Let F̄ j denote the set of edges that are tight in level j plus the set of edges in the current solution F .
To avoid confusion with connected components in F , we will use the term moat to refer to a connected
component S of vertices in F̄ j and use yjS to refer the dual variable associated with S; in order to emphasize
that the moat S is from a particular level j and is with respect to the tight edges for that level, we will
superscript the set S with j, and denote it Sj . We will increase dual variables yjS corresponding to particular
moats Sj . Note that because the edges of F are a subset of F̄ j , a moat of level j is a collection of the
connected components of F . See Figure 2 for an illustation of moats.

A set S ⊆ V is a violated set for function gi by edges F if |δ(S) ∩ F | < gi(S); that is, if gi(S) = 1 but
δ(S) ∩ F = ∅. Notice that for connected component C of a set of edges F , no strict subset of C can be
violated. The algorithm considers increasing duals for sets S that are moats – the connected components of
F̄ j – with gi(S) = 1, precisely because we wish to add edges to our solution from δ(S) so as to satisfy these
violated sets. We observe below that if gi(C) = 0 for every connected component in a set of edges F , then
gi is satisfied by F , so that we can terminate the algorithm in time step i when this occurs.
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Figure 2: Illustration of moats at level j. The solid lines represent edges in the current solution F , while
the dashed lines represent edges that are tight in level j. The moats are the connected components of the
union of both the edges in F and the edges tight at level j, and are circled. Notice that a moat can contain
multiple connected components of the current solution F , as the leftmost moat does.

Lemma 2.1. If gi(C) = 0 for every connected component in a set of edges F , then gi is satisfied by F .

Proof. Note that for any set S, if S contains some but not all of a connected component in F , then |δ(S)∩F | ≥
1 and so S is not violated. However, if S is a union of connected components Cj in F , then since gi(Cj) = 0
for each connected component Cj , gi(S) ≤ maxj gi(Cj) = 0, and S is not violated. Thus if gi(C) = 0 for all
connected components C of F , then gi is satisfied by F .

At the start of time step i, a terminal s ∈ Ri is an active terminal if for some connected component X
of the current solution F , we have s ∈ X and X is a violated set for function gi. Let A be the set of active
terminals at the beginning of the time step. Our algorithm carries out work at level j then proceeds to the
next level j + 1. If a terminal is still active when the algorithm starts its work on level j, we will say the
terminal is active at level j, and we will denote these terminals by Aj . As we add edges to our solution F ,
it may be the case that for active terminal s ∈ Aj , we add edges such that s is in a connected component
X of F with gi(X) = 0; at this point s is no longer active. We may say that s has become inactive; it was
previously active. We denote the set of all terminals that were previously active at level j (at any time
step) as Pj . Also, as we increase dual variables, a terminal s active at level j may reach its limit at level j;

that is,
∑
S:s∈S y

j
S = 2j . In this case, we move s from Aj to Pj .

A moat Sj is an active moat if gi(S
j) = 1 and its corresponding dual variable yjS has not yet reached

its limit in level j. Note that an active moat Sj is a violated set for gi by edges F̄ j since gi(S
j) = 1 and

δ(Sj)∩ F̄ j = ∅ because moat Sj is a connected component of F̄ j . We denote the current set of active moats
by M. We say a dual variable yjS is an active dual variable if its corresponding moat Sj is active.

3 The Algorithm and Its Analysis

3.1 The Primal-Dual Online Algorithm

Our algorithm (see Fig. 4) is a dual ascent algorithm in which we grow active dual variables, starting at
lowest level j. We increase dual variables around active terminals in level j and buy paths between terminals
until either all terminals are inactive, or we can no longer increase dual variables around active terminals,
since the dual variables have reached their limits. Then we proceed to level j + 1.
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More precisely, our algorithm starts with F = ∅ and yjS = 0 for all j and all S ⊆ V . At the beginning
of each time step i, the function fi arrives and some non-terminal nodes in V may become terminals. We
update active terminal set A and active moat set M. Conceptually we loop through the levels j, starting
at level −∞ and continuing to level ∞; we explain below how we can omit very small and very large values
of j so that the algorithm is implementable in polynomial time. For each level j, we execute two distinct
while loops; we call the first the consolidate loop for level j, and the second the dual growth loop for
level j. In the consolidate loop, we add edges in F − F̄ j to F̄ j one at a time; adding such an edge may cause
two moats to be merged. We then add paths to F connecting any pair of terminals s1 ∈ Aj (s1 currently
active) and s2 ∈ Pj (s2 previously active) in the same moat that were not already connected in F . In the
dual growth loop, while there are still active terminals at level j, our algorithm uniformly increases all active
dual variables yjS until: (1) an active yjS reaches its limit in level j; (2) an edge e ∈ E becomes tight in level
j; we then add e to F̄ j ; (3) two terminals s1 ∈ Aj and s2 ∈ Aj ∪ Pj connect in level j; that is, there is
a path of edges between them that are either tight or in F . We then let p be this path of edges (that are
either tight or in F ) connecting s1 and s2 that minimizes

∑
e∈p−F ce; we build path p in F , and update the

set A of active terminals and the set M of active moats. We output F as the solution for (IPi).
We remark that the consolidate loop serves two purposes. First, by adding F to F̄ j , it ensures that

each component of F̄ j is a collection of the connected components of F . Second, it ensures that the level-j
terminals that are contained in the same level-j moat Sj are contained in the same connected component of
F (Lemma 3.2). These properties imply that active terminals are always contained in an active moat and
thus the algorithm is well-defined.

The following example illustrates the algorithm and the necessity of the consolidate loop. Consider
Figure 3: the input graph consists of 4 terminals s1, s2, s3, s4 on a line and the proper function g is such
that g(S) = |S| mod 2. For levels j < −1, all terminals are active and the algorithm grows dual variables
around each of them, but the dual variables reach their limit without any edges going tight. Thus, the
algorithm starts level −1 with F = ∅ and all terminals still active. At the end of the level, the edge (s2, s3)
goes tight and gets added to F . The terminals s2 and s3 then become inactive. At the beginning of level
0, the consolidate loop adds (s2, s3) to F̄ 0. The algorithm then grows dual variables around each of the
remaining active terminals s1 and s4. However, these dual variables reach their limit before any edge goes
tight. At the beginning of level 1, the consolidate loop again adds the edge (s2, s3) to F̄ 1. At the end of
the level, the edges (s1, s2) and (s3, s4) goes tight and are added to F̄ 1. At this point, F̄ 1 contains a path
connecting the remaining two active terminals s1 and s4, so the edges (s1, s2) and (s3, s4) are added to F .
There are no remaining active terminals and F is a feasible solution. Now, we argue that the algorithm is
not well-defined without the consolidate loop. Consider the algorithm without the consolidate loop. The
algorithm essentially behaves in the same way for levels below level 1. Now, the algorithm starts level 1
with F̄ 1 = ∅. The edges (s1, s2) and (s3, s4) still go tight during the dual growth loop, but note that once
they get added to F̄ 1, the level-1 moats are S1 = {s1, s2} and S2 = {s3, s4}. Since g(S1) = g(S2) = 0, there
are no more moats even though s1 and s4 are still active. Thus, the consolidate loop is necessary for the
algorithm to be well-defined.

