
ar
X

iv
:1

30
9.

37
01

v3
 [

cs
.D

M
]

 2
4

D
ec

 2
01

8

New and simple algorithms for stable flow

problems

Ágnes Cseh1⋆ and Jannik Matuschke2⋆⋆

1 Institute of Economics, Hungarian Academy of Sciences and
Corvinus University of Budapest, e-mail: cseh.agnes@krtk.mta.hu

2 TUM School of Management, Technische Universität München, e-mail:
jannik.matuschke@tum.de

Abstract. Stable flows generalize the well-known concept of stable match-
ings to markets in which transactions may involve several agents, for-
warding flow from one to another. An instance of the problem consists
of a capacitated directed network in which vertices express their prefer-
ences over their incident edges. A network flow is stable if there is no
group of vertices that all could benefit from rerouting the flow along a
walk.
Fleiner [13] established that a stable flow always exists by reducing it to
the stable allocation problem. We present an augmenting path algorithm
for computing a stable flow, the first algorithm that achieves polynomial
running time for this problem without using stable allocations as a black-
box subroutine. We further consider the problem of finding a stable flow
such that the flow value on every edge is within a given interval. For this
problem, we present an elegant graph transformation and based on this,
we devise a simple and fast algorithm, which also can be used to find a
solution to the stable marriage problem with forced and forbidden edges.
Finally, we study the stable multicommodity flow model introduced by
Király and Pap [27]. The original model is highly involved and allows for
commodity-dependent preference lists at the vertices and commodity-
specific edge capacities. We present several graph-based reductions that
show equivalence to a significantly simpler model. We further show that
it is NP-complete to decide whether an integral solution exists.

Keywords: stable flows, restricted edges, multicommodity flows, poly-
nomial algorithm, NP-completeness

1 Introduction

Stability is a well-known concept used for matching markets without monetary
transactions [33]. A stable solution provides certainty that no two agents are
⋆ Supported by Cooperation of Excellences Grant (KEP-6/2018), by the Ministry

of Human Resources under its New National Excellence Programme (UNKP-18-4-
BME-331), the Hungarian Academy of Sciences under its Momentum Programme
(LP2016-3/2016), its János Bolyai Research Fellowship, and OTKA grant K128611.

⋆⋆ Partially supported by COST Action IC1205 on Computational Social Choice.

http://arxiv.org/abs/1309.3701v3

willing to selfishly modify the market situation. Stable matchings were first for-
mally defined in the seminal paper of Gale and Shapley [19]. They described
an instance of the college admission problem and introduced the terminology
based on marriage that since then became wide-spread. Besides this initial ap-
plication, variants of the stable matching problem are widely used in employer
allocation markets [34], university admission decisions [2,4], campus housing as-
signments [5,32] and bandwidth allocation [18]. A recent honor proves the cur-
rentness and importance of results in the topic: in 2012, Lloyd S. Shapley and
Alvin E. Roth were awarded the Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel for their outstanding results on market design and
matching theory.

In the classic stable marriage problem, we are given a bipartite graph, where
the two classes of vertices represent men and women, respectively. Each vertex
has a strictly ordered preference list over his or her possible partners. A matching
is stable if it is not blocked by any edge, that is, no man-woman pair exists who
are mutually inclined to abandon their partners and marry each other [19].

In practice, the stable matching problem is mostly used in one of its ca-
pacitated variants, which are the stable many-to-one matching, many-to-many
matching and allocation problems. The stable flow problem can be seen as a high-
level generalization of all these settings. As the most complex graph-theoretical
generalization of the stable marriage model, it plays a crucial role in the theo-
retical understanding of the power and limitations of the stability concept. From
a practical point of view, stable flows can be used to model markets in which
interactions between agents can involve chains of participants, e.g., supply chain
networks involving multiple independent companies.

In the stable flow problem, a directed network with preferences models a
market situation. Vertices are vendors dealing with some goods, while edges
connecting them represent possible deals. Through his preference list, each ven-
dor specifies how desirable a trade would be to him. Sources and sinks model
suppliers and end-consumers. A feasible network flow is stable, if there is no
set of vendors who mutually agree to modify the flow in the same manner. A
blocking walk represents a set of vendors and a set of possible deals so that all of
these vendors would benefit from rerouting some flow along the blocking walk.

Literature review. The notion of stability was extended to so-called “vertical net-
works” by Ostrovsky in 2008 [30]. Even though the author proves the existence
of a stable solution and presents an extension of the Gale-Shapley algorithm,
his model is restricted to unit-capacity acyclic graphs. Stable flows in the more
general setting were defined by Fleiner [13], who reduced the stable flow problem
to the stable allocation problem. Since then, the stable flow problem has been
investigated in several papers [15,16,24,29]. Recently, stable flows have been used
to derive conflict-free routings in multi-layer graphs [35].

The best currently known computation time for finding a stable flow is
O(|E| log |V |) in a network with vertex set V and edge set E. This bound is
due to Fleiner’s reduction to the stable allocation problem and its fastest solu-
tion described by Dean and Munshi [8]. Since the reduction takes O(|V |) time,

it does not change the instance size significantly, and the weighted stable al-
location problem can be solved in O(|E|2 log |V |) time [8], the same holds for
the maximum weight stable flow problem. The Gale-Shapley algorithm can also
be extended for stable flows [7], but its straightforward implementation requires
pseudo-polynomial running time, just like in the stable allocation problem.

It is sometimes desirable to compute stable solutions using certain forced
edges or avoiding a set of forbidden edges. This setting has been an actively
researched topic for decades [6,9,14,22,28]. This problem is known to be solv-
able in polynomial time in the one-to-one matching case, even in non-bipartite
graphs [14]. Though Knuth presented a combinatorial method that finds a sta-
ble matching in a bipartite graph with a given set of forced edges or reports
that none exists [28], all known methods for finding a stable matching with both
forced and forbidden edges exploit a somewhat involved machinery, such as ro-
tations [22], LP techniques [10,11,23] or reduction to other advanced problems
in stability [9,14].

In many flow-based applications, various goods are exchanged. Such problems
are usually modeled by multicommodity flows [25]. A maximum multicommodity
flow can be computed in strongly polynomial time [36], but even when capacities
are integer, all optimal solutions might be fractional, and finding a maximum
integer multicommodity flow is NP-hard [21]. Király and Pap [27] introduced the
concept of stable multicommodity flows, in which edges have preferences over
which commodities they like to transport and the preference lists at the vertices
may depend on the commodity. They show that a stable solution always exists,
but it is PPAD-hard to find one.

Our contribution and structure. In this paper we discuss new and simplified
algorithms and complexity results for three differently complex variants of the
stable flow problem. Section 2 contains preliminaries on stable flows.

• In Section 3 we present a polynomial algorithm for stable flows. To derive an
efficient solution method operating directly on the flow network, we combine
the well-known pseudo-polynomial Gale-Shapley algorithm and the proposal-
refusal pointer machinery known from stable allocations into an augmenting
path algorithm for computing a stable flow. Besides polynomial running
time, the method has the advantage that it is easy to implement and that
it provides new insights into the structure of the stable flow problem, which
we exploit in later sections.

• Then, in Section 4 stable flows with restricted intervals are discussed. We pro-
vide a simple combinatorial algorithm to find a flow with flow value within
a pre-given interval for each edge. Surprisingly, our algorithm directly trans-
lates into a very simple new algorithm for the problem of stable matchings
with forced and forbidden edges in the classical stable marriage case. Unlike
the previously known methods, our result relies solely on elementary graph
transformations.

• Finally, in Section 5 we study stable multicommodity flows. First, we answer
an open question posed in [27] by providing tools to simplify stable mul-
ticommodity flow instances to a great extent. In particular, we show that

it is without loss of generality to assume that no commodity-specific prefer-
ences at the vertices and no commodity-specific capacities on the edges exist.
Then, we reduce 3-sat to the integral stable multicommodity flow problem
and show that it is NP-complete to decide whether an integral solution exists
even if the network in the input has integral capacities only.

2 Preliminaries

A network (D, c) consists of a directed graph D = (V, E) and a capacity function
c : E → R≥0 on its edges. The vertex set of D has two distinct elements, also
called terminal vertices: a source s, which has outgoing edges only and a sink t,
which has incoming edges only. Besides differentiating between the source and
the sink, we will assume that D does not contain loops or parallel edges, and
every vertex v ∈ V \ {s, t} has both incoming and outgoing edges. These three
assumptions are without loss of generality and only for notational convenience.
We denote the set of edges leaving a vertex v by δ+(v) and the set of edges
running to v by δ−(v).

Definition 1 (flow). Function f : E → R≥0 is a flow if it fulfills both of the
following requirements:

1. capacity constraints: f(uv) ≤ c(uv) for every uv ∈ E;
2. flow conservation:

∑

uv∈E f(uv) =
∑

vw∈E f(vw) for all v ∈ V \ {s, t}.

A stable flow instance is a triple I = (D, c, r). It comprises a network (D, c)
and r, a ranking function that induces for each vertex an ordering of their inci-
dent edges. Each non-terminal vertex ranks its incoming and also its outgoing
edges strictly and separately. Formally, r = (rv)v∈V \{s,t}, contains an injective
function rv : δ+(v) ∪ δ−(v) → R for each v ∈ V \ {s, t}. We say that v prefers
edge e to e′ if rv(e) < rv(e′). Terminals do not rank their edges, because their
preferences are irrelevant with respect to the following definition.

Definition 2 (blocking walk, stable flow). A blocking walk of flow f is a
directed walk W = 〈v1, v2, ..., vk〉 such that all of the following properties hold:

1. f(vivi+1) < c(vivi+1), for each edge vivi+1, i = 1, ..., k − 1;
2. v1 = s or there is an edge v1u such that f(v1u) > 0 and rv1

(v1v2) < rv1
(v1u);

3. vk = t or there is an edge wvk such that f(wvk) > 0 and rvk
(vk−1vk) <

rvk
(wvk).

A flow is stable, if there is no blocking walk with respect to it in the graph.

Intuitively, a blocking walk is an unsaturated walk in the graph so that both
its starting vertex and its end vertex are inclined to reroute some flow along it.
Notice that the preferences of the internal vertices of the walk do not matter in
this definition.

Unsaturated walks fulfilling point 2 are said to dominate f at start, while
walks fulfilling point 3 dominate f at the end. We can say that a walk blocks f
if it dominates f at both ends.

s v1 v2 v3 v4 v5 v6 t

1 1 1 1 1 1 1 1 1 1 1 1

2

22

2
2 2

Fig. 1. The edge labels indicate the ranking of each edge at a vertex. For example,
v3prefers receiving flow from v2 to receiving flow from s. The maximum flow (marked
by dashed colored edges) has value 3 in this unit-capacity network, while the unique
stable flow is of value 1 and is sent along the path 〈s, v1, v2, ..., t〉. It is easy to see that
this instance can be extended to demonstrate the ratio Ω(|E|).

Problem 1. sf

Input: I = (D, c, r); a directed network (D, c) and r, the preference ordering of
vertices.
Question: Is there a stable flow f?

Theorem 1 (Fleiner [13]). sf always has a stable solution and it can be found
in polynomial time. Moreover, for a fixed sf instance, each edge incident to s or
t has the same value in every stable flow.

This result is based on a reduction to the stable allocation problem. The
second half of Theorem 1 can be seen as the flow generalization of the so-called
Rural Hospitals Theorem known for stable matching instances [20]. While The-
orem 1 implies that all stable flows have equal value, we remark that this value
can be much smaller than that of a maximum flow in the network. In Example 1
we demonstrate a gap of Ω(|E|).

Example 1 (Small stable flow value) Flows with no unsaturated terminal-
terminal paths are maximal flows. We know that every stable flow is maximal
and it is folklore that the ratio of the size of maximal and maximum flows can be
of O(|E|). As the instance in Fig. 1 demonstrates, this ratio can also be achieved
by the size of a stable flow vs. that of a maximum flow.

