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Abstract
We show that computing canonical representations for circular-arc (CA) graphs reduces to com-
puting certain subsets of vertices called flip sets. For a broad class of CA graphs, which we call
uniform, it suffices to compute a CA representation to find such flip sets. As a consequence
canonical representations for uniform CA graphs can be obtained in polynomial-time. We then
investigate what kind of CA graphs pose a challenge to this approach. This leads us to introduce
the notion of restricted CA matrices and show that the canonical representation problem for CA
graphs is logspace-reducible to that of restricted CA matrices. As a byproduct, we obtain the
result that CA graphs without induced 4-cycles can be canonized in logspace.
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1 Introduction

We consider an arc to be a connected set of points on the unit circle including the endpoints.
A CA graph is a graph whose vertices can be assigned arcs such that two vertices are adjacent
iff their corresponding arcs intersect. More formally, given a graph G we call it a CA graph if
there exists a function ρ which maps every vertex u of G to an arc ρ(u) such that u and v are
adjacent iff their arcs ρ(u) and ρ(v) have non-empty intersection. We call such a mapping ρ
a CA representation of G. CA graphs are a form of geometrical intersection graphs. Let X
be a family of sets over some ground set. Any subset Y of X defines a graph GY which has
Y as its vertex set and two vertices are adjacent if they have non-empty intersection. The
graph GY is called intersection graph of Y . We say a (finite) graph G is an intersection graph
of X if it is isomorphic to the intersection graph of Y for some Y ⊆ X . In this language CA
graphs are intersection graphs of arcs. The intersection graphs of intervals on the real line
are called interval graphs. In this sense any set of geometrical objects defines a (geometrical
intersection) graph class. CA graphs are a generalization of interval graphs since every set of
intervals on the real line can be ‘bent’ into arcs while preserving the intersection relation.
Therefore every interval graph is a CA graph.

Being a generalization of interval graphs—the archetype of geometrical intersection
graphs—CA graphs are quite prominent as well and have been known for decades. Since
then structural properties and algorithmic problems for this class have been thoroughly
investigated with [5] and [16] being two of the earliest works in this regard. In particular,
finding characterizations of CA graphs and constructing a CA representation for a given
CA graph have received a great deal of attention. Remarkably, finding a forbidden induced
subgraph characterization of CA graphs is still an open problem. See [12] for a survey on this
line of research and [1] for one of the most recent results in that direction. It should also be
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2 Canonical Representations for Circular-Arc Graphs Using Flip Sets

mentioned that CA graphs are of practical relevance with applications arising in disciplines
such as genetics and operations research. An explanation of the connection between genetics
and interval graphs in layman’s terms can be found in [17]. For a specialized account on this
connection emphasizing circularity see [15]. An example of how CA graphs can be used to
model the problem of phasing traffic lights is given in [6].

In this work we consider the canonical representation problem for CA graphs. The
representation problem for CA graphs is as follows. Given a CA graph G as input
we want to output a CA representation ρG of G. The canonical variant of this prob-
lem imposes the additional requirement that for every pair of isomorphic CA graphs G
and H their representations ρG and ρH should have identical underlying sets of arcs,
i.e. {ρG(v) | v ∈ V (G)} = {ρH(v) | v ∈ V (H)}. Notice that solving the representation prob-
lem for CA graphs implies solving the recognition problem for CA graphs, i.e. the question
given a graph G is it a CA graph. Likewise, solving the canonical representation problem for
CA graphs implies solving the isomorphism problem for CA graphs, i.e. deciding whether
two given CA graphs are isomorphic.

Consider the following generalization of interval graphs: 2-interval graphs are intersection
graphs of two intervals on the real line. It is easy to see that this class contains CA graphs
because given a set of arcs one can cut the circle at some point and straighten the arcs.
The arcs which are cut can be modeled as two intervals. It is interesting to note that the
isomorphism problem for interval graphs is logspace-complete [9] while the one for 2-interval
graphs is already GI-complete and CA graphs lie inbetween these two classes. The GI-
completeness for 2-interval graphs follows from the fact that every line graph is a 2-interval
graph and line graphs are already GI-complete. To see why this inclusion holds consider a
graph G and its line graph L(G). Assign every vertex v of G an interval Iv on the real line
such that no two intervals Iu and Iv intersect for every pair of distinct vertices u and v of
G. The 2-interval model for L(G) is obtained by mapping every edge {u, v} of G to the two
intervals Iu and Iv.

While a polynomial-time algorithm for deciding isomorphism of interval graphs is known
since 1976 due to Booth and Lueker this question still remains open for CA graphs. There
have been two claimed polynomial-time algorithms for deciding isomorphism of CA graphs
in [18] and [7] which were shown to be incorrect in [4] and [3] respectively. For interval
graphs even a linear-time algorithm for isomorphism is known [13]. A more recent result
is that canonical interval representations for interval graphs can be computed in logspace
and that this is optimal in the sense that recognition and deciding isomorphism for interval
graphs is logspace-complete [9]. These two hardness results also carry over to the class of
CA graphs. Furthermore, the isomorphism problem for proper CA graphs [11] and Helly
CA graphs [10] have been shown to be decidable in logspace. It is also shown how to obtain
canonical representations for these subclasses in logspace.

In this article we explain how the method used in [10] to obtain canonical representation
for Helly CA graphs can be adapted to CA graphs in general. Following this approach,
canonical representations for CA graphs can be found by computing certain subsets of vertices
called flip sets in an isomorphism-invariant manner. We introduce the class of uniform CA
graphs for which this method yields canonical representations in polynomial-time. We then
aim to isolate the instances of CA graphs which are difficult to handle with this method.
We try to capture these hard instances by what we call restricted CA matrices and show
that the canonical representation problem for CA graphs is logspace-reducible to that of
restricted CA matrices. During this isolation process we find a subset of uniform CA graphs,
namely ∆-uniform CA graphs, for which canonical representations can be computed in
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logspace. The ∆-uniform CA graphs contain Helly CA graphs and every CA graph without
an induced 4-cycle. This generalizes the canonization result for Helly CA graphs given in
[10]. A preliminary version of this work appeared in [2].