The algorithm in Figure 4 can be implemented in polynomial time. We assume that all edge costs ce are
integers. Then as a matter of algorithmic implementation, we do not need to maintain levels j < −1 or start
the loop for j < −1, since for such levels dual variables will reach their limits before any edge e can go tight.
We show below (in Theorem 3.5) that we do not need to maintain levels j > dlog2(maxu,v∈V d(u, v))e or
continue the loop for such values of j, where d(u, v) is the distance in G between u and v using edge costs ce;
intuitively, we will have generated a feasible solution F in the levels below this one since the dual variables
will not reach their limit before all edges in each possible u-v shortest path are tight and all terminals will
connect. Thus we need only maintain O(log(maxu,v∈V d(u, v))) different levels and dual solutions yj , which
is polynomial in the input size. Finding the active moats involves computing connected components in the
set of tight edges F̄ j and checking whether each component is a violated set. In each iteration, we can iterate
through all the edges and active dual variables for the current level, of which there are at most a polynomial
number, to see which of conditions (1)-(3) will hold first given a uniform increase of the active dual variables.
Since there are at most |Ri| active terminals, and each iteration either reduces the number of active dual
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s1 s2 s3 s4

1.5 1 1.5

(a) Input graph with 4 terminals. (b) Level -1.

(c) Level 0. (d) Level 1.

Figure 3: An example run of the algorithm on a graph with 4 terminals and proper function g such that
g(S) = |S| mod 2. The solid edges represent the edges in F and the circles represent the moats at the end
of each level.

variables, makes an additional edge tight, or merges two disjoint moats, there can be at most a polynomial
number of iterations for each level. Since there are at most a polynomial number of levels to consider, the
entire algorithm will take polynomial time.

3.2 The Analysis

We will now state our main theorem.

Theorem 3.1. The algorithm of Figure 4 is an O(log |Ri|)-competitive algorithm for the online proper
constrained forest problem (IPi).

We begin with a summary of what will follow. We show in Lemma 3.6 that in each time step, the solution
F is a feasible primal solution to the integer program, and each yj is a feasible dual solution. As mentioned
at the end of the introduction, the basic argument is a charging scheme in which we charge the cost of the
edges in F to the dual variables, in such a way that the cost of all the edges is at most the sum of the dual
variables yj summed over all levels j. We will in Lemma 3.10 show that because the dual growth for each
level j is limited by 2j , only the top O(log |Ri|) levels account for almost all the total dual value; levels below
the top O(log |Ri|) have a negligible amount of dual value. Recall that the dual solution yj for each level
j is a lower bound on the cost of an optimal solution. Thus since the cost of the edges in F is essentially
at most the value of the dual solutions of the top O(log |Ri|) levels, and each one is a lower bound on the
cost of an optimal solution, the cost of the edges in F are at most a factor of O(log |Ri|) from the cost of an
optimal solution.

In order to perform the charging scheme, we will show in Lemma 3.2 that the growth of a dual variable
yjS can be uniquely credited to some connected component X of the set of edges F . The charging scheme
will maintain accounts for all the current connected components of the set of edges F . The key part of the
analysis is Lemma 3.9, which shows that at any point in the algorithm, the total sum of the dual variables
yj summed over all levels j is equal to the cost of the edges currently in F plus the credits in the accounts
summed over all the components X of F ; these accounts will let us pay for adding edges to F in the future.

The proofs below are based on, but substantial generalizations of, those given in Berman and Coulston
[4].
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Algorithm

F = ∅, F̄ j = ∅ for all j, and yj
S = 0 for all j and S ⊆ V

For each {0, 1}-proper function fi that arrives
Update active terminals A, and active moats M
For j ← −∞ to ∞

(Consolidate) While there is an edge ē ∈ F \ F̄ j

Add ē to F̄ j

While there are terminals s1 ∈ Aj , s2 ∈ Pj in the same moat Sj

that are not connected in F
Let p ⊆ E be an s1-s2 path in F̄ j minimizing

∑
e∈p−F ce

F ← F ∪ {p}, i.e. build edges p− F
Update A

Update active moats M
(Dual growth) While there are terminals active at level j

Grow uniformly all active dual variables yj
S until

1) An active yj
S reaches its limit in level j

2) An edge e ∈ E becomes tight in level j, then F̄ j = F̄ j ∪ {e}
3) Two terminals s1 ∈ Aj and s2 ∈ Aj ∪ Pj connect in level j, then

Let p ⊆ E be the s1-s2 path of edges in F̄ j minimizing
∑

e∈p−F ce
F = F ∪ {p}, i.e. build edges p− F
Update A

Update active moats M

Figure 4: Primal-dual algorithm for the online proper constrained forest problem

We can now start the main analysis of the algorithm. The following lemma is key to both the charging
scheme and to proving the termination of the algorithm. See Figure 5 for an illustration.

Lemma 3.2. In every iteration of the dual growth loop at level j, for each moat Sj, the subset of Aj ∪ Pj
contained in Sj is contained in a unique connected component X of F .

Proof. The proof follows directly from the algorithm. The consolidate loop and Step (3) of the dual growth
loop ensures that whenever s1, s2 ∈ Aj ∪ Pj are connected in F̄ j during the dual growth loop, then they
are connected in F as well. Since each moat Sj is a connected component of F̄ j , the terminals of Aj ∪ Pj
contained in the moat Sj are contained in a unique connected component X of F .

We now turn to showing that the algorithm is well-defined and that it terminates. We need the following
lemma to begin.

Lemma 3.3. At any time during the execution of the algorithm, if a connected component X of F has no
active terminal in it, then gi(X) = 0.

Proof. There are two cases to consider: (1) X is a singleton set; (2) X was formed by adding a s1-s2 path
p to F that connects several smaller components. The statement clearly holds for case (1). Let us now
consider case (2). By definition of the algorithm, at least one of s1 or s2 was an active terminal before p
was added to F . Suppose s1 was the active terminal. After p was added to F , s1 is contained in the new
component X but is no longer active. By definition of the algorithm, this can only happen if gi(X) = 0.
Thus, the statement holds in case (2) as well.

The following lemma shows that the algorithm is well-defined.