3 A polynomial-time augmenting path algorithm for

stable flows

Using Fleiner’s construction [13], a stable flow can be found efficiently by com-
puting a stable allocation in a transformed instance instead. Another approach
is adapting the widely used Gale-Shapley algorithm to sf. As described in [7],
this yields a preflow-push type algorithm, in which vertices forward or reject
excessive flow according to their preference lists. While this algorithm has the
advantage of operating directly on the network without transformation to stable
allocation, its running time is only pseudo-polynomial.

In the following, we describe a polynomial time algorithm to produce a stable
flow that operates directly on the network D. Our method is based on the well-
known augmenting path algorithm of Ford and Fulkerson [17], also used by Baïou
and Balinski [1] and Dean and Munshi [8] for stability problems. The main idea is
to introduce proposal and refusal pointers to keep track of possible Gale-Shapley
steps and execute them in bulk. Each such iteration corresponds to augmenting
flow along an s-t-path or a cycle in a restricted residual network.

3.1 Our algorithm

In the algorithm, every vertex (except for the sink) is associated with two point-
ers, the proposal pointer and the refusal pointer. Throughout the course of the
algorithm, the proposal pointer traverses the outgoing edges of the vertex in
order of decreasing preference while the refusal pointer traverses its incoming
edges in order of increasing preference. For the source s, we assume an arbitrary
preference order. Starting with the 0-flow, the algorithm iteratively augments
the flow along a path or cycle in the graph induced by the pointers. This graph
consists of the edges pointed at by the proposal pointers and the reversals of the
edges pointed at by the refusal pointer.

After each augmentation step, pointers pointing at saturated or refused edges
are advanced. The algorithm terminates when the proposal pointer of the source
has traversed all its outgoing edges. We prove that when this happens, the al-
gorithm has found a stable flow. As in each iteration, at least one pointer is
advanced, the running time of the algorithm is polynomial in the size of the
graph. The complete algorithm is listed as Algorithm 1. In the following we
describe the individual parts in detail.

Initializing and updating pointers. For notational convenience, we introduce two
artificial elements, ∗ at the top and ∅ at the bottom of each preference list with
the convention rv(∗) = −∞ and rv(∅) = ∞.

Every vertex v ∈ V \ {t} is associated with a proposal pointer π[v] and a
refusal pointer ρ[v], both pointing to elements on the preference list. Initially,
π[v] points to the most preferred outgoing edge on v’s preference list, i.e., the
entry right after ∗, whereas ρ[v] is inactive, which is denoted by ρ[v] = ∅. We
also set ρ[t] = ∅ for notational convenience (we will never change ρ[t] during the
algorithm). Note that this implies rv(ρ[t]) = ∞.

The pointers at v are advanced through the procedure AdvancePoint-

ers(v); see Algorithm 1, lines 1-1 for a formal listing. A call of this procedure
works as follows:

• If π[v] is active, it is advanced to point to the next less-preferred outgoing
edge on v’s preference list (lines 1-1). If all of v’s outgoing edges have been
traversed, π[v] reaches its inactive state, i.e., π[v] = ∅, and ρ[v] gets advanced
from its inactive state to pointing to the least-preferred incoming edge on v’s
preference list. Note that in this latter case, the state of π[v] changes from
active to inactive between line 1 and line 1, and thus both if-conditions are
fulfilled in the same call of the procedure.

• If π[v] is already inactive, the refusal pointer ρ[v] gets advanced to the next
more-preferred incoming edge on the preference list (lines 1-1). Once ρ[v]
traversed v’s most preferred incoming edge, we set ρ[v] = ∗, denoting all
incoming edges of v have been refused (the procedure will not be called
again for this vertex after this point).

The helper graph. With any state of the pointers π, ρ, we associate a helper
graph Hπ,ρ. It has the same vertex set as D and the following edge set:

EHπ,ρ
:= {π[v] : v ∈ V \ {t}, π[v] 6= ∅}

∪ {rev(ρ[v]) : v ∈ V \ {t}, π[v] = ∅, ρ[v] 6= ∗},

where rev(uv) := vu denotes the reversal of a given edge. Hence, for every vertex
v ∈ V \ {t}, the graph Hπ,ρ either contains the edge π[v], if the proposal pointer
is still active, or it contains the reversal rev(ρ[v]) of the edge ρ[v], if the refusal
pointer is active, or neither of these, if both pointers are inactive. Each edge
e ∈ EHπ,ρ

has a residual capacity cf (e) depending on the current flow f , defined
by

cf (e) :=

{

c(e) − f(e) if e ∈ E,

f(e) if e = rev(e′) for some e′ ∈ E.

At the beginning of each iteration of the algorithm, we ensure that no proposal
or refusal pointer points to an edge with residual capacity 0 and that no proposal
pointer points to an edge that has already been refused by its head (lines 1-1).

Augmenting the flow. The algorithm iteratively augments the flow f along an
s-t-path or cycle W in Hπ,ρ by the bottleneck capacity mine∈W cf (e) (lines 1-1).
Augmenting a flow f along a path or cycle W by ∆ means that for every e ∈ W ,
we increase f(e) by ∆ if e ∈ E and decrease f(e′) by ∆ if e = rev(e′) for some
e′ ∈ E. Note that after the augmentation, cf (e) = 0 for at least one edge e ∈ W ,
implying that at least one pointer is advanced before the next augmentation.
Lemma 2 below shows that an augmenting path or cycle in Hπ,ρ exists as long
as π[s] is still active. The algorithm stops when π[s] = ∅ (lines 1-1).

Algorithm 1: Augmenting path algorithm for stable flows
// Initialize proposal pointers to point at most-preferred outgoing

edges, refusal pointers inactive.

Set π[v] := argminvw∈E rv(vw) and ρ[v] := ∅ for all v ∈ V .
Set f := 0.

// Ensure pointers only point to residual, non-refused edges.

while ∃ uv ∈ EHπ,ρ with cf (uv) = 0 or (π[u] = uv and rv(uv) ≥ rv(ρ[v])) do
AdvancePointers (u)

// Stop once proposal pointer of source becomes inactive.

if π[s] = ∅ then
return f

// Augment flow along path/cycle induced by proposal and refusal

pointers.

Let W be an s-t-path or cycle in Hπ,ρ.
Set ∆ := mine∈W cf (e).
Augment f by ∆ along W .

// Repeat.

Goto line 3.

procedure AdvancePointers (v)
// If proposal pointer is active, advance it to next

less-preferred outgoing edge.

if π[v] 6= ∅ then
Set P := {vw ∈ E : rv(vw) > rv(π[v])} ∪ {∅}.
Set π[v] := argmine∈P rv(e).

// If proposal pointer has passed all edges, advance refusal

pointer to next more-preferred incoming edge.

if π[v] = ∅ and ρ[v] 6= ∗ then
Set R := {uv ∈ E : rv(uv) < rv(ρ[v])} ∪ {∗}.
Set ρ[v] := argmaxe∈R rv(e).

3.2 Example run of the algorithm

Before we analyze the algorithm, we illustrate it by running it on the example
instance given in Fig. 2. To each augmentation, the set of pointers is drawn in
Fig 3.

Augmentation 1: Initially, the proposal pointers are set to π[s] = sv, π[v] = vw,
π[w] = [wt], while all refusal pointers are inactive (pointing to ∅). The graph
Hπ,ρ consists of the edges sv, vw, and wt, which comprise a unique s-t-path W1.
The algorithm augments f along W1 by its bottleneck capacity 1, yielding the
flow f(sv) = f(vw) = f(wt) = 1 and f(sw) = f(vt) = 0.

s

v

w

t

1

1

1

2

2

1

Fig. 2. Example instance for illustrating a run of Algorithm 1. Numbers next to the
vertices indicate preferences of incident edges. Edge capacities are c(sv) = c(vw) = 2
and c(sw) = c(vt) = c(wt) = 1. For the algorithm, we choose the arbitrary preference
order of the source s to prefer edge sv over sw.

s

v

w

t

1

1

1

2

2

1

s

v

w

t

1

1
2

1
2

1

s

v

w

t

1

1
2

1
2

1

Fig. 3. The proposal and refusal pointers at the beginning of augmentations 1, 2, and 3,
respectively. Proposal pointers are marked by solid black edges, while refusal pointers
are the solid gray edges. The dashed edges do not belong to the current set of pointers.

Pointer update: Because the residual capacity of wt is 0, AdvancePointers(w)
is called. The procedure advances π[w] to the inactive state ∅ and hence imme-
diately activates ρ[w] with ρ[w] = vw. Because also π[v] = vw, this pointer is
also advanced according to the second criterion of the while loop. It reaches
π[v] = vt.

Augmentation 2: With π[s] = sv, ρ[w] = vw, and π[v] = vt, the graph Hπ,ρ

consists of the edges sv, rev(vw) = wv, and vt. The unique s-t-path W2 = 〈s, v, t〉
is chosen, the bottleneck capacity is cf (sv) = cf (vt) = 1. After augmenting f
along W2 by 1 unit, the new flow is f(sv) = 2, f(vw) = f(vt) = f(wt) = 1 and
f(sw) = 0.

Pointer update: Because cf (sv) = 0, the pointer π[s] is advanced to sw. Because
cf (vt) = 0, also π[v] is advanced to ∅ and ρ[v] gets activated with ρ[v] = sv.

Augmentation 3: With π[s] = sw, ρ[w] = vw, and ρ[v] = sv, the graph Hπ,ρ

consists of the edges sw, wv, and vs. These edges comprise the cycle W3. The
residual capacities are cf (sw) = cf (wv) = 1 and cf (vs) = 2. Augmenting f
along W3 by 1 unit yields the flow f(sv) = f(sw) = f(vt) = f(wt) = 1 and
f(vw) = 0.

Pointer update: Because cf (wv) = 0, the pointer ρ[w] is updated to sw, also
triggering an update of π[s] that was pointing at the same edge. After advancing
π[s] it reaches ∅ and hence the algorithm terminates.

3.3 Analysis

In the proof of correctness we utilize the following notation. We say the proposal
pointer π[v] has reached edge vw if rv(π[v]) ≥ rv(vw). We say π[v] has passed
the edge vw if rv(π[v]) > rv(vw). We use analogous terms for the refusal pointer
ρ[v] with reversed inequality signs, respectively.

We now make a few observations on the behavior of the pointers. We first
observe that π[v] moves from most-preferred to least-preferred edge and ρ[v]
moves from least-preferred to most-preferred edge, the ranks of the two pointers
are non-decreasing or non-increasing, respectively, during the course of the al-
gorithm (note that the lowest rank in P is always higher than the current rank
of π[v] in line 1 and the highest rank in R is always lower than the current rank
of ρ[v] in line 1).

Observation 1. Throughout the algorithm, rv(π[v]) never decreases and rv(ρ[v])
never increases for any v ∈ V \ {t}.

Also, for each vertex, at most one of its two pointers is active at any time,
as the refusal pointer is only advanced once the proposal pointer reaches the
inactive state.

Observation 2. Throughout the algorithm, for each v ∈ V \ {t} either ρ[v] = ∅
or π[v] = ∅.

Finally, we observe that proposal/refusal pointers do not skip any outgo-
ing/incoming edge, respectively. This is due to the construction of P in line 1
and R in line 1, which contain every edge that has a rank strictly higher/lower,
respectively, than the edge currently pointed at by the pointer.

Observation 3. Let uv ∈ E.

• If ru(π[u]) < ru(uv) before a call of AdvancePointers(u), then ru(π[u]) ≤
ru(uv) after that call.

• If rv(ρ[v]) > rv(uv) before a call of AdvancePointers(v), then rv(ρ[v]) ≥
rv(uv) after that call.

We next establish a set of invariants that are useful for analyzing the algo-
rithm.