The paper is organized as follows. In the third section we formalize the idea of computing
invariant flip sets in order to obtain canonical representations for CA graphs. This leads to
the definition of invariant flip set functions. In the fourth section we investigate for what
CA graphs a particular invariant flip set function is easy to compute. This leads to the
class of uniform CA graphs. We also provide an alternative characterization of uniform
CA graphs in terms of whether certain triangles in a CA graph have an unambiguous
representation. The main result of this section is that the representation problem for uniform
CA graphs, the canonical representation problem for uniform CA graphs and the non-Helly
triangle representability problem (introduced in section 4) for uniform CA graphs are all
logspace-equivalent. In the fifth section we consider the structure of non-uniform CA graphs,
introduce restricted CA matrices and show how the canonical representation problem for
CA graphs can be reduced to that of restricted CA matrices. In the process of proving this
reduction the class of ∆-uniform CA graphs is defined and it is shown that this class can be
canonized in logspace.

2 Preliminaries

For a number n ∈ N we write [n] for {1, . . . , n}. Given two sets A,B we say A and B intersect
if A ∩ B 6= ∅. We say A and B overlap, in symbols A G B, if A ∩ B,A \ B and B \ A are
non-empty.

We consider graphs without self-loops which sometimes have colored vertices and colored
edges. They can be seen as relational structures with the vertex set as universe and vertex
colors encoded as unary relations and edge colors as binary relations. The standard notion
of isomorphism for relational structures applies. We describe a graph with vertex colors as
tuple (G, c) where c is a function that maps the vertices of G to the colors. We talk about
a graph with edge colors as a square matrix whose entries represent the edge colors and
identify the indices of the matrix and the vertices of the graph. Consequently, we identify a
square matrix with the graph that it represents and talk about it in graph-theoretical terms.
By a class of (relational) structures we mean a set of such structures which is closed under
isomorphism.

We call a bijective function τ which maps the vertices of a graph G to some set V ′
a relabeling of G and τ(G) denotes the graph obtained after relabeling the vertices of G
according to τ . Let G and H be two graphs and let X ⊆ V (G) and Y ⊆ V (H). We say X
and Y are in the same orbit, in symbols X ∼orb Y , if there exists an isomorphism π from G

to H such that π(X) = Y . Let f be a function which maps a graph along with a subset of its
vertex set to a binary string, i.e. f(G,X) ∈ {0, 1}∗ and X ⊆ V (G). We call f an invariant
for a graph class C if f(G,X) = f(H,Y ) whenever X ∼orb Y and G,H ∈ C. Let us call a
function f which maps a graph G to a family of subsets of its vertex set, i.e. f(G) ⊆ P(V (G)),
a vertex set selector. For example, the function that maps a graph to the set of its cliques is
a vertex set selector. The characteristic function χf of a vertex set selector f is defined as
χf (G,X) = 1⇔ X ∈ f(G). We say a vertex set selector f is invariant for a graph class C if
its characteristic function χf is an invariant for C. We call f globally invariant if χf is an
invariant for all graphs. Intuitively, a vertex set selector f is invariant for C if a graph G ∈ C
can be arbitrarily relabeled and f still returns the ‘same’ vertex sets as before w.r.t. ∼orb.

The following definitions are with respect to a graph G. Throughout the paper it will be
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always clear from context with respect to what graph these expressions are to be interpreted.
For a vertex v we define its open neighborhood N(v) as the set of vertices which are adjacent
to v and its closed neighborhood N [v] = N(v) ∪ {v}. A vertex v is called universal if
N [v] = V (G). For two vertices u, v we say that u and v are twins if N [u] = N [v]. A graph G
is twin-free if for every pair of distinct vertices u 6= v it holds that N [u] 6= N [v]. A twin class
is an inclusion-maximal set of vertices X such that for all u, v ∈ X it holds that u and v are
twins. For two subsets of vertices S, S′ with S′ ⊆ S we define the exclusive neighborhood
NS(S′) as all vertices v ∈ V (G) \ S such that v is connected to all vertices in S′ and to none
in S \ S′. Let A be a square matrix with entries from a set E . For a vertex u of A and x ∈ E
we define Nx(u) = {v ∈ V | Au,v = x}.

Logspace Transducers and Reductions. We assume deterministic Turing machines as
default model of computation. A logspace transducer is a deterministic Turing machine M
with a read-only input tape, a work tape and a write-only output tape. The work tape is
only allowed to use at most O(logn) cells where n denotes the input length. To write onto
the output tape M has a designated state called output state with the following semantic. If
M enters the output state then the symbol in the current cell of the work tape is written to
the current cell of the output tape and the head on the output tape is moved one cell to the
right. Other than that, M cannot write or move the head on the output tape. This means
as soon as something is written to the output tape it cannot be modified afterwards. Let
Σ and Γ be the input and work alphabet of M respectively. Then M computes a function
fM : Σ∗ → Γ∗. We say a (partial) function f is computed by a logspace transducer M if
f(x) = fM (x) whenever f(x) is defined. We call f logspace-computable if there exists a
logspace transducer M which computes f . The class of logspace-computable functions is
closed under composition. Let f be a function which maps words over some alphabet to words
over some other alphabet. We say that the length of f is polynomially bounded if |f(x)| is
polynomially bounded by |x|. Only functions whose length is polynomially bounded can be
logspace-computable since the runtime of a logspace transducer is polynomially bounded. A
language L ⊆ Σ∗ is in logspace if its characteristic function is logspace-computable.