Lemma 3.4. In every iteration of the dual growth loop at level j, if a terminal is active, then it is contained
in a moat Sj that is active. In particular, the dual variable yjS is active.
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Figure 5: A moat S with the connected components of F circled. Lemma 3.2 asserts that in the dual growth
loop, all active and previously inactive vertices in the moat will be in exactly one of these components.
Lemma 3.4 observes that because this is the case, whether the moat S is active depends exactly on whether
any terminal in this one component is active.

Proof. Let s be an active terminal and Sj be the moat containing s. Observe that Sj is a union of some
connected components of F ; this is because the algorithm ensures that F̄ j contains F and moats are connected
components of F̄ j . By Lemma 3.2, there is a unique connected component X of F in Sj that contains all
the active terminals in Sj . Because s is active and is contained in X, we have gi(X) = 1 (since otherwise s
would become inactive). For any other connected component X ′ of F contained in Sj , X ′ does not contain
any active terminal so gi(X

′) = 0 by Lemma 3.3. Let Z be the union of these connected components X ′;
then by the definition of proper functions it must be that gi(Z) ≤ maxX′ gi(X

′) = 0. So we have that Sj

is partitioned into sets X and Z. Because gi is proper, gi(S
j) = gi(V − Sj), and V − Sj and Z partition

V −X, so that gi(X) = gi(V −X) ≤ max(gi(V − Sj), gi(Z)) = max(gi(S
j), gi(Z)). Thus gi(S

j) = 0 would
imply gi(X) = 0, a contradiction. Thus gi(S

j) = 1 and Sj is an active moat.

Finally, we can prove that the algorithm terminates and that it does not use any level beyond level
dlog2(maxu,v∈V d(u, v))e.

Theorem 3.5. The algorithm terminates in each time step i, and will find a feasible solution before it
reaches a level greater than dlog2(maxu,v∈V d(u, v))e.

Proof. First, we argue that the consolidate and dual growth loops at each level must terminate. We observe
that each iteration through the consolidate loop at level j joins two components of F ; once we have merged
n components, we have a tree spanning all vertices, which is a feasible solution to the problem, so there can
be at most n iterations of the consolidate loop. Each iteration through the dual growth loop either adds a
tight edge to a level, joins two components of F , or causes a terminal to reach its limit on the level; thus
there can be at most m+ n+ |Ri| iterations through the dual growth loop at any level.

Next, we show that the algorithm terminates by level j = dlog2(maxu,v∈V d(u, v))e. Suppose, towards
a contradiction, that this is not the case. Then, by Lemmas 2.1 and 3.3, there are some active terminals
A at the end of level j. These terminals cannot reach their limit until all the edges of all shortest u-v
paths are tight (for all pairs u, v ∈ A). Thus, A is connected in F̄ j , and so by Lemma 3.2, there is a
connected component X of F containing A. By Lemma 3.3, every other connected component X ′ of F has
gi(X

′) = 0 since it does not contain any active terminal. Since the union of these components is V \X, by
the definition of proper functions, we have gi(V \ X) = 0. But then gi(X) = gi(V \ X) as well, so every
connected component C of F has gi(C) = 0, and thus F is feasible by Lemma 2.1. Therefore, by level
dlog2(maxu,v∈V d(u, v))e we have found a feasible solution for (Pi), and step i must terminate.
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Theorem 3.6. At the end of time step i of the algorithm in Figure 4, F is a feasible solution to (IPi) and
each dual vector yj is a feasible solution to (Di).

Proof. Our algorithm terminates each time step i when there are no active terminals, and thus by Lemma
3.3, for each connected component X of F , gi(X) = 0. Thus by Lemma 2.1, the solution is feasible for (Pi).
By construction of the algorithm each dual solution yj is feasible for (Di) since we stop growing a dual yjS
if it would violate a dual constraint.

We now turn to analyzing the cost of the solution returned by the algorithm. As discussed previously, in
order to give a bound on the total cost of edges in F , we create an account for each connected component X
in F , denoted Account(X). We will define a shadow algorithm to credit potential to accounts as duals are
increased and remove potential from accounts to pay for building edges. We will show that the total cost of
edges in F plus the total unused potential remaining in all accounts is always equal to the sum of all dual
variables over all levels, i.e.

∑
j

∑
S y

j
S .

Our shadow algorithm works as follows. First, whenever we increase an active dual variable yjS , we will
credit the amount of increase to Account(X), where X is the unique connected component in F that contains
all terminals in the moat Sj that are in Pj ∪ Aj , as given by Lemma 3.2. Second, whenever the algorithm
builds a path p in F connecting two terminals s1 and s2 from Pj ∪Aj , we let Xk be the resulting connected
component in F that contains sk for k = 1, 2. As a result of building edges p− F , X3 = X1 ∪X2 ∪ {p− F}
will become a connected component in F . We will merge unused potential remaining in Account(X1) and
Account(X2) into Account(X3) and remove potential from Account(X3) to pay for the cost of building edges
in p − F . A key part of our analysis is to bound the cost of p − F against the dual growth of terminals in
X1 and X2. This will then let us show that the account of the “smaller” component can pay for p− F .

We will need the following helper lemmas to prove our desired statements about the accounts. Define
Growth(X, j) to be the maximum total dual growth of a terminal in X in level j; so

Growth(X, j) = max
s∈X
{
∑

S⊆V :s∈S

yjS and s ∈ Aj ∪ Pj}.

Observe that Growth(X, j) ≤ 2j by the limit on dual growth on level j. For example, consider the
instance given in Figure 3. At the end of level 0, the components of F are {s1}, {s2, s3} and {s4}.
We have Growth({s2, s3}, 0) = 0 (since neither s2 nor s3 is active in this level) and Growth({s1}, 0) =
Growth({t1}, 0) = 20.

We now work towards proving that whenever we buy a path p connecting two components X1 and X2

during level j, the level j dual growth of both components can pay for the set of new edges p − F , i.e.
Growth(X1, j) + Growth(X2, j) ≥

∑
e∈p−F ce. Note that edges in F̄ j are added one by one in both the

consolidate and dual growth loops. Define the first moat of level j that contains v to be the connected
component of F̄ j containing v at the first time that v is connected to a terminal of Aj ∪ Pj in F̄ j . The
following crucial lemma allows us to charge the cost of buying paths in F̄ j to the dual growth of a single
terminal.

Lemma 3.7. Let v ∈ V be a vertex and Sv be the first moat of level j that contains v. There exists a
terminal s ∈ Aj ∪ Pj in Sv with a s-v path p in F̄ j with cost∑

e∈p−F
ce ≤

∑
S⊂Sv:s∈S

yjS ≤ Growth(X, j),

where X is the component in F containing s.