Lemma 1. The following invariants hold true for each uv ∈ E any time the
algorithm is in lines 1-1:

1. If rv(ρ[v]) ≤ rv(uv) then π[u] 6= uv.
2. If rv(ρ[v]) < rv(uv) then f(uv) = 0.

3. If ru(π[u]) < ru(uv) then f(uv) = 0.
4. If ru(π[u]) > rv(uv) then f(uv) = c(uv) or rv(ρ[v]) ≤ rv(uv).

Note that due to the monotonicity of the pointers, once the premise of in-
variant 1, 2, or 4 is fulfilled for an edge, it will stay this way for the rest of the
algorithm. Intuitively, the invariants state that (1) a proposal pointer does not
point to a refused edge, (2) once a refusal pointer has passed an edge, the edge
carries no flow, (3) an edge can only carry flow after it is reached by its proposal
pointer, and (4) after a proposal pointer has passed an edge, the edge is fully
saturated until the refusal pointer of its end reaches it.

Proof (of Lemma 1). Invariant 1: Note that the pointers are only changed in
the while loop in lines 1-1. If π[u] = uv, then uv ∈ EHπ,ρ

. Therefore the while
loop does not terminate while π[u] = uv and rv(uv) ≥ rv(ρ[v]).

Invariant 2: Observe the invariant is true after intialization since f(uv) = 0.
Note that f(uv) can only increase in line 1 when π[u] = uv. In that case, Invari-
ant 1 ensures that rv(ρ[v]) > rv(uv). So the invariant can only become invalid
by advancing the pointer ρ[v] past uv. Consider the first time this happens
in the algorithm. By Observation 3, this can only happen with a call of Ad-

vancePointers(v) when ρ[v] = uv. But then π[v] = ∅ by Observation 2 and
therefore the call of AdvancePointers(v) can only be triggered by the condi-
tion cf (vu) = 0 of the while loop. But this implies f(uv) = 0, so the invariant
did not become invalid.

Invariant 3: Initially, f(uv) = 0. The flow can only increase when uv is part
of an augmenting path or cycle in line 1. This can only happen while π[u] = uv
by construction of EHπ,ρ

. Because ru(π[u]) is non-decreasing, ru(π[u]) ≥ ru(uv)
is true at any time after the first increase of f(uv).

Invariant 4: This invariant is true initially because ρ[v] = ∅. It can only lose
its validity by advancing π[u] or decreasing f(uv). By Observation 3, π[u] can
only pass uv when AdvancePointers(u) is called in line 1 while π[u] = uv.
This call can be triggered because rv(ρ[v]) ≤ rv(uv) or because cf (uv) = 0
(implying f(uv) = c(uv)). In either case, the invariant is not violated. The flow
on f(uv) can only decrease when rev(uv) ∈ W ⊆ EHπ,ρ

. By definition, this can
only happen if ρ[v] = uv, which is already enough to fulfill the invariant. ⊓⊔

With the following lemma, we show that, at the beginning of each iteration,
the algorithm can actually find an s-t-path or cycle.

Lemma 2. Each time the algorithm reaches line 1, the graph Hπ,ρ contains an
s-t-path or a cycle.

Proof. Consider any v ∈ V \ {s, t} at any time the algorithm reaches line 1. We
show that if v has an incoming edge in Hπ,ρ, then it also has an outgoing edge
in Hπ,ρ. Note that by definition of EHπ,ρ

, the only situation in which v has no
outgoing edge is when ρ[v] = ∗.

Let uv ∈ EHπ,ρ
be an incoming edge of v. This implies that either uv ∈ E

and π[u] = uv or vu ∈ E and ρ[u] = vu by definition of Hπ,ρ.

If π[u] = uv, Invariant 1 of Lemma 1 ensures that rv(ρ[v]) > rv(uv) and
hence ρ[v] 6= ∗. Therefore v has an outgoing edge in Hπ,ρ.

If vu ∈ E and ρ[u] = vu, the termination criterion of the while loop (lines 1-
1) guarantees f(vu) = cf (rev(uv)) > 0. Hence, by flow conservation, v must also
have an incoming edge u′v ∈ E with f(u′v) > 0. By Invariant 2 of Lemma 1,
this implies ρ[v] 6= ∗.

Thus every non-terminal vertex with an incoming edge also has an outgoing
edge. Now observe that π[s] 6= ∅ ensures that s also has an outgoing edge in
Hπ,ρ. Thus, we can start a walk at s and extend it until we visit a vertex as
second time, closing a cycle, or until we reach t having found an s-t-path. This
concludes the proof of the lemma. ⊓⊔

Theorem 2. Algorithm 1 computes a stable flow in polynomial time.

Proof. We first show that the algorithm indeed computes a stable flow. Assume
by contradiction there is a walk W = 〈v1, v2, . . . , vk〉 blocking f . We use the
previously established invariants to prove the following claim.

Claim. For every i ∈ {1, . . . , k − 1}, the pointer π[vi] has passed vivi+1, i.e.,
rvi

(π[vi]) > rvi
(vivi+1).

Proof. We show the claim by induction on i. First consider the case i = 1. Due to
point 2 in Definition 2, either v1 = s or rv1

(v1v2) < rv1
(v1w) for some v1w ∈ E

with f(v1w) > 0. In the former case, π[s] has passed v1v2 as the termination
criterion of the algorithm implies π[s] = ∅. In the latter case, f(v1w) > 0 implies
that π[v1] has at least reached v1w by Invariant 3 of Lemma 1 and thus it has
passed v1v2.

Now consider any i ∈ {2, . . . , k − 1}. Note that by induction hypothesis
π[vi−1] has passed vi−1vi. Furthermore f(vi−1vi) < c(vi−1vi) because no edge
of W is saturated. Hence, Invariant 4 of Lemma 1 implies that ρ[vi] must have
reached vi−1vi. In particular, ρ[vi] 6= ∅ and hence π[vi] = ∅ by Observation 2,
implying π[vi] has passed all edges. This completes the induction and proves the
claim. �

Now consider vk, the last vertex of W . Note that, due to the claim above,
π[vk−1] has passed vk−1vk. Furthermore, f(vk−1vk) < c(vk−1vk) as the blocking
walk W is unsaturated. Hence, by Invariant 4 of Lemma 1, ρ[vk] has reached
vk−1vk, i.e., rvk

(ρ[vk]) ≤ rvk
(vk−1vk).

Observe that this implies rvk
(ρ[vk]) < ∞ = rt(ρ[t]) and therefore vk 6= t

(remember that ρ[t] = ∅ never changes). Now consider any uvk ∈ E with
rvk

(vk−1vk) < rvk
(uvk). Then rvk

(ρ[vk]) ≤ rvk
(vk−1vk) < rvk

(uvk) implies
f(uvk) = 0 by Invariant 2 of Lemma 1. Therefore W does not dominate f at
the end, i.e., it does not fulfill point 3 of Definition 2. Thus W is not a blocking
walk and the returned flow f is stable.

We now turn to the running time. Note that in every iteration of the while
loop (lines 1-1), a pointer of a vertex is advanced. Thus the total number of iter-
ations of the while loop throughout the whole algorithm is bounded by 2|E| by
monotonicity of the pointers and the fact that each edge appears in at most two

preference lists. Since every vertex has at most one incoming and one outgoing
edge in Hπ,ρ by construction, finding edges violating the termination criterion of
the loop can be done in time O(|V |). The same is true for finding an augmenting
path or cycle in line 1. As after each augmentation, the residual capacity of at
least one edge drops to 0, at least one pointer is advanced in line 1 between any
two augmentations, limiting the number of augmentations by 2|E|. Hence the
total running time of the algorithm is bounded by O(|E||V |). We remark that
a more sophisticated implementation using the dynamic-tree data structure can
reduce this running time to O(|E| log |V |). However, since our primary aim in
this article is to provide new and simple approaches, we omit further investiga-
tion of this complication. ⊓⊔

4 Stable flows with restricted intervals

Various stable matching problems have been tackled under the assumption that
restricted edges are present in the graph [9,14]. A restricted edge can be forced
or forbidden, and the aim is to find a stable matching that contains all forced
edges, while it avoids all forbidden edges. Such edges correspond to transactions
that are particularly desirable or undesirable from a social welfare perspective,
but it is undesirable or impossible to push the participating agents directly to
use or avoid the edges. We thus look for a stable solution in which the edge
restrictions are met voluntarily.

A natural way to generalize the notion of a restricted edge to the stable flow
setting is to require the flow value on any given edge to be within a certain
interval. To this end, we introduce a lower and an upper bound function.

Problem 1 sf restricted

Input: I = (D, c, r, l, u); an sf instance (D, c, r), a lower bound function l : E →
R≥0 and an upper bound function u : E → R≥0.
Question: Is there a stable flow f so that l(uv) ≤ f(uv) ≤ u(uv) for all uv ∈ E?

Note that in the above definition, the upper bound u does not affect blocking
walks, i.e., a blocking walk can use edge uv, even if f(uv) = u(uv) < c(uv) holds.
In particular, it is not without loss of generality to assume c(uv) = u(uv) for all
edges uv, as decreasing c(uv) may enlarge the set of stable flows.

In the following, we describe a polynomial algorithm that finds a stable flow
with restricted intervals or proves its nonexistence. We start with an instance
modification step in Section 4.1. Then we prove that restricted intervals can be
handled by small network modifications that reduce the problem to the unre-
stricted version of sf. We show this separately for the case where only forced
edges occur, which we call sf forced, in Section 4.2 and for the case where only
forbidden edges occur, called sf forbidden, in Section 4.3. It is straightforward
to see that these two results can be combined to solve the general version of sf

restricted.
We mention that it is also possible to solve sf restricted by transforming

the instance first into a weighted sf instance, and then into a weighted stable

allocation instance, both solvable in O(|E|2 log |V |) time [8]. The advantages of
our method are that it can be applied directly to the sf restricted instance and
it also gives us insights to solving the stable roommate problem with restricted
edges directly, as pointed out at the end of Sections 4.2 and 4.3. Moreover,
our running time is only O(|P ||E| log |V |), where P is the set of edges with
u(uv) < c(uv).

4.1 Problem simplification

sf restricted generalizes the natural notion of requiring flow to use an edge
to its full capacity (by setting l(uv) = c(uv)) and of requiring flow not to use
an edge at all (by setting u(uv) = 0), which corresponds to the traditional
cases of forced and forbidden edges. In fact, it turns out that any given instance
of sf restricted can be transformed into an equivalent instance in which
l(uv), u(uv) ∈ {0, c(uv)} for all uv ∈ E.

First observe that if l(uv) > u(uv) for some uv ∈ E, then sf restricted

trivially has no solution. Therefore, we henceforth assume l(uv) ≤ u(uv) for all
uv ∈ E. We further execute the following technical change to the instance in
order to obtain an equivalent instance with the desired properties. As shown
in Fig. 4, we substitute each edge uv ∈ E with three parallel paths (to avoid
parallel edges): 〈u, x, v〉, 〈u, y, v〉 and 〈u, z, v〉. While uy and yv take over the
rank of uv, ux and xv are ranked just above, uz and zv are ranked just below
uy and yv. The capacities and bounds of the introduced edges are as follows.

l(ux) = l(xv) = u(ux) = u(xv) = c(ux) = c(xv) = l(uv)

l(uy) = l(yv) = 0

u(uy) = u(yv) = c(uy) = c(yv) = u(uv) − l(uv)

l(uz) = l(zv) = u(uz) = u(zv) = 0

c(uz) = c(zv) = c(uv) − u(uv)

u v
a b u v

x

y

z

a − ε

a

a + ε

b − ε

b

b + ε

Fig. 4. Splitting an edge with lower and upper bounds. Due to the preferences, ca-
pacities and bounds defined on the modified instance, the first l(uv) units of flow will
saturate 〈u, x, v〉, then, the coming u(uv) − l(uv) units of flow will saturate 〈u, y, v〉,
and the remaining c(uv) − u(uv) units of flow will use 〈u, z, v〉.

In words, we split each edge uv with lower and upper bounds into three
paths: the first path 〈u, x, v〉 requires an amount of flow exactly equal to its
capacity l(uv), the middle path 〈u, y, v〉 has capacity u(uv) − l(uv) and is unre-
stricted, the last path 〈u, z, v〉 with capacity c(uv) − u(uv) must not carry any
flow.