Given two functions f and g we say f is logspace-reducible to g if there exists l ∈ N and
logspace-computable functions r1, . . . , rl such that f can be expressed as composition of g
and r1, . . . , rl. Intuitively, this means that an oracle which can compute g can be queried a
constant number of times when constructing a logspace transducer for f . For two functions f
and g we say that they are logspace-equivalent if f is logspace-reducible to g and vice versa.
Analogously, given three functions f, g1, g2 we say f is logspace-reducible to g1 and g2 if
there exists l ∈ N and logspace-computable functions r1, . . . , rl such that f can be expressed
as composition of g1, g2 and r1, . . . , rl.

Circular-Arc Graphs and Representations. A CA model is a set of arcs A = {A1, . . . , An}
on the circle. Let p 6= p′ be two points on the circle. Then the arc A specified by [p, p′]
is given by the part of the circle that is traversed when starting from p going in clockwise
direction until p′ is reached. We say that p is the left and p′ the right endpoint of A and
write l(·), r(·) to denote the left and right endpoint of an arc in general. If A = [p, p′] then
the arc obtained by swapping the endpoints A = [p′, p] covers exactly the opposite part of
the circle plus the endpoints. We say A is obtained by flipping A. In our context, we are only
interested in the intersection structure of a CA model and thus only the relative position of
the endpoints to each other matter. All endpoints can w.l.o.g. be assumed to be pairwise
different and no arc covers the full circle. Under these assumptions, a CA model A with n
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Figure 1 A CA graph and a representation of it

arcs can be described as a unique string as follows. Pick an arbitrary arc A ∈ A and relabel
the arcs with 1, . . . , n in order of appearance of their left endpoints when traversing the circle
clockwise starting from the left endpoint of A. Then write down the endpoints in order of
appearance when traversing the circle clockwise starting from the left endpoint of A. Do
this for every arc and pick the lexicographically smallest resulting string as representation
for A. For example, the smallest such string for the CA model in Figure 1 would result
from choosing A1: (l(1), r(1), l(2), r(5), l(3), r(2), . . . ). Let str(A) denote this smallest string
representation. For a CA model A let Ar be the CA model obtained after reversing the
order of its endpoints. Observe that reversing the endpoints does not affect the intersection
structure of a CA model. Therefore we consider two CA models A and B to be equal if
str(A) = str(B) or str(Ar) = str(B).

Let G be a graph and ρ = (A, f) consists of a CA model A and a bijective mapping f
from the vertices of G to the arcs in A. Then ρ is called a CA representation of G if for all
u 6= v ∈ V (G) it holds that {u, v} ∈ E(G)⇔ f(u)∩ f(v) 6= ∅. We write ρ(x) to mean the arc
f(x) corresponding to the vertex x, ρ(G) for the CA model A and for a subset V ′ ⊆ V (G)
let ρ[V ′] = {ρ(v) | v ∈ V ′}. A graph is a CA graph if it has a CA representation.

We say a CA model A has a hole if there exists a point on the circle which isn’t contained
by any arc in A. Every such CA model can be understood as interval model (a set of intervals
on the real line) by straightening the arcs. Conversely, every interval model can be seen as
CA model by bending the intervals. Therefore a graph is an interval graph iff it admits a
CA representation with a hole.

A family of sets F over some ground set is called Helly if for all subsets F ′ of F such that
all elements in F ′ intersect pairwise it holds that ∩A∈F ′A is non-empty. A CA graph G is
called Helly (HCA graph) if it has a CA representation ρ with a Helly CA model ρ(G). This
is the case iff for all inclusion-maximal cliques C in G it holds that the overall intersection of
C in ρ is non-empty, i.e.

⋂
v∈C ρ(v) 6= ∅. Every interval model has the Helly property and

therefore every interval graph is a Helly CA graph.
The intersection type of two circular arcs A and B can be one of the following five types:
di: A and B are disjoint — A ∩B = ∅
cs: A contains B — B ⊂ A
cd: A is contained by B — A ⊂ B
cc: A and B jointly cover the circle (circle cover) — A G B and A ∪B = whole circle
ov: A and B overlap — A G B and A ∪B 6= whole circle

Using these types we can associate a matrix with every CA model. An intersection
matrix is a square matrix with entries {cc, cd, cs, di, ov}. Given a CA model A we define its
intersection matrix µA such that (µA)A,B ∈ {cc, cd, cs, di, ov} reflects the intersection type
of the arcs A 6= B ∈ A. An intersection matrix µ is called a CA (interval) matrix if it is the
intersection matrix of some CA model (with a hole). See Figure 2 for an example of a CA
model and the CA matrix which it induces. Given an intersection matrix µ and two distinct



6 Canonical Representations for Circular-Arc Graphs Using Flip Sets

vertices u, v of µ we sometimes write u α v instead of µu,v = α if µ is clear from the context.
Also, we sometimes talk about an intersection matrix µ as if it were a graph. In that case we
consider two vertices u, v of µ to be adjacent if they do not have a di-entry in µ.

When trying to construct a CA representation for a CA graph G it is clear that whenever
two vertices are non-adjacent their corresponding arcs must be disjoint in every CA represen-
tation of G. For two adjacent vertices the intersection type of their corresponding arcs might
depend on the particular CA representation of G that one considers. Hsu has shown that
this ambiguity can be removed as follows [7].

We adopt the notation of [10].

IDefinition 2.1. For a graph G we define its neighborhood matrix λG which is an intersection
matrix as

(λG)u,v =



di , if {u, v} /∈ E(G)
cd , if N [u] ( N [v]
cs , if N [v] ( N [u]
cc , if N [u] G N [v] and N [u] ∪N [v] = V (G)

and ∀w ∈ N [u] \N [v] : N [w] ⊂ N [u]
and ∀w ∈ N [v] \N [u] : N [w] ⊂ N [v]

ov , otherwise

for all u 6= v ∈ V (G).