Proof. We prove this by induction on F̄ j , as edges are added to F̄ j . The statement clearly holds in the
beginning, when F̄ j = ∅. Now, we turn to the inductive case. Suppose v was first connected to a terminal of
Aj ∪Pj when the edge ē was added to F̄ j , and let t be that terminal. Suppose S1 was the moat containing t
before ē was added. Since v was not connected to any terminal of Aj ∪Pj before this time, we have that v is
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u vs

Sv
S1

Su

q

Figure 6: An illustration of the proof of Lemma 3.7.

an endpoint of ē, and the other endpoint of ē, say u, is contained in S1. In particular, the moat Sv = S1∪{v}
is the first moat containing v.

Since u was connected to a terminal of Aj ∪ Pj (in particular, the terminal t) in F̄ j at an earlier time,
the inductive hypothesis implies that there exists a terminal s ∈ Aj ∪ Pj and a s-u path q in F̄ j with cost∑

e∈q−F
ce ≤

∑
S⊂Su:s∈S

yjS ,

where Su ⊆ S1 is the first moat containing u, and it also contains s. See Figure 6 for an illustration.
Now consider the s-v path p = q ∪ {ē}. The edge ē was either an edge of F added to F̄ j during the

consolidate loop or it was an edge that went tight. In the first case, we are done. In the second case, we
have

cē =
∑

S⊆V :(u,v)∈δ(S)

yjS =
∑

S⊆S1:u∈S

yjS =
∑

Su⊆S⊆S1

yjS ,

where the first equality follows from tightness of ē, the second from the fact that v was never contained in
an active moat before now, and the third from the fact that Su was the first moat containing u. Therefore,
the cost of p is ∑

e∈p−F
ce =

∑
e∈q−F

ce + cē

≤
∑

S⊂Su:s∈S
yjS +

∑
Su⊆S⊆S1

yjS

≤
∑

S⊆S1:s∈S

yjS

≤
∑

S⊂Sv:s∈S
yjS ,

where the second inequality follows from the fact that Su contains s and the last inequality follows from the
fact that S1 is a strict subset of Sv.

Lemma 3.8. Suppose there are terminals s1, s2 ∈ Aj ∪ Pj in different components of F (X1 and X2

respectively) such that there is a path between s1 and s2 in F̄ j. Let p be a path in F̄ j that minimizes the cost∑
e∈p−F ce. Then

∑
e∈p−F ce ≤ Growth(X1, j) + Growth(X2, j).

Proof. To prove the lemma, we will show that there exists a path p with cost
∑
e∈p−F ce ≤ Growth(X1, j) +

Growth(X2, j). We will consider the consolidate loop and the dual growth loops separately. In the consolidate
loop, there are two cases: (1) either s1 and s2 were connected in F̄ j even before any edge of F \ F̄ j was
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u vs’1

S1
Su

S2

p’1

Figure 7: An illustration of the proof of Lemma 3.8. The total dual growth around s′1 can pay for the cost
of p′1 as well as the portion of (u, v) “contained” in S1.

added to F̄ j ; (2) or s1 and s2 were only connected in F̄ j after some edge of F \ F̄ j was added to F̄ j . Suppose
s1 ∈ Aj and s2 ∈ Pj . Case 1 can occur if s1 was already contained in the moat containing s2 in some
previous time step (when s1 was not yet a terminal). This case is easy: Lemma 3.7 implies that there exists
a path p′ in F̄ j connecting X2 and s1 with cost

∑
e∈p′−F ce ≤ Growth(X2, j). Next, we consider Case 2. Let

ē = (u, v) be the edge of F added to F̄ j that caused s1 and s2 to connect in F̄ j . Suppose that before ē was
added, s1 was connected to u, and s2 was connected to v in F̄ j . Applying Lemma 3.7 to the components X1

and X2, we get that there is a path in p1 in F̄ j and a path p2 in F̄ j with cost
∑
e∈p1−F ce ≤ Growth(X1, j)

and
∑
e∈p2−F ce ≤ Growth(X2, j). Since ē ∈ F , the path p1 followed by the edge e followed by the path p2

is a path in F̄ j with cost at most Growth(X1, j) + Growth(X2, j).
Finally, we consider the dual growth loop. This case is similar to the second case of the consolidate loop,

but we also need to show that the dual growth can also pay for the edge ē. Suppose S1 and S2 are the moats
containing s1 and s2 before ē was added, and u ∈ S1 and v ∈ S2. (See Figure 7 for an illustration.) Since ē
is a tight edge, we have

cē =
∑

S⊆V :(u,v)∈δ(S)

yjS =
∑

S⊆S1:u∈S

yjS +
∑

S⊆S2:v∈S

yjS .

Let p be the path in F̄ j that minimizes the cost
∑
e∈p−F ce. Since s1 and s2 were only connected after ē

was added, the path p contains the edge ē. Let p1 be the subpath of p from s1 to u and p2 be the subpath
of p from v to s2. The cost of p is

∑
e∈p1−F

ce + cē +
∑

e∈p2−F
ce =

 ∑
e∈p1−F

ce +
∑

S⊆S1:u∈S

yjS

+

 ∑
S⊆S2:v∈S

yjS +
∑

e∈p2−F
ce

 .

We claim that ∑
e∈p1−F

ce +
∑

S⊆S1:u∈S

yjS ≤ Growth(X1, j).

Let Su ⊆ S1 be the first moat containing u. Lemma 3.7 implies that there exists a terminal s′1 ∈ Su and a
s′1-u path p′1 with cost

∑
e∈p′1−F

ce ≤
∑
S⊂Su:s′1∈S

yjS . By Lemma 3.2, s′1 and s1 are already connected in F ,

and so the cost of p1 is at most the cost of p′1. Thus, we have∑
e∈p1−F

ce +
∑

S⊆S1:u∈S

yjS ≤
∑

S⊂Su:s′1∈S

yjS +
∑

S⊆S1:u∈S

yjS

≤
∑

S⊂Su:s′1∈S

yjS +
∑

Su⊆S⊆S1

yjS

≤
∑

S⊆S1:s′1∈S

yjS

≤ Growth(X1, j),
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where the second inequality follows from the fact that Su is the first moat containing u, the third from the
fact that Su contains s′1, and the final from the definition of Growth. This proves the claim. A similar
argument also shows that ∑

e∈p2−F
ce +

∑
S⊆S2:v∈S

yjS ≤ Growth(X2, j).

This completes the proof of the lemma.

At any point in the algorithm, for each connected component X of F , define the class of X to be the
highest level j such that it contains a terminal currently or previously active at level j; that is, the largest
j such that X ∩ (Pj ∪ Aj) 6= ∅. We denote the class of X as Class(X) and sometimes refer to it as the
top level of X. Define TopGrowth(X) to be the maximum total dual growth of a terminal in X in level
Class(X), i.e.

TopGrowth(X) = Growth(X,Class(X))

= max
s∈X
{
∑

S⊆V :s∈S

y
Class(X)
S and s is a terminal}.