Note that we can map any flow f in original graph to a flow f ′ in the
modified graph by splitting the flow on each edge uv into three parts, setting
f ′(ux) = f ′(xv) = min{f(uv), l(uv)}, f ′(uy) = f ′(yv) = min{max{f(uv) −
l(uv), 0}, u(uv)}, and f ′(uz) = f ′(zv) = max{f(uv) − u(uv), 0}. Conversely,
every flow f ′ in the modified instance induces a flow f in the original in-
stance, simply by aggregating the flow values on the three paths, i.e., setting
f(uv) = f(ux) + f(uy) + f(uz).

Note that different flows in the modified instance can map to the same flow
f in the original network, but it is easy to check that if f is stable, only a
unique stable flow in the modified instance maps to f . Thus there is a one-
to-one correspondence between stable flows in the original instance and in the
modified instance. Furthermore, it is straightforward to check that f respects
the bounds l and u in the original instance if and only if f ′ does the same in
the modified instance. The modified instance is thus equivalent to the original
instance.

Remark 1. Note that the encoding size of the modified instance is within a
constant factor of the instance size of the original instance. More precisely, the
number of edges in the new instance is 6|E| and the number of nodes in the
new instance is |V | + 3|E|, where V and E are the sets of vertices and edges
of the original instance, respectively. Also the set P of edges with u(e) < c(e)
only grows by a factor of 2. Note that because we assumed the original graph to
be simple and connected, |V | − 1 ≤ |E| ≤ |V |2 and therefore log(|V | + 3|E|) =
O(log |V |). Therefore the asymptotic running time of O(|P ||E| log |V |) which we
will establish for our algorithm on the modified instance is the same for the
original instance.

Henceforth, we will assume that our instances are of this form and use the
notation Q := {uv ∈ E : l(uv) = c(uv)} and P := {uv ∈ E : u(uv) = 0} for the
sets of forced and forbidden edges, respectively.

4.2 Forced edges

In this section we consider an instance of sf restricted where P = ∅. As
mentioned earlier, we call this problem sf forced. In Section 4.2 we show how
to deal with the case |Q| = 1 by reducing the corresponding sf forced instance
with a single forced edge to an instance of sf without forced edges. Then, in
Section 4.2, we argue that the same technique can be applied to multiple forced
edges simultaneously. At last, in Section 4.2 we elaborate on the application of
our technique for stable matching instances.

u v

s

u v

t

ru(uv) rv(uv)

rv(uv)ru(uv)

Fig. 5. Substituting forced edge uv by edges sv and ut in D′.

A single forced edge Let us first consider a single forced edge uv. We modify
graph D to derive a graph D′. The modification consists of deleting the forced
edge uv and introducing two new edges sv and ut to substitute it. Both new
edges have capacity c(uv) and take over uv’s rank on u’s and on v’s preference
lists, respectively, as shown in Fig. 5. The rest of D remains unchanged in D′.

In Lemma 3 we show that flows saturating uv in D are equivalent to flows
saturating both sv and ut in D′. Then we refer to the extension of the Rural
Hospitals Theorem (Theorem 1) to solve the latter problem.

Lemma 3. Let f be a flow in D with f(uv) = c(uv). Let f ′ be the flow in D′

derived by setting f ′(sv) = f ′(ut) = f(uv) and f ′(e) = f(e) for all e ∈ E \ {uv}.
Then f is stable if and only if f ′ is stable.

Proof. We prove this lemma by showing that walks blocking f also block f ′ and
vice versa. We first observe that the set of edges not saturated by f in D is
the same as the set of edges not saturated by f ′ in D′. This is because uv is
saturated by f , and therefore ut, sv are saturated by f ′, and all other edges are
present in both graphs with identical capacities and flow values, respectively.
Note that this implies the set of walks in D not saturated by f and the set of
walks in D′ not saturated by f ′ is the same.

Now consider any node u′ ∈ V and any number r > 0. Observe that there is
an edge u′v′ in D with ru′(u′v′) = r and f(u′v′) > 0 if and only if there is u′v′′

in D′ with ru′(u′v′′) = r and f ′(u′v′′) > 0 (either u′v′ itself is in D′ or u′v′ = uv,
in which case u′v′′ = ut fulfills the requirement). Therefore an unsaturated walk
W in D dominates f at the start if and only if it dominates f ′ at the start. A
symmetric argument holds for dominance at the end of an unsaturated walk.
This implies that any blocking walk for f in D is a blocking walk for f ′ in D′

and vice versa. ⊓⊔

Checking the existence of a flow in D′ that saturates both sv and ut can be
done by finding any stable flow in D′. This is because Theorem 1 guarantees
that all stable flows have the same value on any edge incident to s or t.

Multiple forced edges We observe that we can replace all edges in Q one after
the other, applying Lemma 3 inductively on the resulting graph. This yields the
following theorem.

Theorem 3. Let DQ be the graph obtained from D when replacing each edge
in uv ∈ Q by edges ut and sv with same rank and capacity. Let Q̄ be the set of
newly added edges in DQ. Let f be a flow in D saturating all edges in Q. Then
f is stable if and only if the corresponding flow f ′ in DQ obtained by setting
f ′(sv) = f ′(ut) = f(uv) for all uv ∈ Q and f(e) = f ′(e) for all e ∈ E \ Q is
stable.

In fact, the Rural Hospitals Theorem (Theorem 1) guarantees that either all
stable flows in DQ saturate all edges in Q̄ or none does. Thus we can solve sf

forced by a single stable flow computation in DQ.

Theorem 4. sf forced can be solved in time O(|E| log |V |).

Proof. As DQ contains at most twice as many edges as D, we can compute a
stable flow f ′ in DQ in time O(|E| log |V |), as discussed at the end of Section 3.
If f ′(sv) = f ′(ut) = c(uv) for all uv ∈ Q, the corresponding flow in D with
f(uv) = f ′(sv) is a stable flow in D saturating all edges in Q. Now assume
f ′(sv) < c(uv) or f ′(ut) < c(uv) for some uv ∈ Q. Then by Theorem 1, any
stable flow in DQ has this property. Hence, no stable flow in D saturates all
edges in Q. ⊓⊔

Stable matchings with forced edges We shortly discuss the case of forced
edges in stable matching instances. Notice that our observations are valid in the
so-called stable roommates setting, where the underlying graph is not bipartite.
The definition of a blocking edge is exactly the same as in the classical bipartite
case. An edge uv /∈ M blocks M if both u and v prefer each other to their
respective partners in M .

Problem 2. sr forced

Input: I = (G, r, Q); a graph G (not necessarily bipartite), the preference order-
ing r of vertices, and a set of forced edges Q.
Question: Is there a stable matching covering all edges in Q?

The technique described above provides a fairly simple method for solving sr

forced, because the Rural Hospitals Theorem holds for the stable roommates
problem as well [22, Theorem 4.5.2]. After deleting each forced edge uw ∈ Q
from the graph, we add uws and utw edges to each of the pairs, where ws and ut

are newly introduced vertices. These edges take over the rank of uw. Unlike in
sf, here we need to introduce two separate dummy vertices to each forced edge,
simply due to the matching constraints. There is a stable matching containing
all forced edges if and only if an arbitrary stable matching covers all of these
new vertices ws and ut. The proof for this is analogous to that of Lemma 3.

The running time of this algorithm is O(|E|), since it is sufficient to construct
a single stable solution in an instance with at most 2|V | vertices. More vertices
cannot occur, because in a matching problem more than one forced edge incident
to a vertex immediately implies infeasibility. Notice that solving sr forced

has the same time complexity O(|E|) as solving the stable roommates problem
without any restriction on the edges.

u v

s

u v

t

rv(uv) − 0.5

rv(uv)

ru(uv) − 0.5

ru(uv)

Fig. 6. Adding edges e+

0 = sv in D+ and e−

0 = ut in D− to forbidden edge E = uv.

4.3 Forbidden edges

In order to handle sf forbidden, we present here an argumentation of the same
structure as in the previous section. In Section 4.3, we show how to solve the
problem of stable flows with a single forbidden edge by solving two instances on
two different extended networks. Then, in Section 4.3 we show how these con-
structions can be used to obtain an algorithm for the case of multiple forbidden
edges. Finally, in Section 4.3 we discuss the implication of our results to stable
matching instances.

Now we introduce some notation used in this section. We remind the reader
that P is the set forbidden edges, where l(e) = c(e). For e = uv ∈ P , we define
edges e+ = sv and e− = ut. We set c(e+) = ε > 0 and set rv(e+) = rv(e) − ε,
i.e., e+ occurs on v’s preference list exactly before e. Likewise, we set c(e−) = ε
and ru(e−) = ru(e) − ε, i.e., e− occurs on u’s preference list exactly before e.
For F ⊆ P we define E+(F) := {e+ : e ∈ F} and E−(F) := {e− : e ∈ F}.

A single forbidden edge Assume that P = {e0} for a single edge e0. First we
present two modified instances that will come handy when solving sf forbid-

den. The first is the graph D+, which we obtain from D by adding the edge e+
0

to E. Similarly, we obtain the graph D− by adding e−
0 to E. Both graphs are

illustrated in Fig. 6.
In the following, we characterize sf forbidden instances with the help of

D+ and D−. Our claim is that sf forbidden in D has a solution if and only
if there is a stable flow f+ in D+ with f+(e+) = 0 or there is a stable flow
f− in D− with f−(e−) = 0. These existence problems can be solved easily in
polynomial time, since all stable flows have the same value on edges incident to
terminal vertices by Theorem 1.

We start with a straightforward observation, which follows from the fact that
the deletion of an edge that does not carry any flow in a stable flow neither affects
flow conservation nor can create blocking walks.

Observation 4. If f(e) = 0 for an edge e ∈ E and stable flow f in D, then f
remains stable in D − e as well.

Now we are ready to prove the correctness of our transformation.

Lemma 4. Let f be a flow in D = (V, E) with f(e0) = 0. Then f is a stable
flow in D if and only if at least one of the following properties hold:

Property 1: The flow f+ with f+(e) = f(e) for all e ∈ E and f+(e+
0) = 0 is

stable in (V, D+).
Property 2: The flow f− with f−(e) = f(e) for all e ∈ E and f−(e−

0) = 0 is
stable in (V, D−).

Proof. Sufficiency of any of the two properties follows immediately from Ob-
servation 4 by deletion of e+

0 or e−
0 , respectively, since there edges carry zero

flow.
To see necessity, assume that f is a stable flow in D. By contradiction assume

that neither f+ nor f− is stable. Then there is a blocking walk W + for f+ and
a blocking walk W − for f−. Since W + is not a blocking walk for f in D, it must
contain e+

0 . This is only possible if W + starts with e+
0 , because e+

0 starts at a
terminal vertex. Similarly, since W − is not a blocking walk for f in D, it must
end with e−

0 . Let W ′+ := W + \ {e+
0 } and W ′− := W − \ {e−

0 }. Consider the
concatenation W := W ′− ◦ e0 ◦ W ′+. Note that W is an unsaturated walk in D.
If W ′− 6= ∅, then W starts with the same edge as W − and thus dominates f at
the start. If W ′− = ∅, then W starts with e0, which dominates any flow-carrying
edge dominated by e−

0 , and hence it dominates f at the start also in this case.
By analogous arguments it follows that W also dominates f at the end. Hence
W is a blocking walk, contradicting the stability of f . We conclude that at least
one of Properties 1 or 2 must be true if f is stable. ⊓⊔

This method can be used to solve sf forbidden if |P | = 1, by simply
computing stable flows f+ in D+ and f− in D−. Note that by the extension of
the Rural Hospitals Theorem (Theorem 1), the flow values f+(e+

0) and f−(e−
0)

do not depend on the choice of f+ and f−, since they are the same for all stable
flows in an instance. If f+(e+

0) = 0 or f−(e−
0) = 0, then we have found a stable

flow in f avoiding the forbidden edge e0. On the other hand, if the flow value is
positive in both cases, there is no stable flow avoiding e0.