Let µ be an intersection matrix with vertex set V and let ρ = (A, f) where A is a CA
model and f is a bijective mapping from V to A. We say ρ is a CA representation of µ if f
is an isomorphism from µ to the intersection matrix µA of A. We denote the set of such CA
representations for µ with N (µ). The representation problem for CA matrices is to compute
a CA representation for a given CA matrix µ. The canonical representation problem for
CA matrices is defined analogously to the canonical representation problem for CA graphs.
We say ρ is a normalized CA representation for a graph G if ρ is a CA representation
for the neighborhood matrix λG of G. An example of a normalized representation can be
seen in Figure 3. Let us denote the set of all normalized CA representations for G with
N (G) = N (λG).

I Lemma 2.2 (Corollary 2.3. [7]). Every twin-free CA graph G without a universal vertex
has a normalized CA representation, that is N (G) 6= ∅.

I Lemma 2.3. The canonical representation problem for CA graphs is logspace-reducible
to the canonical representation problem for vertex-colored twin-free CA graphs without a
universal vertex.

Proof. For a graph G let G0 denote the induced subgraph of G that is obtained by removing
all universal vertices from G and only taking one vertex from each twin-class and deleting

A

a b

c

d

µA a b c d
a - cs ov cc
b cd - di di
c ov di - ov
d cc di ov -

Figure 2 A CA model A and its intersection matrix µA
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the rest. Let c0 be a coloring of G0 which assigns each vertex the cardinality of its twin class
in G. It holds that (G0, c0) and the number of universal vertices in G suffice to reconstruct
G. Let G be a CA graph. Compute the graph (G0, c0). Since (G0, c0) is twin-free and
without universal vertices we can compute a canonical representation ρ0 for it. For a vertex
v of G let v0 denote the twin of v that occurs in G0. A canonical representation of G is
given by v 7→ ρ0(v0) for every non-universal vertex v of G and every universal vertex of G is
represented by an arc which intersects with all other arcs. J

Therefore for our purposes it suffices to consider only twin-free graphs without universal
vertices and a vertex-coloring.

I Proviso. From this point on we assume every graph to be twin-free and without a universal
vertex unless explicitly stated otherwise. As a consequence we view CA graphs as a set of
CA matrices in the sense that the neighborhood matrix of every CA graph is a CA matrix.

Flips in Intersection Matrices. McConnell [14] observed that the operation of flipping arcs
in CA models has a counterpart in intersection matrices. He called this counterpart operation
algebraic flips. Note that for two arcs A,B with intersection type α ∈ {cc, cd, cs, di, ov} the
intersection type of A and B is solely determined by α. More precisely, the intersection type
of A and B is Z10(α) where Z10 is the function defined in Table 1. Similarly, the intersection
type of A and B is given by Z01(α). Using the functions Zij we can define the operation of
flipping a set of vertices in an intersection matrix.

I Definition 2.4. Let µ be an intersection matrix with vertex set V and X ⊆ V . We define
the intersection matrix µ(X) obtained after flipping the vertices X in µ as

µ(X)
u,v = Zij(µu,v) with i = 1 iff u ∈ X and j = 1 iff v ∈ X

for all u 6= v in V .

Since flipping the same set of arcs twice is an involution it follows that (µ(X))(X) = µ.

I Definition 2.5. Let V be a set of vertices, let A be a set of arcs and let ρ be a function
that maps V to A. Then ρ(X) : V → A for X ⊆ V is defined as follows:

ρ(X)(v) =
{
ρ(v) , if v ∈ X
ρ(v) , if v /∈ X

Notice that flipping vertices in an intersection matrix is equivalent to flipping arcs in a
CA representation in the following sense. Given an intersection matrix λ and a subset of
its vertices X it holds that ρ ∈ N (λ)⇔ ρ(X) ∈ N (λ(X)). Also, it is not difficult to observe
that flipping is an isomorphism-invariant operation in the sense that flipping sets of vertices
which are in the same orbit lead to isomorphic intersection matrices.

cccd/cs cd/cs1 2

3

4

5 6 1 25 6

4

3

Figure 3 A CA graph and a normalized representation thereof. Every non-labeled edge corresponds
to an ov-entry in the neighborhood matrix.
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3 Flip Trick

In this section we generalize the idea used by Köbler, Kuhnert and Verbitsky in [10] to
compute canonical representations for Helly CA graphs. They showed that finding canonical
representations for Helly CA graphs can be reduced to finding canonical representations for
vertex-colored interval matrices. We show that the idea behind this reduction also works for
CA matrices in general. Recall that CA graphs can be seen as special case of CA matrices
since the neighborhood matrix of every CA graph is a CA matrix. The converse does not
hold, i.e. there exist CA matrices which are not expressible as the neighborhood matrix of a
CA graph (for instance any CA matrix with only two vertices that are not disjoint). The key
result here, which is used in the subsequent sections, is that finding canonical representations
for CA matrices is logspace-reducible to the task of computing what we call an invariant flip
set function.

McConnell showed in [14] that CA representations for CA graphs can be computed as
follows. Given a CA graph G with neighborhood matrix λ one can compute a set of vertices
X of G such that λ(X) is an interval matrix. We call such a set X a flip set. Then by
computing an interval representation ρ for λ(X) and flipping back the arcs X in ρ one obtains
a CA representation for λ and therefore for G as well [14]. We essentially use the same
argument to obtain canonical CA representations.

I Definition 3.1. Let λ be a CA matrix. A subset of vertices X of λ is called a flip set if
there exists a representation ρ ∈ N (λ) and a point x on the circle such that v ∈ X iff ρ(v)
contains the point x.