For example, consider again the instance in Figure 3. At the end of level 0, we have Class({s2, s3}) = −1
and and TopGrowth({s2, s3}) = 2−1; we also have Class({s1}) = Class({s4}) = 0 and TopGrowth({s1}) =
TopGrowth({s4}) = 20.

We know that TopGrowth(X) ≤ 2Class(X) by the dual limit on level Class(X). We now show the following,
which is the technical heart of our result.

Lemma 3.9. At any time in the execution of the algorithm, the following two invariants hold:

1. Every connected component X of F has

Account(X) ≥ 2Class(X) + TopGrowth(X);

2.
∑
e∈F ce +

∑
X∈F Account(X) =

∑
j

∑
S y

j
S.

Invariant 1 ensures that for a component X, Account(X) stores at least 2j total potential for each level
j < Class(X) plus the maximum total dual growth of a terminal in X at the top level, which gives total
potential at least 2Class(X)−1 + 2Class(X)−2 + ... = 2Class(X) plus TopGrowth(X).

Proof. Since accounts get credited for dual growth and are debited exactly the cost of edges in F , invariant
2 holds at any point in the execution of the algorithm.

We now prove the first invariant by induction on the algorithm. It is easy to see that this invariant holds
when no edges have been added to F since the algorithm grows dual variables in level j until some active
dual variable reaches its limit 2j ; it then grows duals in next higher level. Thus, Account(X) is credited 2j

for each level j below the top level Class(X) while getting TopGrowth(X) for the top level.
We now turn to the inductive proof of invariant 1. Suppose the invariant holds just before we add some

path p to F at level j that minimizes
∑
e∈p−F ce. Suppose the path connects terminals s1, s2 ∈ Aj ∪ Pj , in

components X1 and X2, respectively, of F . Let X3 be the component that results from adding path p to F .
Define j1 = Class(X1) and j2 = Class(X2). Our shadow algorithm merges the unused potential remaining in
Account(X1) and Account(X2) into Account(X3), and removes potential from Account(X3) to pay for the
cost of building edges p− F . Thus, we have

Account(X3) = Account(X1) + Account(X2)−
∑

e∈p−F
ce

≥ 2j1 + TopGrowth(X1) + 2j2 + TopGrowth(X2)−
∑

e∈p−F
ce,
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where the inequality follows from applying the inductive hypothesis to X1 and X2.
We suppose without loss of generality that j2 ≥ j1. It is easy to see that Class(X3) = j2 and

TopGrowth(X3) = TopGrowth(X2). Thus, to prove invariant 1, it suffices to show that

2j1 + TopGrowth(X1) ≥
∑

e∈p−F
ce.

Note that this inequality is a formalization of our intuition that the potential associated with the component
with the smaller account is sufficient to pay for adding the path. By Lemma 3.7, we have

Growth(X1, j) + Growth(X2, j) ≥
∑

e∈p−F
ce.

Moreover, the limit on the dual growth at level j implies that Growth(X1, j) ≤ 2j and Growth(X2, j) ≤
2j . There are two cases to consider: either j1 > j or j1 = j. In the first case, we get 2j1 ≥ 2j+1 ≥
Growth(X1, j) + Growth(X2, j). On the other hand, if j1 = j, then TopGrowth(X1) = Growth(X1, j) and
2j1 ≥ Growth(X2, j). In both cases, we have

2j1 + TopGrowth(X1) ≥ Growth(X1, j) + Growth(X2, j) ≥
∑

e∈p−F
ce,

as desired.
Therefore, invariant 1 holds at any time during the execution of the algorithm.

To finish the proof, we need a statement about the total value of the dual solution over all dual variables.
This proof is similar to one in Berman and Coulston [4] (page 347) about collections of balls.

Lemma 3.10. Let the dual vector yj with the maximum total dual
∑
S y

j
S be ymax. At the end of time step

i, we have
∑
j

∑
S y

j
S ≤ 2(log |Ri|+ 3)

∑
S y

max
S .

Proof. Let X∗ be a component in F of highest class and let c = Class(X∗). Since X∗ is at level c, there must
have been a terminal s∗ ∈ X∗ that reached its limit in level c− 1, so that 2c−1 =

∑
S:s∗∈S y

c−1
S ≤

∑
S y

c−1
S .

Similarly, we know that each terminal s ∈ Ri has total dual in level j of
∑
S⊆V :s∈S y

j
S ≤ 2j , so that the

total value of the dual solution yj is at most
∑
S y

j
S ≤ |Ri| · 2j . Let ` = c− 1− dlog2 |Ri|e; that is, ` is the

level dlog2 |Ri|e levels below c− 1. We claim that we can neglect the dual value coming from levels below `
because it is not more than the value of level c− 1. In particular,

`−1∑
j=−∞

∑
S

yjS ≤ |Ri|
`−1∑
j=−∞

2j ≤ |Ri| · 2` ≤ 2c−1.

Then ∑
j

∑
S

yjS =
∑
j<`

∑
S

yjS +

c∑
j=`

∑
S

yjS

≤ 2

c∑
j=`

∑
S

yjS

≤ 2(c− `+ 1)
∑
S

ymax
S

≤ 2(log |Ri|+ 3)
∑
S

ymax
S .
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Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 2.1, at the end of time step i of the algorithm, F is a feasible solution to
(IPi). We have ∑

e∈F
ce ≤

∑
j

∑
S

yjS by Lemma 3.9

≤ 2(log |Ri|+ 3)
∑
S

ymax
S by Lemma 3.10

≤ 2(log |Ri|+ 3)OPTi by Lemma 2.1

where OPTi is the optimal value of (IPi) and the last inequality follows since the value of the feasible dual
solution to (Di) y

max is a lower bound on OPTi. Therefore, our algorithm is an O(log |Ri|)-competitive
algorithm for the online proper constrained forest problem. Note that we have |Ri| ≤ n, where n is the
number of nodes in G. The constants can be made somewhat tighter, but we omit these details for the sake
of clarity.

4 Online Network Design with Penalties

In this section, we extend the algorithm of the previous section to one in which we are allowed to violate
connectivity constraints by paying a penalty. To do this, we will use a very general form of the problem
introduced by Sharma, Swamy, and Williamson [21]. In the offline version of their problem, they give a
arbitrary 0-1 connectivity requirement function f : 2V → {0, 1}, and a submodular and monotone penalty

function π : 22V → Z≥0. Note that the penalty function is on collections or families of sets, which we will
denote by S. In the offline problem, we must find a set of edges F and a family of sets S such that for any
subset S of vertices, either |F ∩ δ(S)| ≥ f(S) or S ∈ S. The goal is to minimize the cost of the edges in F
plus the penalty π(S). Sharma et al. [21] restrict the penalty function to have the following properties:

• (Emptyset property) π(∅) = 0;

• (Monotonicity) If S ⊆ T , then π(S) ≤ π(T ).