Multiple forbidden edges For |P | > 1, Lemma 4 guarantees that we can add
either e+ or e− for each forbidden edge e ∈ P without destroying any stable
flow avoiding the forbidden edges. However, it is not straightforward to decide
for which forbidden edges to add e+ and for which to add e−. Simply checking
the two properties in Lemma 4 and creating either a D− or D+ graph for each
forbidden edge in an arbitrary order does not lead to correct results, since the
modification steps can impact each other. It is possible that the forbidden edge
checked first allows for both D− and D+, and it turns out at a later forbidden
edge that only one of these two choices can be combined with network modifi-
cations induced when tackling other forbidden edges, as the following example
reveals. The same example demonstrates that adding both e+ and e− to all for-
bidden edges at the same time might lead to an instance that admits no stable
flow avoiding all added edges, even though a stable flow avoiding all forbidden
edges exists in the original instance. After the example we describe how to resolve
this issue and obtain a polynomial time algorithm for sf forbidden.

v3v2v1

u1 u2 u3

s

t

1

2

2

1

3

1

2

2

1

2

1

3

2

1

1.5

1.5

Fig. 7. The greedy algorithm fails to report the existence of a stable solution in this
instance.

Example 2 (Stable flows with forbidden edges) In the unit-capacity net-
work of Fig. 7, the dashed edges u1v1 and u2v2 form P , while the thin gray edges
sv2 and u1t are not part of the original graph but are added by the application of
Lemma 4. The instance admits two stable flows. Both of them saturate all edges
leaving s and all edges entering t. In the rest of the graph, stable flow f1 is denoted
by purple, and it sends one unit of flow along the edges in {u1v2, u2v1, u3v3},
while stable flow f2 is denoted by green, and it sends one unit of flow along the
edges in f2 = {u1v1, u2v3, u3v2}. Since u1v1 ∈ P is used by f2, only f1 avoids P .
If tested separately, edge u2v2 fulfills both Properties 1 and 2 of Lemma 4, while
u1v1 only fulfills Property 2. Yet requiring Property 1 for u2v2 and Property 2
for u1v1 by adding sv1 and u2t to the graph (as the gray edges indicate) results
in a graph where every stable flow uses both sv2 and u1t. This is because the only
stable flow in the modified network with the edges sv2 and u1t saturates edges
su1, su2, su3, sv2, u2v1, u3v3, v1t, v2t, v3t and u1t.

We now sketch our algorithm that can deal with the presence of multiple
forbidden edges. For any A, B ⊆ E, let us denote by D[A|B] the network with
vertices V and edges E ∪E+(A) ∪E−(B). We remind the reader that E+(A) :=
{e+ : e ∈ A} and E−(B) := {e− : e ∈ B}. Our algorithm maintains a partition
of the forbidden edges in two groups P + and P −. Initially P + = P and P − = ∅.
In every iteration, we compute a stable flow f in D[P +|P −]. If f(e+) > 0 for
some e ∈ P +, we move e from P + to P − and repeat. If f(e+) = 0 for all e ∈ P +

but f(e−) > 0 for some e ∈ P −, we will show that no stable flow avoiding all
forbidden edges exists in D. Finally, if we reach a flow f where neither of these
two things happens, then f ’s restriction to D is a stable flow in D avoiding all

forbidden edges, since f(e+) = 0 or f(e−) = 0 implies f(e) = 0 by choice of the
ranks.

Algorithm 2: Stable flow with forbidden edges
Initialize P + = P and P − = ∅.
repeat

Compute a stable flow f in D[P +|P −].
if ∃ e ∈ P + with f(e+) > 0 then

P + := P + \ {e} and P − := P − ∪ {e}

until f(e+) = 0 for all e ∈ P +;
if ∃ e ∈ P − with f(e−) > 0 then

return ∅

else
return f

Before proving its correctness, we present our algorithm run on the instance
of Fig. 7.

Example 3 (Execution of Algorithm 2) Since P = {u1v1, u2v2}, we ini-
tialize P + to be {u1v1, u2v2} and P − to be the empty set. This defines the net-
work D[P +|P −], which is D complemented by sv1 and sv2. The stable flow f
computed by Algorithm 1 in D[P +|P −] saturates the edges sv1, v1t, su2, u2v3,
v3t, su3, u3v2, and v2t. Since f(sv1) > 0, the edge u1v1 is removed from P +

and added to P −.
In the second iteration, D[P +|P −] is D complemented by u1t and sv2. The

algorithm computes the stable flow in this network saturating the edges su1, u1t,
sv2, v2t, su3, u3v3, and v3t. Because f(sv2) > 0, the edge u2v2 is moved from
P + to P −.

In the third iteration, D[P +|P −] is D complemented by u1t and u2t. The
algorithm computes the stable flow in this network saturating the edges su1,
u1v2, v2t, su2, u2v1, v1t, su3, u3v3, and v3t. Since P + = ∅ and f(e−) = 0 for
all e ∈ P −, the algorithm terminates by returning this flow.

For the analysis of Algorithm 2, the following consequence of the augmenting
path algorithm presented earlier (Algorithm 1) is helpful. It essentially states
that removing an edge leaving s and recomputing a stable flow cannot decrease
the flow value on any other edge leaving s. This observation will allow us to
prove an important invariant of Algorithm 2.

Lemma 5. Let f be a stable flow in D. Let f ′ be a stable flow in D′ = D − e′

for some edge e′ ∈ δ+(s). Then f ′(e) ≥ f(e) for all e ∈ δ+(s) \ {e′}.

Proof. We run Algorithm 1 on the networks D and D′, respectively, to obtain
stable flows f and f ′. Recall that Algorithm 1 uses an arbitrary but fixed order

of the outgoing edges of s. We choose this order such that e′ comes last for the
run in D. Observe that the algorithms run identically on both instances until
π[s] reaches e′ for the run on D and terminates on D′, respectively. Thus the
flow f̄ computed by the algorithm on D right before π[s] is advanced to e′ is
identical to f ′. Further note that the algorithm does not increase the flow value
on any edge e ∈ δ+(s) \ {e′} after π[s] has passed e, which comes before e′ by
our choice of preferences. Hence f(e) ≤ f̄(e) = f ′(e). ⊓⊔

Lemma 6. Algorithm 2 maintains the following invariant. There is a stable
flow in D avoiding P if and only if there is a stable flow in D[∅|P −] avoiding
P + ∪ E−(P −).

Proof. Clearly, the invariant holds initially as P + = P and P − = ∅. Now con-
sider any later iteration of the algorithm in which P +, P − are changed. Let f0 be
the computed stable flow in D[P +|P −] and let e0 be the edge with f0(e+

0) > 0
found in that iteration. Let P +

old, P −
old and P +

new, P −
new denote the partition before

and after the update, i.e., P +
new = P +

old \ {e0} and P −
new = P −

old ∪ {e0}.
If there is a stable flow in D[∅|P −

new] avoiding P +
new ∪E−(P −

new), then this flow
also avoids P , as for every e ∈ P either e ∈ P +

new or e− ∈ E−(P −
new) (note that

in the latter case e− dominates e at the start and ends at a terminal).
Conversely, if there is a stable flow in D avoiding P , then by induction

hypothesis there is a stable flow f in D[∅|P −
old] avoiding P +

old ∪ E−(P −
old). Note

that e+
0 starts at a terminal and recall that f0(e+

0) > 0 for the stable flow
f0 in D[P +

old|P −
old]. By repeated application of Lemma 5, deleting every e+ ∈

E+(P +
old\{e0}) from D[P +

old|P −
old], we obtain that f ′(e+

0) > 0 for every stable flow
f ′ in D[{e0}|P −

old]. In particular, this means that Property 1 of Lemma 4 fails for
f and e0. Therefore, by Lemma 4, Property 2 must hold for f , i.e., the extension
of f to D[∅|P −

old ∪ {e−
0 }] = D[∅|P −

new] with f(e−
0) = 0 is a stable flow avoiding

P +
old ∪ E−(P −

old) ∪ {e−
0 }. As P +

new ⊆ P +
old and E−(P −

new) = E−(P −
old) ∪ {e−

0 }, this
completes the induction. ⊓⊔

Lemma 7. If Algorithm 2 returns ∅, then no stable flow in D avoids P .

Proof. If the algorithm returns ∅, then the algorithm computed a stable flow f
in D[P +|P −] with f(e+) = 0 for all e ∈ P + but f(e−) > 0 for some e ∈ P −.
Note that by Observation 4, the restriction of f is also stable in D[∅|P −]. As e−

is incident to a terminal, f(e−) > 0 for every stable flow in D[∅|P −]. Therefore,
by Lemma 6, there is no stable flow in D avoiding P . ⊓⊔

Lemma 8. If Algorithm 2 returns flow f , then f is stable in D and it avoids P .

Proof. If the algorithm returns flow f then f(e+) = 0 for all e ∈ P + and
f(e−) = 0 for all e ∈ P −. Hence the restriction of f to E is stable and avoids
P + ∪ P − = P . ⊓⊔

The correctness of Algorithm 2 follows immediately from the above lemmas.
The running time of this algorithm is bounded by O(|P ||E| log |V |), as each
stable flow f can be computed in O(|E| log |V |) time and in each round either
|P +| decreases by one or the algorithm terminates.

Stable matchings with forbidden edges Just as earlier, in Section 4.2, we
finish this part with the direct interpretation of our results in the stable marriage
instances.

Problem 3. sm forbidden

Input: I = (G, r, P); a bipartite graph G, the preference ordering r of vertices,
and a set of forbidden edges P .
Question: Is there a stable matching avoiding all edges in P ?

Let A ∪ B be the bipartition of the vertices. One possibility to solve sm

forbidden would be to transform it into an instance of sf forbidden by the
standard transformation of bipartite matching to flow (directing all edges from A
to B and augmenting the graph by a super source and a super sink connected to
all vertices in A and B, respectively). Running Algorithm 2 on this instance gives
a stable flow that can be transformed into a matching in the original instance.

However, we can adapt the Algorithm 2 to directly run on the matching
instance as follows. For forbidden each edge e ∈ P we introduce a new vertex ve.
We maintain a partition of P into sets PA and PB, with PA = P and PB = ∅
initially. For each e = ab ∈ PA we introduce the edge ave to the graph with
ra(ave) = ra(ab) − ε, and for each edge e = ab ∈ PB we introduce the edge bve

instead with rb(bve) = rb(ab) − ε. We then compute a stable matching in the
resulting graph. If an edge ave is in the matching for some e ∈ PA we remove e
from PA and add it to PB. We then again compute a stable matching and repeat
this procedure until no edge ave is in the matching for any e = ab ∈ PA.

If in the resulting matching the vertices ve for e ∈ P are unmatched, i.e., also
no edge bve is used for any e = ab ∈ PB , the matching is stable in the original
graph and it does not use any edge in P (due to the choice of the ranks). If not,
using the same line of argumentation as in the proof of Lemma 6 we can show
that no stable matching avoiding P exists. (Here, the bipartite structure of the
graph yields a straightforward analogue of Lemma 5. We remark that it is an
open problem how to adapt this technique to the stable roommates problem for
non-bipartite graphs.)

Our algorithm for several forbidden edges runs in O(|P ||E|) time, because
computing stable matchings in each of the at most |P | rounds takes only O(|E|)
time. With this running time, it is somewhat slower than the best known meth-
ods [9,14] that require only O(|E|) time, but it is a reasonable assumption that
the number of forbidden edges is small.

4.4 Forced and forbidden edges

If both forced and forbidden edges occur in the same instance, then they can
be handled by our two algorithms, applying them one after the other. First,
all forced edges in the graph D are substituted by the construction discussed
in Section 4.2, obtaining the graph DQ where the edges in Q are replaced by
artificial edges Q̄. The following corollary is a direct implication of Theorem 3.

Corollary 1. There is a stable flow in D saturating all edges in Q and avoiding
all edges in P if and only if there is a stable flow in DQ saturating all edges in
Q̄ and avoiding all edges in P .