The concept of flip sets has already been implicitly defined and used in both [14] and
[10]. They observed that λ(X) is an interval matrix whenever X is a flip set of a CA matrix
λ. In fact, the other direction holds as well leading to the following characterization.

I Lemma 3.2. Let λ be a CA matrix and X is a subset of vertices of λ. It holds that X is
a flip set iff λ(X) is an interval matrix.

Proof. “⇒”: Let X be a flip set of λ. Let ρ ∈ N (λ) be a witnessing representation of the
fact that X is a flip set, i.e. there exists a point x on the circle such that every arc ρ(v)
with v ∈ X contains x and every arc ρ(v) with v /∈ X does not contain x. Consider the
representation ρ(X) ∈ N (λ(X)). It holds that no arc ρ(X)(v) with v ∈ V (λ) contains the
point x which implies that there is a hole in ρ(X) and thus λ(X) is an interval matrix.

“⇐”: Let X be a subset of vertices of λ such that λ(X) is an interval matrix. We argue
that X must be a flip set. Let ρ ∈ N (λ(X)) be a CA representation of λ(X) containing a hole
at point x on the circle. Such a representation must exist since λ(X) is an interval matrix.
This means the arc ρ(v) does not contain the point x for every vertex v ∈ V (λ). Consider the

Table 1 Algebraic flip functions Zxy : {cc, cd, cs, di, ov} → {cc, cd, cs, di, ov}

Zxy(α) cc cd cs di ov
Z00 cc cd cs di ov
Z01 cs di cc cd ov
Z10 cd cc di cs ov
Z11 di cs cd cc ov
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representation ρ(X) ∈ N ((λ(X))(X)) = N (λ). Then it can be checked that ρ(X)(v) contains
the point x iff v is in X and therefore X is a flip set with respect to λ. J

We already mentioned that the canonical representation problem for vertex-colored
interval matrices can be solved in logspace due to [10]. However, since the theorem that
we reference just states this result for uncolored interval matrices we shortly explain how
to modify the proof to incorporate the coloring, which is a straightforward task for anyone
familiar with the proof.

I Theorem 3.3 ([10, Thm. 5.5]). The canonical representation problem for vertex-colored
interval matrices can be solved in logspace.

Proof. In Theorem 5.5 of [10] it is stated that a canonical interval representation for an
interval matrix can be found in logspace. To prove this they convert the input interval
matrix λ into a colored tree T(λ) called ∆ tree which is a complete invariant for interval
matrices. The leafs of this tree correspond to the vertices of λ. By appending the color of a
vertex from our vertex-colored interval matrix λ to the existing color of its corresponding
leave node in the colored ∆ tree T(λ) one obtains a complete invariant for vertex-colored
interval matrices. Then by applying the same argument given in the proof of Theorem 5.5
one can also compute a canonical representation for a vertex-colored interval matrix using
this slightly modified colored ∆ tree. J

A consequence of Lemma 3.2 and Theorem 3.3 is that flip sets can be recognized in
logspace. Given an intersection matrix λ and a subset of vertices X of λ it suffices to check
whether λ(X) is an interval matrix by trying to compute an interval representation.

I Definition 3.4. Let C be a class of CA matrices and f is a vertex set selector. The function
f is called an invariant flip set function for C if the following conditions hold:
1. For every λ ∈ C there exists an X ∈ f(λ) such that X is a flip set of λ
2. f is invariant for C
Recall that f is globally invariant if f is invariant for all intersection matrices.

I Theorem 3.5. Let C be a class of CA matrices. The canonical representation problem
for vertex-colored C is logspace-reducible to the problem of computing an invariant flip set
function for C.

Proof. Let f be an invariant flip set function for C. Given a vertex-colored CA matrix (λ, c)
with λ ∈ C a canonical representation can be computed as follows. For every flip set X ∈ f(λ)
we associate it with the colored interval matrix IX = (λ(X), cX) where cX(v) = (c(v), red) if
v is in X and (c(v),blue) if v is not in X for all v ∈ V (λ). For a colored interval matrix I let
ρ̂I denote a canonical representation of I. Such a canonical representation can be computed
in logspace due to Theorem 3.3. Let X̂ denote a flip set in f(λ) such that the interval model
of ρ̂IX̂

is lexicographically minimal, i.e. for all flip sets X in f(λ) it holds that the model
of ρ̂IX

is not smaller than the model of ρ̂IX̂
. Let ρ̂ denote the CA representation that is

obtained after flipping the red arcs in ρ̂IX̂
. Since these are the arcs that were flipped to

convert λ into IX it holds that ρ̂ is a representation of λ. To see that this leads to a canonical
representation consider two isomorphic vertex-colored CA matrices (λ, c) and (µ, d) with
λ, µ ∈ C and V (λ) and V (µ) are disjoint. Let Iλ be the set of colored interval matrices IX
for all flip sets X ∈ f(λ), and the set Iµ is defined analogously. LetMλ be the set of interval
models M such that there exists an I ∈ Iλ and M is the model underlying the canonical
representation ρ̂I of I. The setMµ is defined analogously. Since f is invariant it follows that
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for every I ∈ Iλ there exists an I ′ ∈ Iµ such that I and I ′ are isomorphic, and vice versa.
Since the models in Mλ and Mµ only depend on the isomorphism type of the matrices
in Iλ and Iµ it follows that Mλ = Mµ. The CA models which underlie the canonical
representations of λ and µ are both derived from the smallest element inMλ =Mµ and
thus are identical. J

Suppose that there is a partition of the set of CA graphs into two classes C and D such
that you can efficiently compute invariant flip set functions for both classes. One might be
misled into thinking that this implies canonical representations for all CA graphs can be
found efficiently. However, this is not the case unless the class C (or D) can be efficiently
recognized, or one of the two invariant flip set functions is globally invariant.