• (Submodularity) For any collections S and T , π(S) + π(T ) ≥ π(S ∪ T ) + π(S ∩ T ).

• (Union property) For any two subsets S1 and S2, π({S1, S2, S1 ∪ S2}) = π({S1, S2}).

• (Complement property) For any subset S ⊆ V , π({S, V − S}) = π({S}).

• (Inactivity property) For any subset S ⊆ V with f(S) = 0, π({S}) = 0.

Note that the last property implies that if a set has an associated penalty, then it must require some type
of connectivity.

To understand what penalty arises from a given solution F , let C be the connected components of (V, F ).
We call T the closure of a collection of sets S if T ⊇ S and T is closed under taking unions and complements
(and thus intersections and set differences as well); we denote T by closure(S). Then given a solution F and
its connected components C, the family of sets on which we must pay a penalty is closure(C).

We extend the algorithm of the previous section to an online version of the problem, which we now define.
We start with a connectivity requirement function g0 and penalty function π0, where f0(S) = 0 for all S ⊆ V
and π0(S) = 0 for all S ⊆ 2V . In each time step i, a connectivity requirement function fi and a penalty
function πi arrive with the following properties:

1. fi : 2V → {0, 1} is a proper function,

2. gi(S) = max(f1(S), . . . , fi(S)) for all S ⊆ V ,
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3. πi : 22V → Z≥0 satisfies all other properties described above with respect to fi.

Notice that unlike [21], we require that the functions fi be proper functions, so that gi is a proper function.

We also observe that because πi obeys all the properties described above, then so does
∑i
k=1 πk with respect

to gi; in particular for the inactivity property gi(S) = 0 implies that
∑i
k=1 πi({S}) = 0.

We will call this general online problem the online prize-collecting constrained forest problem. In our
variant of the problem, we assume that any decision made to add an edge to F cannot be undone in future
time steps, and any decision to pay a penalty also cannot be undone, even if we end up later fulfilling the
associated connectivity constraint, in a sense that we now describe. If i is the current time step, and we
decide to pay the penalty for a collection Si, then we pay πi(Si) in this time step and all future time steps.
Thus if Sk is the collection on which we decided to pay the penalty in time step k, the total penalty we pay
in time step i is

i∑
k=1

πk(Sk).

As usual, we compare the cost of the online algorithm in each time step i to the cost of an optimal
solution to the offline problem at time step i, and the algorithm is α-competitive if the cost of the algorithm’s
solution is always within a factor of α of the cost of the optimal offline problem. To be specific, the cost of
the algorithm’s solution is the cost of the edges plus the sum of the penalties across all time steps, while if
the optimal set of edges for the offline problem is F ∗, and the corresponding set of connected components is
C∗, then the cost of the optimal offline solution is

∑
e∈F∗ ce +

∑i
k=1 πk(closure(C∗)).

One problem captured by this framework is the online version of the prize-collecting generalized Steiner
tree problem given by Hajiaghayi and Jain [12]. The online prize-collecting generalized Steiner tree problem
is as follows: initially we are given an undirected graph G, and a penalty of zero for each pair of nodes. In
each time step i, a terminal pair (k, l) arrives with a new penalty πkl > 0. We have a choice to either connect
k to l or pay a penalty πkl for not connecting them. Our goal is to find a set of edges F that minimizes the
sum of edge costs in F plus the sum of penalties for terminal pairs that are not connected. The function
gi is the same as for the online generalized Steiner tree problem; the penalty function πi in time step i for
a family of sets S in this case is the sum of penalties of pairs which are separated by some set in S; that is
πi(S) = πkl if there is an S ∈ S such that |S ∩ {k, l}| = 1, and πi(S) = 0 otherwise. Sharma et al. [21] show
that πi obeys the required properties for the offline prize-collecting constrained forest problem. Thus by our
notion of penalties above, if we decide to pay the penalty πkl at the current time step, we continue to pay
πkl in all future time steps, even if k and l are later connected.

Another interesting special case is the (offline) prize-collecting Steiner tree problem, first defined as
Bienstock, Goemans, Simchi-Levi, and Williamson [5]. In the offline version of the prize-collecting Steiner
tree problem, we are given an undirected graph G = (V,E), edge costs ce ≥ 0 for all e ∈ E, a root vertex
r ∈ V , and penalties πv ≥ 0 for all v ∈ V . The goal is to find a tree T spanning the root vertex that
minimizes the cost of the edges in the tree plus the penalties of the vertices not spanned by the tree; that
is, we want to minimize

∑
e∈T ce +

∑
v∈V−V (T ) πv, where V (T ) is the set of vertices spanned by T . This is

equivalent to the prize-collecting generalized Steiner tree problem in which one vertex in each terminal pair
(k, l) is the root r. We define the online prize-collecting Steiner tree problem as follows: we are given a root
node r in G, and a penalty of zero for each non-root node. In each time step i, a terminal si 6= r arrives with
a new penalty πi > 0. We have a choice to either connect si to root r or pay a penalty πi for not connecting
it. Let Ri be the set of terminals that have arrived by time step i; that is, Ri = {l : πl > 0}. Our goal is to
find a set of edges F that minimizes the sum of edge costs in F plus the sum of penalties. Since the problem
is a special case of the online prize-collecting generalized Steiner tree problem, it is also a special case of the
online prize-collecting constrained forest problem. It follows that if we pay the penalty πi for not connecting
terminal si in time step i, we continue to pay the penalty in later iterations even if we later connect si to
the root.

A final special case of this problem is an online version of a problem introduced by Hayrapetyan, Swamy,
and Tardos [15]. In the offline version of this problem, we are given an undirected graph G = (V,E), edge
costs ce ≥ 0 for all e ∈ E, a root vertex r ∈ V , and a monotone submodular penalty function h. The goal is
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to find a tree T spanning the root r to minimize the cost of the edges in T plus h(S), where S is the set of
vertices not spanned by T . We can give an online version of the problem by assuming that at each time step
i we receive a monotone submodular function hi; if Si is the set of vertices not spanned at the end of time
step i, then we pay hi(Si) in penalty for that time step, and

∑i
k=1 hk(Sk) overall. To fit in our framework,

we define
p(S) =

⋃
S∈S:r/∈S

S ∪
⋃

S∈S:r∈S
(V − S),

and πi(S) = hi(p(S)). Sharma et al. show that πi satisfies all the properties needed by the offline prize-
collecting forest problem if we assume that fi(S) = 1 for all S and all i.

The integer programming formulation of the problem in the ith time step is

Min
∑
e∈E

cexe +
∑
S

i∑
k=1

πk(S)zS

(IPi)
∑
e∈δ(S)

xe +
∑
S:S∈S

zS ≥ gi(S), ∀S ⊆ V,

xe ∈ {0, 1}, ∀e ∈ E,
zS ∈ {0, 1}, S ⊆ 2V .