We now run Algorithm 2 from Section 4.3 on DQ. If the algorithm asserts that
no stable flow in DQ avoiding P exists, then by Corollary 1, there is no stable
flow in D saturating all edges in Q and avoiding all edges in P . If, instead, the
algorithm returns a stable flow f ′ avoiding P , we check whether it also saturates
all edges in Q̄. If this is the case, the corresponding flow in D is a stable flow
avoiding P and saturating all edges in Q. If there is an edges e ∈ Q̄ with
f ′(e) < c(e), then this is true for every stable flow in DQ by the Rural Hospital
Theorem (Theorem 1) and hence, no flow saturating all edges in Q exists in D.

The procedure described above runs in time O(|P ||E| log |V |), as DQ can be
constructed in time linear in |E| and the number of edges and vertices in DQ is at
most twice the number of edges and vertices in D, respectively (remember that
we already argued in Remark 1 that the initial transformation of the instance
in Section 4.1 does not change this asymptotic running time). We conclude the
following result:

Theorem 5. sf restricted can be solved in O(|P ||E| log |V |) time.

5 Stable multicommodity flows

In this section we turn our attention to stable multicommodity flows. We first
present the original definition of this concept by Király and Pap [27] and outline
their results, including the existence of a stable solution. We then proceed to our
results: a reduction of the general model to a much simpler special case and a
hardness proof for deciding the existence of an integral solution.

5.1 Problem definition

Multicommodity networks model scenarios in which a common network is used
by several commodities. For example, roads serve personal vehicles, and also
various sorts of commercial transport vehicles. While each person and each type
of goods has its own origin and destination, they all share the same roads, which
have a capacity on all vehicles altogether and sometimes also separately on a
specific type of vehicle.

A multicommodity network (D, ci, c), 1 ≤ i ≤ n consists of a directed graph
D = (V, E), non-negative commodity capacity functions ci : E → R≥0 for all the
n commodities and a non-negative cumulative capacity function c : E → R≥0

on E. For every commodity i, there is a source si ∈ V and a sink ti ∈ V , also
referred to as the terminals of commodity i.

Definition 3 (multicommodity flow). A set of functions f i : E → R≥0,
1 ≤ i ≤ n is a multicommodity flow if it fulfills all of the following requirements:

1. capacity constraints for commodities:
f i(uv) ≤ ci(uv) for all uv ∈ E and commodity i;

2. cumulative capacity constraints:
f(uv) =

∑

1≤i≤n f i(uv) ≤ c(uv) for all uv ∈ E;
3. flow conservation:

∑

uv∈E f i(uv) =
∑

vw∈E f i(vw) for all i : 1 ≤ i ≤ n and v ∈ V \ {si, ti}.

The concept of stability was extended to multicommodity flows by Király and
Pap [27]. A stable multicommodity flow instance I = (D, ci, c, rE , ri

V), 1 ≤ i ≤ n
comprises a network (D, ci, c), 1 ≤ i ≤ n, edge preferences rE over commodities,
and vertex preferences ri

V , 1 ≤ i ≤ n over incident edges for commodity i. Each
edge uv ranks all commodities in a strict order of preference. Separately for every
commodity i, each non-terminal vertex ranks its incoming and also its outgoing
edges strictly with respect to commodity i. Note that these preference orderings
of v can be different for different commodities and they do not depend on the
edge preferences rE over the commodities. If edge uv prefers commodity i to
commodity j, then we write ruv(i) < ruv(j). Analogously, if vertex v prefers
edge vw to vz with respect to commodity i, then we write ri

v(vw) < ri
v(vz). We

denote the flow value with respect to commodity i by f i =
∑

u∈V f i(siu).

Definition 4 (stable multicommodity flow). A blocking walk with respect
to commodity i of a multicommodity flow f is a directed walk W = 〈v1, v2, ..., vk〉
such that all of the following properties hold:

1. f i(vjvj+1) < ci(vjvj+1) for each edge vjvj+1, j = 1, ..., k − 1;
2. v1 = si or there is an edge v1u such that f i(v1u) > 0 and ri

v1
(v1v2) <

ri
v1

(v1u);
3. vk = ti or there is an edge wvk such that f i(wvk) > 0 and ri

vk
(vk−1vk) <

ri
vk

(wvk);
4. if f(vjvj+1) = c(vjvj+1), then there is a commodity i′ such that f i′

(vjvj+1) >
0 and rvjvj+1

(i) < rvjvj+1
(i′).

A multicommodity flow is stable, if there is no blocking walk with respect to any
commodity.

In words, a walk blocks the multicommodity flow with respect to commodity
i if both the starting and end vertices of the walk are willing to reroute some
units of flow of commodity i along it, moreover, the edges along the walk either
have free capacity for forwarding these or they are inclined to drop some units
of flow of another commodity. This last point can be seen as a clear difference
to single-commodity stable flows. Due to point 4, Definition 4 allows saturated
edges to occur in a blocking walk with respect to commodity i, provided that
these edges are inclined to trade in some of their forwarded commodities for more
flow of commodity i. On the other hand, the role of edge preferences is limited:
blocking walks still must start at vertices who are willing to reroute or send
extra flow along the first edge of the walk according to their vertex preferences
with respect to commodity i.

Problem 2 smf

Input: I = (D, ci, c, rE , ri
V), 1 ≤ i ≤ n ; a directed multicommodity network

(D, ci, c), 1 ≤ i ≤ n, edge preferences over commodities rE and vertex preferences
over incident edges ri

V , 1 ≤ i ≤ n.
Question: Is there a stable multicommodity flow?

Theorem 6 (Király, Pap [27]). A stable multicommodity flow exists for any
instance, but it is PPAD-hard to find.

Király and Pap use a polyhedral version of Sperner’s lemma [26] to prove the
existence result. PPAD-hardness [31] is considered a somewhat weaker evidence of
intractability than NP-hardness that applies for problems whose decision versions
have a ’yes’ answer for sure. Note that smf is one of the very few problems in
stability [3] where a stable solution exists, but no extension of the Gale-Shapley
algorithm is known to solve it – not even a variant with exponential running time.

5.2 Problem simplification

The definition of smf involves many distinct components and constraints. It is
natural to investigate how far the model can be simplified without losing any of
its generality. In particular, Király and Pap [27] pose an open question on the
PPAD-hardness of the problem if there are no individual capacities. Here we give
a positive answer to this and further intuitive questions on possible restricted
cases. It turns out that the majority of the commodity-specific input data can
be dropped, as shown by Theorem 7. This result not only simplifies the instance,
but it also sheds light to the most important characteristic of the problem, which
seems to be the preference ordering of edges over commodities.

Theorem 7. There is a polynomial-time transformation that, given an instance
I of smf, constructs an instance I ′ of smf with the following properties:

1. all commodities have the same source and sink,
2. at each vertex, the preference lists are identical for all commodities,
3. there are no commodity-specific edge capacities,

and there is a polynomially computable bijection between the stable multicommod-
ity flows of I and the stable multicommodity flows of I ′. The bijection preserves
integrality.

Proof. We present the construction in three steps, each ensuring one of the
properties without destroying those established before.

1. All commodities have the same source and sink.
We introduce two new super terminals s∗ and t∗. These will substitute
all commodity-specific sources and sinks. For every commodity i and its
terminals si and ti, we introduce the edges s∗si and tit∗ with capacities
ci(s∗si) = c(s∗si) =

∑

e∈δ+(si) c(e) and ci(tit∗) = c(tit∗) =
∑

e∈δ−(ti) c(e).
These edges cannot carry any other commodity: cj(s∗si) = cj(tit∗) = 0 for

u v′

e v′′

e
vu v

e′

1

e′

2

e′

n

e′′

1

e′′

2

e′′

n

ru(uv) rv(uv)

Fig. 8. The gadget ensuring that the preference lists of each vertex are identical for all
commodities.

all j 6= i. We assign arbitrary ranks to the edges originally incident to si or
ti and put s∗si and tit∗ to the end of the preference list of si and ti for all
commodities. Finally, we set s∗ and t∗ as source and sink for every commod-
ity i. It is easy to verify that a flow f is stable in the original network D if
and only if the natural extension of f to the added edges is a stable flow.

2. At each vertex, the preference lists over the edges are identical for all com-
modities.
The main idea here is to substitute every edge by a gadget that separates
different commodities. Then the edges can be ranked in a single preference
list, since each edge is designated to carry its own commodity only and for
edges carrying a specific commodity, the list on other edges is irrelevant.
For any e ∈ E, we remove e = uv from the graph and replace it by the
construction shown in Fig. 8. We introduce two new vertices v′

e and v′′
e and

add the edge v′
ev′′

e with c(v′
ev′′

e) = ci(v′
ev′′

e) = c(e) for every commodity i. We
also add n new edges e′

i for 1 ≤ i ≤ n from u to v′
e. We set c(e′

i) = ci(e′
i) =

ci(e), cj(e′
i) = 0 for j 6= i, and ru(e′

i) = |E|i + ri
u(e). We choose rv′

e
(e′

i)
arbitrarily. Likewise, we add n new edges e′′

i for 1 ≤ i ≤ n from v′′
e to v. We

set c(e′′
i) = ci(e′′

i) = ci(e), cj(e′′
i) = 0 for j 6= i, and rv(e′′

i) = |E|i + ri
v(e).

We choose rv′′

e
(e′

i) arbitrarily. Let D′ be the network resulting from this
modification.
If f is a stable flow in D, then we define a flow f ′ in D′ as follows. For every
commodity i and every e ∈ E, we set f ′i(e′

i) = f ′i(v′
ev′′

e) = f ′i(e′′
i) = f i(e)

and we set f ′j(e′
i) = f ′j(e′′

i) = 0 for j 6= i. It is easy to check that f ′ is a
stable flow in D′ and that the mapping from f to f ′ is a bijection between
stable flows in D and D′.

3. There are no commodity-specific capacities.
Finally we ensure that ci(e) = c(e) for all i and all e ∈ E, which implies
that the commodity-specific capacities do not play any role. To this end, we
introduce a new commodity i∗. Each edge will be replaced by a gadget in
which the capacity on a specific commodity translates into an edge willing
to carry i∗ rather than forwarding more flow of the specific commodity.
Note that the transformation described in point 2 above already ensures that
for every edge e ∈ E one of the following is true: Either ci(e) = c(e) for all
i, or there is an i such that ci(e) = c(e) and cj(e) = 0 for all j 6= i. We only
have to deal with the latter case, that is, edge e being designated to carry

u′

u′′

u vv′

v′′s t

u v

..., i∗
ru(uv) 2

i, i∗,, i∗

2 rv(uv)

i∗, ...

1

1

i∗, ...

1

1

i∗, ... i∗, ...
2 2

i∗, ...

ru(uv) rv(uv)

Fig. 9. The gadget ensuring that there are no commodity-specific capacities.

commodity i only, up to its full capacity. Let edge e and commodity i be
such a pair.
We replace e = uv by the gadget He,i, depicted in Fig. 9. First, four new
vertices u′, u′′, v′ and v′′ are introduced. We add the edges uu′, u′v′, v′v, su′′,
u′′v′′, v′′t, u′′u′ and v′v′′, all with capacity c(e). For the edges su′′, u′′v′′, v′′t,
u′′u′ and v′v′′ the new commodity i∗ is on top of their preference list, followed
by all other commodities in arbitrary order. For edge u′v′ commodity i is first
on the list, i∗ is second, followed by all other commodities in arbitrary order.
For the edges uu′ and v′v, commodity i∗ is last on the list, the rank of the
other commodities is arbitrary. For the vertex preferences, we set ru′′(u′′u′) <
ru′′(u′′v′′) and rv′′(v′v′′) < rv′′ (u′′v′′), as well as ru′(u′′u′) < ru′(uu′) and
rv′(v′v′′) < rv′(v′v). We further set ru(uu′) = ru(e) and rv(v′v) = rv(e).
Let us denote the modified network by D̄. For a stable flow f in the original
network D, we define a flow f̄ in D̄ as follows. For edges e that were not
replaced by a gadget in D̄, we set f̄ i(e) = f i(e) for all i. For every e that
was replaced by a gadget (because ci(e) = c(e) and cj(e) = 0 for all j 6= i),
we set the flow values within the gadget as follows. For the new commodity
i∗ we set f̄ i(uu′) = f̄ i(u′v′) = f̄ i(v′v) = f i(e), and we set f̄ i∗(u′′u′) =
f̄ i∗(u′v′) = f̄ i∗(v′v′′) = c(e) − f i(e), so that u′v′ is saturated with its two
top-ranked commodities. Furthermore we set f̄ i∗(su′′) = f̄ i∗(v′′t) = c(e),
and f̄ i∗(u′′v′′) = f i(e). All other flow values are set to zero within the
gadget (recall that f j(e) = 0 for all j 6= i).