I Lemma 3.6. Let C and D be classes of CA matrices. The canonical representation problem
for C ∪ D is logspace-reducible to the canonical representation problem for C and the problem
of computing a globally invariant flip set function for D.

Proof. Let f be a globally invariant flip set function for D. Let D′ be the set of CA matrices
λ such that f(λ) contains a flip set. Clearly, D is a subset of D′. It holds that f(λ) contains
a flip set iff λ ∈ D′. Since f is globally invariant it follows that f is an invariant flip set
function for D′. To obtain a canonical representation for a matrix λ ∈ C ∪ D first compute
f(λ). If f(λ) contains a flip set it holds that λ ∈ D′ and therefore the output of f can be
used to find a canonical representation for λ. If f(λ) contains no flip set it must be the case
that λ ∈ C and therefore the canonization algorithm for C can be applied. J

We conclude this section by restating the invariant flip set function that was used in [10]
to compute canonical representations for Helly CA graphs and explain why it is correct:

fHCA(G) =
{
N [u] ∩N [v] | u, v ∈ V (G)

}
In a Helly CA graph G every inclusion-maximal clique C of G is a flip set. To see why

this holds let ρ be a representation of G with the Helly property. Since C is a clique this
means every pair of arcs ρ(u) and ρ(v) with u, v ∈ C intersects. By the Helly property it
follows that the overall intersection

⋂
v∈C ρ(v) is non-empty. This means there exists a point

x on the circle such that every arc ρ(v) with v ∈ C contains x. Assume there exists a vertex
w ∈ V (G) \ C such that ρ(w) contains x. This means w must be adjacent to every vertex in
C, which contradicts that C is inclusion-maximal. Hence C is a flip set.

In [10, Thm. 3.2] it is shown that every Helly CA graph contains at least one inclusion-
maximal clique which can be expressed as the common neighborhood of two vertices. Therefore
fHCA(G) returns at least one flip set for every Helly CA graph G. Also, it is trivial to see
that fHCA is globally invariant.

4 Uniform Circular-Arc Graphs

We define the class of uniform CA graphs for which computing a particular invariant flip set
function reduces to computing a representation. As a consequence, canonical representations
for this class of CA graphs can be computed in polynomial-time. This is an interesting
class for two reasons. First, it seems to capture the instances where it is easy to apply
the flip trick. Secondly, its complement (within the CA graphs) is a rather exotic class
of CA graphs with a quite particular structure. While the initial definition of uniformity
makes it apparent why it suffices to find an arbitrary representation in order to obtain a
canonical one, it is rather impractical when trying to understand what constitutes a uniform
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CA graph. We provide a more pleasant characterization of uniform CA graphs in terms of
how certain triangles in a CA graph can be represented. This alternative characterization
also reveals that every Helly CA graph is uniform. Additionally, we show that the canonical
representation problem for uniform CA graphs is logspace-equivalent to what we call the
non-Helly triangle representability problem. This problem is: given a CA graph G and a set
T of three pairwise overlapping vertices as input, does there exist a representation ρ of G
such that T covers the whole circle in ρ?

The following kind of flip set will lead us to uniform CA graphs when trying to compute
canonical representations. Given a CA matrix λ recall that X is a flip set of λ if there exists
a representation ρ ∈ N (λ) and a point x on the circle such that x ∈ ρ(v) iff v ∈ X for all
vertices v of λ. We impose the additional restriction that x is not allowed to be an arbitrary
point on the circle but instead has to be one of the endpoints in ρ.

I Definition 4.1. Let λ be a CA matrix and u ∈ V (λ). A flip set X of λ is a u-flip set if
there exists a representation ρ ∈ N (λ) and an endpoint x of ρ(u) such that v ∈ X iff ρ(v)
contains the point x.

Clearly, every CA graph has a u-flip set for every vertex u. On the other hand, there
are CA graphs that have flip sets which are not u-flip sets for any vertex u. For example,
consider the cycle graph with n ≥ 4 vertices. Every flip set that consists of exactly one vertex
is not a u-flip set for any vertex u of the cycle graph.

Consider the following task: given a CA graph G and a vertex u, find a u-flip set of
G. Clearly, no vertex v which is disjoint from u or contained by u belongs to X since in
every representation the arc of v does not contain any of the two endpoints of the arc of u.
Similarly, if a vertex v contains u or forms a circle cover with u then in every representation
the arc of v contains both endpoints of u and therefore must be included in X. See Figure 4
for a schematic overview.

It remains to decide for the set of vertices Nov(u) that overlap with u whether they should
be included in X. A vertex v which overlaps with u contains exactly one of the endpoints
of u in any representation. Let x, y be two vertices that overlap with u. We say x and y
overlap from the same side with u in ρ if ρ(x) and ρ(y) contain the same endpoint of ρ(u).
Evidently, this is an equivalence relation with respect to v and ρ which partitions Nov(u)
into two parts, namely the part which contains the left endpoint and the one which contains
the right endpoint. If X is a u-flip set then X ∩Nov(u) must be an equivalence class of the
‘overlap from the same side with u in ρ’-relation for some ρ ∈ N (G).

I Definition 4.2. For a CA matrix λ and a vertex u of λ we say a partition Y of Nov(u)
into two parts is a u-ov-partition if there exists a representation ρ ∈ N (λ) such that two
vertices x, y ∈ Nov(u) are in the same part of Y iff ρ(x) and ρ(y) overlap from the same side
with ρ(u). We say ov-partition to mean an u-ov-partition for an arbitrary u ∈ V (λ).