The optimal solution to the integer program gives the optimal offline solution in time step i. Let (LPi)
denote the corresponding linear programming relaxation in which the constraints xe ∈ {0, 1} and zS ∈ {0, 1}
are replaced with xe ≥ 0 and zS ≥ 0. The dual of this linear program, (Di), is

Max
∑
S⊆V

gi(S)yS

(Di)
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

∑
S:S∈S

yS ≤
i∑

k=1

πk(S), ∀S ⊆ 2V

yS ≥ 0, ∀S ⊆ V.

For dual problem (Di), call the constraints
∑
S:e∈δ(S) yS ≤ ce the edge cost constraints and the constraints∑

S:S∈S yS ≤
∑i
k=1 πk(S) the penalty constraints. A penalty constraint corresponding to a family Sj is tight

in level j if the left-hand side of the inequality is equal to the right-hand side.
We extend the algorithm of Figure 4 to give an O(log |Ri|)-competitive algorithm for the online prize-

collecting constrained forest problem, where Ri is defined as before; namely, Ri is the set of all v ∈ V for
which gi({v}) = 1. We again call the vertices in Ri terminals.

Our algorithm is similar to the algorithm in Figure 4 in how it grows dual variables, with the same
conditions (1)-(3) in that algorithm in the dual growth loop, but with an additional condition (4): when
a penalty constraint corresponding to a family Sj becomes tight in level j, we mark all terminals s with
s ∈ Sj ∈ Sj and mark family Sj to pay its penalty. Any marked terminal becomes inactive, and any marked
moat Sj also becomes inactive. Additionally, when we update moats at the bottom of the dual growth loop
for level j, if it is the case that gi(S

j) = 0 for some moat Sj , then we make inactive all active terminals in
Sj .

Let Q be the collection of all families marked by our algorithm at a given point in the algorithm. At the
beginning of time step i, we unmark each family S in Q and unmark all terminals contained in a set S in S
(and all moats S) if S is a violated set for function gi. At the end of time step i, our algorithm outputs F
and the collection of marked families Q.

This algorithm can be implemented in polynomial time. The only change from the algorithm in Figure
4 is that we need to be able to check condition (4); that is, we need to find the next dual penalty constraint
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Prize-Collecting Constrained Forest Algorithm

F = ∅, F̄ j = ∅ for all j, and yj
S = 0 for all j and S ⊆ V

For each {0, 1}-proper function fi that arrives
Update active terminals A, and active moats M
Set X j = ∅
For j ← −∞ to ∞

(Consolidate) While there is an edge ē ∈ F \ F̄ j

Add ē to F̄ j

While there are terminals s1 ∈ Aj , s2 ∈ Pj in the same moat Sj

that are not connected in F
Let p ⊆ E be an s1-s2 path in F̄ j minimizing

∑
e∈p−F ce

F ← F ∪ {p}, i.e. build edges p− F
Update A

Update active moats M
(Dual growth) While there are terminals active at level j

Grow uniformly all active dual variables yj
S until

1) An active yj
S reaches its limit in level j

2) An edge e ∈ E becomes tight in level j, then F̄ j = F̄ j ∪ {e}
3) Two terminals s1 ∈ Aj and s2 ∈ Aj ∪ Pj connect in level j, then

Let p ⊆ E be the s1-s2 path of edges in F̄ j minimizing
∑

e∈p−F ce
F = F ∪ {p}, i.e. build edges p− F
Update A

(4) A penalty constraint w.r.t. family Sj becomes tight in level j
Mark all terminals s with s ∈ Sj ∈ Sj ; make s and Sj inactive
Mark family Sj to pay its penalties
Add Sj to X j

Update A
Update M

Let Q be the families of sets marked to pay penalties
Output F and Q

Figure 8: Primal-dual algorithm for the online prize-collecting constrained forest problem

to go tight in level j efficiently. To do this, we can apply the algorithm described in Section 5.3 of Sharma et
al. [21], which uses submodular function minimization; we observe that since each function πi is submodular

and monotone, then so is
∑i
k=1 πi.

We can reuse many parts of the analysis of the main algorithm. There are two main changes to be
concerned about. The first is that unlike the previous algorithm, it is possible for a connected component X
to have gi(X) = 1 but have no active terminal in it, in contradiction to Lemma 3.3. This lemma was used
in Lemma 3.4 to show that if there is an active terminal in a moat, then the corresponding dual variable
is active, so that we can be assured of obtaining a feasible solution for the function gi. Now our algorithm
updates moats Sj so that if gi(S

j) = 0, then we make the terminals in the moat inactive. We can do so
because in the penalty version of the problem we are allowed to have components X of F with gi(X) = 1 as
long as we pay the associated penalty.

The second main change is that we have to pay the penalty for the families of sets Q returned by the
algorithm, and also the penalties from prior time steps of the algorithm. Because we only include such a
family in Q when the corresponding dual penalty constraint is tight, we can charge the additional penalty
to incremental increases in dual variables. Thus the total penalty over all time steps can be charged to a
single copy of the dual variables, as we will show in detail below. So we charge the costs of the edges in F
to one copy of the dual variables, and the penalties to another copy; this increases the competitive ratio by
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a constant factor, but the ratio still remains O(log |Ri|).
To prove the result, we need the following lemmas. The first two are from Sharma et al. [21].

Lemma 4.1 (Lemma 4.1, Sharma et al. [21]). Let S be a family of sets, and S be any set such that g(S) = 0.
Then, for any S1, S2 ∈ S, we have π(S) = π(S ∪ {S1 ∪ S2}) = π(S ∪ (V − S1)) = π(S ∪ {S}).

The lemma follows from the union, complement, and inactivity properties of π.

Corollary 4.2. π(S) = π(closure(S)).

Lemma 4.3 (Lemma 4.2, Sharma et al. [21]). If there are two families Sj and T j that are tight in level j
for the associated penalty constraints, then the family Sj ∪T j is also tight in level j for its associated penalty
constraint.

For time step i, let X j be the union of all marked families from level j, and let Ii be the collection of all
sets S such that gi(S) = 0. We defer the proof of the following lemma for a moment.

Lemma 4.4. For any connected component C of (V, F ) during time step i, we have

C ∈ closure

Ii ∪⋃
j

X j
 .

Corollary 4.5. If C is the set of all connected components of (V, F ) at the end of time step i, then

πi(closure(C)) ≤
∑
j

πi(X j).

Proof. By Lemma 4.4, for any C ∈ C, C ∈ closure
(
Ii ∪

⋃
j X j

)
, so that

closure(C) ⊆ closure

Ii ∪⋃
j

X j
 .