Claim. The flow f̄ is stable in D̄.

Proof. We have constructed f̄ so that it respects all capacities and fulfills
flow conservation in D̄. To see that f̄ is a stable flow, assume by contradiction
that there is an f̄ -blocking walk W̄ for some commodity j.
First assume W̄ starts in the interior of a gadget, i.e., with an edge of a
gadget He,i different from uu′. We eliminate the edges of the gadget one by
one to show that this is not possible.

• W̄ cannot start with su′′, as this edge is saturated with its most preferred
commodity i∗.

• W̄ also cannot start with u′′v′′, u′v′, or v′v, as these edges are the last-
choice outgoing edges on the preference lists of u′′, u′ and v′ respectively.

• If W̄ starts at u′′u′, then j = i∗, because this is the only commodity
on the dominated edge u′′v′′. But then W̄ must end at u′ because u′v′

is saturated with commodities it ranks at least as high as i∗. However,
f̄ i∗

(uu′) = 0, so W̄ does not dominate f at u′.
• Finally, if W̄ starts with v′v′′, then j 6= i∗ because f̄ i∗

(v′v) = 0. But it
can neither end at v′′ as v′′ only receives commodity i∗ from u′′v′′, nor
can it continue as v′′t is saturated with its favorite commodity.

We conclude that W̄ cannot start in the interior of a gadget. By a symmetric
argument, W̄ cannot end in the interior of a gadget, i.e., with an edge of a
gadget He,i different from v′v.
Thus, if W̄ contains any edge of a gadget He,i, it must traverse all the edges
uu′, u′v′, v′v of the gadget. As u′v′ is saturated with commodities i and i∗,
we conclude that j = i and c(e) − f i(e) = f̄ i∗

(u′v′) > 0. We replace all such
segments uu′, u′v′, v′v from any traversed gadget He,i with the corresponding
edge e and get a walk W in D. Because f i(e) < c(e) for all inserted edges,
W is a blocking walk for f , contradicting the stability of f . �

It is easy to see that the mapping defined by φ(f) = f̄ is injective, and as
argued above, preserves stability. We now show that it is indeed a bijection
from stable flows in D to stable flows in D̄.

Claim. For any stable flow y in D̄, there is a stable flow f in D with φ(f) = y.

Proof. Let y be a stable flow in D̄. Consider a gadget He,i. By contradic-
tion assume yi∗

(uu′) > 0. Then yi∗

(su′′) = yi∗

(u′′u′) = c(e) as otherwise
either 〈s, u′′, u′〉 or 〈u′′, u′〉 is a blocking walk for commodity i∗. But then
yi∗

(uu′) + yi∗

(u′′u′) > c(e) ≥ yi∗

(u′v′), contradicting flow conservation.
Hence yi∗

(uu′) = 0 and, by a symmetric argument, yi∗

(v′v) = 0. As no
flow of commodity i∗ enters or leaves He,i, and the path 〈s, u′′, v′′, t〉 is not
blocking, we conclude that yi∗

(su′′) = yi∗

(v′′t) = c(e). By flow conserva-
tion, yi∗

(u′′u′) = yi∗

(u′v′) = yi∗

(v′v′′) = c(e) − yi∗

(u′′v′′). Since the path
〈u′′, u′, v′, v′′〉 is not blocking and i is the only commodity that comes before
i∗ on an edge of that path, we conclude that yi∗

(u′v′) + yi(u′v′) = c(e).
Hence, by flow conservation, yi(uu′) = yi(u′v′) = yi(v′v) = c(e) − yi∗

(v′v′′),
and yj(e′) = 0 for all j /∈ {i, i∗} and all edges e′ in the gadget He,i.
Now define f by setting f i(e) = yi(u′v′) for every gadget He,i in D̄ and
f i(e) = yi(e) for all edges in E ∩ ED̄ and all commodities i. Using the
above observations, it is easy to check that φ(f) = y and that f fulfills flow
conservation and respects all capacity constraints (in particular f j(e) =
yj(u′v′) = 0 for all j 6= i at any gadget He,i). To see that f is a stable
flow, assume by contradiction that there is a blocking walk W for f and
commodity i. We obtain a walk W̄ in D̄ by replacing the edges of W with
the corresponding gadgets He,i. At any such edge, f i(e) < c(e) because W
is blocking with respect to i and i is the only commodity that can traverse
e. Hence, yi(uu′) = yi(u′v′) = yi(v′v) < c(e). Also, as the preference lists of
non-gadget vertices are the same in D and D̄, W̄ is indeed a blocking walk
for y contradicting its stability. �

u

v1

v2

v3

2

1
2

2

2

3

2

2 2

3

2

1

1

1

3,1

1

1

1,2

11 2,3

Fig. 10. The edge preferences are marked with colored labels in the middle of edges,
while ri

V is black and closer to the vertices. For all edges, c = 1. The purple edges of
the triangle can forward two commodities, while the bent black edges can carry only
one commodity.

It is easy to check that all transformations described above can be carried out in
polynomial time and that integral stable flows in the original graph correspond
to integral stable flows in the transformed graph. ⊓⊔

5.3 Integral multicommodity stable flows

First we modify Definition 2 so that it describes the integral version of smf.
Then we carefully analyze an example network with no integral solution. This
network is used in the last part of this subsection, in which we present our
hardness proof.

Problem 3 ismf

Input: I = (D, ci, c, rE , ri
V), 1 ≤ i ≤ n ; a directed multicommodity network

(D, ci, c), 1 ≤ i ≤ n, edge preferences over commodities rE and vertex preferences
over incident edges ri

V , 1 ≤ i ≤ n.
Question: Is there a stable multicommodity flow with integral f i(uv) values for
all uv ∈ E and 1 ≤ i ≤ n?

Király and Pap [27] give, for every integer N , an example instance with N
commodities and N vertices, where no stable multicommodity flow exists with
denominators at most N . Here we present a small and slightly modified version
of that instance as an example and later use it as a gadget in our hardness proof.

Example 4 (ISMF instance with no solution) Consider the network depicted
in Fig. 10. We consider two variants of an ismf instance in this network. In both
cases, u is the only terminal vertex in the graph, but the variants differ in that
either 3 or only 2 commodities are present:

1. s1 = s2 = s3 = t1 = t2 = t3 = u (see Lemma 9) and
2. ∃i ∈ {1, 2, 3} : {si, ti} = ∅ (see Lemma 10).

We will show below that in the first case, the instance admits no integer multi-
commodity flow, whereas such a flow exists in the second case.

The edge capacities with respect to commodities are 1 for the commodities
that appear in rE for the specific edge and 0 for the remaining commodities. All
edges have cumulative capacity 1. The vertex preferences are the same for all
commodities: v1, v2 and v3 are inclined to receive and send the flow along the
edges between themselves rather than trading with u. Each commodity i has a
unique feasible cycle Ci through u and it is easy to see that due to the choice of
the ci functions, no other cycle or terminal-terminal path exists in the network.

• C1 = 〈u, v1, v2, v3, u〉
• C2 = 〈u, v2, v3, v1, u〉
• C3 = 〈u, v3, v1, v2, u〉

Lemma 9. If s1 = s2 = s3 = t1 = t2 = t3 = u, then there is no integer stable
multicommodity flow.

Proof. Assume that there is an integral stable multicommodity flow f in the
instance. The empty flow cannot be f , because there is a cycle running through
u for each commodity and such cycles block the empty flow. Without loss of
generality we can now assume that C1 is saturated by commodity 1:

f1(uv1) = f1(v1v2) = f1(v2v3) = f1(v3u) = 1,

while all other flow values must be 0 due to commodity capacity constraints
on edges. This flow is blocked by commodity 3 on the cycle 〈u, v3, v1, v2, u〉. It
is easy to see that analogous arguments work for C2 and C3 as well. Thus, no
integer stable flow exists in the graph. ⊓⊔

Lemma 10. If u is a terminal for at most two out of the three commodities,
then an integer stable multicommodity flow exists.

Proof. Let us now investigate the same instance with a slight modification: s1 =
s2 = t1 = t2 = u, but {s3, t3} = ∅. Then, the following integer flow is stable:

f1(uv1) = f1(v1v2) = f1(v2v3) = f1(v3u) = 1.

A blocking walk with respect to commodity 1 cannot exist, because all edges that
can carry commodity 1 also carry it to their upper capacity. Commodity 2 could
block along C2, but edge v2v3 is saturated with its most preferred commodity. It
is trivial that the same flow remains stable if we set s1 = t1 = u and {s2, t2} =

{s3, t3} = ∅. If {s1, t1} = {s2, t2} = {s3, t3} = ∅, then the empty flow is stable.
⊓⊔

To sum up the established results about Example 4: the instance admits an
integer stable flow if and only if u has at most two commodities. This argument
will help us prove a claim later in our hardness proof.

Theorem 8. Deciding whether ismf has a solution is NP-complete. This holds
even if all commodities share the same set of terminal vertices, all vertices have
the same preferences with respect to all commodities, and edges do not have
commodity-specific capacities (but edges have preferences over different commodi-
ties).

Proof. In the following, we show NP-completeness for the general version ismf.
By Theorem 7, this also implies NP-completeness for ismf restricted to in-
stances with identical terminal sets, commodity-independent vertex preferences,
and without commodity-specific edge capacities.

Testing whether a feasible integral multicommodity flow is stable can be
done in polynomial time, as pointed out also in [27]. It is sufficient to check the
existence of edges fulfilling points 2 and 3 in Definition 4 for every commodity
and then execute a breadth-first search for every pair of vertices as v1 and vk

vertices of the potential blocking walk. Thus ismf is in NP.
We now describe how to construct an ismf instance I ′ from any given in-

stance I of 3-sat with n variables and m clauses, also illustrated in Fig. 11.
For each variable i in the Boolean formula we create 2 commodities, i and ī,
corresponding to truth values true and false. To simplify notation, we say that
¯̄i = i. Every clause in the formula is assigned a clause gadget, identical to the
instance presented in Example 4, but with u being a non-terminal for all com-
modities. The three relevant commodities are the commodities corresponding to
the negations of the three literals appearing in the clause. The preferences of u
in such a gadget are chosen so that the edges of the gadget are preferred to edges
outside of the gadget. The order of the edges at u inside the gadget is irrelevant
due to the commodity-specific capacity constraints.

All commodities share the same terminals s and t. There is a long path
running from s to t, consisting of three segments. The first and the third segments
are two disjoint copies of the same variable gadget, while the second segment
consists of the u-vertices of the m clause gadgets. A variable gadget is defined on
vertices {a, b1, b2, ..., bn, d} with edges abi and bid for all i. For each i and each
e ∈ {abi, bid} we set the capacities ci(e) = cī(e) = c(e) = 1 and cj(e) = cj̄(e) = 0
for j 6= i. Edge abi ranks commodity i best, and ī second, while bid ranks
commodity ī best, and i second. The vertex preferences of a and d are arbitrary.
These three segments are chained together so that the only edge of s ends at
a′ in the first variable gadget, d′ in the same gadget is connected to the first u
vertex of the second segment, the last u of the same segment is adjacent to a′′

in the second variable gadget and d′′ in this gadget has an edge running to t.
For the edges connecting the segments and the u-vertices of clause gadgets with
each other and with the terminals, the capacities are set to ci = cī = c = n for
all 1 ≤ i ≤ n, and edge preferences are chosen arbitrarily.

a

b1

b2

bn−1

bn

d

1, 1̄

n, n̄

1̄, 1

n̄, n

s a′

b′

1

b′

n

d′ u1 ui um a′′

b′′

1

b′′

n

d′′

t

v1

v2

v3

Fig. 11. A variable gadget and the entire construction for ismf.