X1 X2

u

Figure 4 Exemplary u-flip sets X1 and X2

u

a

b c

d
Pu = {{a, b}, {c, d}}

Figure 5 Example of a u-overlap partition Pu
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In general, for a vertex u of a CA graph G there can be multiple u-ov-partitions. In
fact, there are instances with exponentially many u-ov-partitions with respect to |Nov(u)|.
A trivial way of obtaining at least one u-ov-partition for every vertex u of a CA graph G
is to compute an arbitrary representation ρ ∈ N (G). But the ov-partitions obtained by
this method are not invariant and thus do not yield canonical representations. However, if
one considers CA graphs where there is only one u-ov-partition for every vertex u then an
arbitrary representation suffices.

I Definition 4.3 (Uniform CA Graphs). A CA graph G is uniform if for every vertex u in G
there exists exactly one u-ov-partition. This partition is denoted by Pu = {Pu,1, Pu,2}.

I Lemma 4.4. The following mapping is an invariant flip set function for uniform CA
graphs. Let G be a uniform CA graph.

Funiform(G) =
⋃

u∈V (G)
i∈{1,2}

{
{u} ∪Ncd(u) ∪Ncc(u) ∪ Pu,i

}

Proof. Let G be a uniform CA graph and X is in Funiform(G) with X = {u} ∪ Ncd(u) ∪
Ncc(u) ∪ Pu,i for some u ∈ V (G) and i ∈ {1, 2}. It follows from Figure 4 and the definition
of ov-partitions that X is a u-flip set. The invariance of Funiform(G) follows from the fact
that the intersection type of two vertices as well as the property of being an ov-partition is
independent of the vertex labels. J

We remark that the function Funiform is undefined for non-uniform CA graphs since the
sets Pu,1 and Pu,2 are not well-defined in that context.

I Theorem 4.5. Canonical representations for uniform CA graphs can be computed in
polynomial-time.

Proof. Let G be a uniform CA graph. Compute a normalized representation ρ of G
and extract the u-ov-partition for each vertex u from ρ. Then compute Funiform(G) from
Lemma 4.4 to obtain a canonical CA representation for G. Since CA representations can be
computed in polynomial-time (see for instance [14]) it follows that this procedure also works
in polynomial-time. J

Considering that our definition of uniform CA graphs arose from the desire to compute
invariant u-flip sets one might expect that these graphs are only a small special case of CA
graphs. Surprisingly, quite the opposite is the case as we will see. We give an alternative
definition of uniform CA graphs which gives a better intuition as to why many CA graphs
are uniform.

I Definition 4.6. Let λ be a CA matrix. An ov-triangle T of λ is a set of three vertices that
overlap pairwise, i.e. for all u 6= v in T it holds that u ov v. An ov-triangle T is representable
as non-Helly triangle (interval triangle) if there exists a representation ρ ∈ N (λ) such that
the set of arcs {ρ(x) | x ∈ T} does (not) cover the whole circle. Let TNHT(λ) and TIT(λ)
denote the sets of ov-triangles representable as non-Helly triangles and interval triangles
respectively.

This definition also applies to CA graphs via their neighborhood matrix, i.e. TIT(G) =
TIT(λ) and TNHT(G) = TNHT(λ) where λ is the neighborhood matrix of G. See Figure 6 for
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an example where the vertices u, x, z are represented as non-Helly triangle on the left and
interval triangle on the right.

Recall that a set of arcs which intersect pairwise but have overall empty intersection
is called non-Helly. Since three pairwise overlapping arcs that cover the whole circle have
overall empty intersection we call such a set a non-Helly triangle. In fact, one can verify that
this is the only non-Helly arrangement of three arcs. A complete list of inclusion-minimal
non-Helly CA models can be found in [8, Corrollary 3.1].

I Theorem 4.7. A CA graph G is uniform iff TIT(G) ∩ TNHT(G) = ∅.

Proof. “⇒”: Assume there exists a uniform CA graph G with TIT(G) ∩ TNHT(G) 6= ∅.
Let T be an ov-triangle in TIT(G) ∩ TNHT(G) and T = {x, y, z}. This means there exist
two representations ρI , ρN ∈ N (G) such that T is represented as interval triangle in ρI
and as non-Helly triangle in ρN . We assume w.l.o.g. that ρI(y) ⊂ ρI(x) ∪ ρI(z), i.e. y is
placed in-between x and z in ρI . This means y and z must be in the same part of the
unique x-ov-partition Px. However, y and z do not contain the same endpoint of x in the
representation ρN , which contradicts that G is uniform.

“⇐”: Assume there exists a CA graph G with TIT(G)∩TNHT(G) = ∅ that is not uniform.
This means there exist a vertex u, two vertices x, y ∈ Nov(u) and two representations
ρ, ρ′ ∈ N (G) such that x and y overlap from the same side with u in ρ but not in ρ′. This
implies that x and y must overlap and therefore T = {u, x, y} is an ov-triangle. Notice
that T must be represented as interval triangle in ρ because x and y both contain the same
endpoint of u. It holds that T is represented as interval triangle in ρ′ as well since otherwise
T ∈ TIT(G) ∩ TNHT(G). Also, we assume w.l.o.g. that ρ(y) ⊂ ρ(x) ∪ ρ(u). Since u and y
overlap it holds that N [u] \N [y] 6= ∅. Due to ρ′ it follows that N [u] \N [y] ⊆ N [u] ∩N [x].
For a vertex z ∈ N [u] \N [y] to intersect with both u and x it is necessary that z overlaps
with u and x due to the representation ρ. It follows that {u, x, z} is represented as non-Helly
triangle in ρ. On the other hand, {u, x, z} must be represented as interval triangle in ρ′ and
therefore TIT(G) ∩ TNHT(G) 6= ∅, contradiction. See Figure 6 for a schematic overview of ρ
and ρ′. J

Observe that if an ov-triangle T of G is representable as non-Helly triangle then this
implies that T must have certain structural properties in G. For example, every vertex of
G must be adjacent to at least one of the vertices in T since T covers the whole circle in
some representation. Similarly, if T is representable as interval triangle this also implies
some structural properties. For instance, there must be an x ∈ T such that every vertex that
is adjacent to x must also be adjacent to at least one other vertex in T . If an ov-triangle
is representable as both non-Helly triangle and interval triangle then it must satisfy all of
these structural properties at once. As a consequence such an ov-triangle must have a very
particular structure which extends to the whole graph as we will see in the next section.