By the monotonicity of the penalty function πi,

πi(closure(C)) ≤ πi

closure

Ii ∪⋃
j

X j


= πi

Ii ∪
⋃

j

X j


= πi

⋃
j

X j


≤
∑
j

πi(X j).

where the first equality follows from Corollary 4.2, the second equality follows by Lemma 4.1, and the final
inequality by the submodularity of πi.

We can now prove the main theorem.

Theorem 4.6. The algorithm in Figure 8 gives an O(log |Ri|)-competitive algorithm for the online prize-
collecting constrained forest problem (IPi).
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Proof. Since πi(S) ≥ 0 for all S ⊆ 2V and i ≥ 1, each dual solution yj that is feasible at the end of time step
i will remain feasible at the beginning of time step i + 1. By construction each dual solution yj is feasible
for (Di), and any set of edges F is feasible for (IPi) as long as we pay the associated penalty.

To bound total edge costs and penalties, we need to bound the cost of edges built by conditions (3) and
incremental penalties paid by condition (4). By Lemma 3.10, we have

∑
e∈F ce ≤ 2(log |Ri|+ 3)

∑
S y

max
S .

We need to use another copy of the dual variables to bound the penalties. Denote by X j,k the union of
all families that went tight at level j in time step k, and by yj,kS the value of the dual variable yjS at the
end of time step k. Let X j = X j,i be the union of the families in level j that correspond to a tight penalty
constraint in the current time step. If C is the set of connected components at the end of the time step i,
then penalty added is πi(closure(C)), which is at most∑

j

πi(X j)

by Corollary 4.5. Thus the total penalty to be paid in this time step is at most

i∑
k=1

∑
j

πk(X j,k).

We now show by induction that this total penalty is bounded above by the sum of the dual variables; in
particular, we prove that

i∑
k=1

∑
j

πk(X j,k) ≤
∑
j

∑
S

yjS . (1)

By Lemma 4.3, it must be the case that
∑i
k=1 πk(X j) =

∑
S∈X j y

j
S , and by the feasibility of the dual solution

in time step i− 1, it is the case that
∑
S∈X j y

j,i−1
S ≤

∑i−1
k=1 πk(X j). Thus we have that

∑
j

πi(X j) =

i∑
k=1

∑
j

πk(X j)−
i−1∑
k=1

∑
j

πk(X j)

≤
∑
j

∑
S∈X j

(yjS − y
j,i−1
S )

By induction
i−1∑
k=1

∑
j

πk(X j,k) ≤
∑
j

∑
S

yj,i−1
S .

Thus

i∑
k=1

∑
j

πk(X j,k) =

i−1∑
k=1

∑
j

πk(X j,k) +
∑
j

πi(X j)

≤
∑
j

∑
S

yj,i−1
S +

∑
j

∑
S

(yjS − y
j,i−1
S )

≤
∑
j

∑
S

yjS ,

and Inequality (1) is shown.
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Therefore, using Lemma 3.10, we have that

∑
e∈F

ce +

i∑
k=1

πk(X j,k) ≤ 2
∑
j

∑
S

yjS

≤ 4(log |Ri|+ 3)
∑
S

ymax
S

≤ O(log |Ri|)OPTi.

We now turn to the proof of Lemma 4.4.

Proof of Lemma 4.4. We give a proof by contradiction. For a given time step i, pick the earliest point in the
algorithm at which there is a component C of (V, F ) such that gi(C) = 1 for the current time step i, there is

no active vertex in C, and yet C /∈ closure
(
Ii ∪

⋃
j X j

)
. Suppose the algorithm is currently in level j. Just

prior to this point in time, C must have contained an active vertex, since at the beginning of the time step
i, any component C of F with gi(C) = 1 must contain an active vertex. Let Sj ∈ Sj be the level-j moat
containing C. Recall that Sj is partitioned into C and other components C ′.

First, we show that Sj ∈ Ii ∪ X j . There are only two possible steps in the algorithm that could cause
a terminal in C to become inactive when gi(C) = 1. The first possibility is step (4) of the dual growth
phase; in this case, a penalty constraint must have gone tight for some family Sj with Sj ∈ Sj . The second
possibility is that gi(S

j) = 0, so when the algorithm updated moats at the bottom of the dual growth loop,
it made all active terminals in the moat inactive. In both cases, we have Sj ∈ Ii ∪ X j .

Second, we show that every other component C ′ 6= C in Sj belongs to closure
(
Ii ∪ X j

)
. By Lemma 3.2,

prior to this point in time, all the active vertices are contained in C. Thus, either gi(C
′) = 0 and C ′ ∈ Ii,

or gi(C
′) = 1. In the latter case, since C ′ did not contain an active vertex, in order not to contradict our

choice of C, it must be that C ′ ∈ closure
(
Ii ∪ X j

)
.

Since Sj and every other component C ′ 6= C in Sj belongs to closure
(
Ii ∪ X j

)
, it must be that C ∈

closure
(
Ii ∪ X j

)
. This gives the desired contradiction and concludes the proof of the lemma.

5 Conclusion

In the online generalized Steiner network problem, we are given as input an undirected graph and nonnegative
edge costs, and in the ith time step, a pair of terminals (si,ti) arrives with a connectivity requirement ri. One
must then augment the current solution so that there are at least ri edge-disjoint paths between si and ti.
It is an interesting open question whether primal-dual algorithms for the offline generalized Steiner network
design problem (such as those in [23, 7]) can be adapted to the online case as we did here for the online
constrained forest problem. Gupta, Krishnaswamy, and Ravi [11] have shown that if Ri is the set of terminals
that have arrived by the ith time step, then there is a lower bound of Ω(|Ri|) on the competitive ratio. If
rmax = maxi ri, Gupta et al. [11] have given an O(rmax log3 n)-competitive algorithm for this problem, so
such an adaptation might be possible.

Another interesting question is what happens if the algorithm is allowed to remove some small number
of edges from the solution as time progresses. In particular, Gu, Gupta, and Kumar [10] have shown that it
is possible to have a constant competitive ratio algorithm for the online Steiner tree problem if, in addition
to adding edges at each time step, it is allowed to remove a single edge per time step; this work builds on
a previous algorithm of Megow, Skutella, Verschae, and Wiese [19]. It would be interesting to extend their
algorithm to the more general types of network design considered in this paper.

For approximation algorithms and online algorithms, it is often the case that their performance is better
than the theoretical worst-case analysis. Cheung [6] has performed a computational study of various online
algorithms for the online prize-collecting Steiner tree problem, including the algorithm presented here and
the algorithm of Umboh [22]. She finds that for our algorithm that the average competitive ratio is 1.848
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among 40 instances with up to 400 nodes. Umboh’s algorithm has better performance, with an average
competitive ratio of 1.341.
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