Having described the full construction we now prove in Lemmas 11 and 12
the equivalence between the existence of an integral stable multicommodity flow
in I ′ and a satisfying truth assignment in I.

Lemma 11. If an integral stable multicommodity flow f exists in I ′, then there
is a satisfying truth assignment in I.

Proof. As defined after Definition 3, f i denotes the total flow value with respect
to commodity i.

Claim. For every commodity i, f i + f ī = 1.

Proof. If f i(abi) + f ī(abi) < 1 for some commodity i and edge abi of a variable
gadget, then there is an unsaturated s-t path through bi with respect to commod-
ity i, because the edges abi and bid are not saturated and all other edges along
the main path have capacity n. This path blocks f . Since c(abi) = 1 for every
1 ≤ i ≤ n, f i(abi) + f ī(abi) = 1, thus edges abi and bid of the variable gadgets
are saturated with commodities i and ī. This already implies that f i + f ī = 1
for every 1 ≤ i ≤ n. �

This claim allows us to assign exactly one truth value to each variable: xi is
true if f i = 1 and it is false if f ī = 1.

Claim. For every clause C = xi ∨ xj ∨ xk, where the variables in C can be in
negated or unnegated form, f ī + f j̄ + f k̄ ≤ 2, for every 1 ≤ i, j, k ≤ n.

Proof. Since u prefers sending flow along its edges in the gadget over forwarding
it to the next u vertex on the path, u can be seen as a terminal vertex with
respect to the commodities reaching it. As we have shown in Example 4, if there
is a solution to ismf, then at most two of the three relevant commodities are
present at u. �

The latter claim is the reason why we took the negated version of each literal
in the clause: at most two literals are false in each clause, thus the clause is
satisfied by the truth assignment. ⊓⊔

Lemma 12. If there is a satisfying truth assignment in I, then there is an
integral stable multicommodity flow f in I ′.

Proof. The constructed flow to the given truth assignment is the following. For
every variable i, f i = 1, f ī = 0 if i is true, and f i = 0, f ī = 1 otherwise. This
rule obviously determines f on all edges not belonging to clause gadgets. Since
we started with a valid truth assignment, each clause gadget has at most two
out of the three relevant commodities i1, i2 and i3 reaching u. Commodity ij

corresponds to commodity j in Example 4. If one commodity ij, j ∈ {1, 2, 3}
is not present at u, then we send commodity ij+1 (modulo 3) along cycle Cij+1

and set all other flow values in the gadget to 0. Note that this also implies
that commodity ij+2 (modulo 3) is forwarded by u without entering the clause
gadget. If two commodities are missing, we send the third along its cycle. If no
relevant commodity reaches the gadget, then we leave all edges of the gadget
empty.

We need to show now that f is an integral stable flow. Feasibility and inte-
grality clearly follow from the construction. Proceeding from s to t in the graph,
we investigate at which vertex a blocking walk W might start.

1. Assume W starts at s. If a′b′
j is the edge saturated by its best commodity,

then W cannot proceed through a′b′
j . If a′b′

j is not saturated by its preferred
commodity, then b′

jd′ is and W cannot pass through b′
jd′. Hence W either

ends at a′ or b′
j for some j. In either case, it ends at a non-terminal vertex

with a single incoming edge. Thus a walk W starting at s cannot block f .
2. Similarly, if W starts at a′, it has to end at b′

j for some j and thus W cannot
block f .

3. For each j, the non-terminal vertex b′
j has a single outgoing edge. Thus it

also cannot start a blocking walk.
4. The same holds for d′.
5. The same arguments apply for walks starting at a′′, b′′

j for some j, or d′′,
respectively.

6. If W starts at a vertex uj , then its first edge must be in a clause gadget,
because the edge running outside of the clause gadget is the least preferred
outgoing edge of uj .
Assume now without loss of generality that the first edge of W is ujv1 in
some clause gadget with relevant commodities i1, i2 and i3, in this order.
Because ujv1 only admits flow of commodity i1, the walk W can only be
blocking with respect to commodity i1, and f i1(e) = 1 on the edge e leaving

uj outside the clause gadget. Thus, ujv1 is not saturated, which means that
commodity i1 was not chosen to fill C1. According to our rules above, the
only reason for this is that commodity i2 is not present at u and commodity i3

saturates C3. Then the only edge that could be the second edge of W is v1v2

in the gadget, but this edge is saturated by its best ranked commodity i3.
We conclude that a blocking walk cannot start at uj for any j.

7. Now assume W starts at a vertex v in the interior of a clause gadget attached
to uj . Without loss of generality, let this vertex be v1. Note that v1 has two
outgoing edges v1v2 and v1uj, but v1v2 only supports flow of commodities
i1 and i3, whereas v1uj only supports flow of commodity i2. A walk starting
with v1uj can only block f with respect to commodity i2, but then it cannot
dominate f at the start because f i2 (v1v2) = 0. Likewise, a walk starting
with v1v2 can only block f with respect to i1 or i3, but cannot dominate f
at the start because f i1(v1uj) = f i3(v1uj) = 0.

8. No edge leaves t, so W cannot start with t.

We thus eliminated all possible starting vertices for blocking walks. Since no
walk blocks the constructed flow, it is stable. �

6 Conclusion and open problems

In this paper we presented four results:

1. a polynomial version of the Gale-Shapley algorithm for stable flows;
2. a direct algorithm for stable flows with restricted intervals;
3. a simplification of the stable multicommodity flow problem;
4. the NP-completeness of the integral stable multicommodity flow problem.

A natural open question regarding the problem of stable flows with restricted
edges presented in Section 4 is that of approximation. The approximation con-
cept of minimum number of blocking edges or minimum number of violated
restrictions [6] can be translated to sf restricted. Even if there is no stable
flow saturating all forced edges or avoiding all forbidden edges, how can stability
be relaxed such that all edge conditions are fulfilled? Or the other way round:
how many edge conditions must be violated by stable flows?

The big open question of Section 5 is clearly algorithms for finding a (possibly
fractional) stable multicommodity flow. Even though Theorem 6 states that it is
PPAD-hard to find a solution in the general case, it is natural to ask whether this
complexity changes when restricting the number of commodities, the maximum
degree, or other parameters of the instance. Since the Gale-Shapley algorithm
typically executes steps with integer values if the input is integral and we showed
the hardness of ismf, it is likely that a novel approach is needed. Linear pro-
gramming is a promising direction, but constructing a description of the smf

polytope seems to be an extremely challenging task. At the moment, the most
elaborate structure for which a linear program is known is many-to-many stable
matchings [12].

Finally, all stable flow models discussed in this paper can be combined with
other common notions in stability or flows, such as ties in preference lists, edge
weights, unsplittable flows, and so on.

Acknowledgment We thank Tamás Fleiner for discussions on Lemma 3, and our
reviewers for their suggestions that significantly improved the presentation of
the paper.

References

1. Baïou, M., Balinski, M.: Many-to-many matching: stable polyandrous polygamy
(or polygamous polyandry). Discrete Applied Mathematics 101, 1–12 (2000)

2. Balinski, M., Sönmez, T.: A tale of two mechanisms: student placement. Journal
of Economic Theory 84, 73–94 (1999)

3. Biró, P., Kern, W., Paulusma, D., Wojuteczky, P.: The stable fixtures problem
with payments. Games and Economic Behavior (2017)

4. Braun, S., Dwenger, N., Kübler, D.: Telling the truth may not pay off: an empir-
ical study of centralized university admissions in Germany. The B.E. Journal of
Economic Analysis and Policy 10, article 22 (2010)

5. Chen, Y., Sönmez, T.: Improving efficiency of on-campus housing: an experimental
study. American Economic Review 92, 1669–1686 (2002)

6. Cseh, Á., Manlove, D.F.: Stable marriage and roommates problems with restricted
edges: Complexity and approximability. Discrete Optimization 20, 62 – 89 (2016)

7. Cseh, Á., Matuschke, J., Skutella, M.: Stable flows over time. Algorithms 6, 532–
545 (2013)

8. Dean, B.C., Munshi, S.: Faster algorithms for stable allocation problems. Algo-
rithmica 58, 59–81 (2010)

9. Dias, V.M.F., da Fonseca, G.D., de Figueiredo, C.M.H., Szwarcfiter, J.L.: The
stable marriage problem with restricted pairs. Theoretical Computer Science 306,
391–405 (2003)

10. Feder, T.: A new fixed point approach for stable networks and stable marriages.
Journal of Computer and System Sciences 45, 233–284 (1992)

11. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11, 291–319 (1994)
12. Fleiner, T.: On the stable b-matching polytope. Mathematical Social Sciences 46,

149–158 (2003)
13. Fleiner, T.: On stable matchings and flows. Algorithms 7, 1–14 (2014)
14. Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalised stable

marriage and roommates problems. Theoretical Computer Science 381, 162–176
(2007)

15. Fleiner, T., Jagadeesan, R., Jankó, Z., Teytelboym, A.: Trading networks with
frictions. In: Proceedings of the 2018 ACM Conference on Economics and Com-
putation, pp. 615–615. ACM (2018)

16. Fleiner, T., Jankó, Z., Schlotter, I., Teytelboym, A.: Complexity of stability in
trading networks. arXiv preprint arXiv:1805.08758 (2018)

17. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)
18. Gai, A.T., Lebedev, D., Mathieu, F., de Montgolfier, F., Reynier, J., Viennot, L.:

Acyclic preference systems in P2P networks. In: A. Kermarrec, L. Bougé, T. Priol
(eds.) Proceedings of Euro-Par ’07 (European Conference on Parallel and Dis-
tributed Computing): the 13th International Euro-Par Conference, Lecture Notes

in Computer Science, vol. 4641, pp. 825–834. Springer (2007)

19. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American
Mathematical Monthly 69, 9–15 (1962)

20. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete
Applied Mathematics 11, 223–232 (1985)

21. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Fran-
cisco, CA. (1979)

22. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press (1989)

23. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal”
stable marriage. Journal of the ACM 34, 532–543 (1987)

24. Jagadeesan, R.: Complementary inputs and the existence of stable outcomes in
large trading networks. In: Proceedings of the 2017 ACM Conference on Economics
and Computation, pp. 265–265. ACM (2017)

25. Jewell, W.S.: Multi-commodity Network Solutions. Operations Research Center,
University of California (1966)

26. Király, T., Pap, J.: A note on kernels and Sperner’s Lemma. Discrete Applied
Mathematics 157, 3327–3331 (2009)

27. Király, T., Pap, J.: Stable multicommodity flows. Algorithms 6, 161–168 (2013).
DOI 10.3390/a6010161

28. Knuth, D.: Mariages Stables. Les Presses de L’Université de Montréal (1976).
English translation in Stable Marriage and its Relation to Other Combinatorial

Problems, volume 10 of CRM Proceedings and Lecture Notes, American Mathe-
matical Society, 1997

29. Lin, Y.S., Nguyen, T.: On variants of network flow stability. arXiv preprint
arXiv:1710.03091 (2017)

30. Ostrovsky, M.: Stability in supply chain networks. American Economic Review
98, 897–923 (2008)

31. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. Journal of Computer and System Sciences 48, 498–532
(1994)

32. Perach, N., Polak, J., Rothblum, U.G.: A stable matching model with an entrance
criterion applied to the assignment of students to dormitories at the Technion.
International Journal of Game Theory 36, 519–535 (2008)

33. Roth, A.E.: The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy 92, 991–1016 (1984)

34. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-Theoretic
Modeling and Analysis, Econometric Society Monographs, vol. 18. Cambridge Uni-
versity Press (1990)

35. Shepherd, F.B., Vetta, A., Wilfong, G.T.: Polylogarithmic approximations for the
capacitated single-sink confluent flow problem. In: Foundations of Computer Sci-
ence (FOCS), 2015 IEEE 56th Annual Symposium on, pp. 748–758. IEEE (2015)

36. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Operations Research pp. 250–256 (1986)

	New and simple algorithms for stable flow problems