A CA graph is Helly if it has a Helly CA representation. In [8, Theorem 4.1] it is shown
that every ‘stable’ representation of a Helly CA graph is Helly. Since every normalized

ρ

z

y
ux

z
x

u

y

ρ′

Figure 6 “⇐”-direction in the proof of Theorem 4.7
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representation has the ‘stable’ property it follows that a CA graph is Helly iff every normalized
representation of it is Helly. If a CA graph G is Helly this implies that TNHT(G) is empty,
and therefore every Helly CA graph is uniform.

A natural question to consider is the computational complexity of deciding whether an
ov-triangle is representable as non-Helly triangle or interval triangle. Given a CA graph G
and an ov-triangle T of G let us call the problem of deciding whether T is in TNHT(G) the
non-Helly triangle representability problem. Analogously, deciding whether T is in TIT(G) is
called the interval triangle representability problem. In the case of uniform CA graphs these
two problems are complementary, i.e. an ov-triangle T is in TNHT(G) iff T is not in TIT(G).
In the following, we show that solving either of these two problems for uniform CA graphs is
logspace-equivalent to computing a canonical representation for uniform CA graphs.

I Definition 4.8. Let G be a CA graph and T = {u, v, w} is an ov-triangle of G. We say v
is amidst u and w if one of the following conditions holds:
1. NT (u) and NT (w) are non-empty
2. there exists a z ∈ NT (u,w) such that {u,w, z} ∈ TNHT(G)

I Lemma 4.9. Let G be a uniform CA graph and T = {u, v, w} is an ov-triangle of G with
T /∈ TNHT(G). Then the following statements are equivalent:
1. v is amidst u and w
2. ∃ρ ∈ N (G) : ρ(v) ⊂ ρ(u) ∪ ρ(w)
3. ∀ρ ∈ N (G) : ρ(v) ⊂ ρ(u) ∪ ρ(w)

Proof. “2 ⇒ 1”: Let ρ be in N (G) such that ρ(v) ⊂ ρ(u) ∪ ρ(w) and assume that v is not
amidst u,w. Since v overlaps with u and w it holds that N [u] \N [v] and N [w] \N [v] are
non-empty. Because NT (u) = NT (w) = ∅ it must hold that NT (u,w) 6= ∅. Let z ∈ NT (u,w).
For z to intersect with u and w in ρ it must hold that {u,w, z} is represented as non-Helly
triangle in ρ. This contradicts the assumption that v is not amidst u,w.

“1 ⇒ 3”: Let v be amidst u and w and assume that there exists a ρ ∈ N (G) such that
ρ(v) 6⊂ ρ(u) ∪ ρ(w). Since T /∈ TNHT(G) and G is uniform it follows by Theorem 4.7 that
T must be represented as interval triangle in every representation, which includes ρ. We
assume w.l.o.g. that ρ(w) ⊂ ρ(u) ∪ ρ(v). From that it follows that NT (w) is empty and
therefore there must be a z ∈ NT (u,w) such that {u,w, z} is a non-Helly triangle in ρ, which
is impossible.

“3 ⇒ 2”: clear. J

I Definition 4.10. Let G be a CA graph and u ∈ V (G). Let the binary relation ∼u on
Nov(u) be defined such that x ∼u y holds if one of the following holds:
1. x = y

2. x cd y or x cs y
3. x ov y, {u, x, y} /∈ TNHT(G) and u is not amidst x and y

I Lemma 4.11. For every uniform CA graph G and u ∈ V (G) it holds that the partition
induced by ∼u equals the unique u-ov-partition Pu. Stated differently, x ∼u y iff x and y are
in the same part of Pu.

Proof. “⇒”: Let x ∼u y and assume for the sake of contradiction that x and y are not in
the same part of the u-ov-partition. This means there exists a representation ρ ∈ N (G)
such that ρ(x) and ρ(y) contain different endpoints of ρ(u). This is only possible if x and
y overlap. Since {u, x, y} /∈ TNHT(G) this means {u, x, y} must be represented as interval
triangle in ρ. In order for ρ(x) and ρ(y) to contain different endpoints of ρ(u) it must
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hold that ρ(u) ⊂ ρ(x) ∪ ρ(y), which implies that u is amidst x and y by Lemma 4.9. This
contradicts x ∼u y.

“⇐”: Let x and y be in the same part of the u-ov-partition and assume that x ∼u y does
not hold. This implies that x and y must overlap and therefore {u, x, y} form an ov-triangle.
For x ∼u y to not hold it must be either the case that {u, x, y} is only representable as
non-Helly triangle or u is amidst x and y. In both cases this contradicts x and y being in
the same part of the u-ov-partition. J

I Theorem 4.12. The representation, canonical representation, non-Helly triangle repre-
sentability and interval triangle representability problem for uniform CA graphs are logspace-
equivalent.

Proof. The non-Helly triangle representability and interval triangle representability problem
for uniform CA graphs are logspace-equivalent because they are complementary in the sense
that an ov-triangle is representable as non-Helly triangle iff it is not representable as interval
triangle. This follows from the fact that an ov-triangle can only be either represented as
non-Helly triangle or interval triangle and these two possibilities are mutually exclusive in
the case of uniform CA graphs. As a consequence these two problems are trivially reducible
to the representation problem for uniform CA graphs. Given a uniform CA graph G, an
ov-triangle T of G and a representation ρ ∈ N (G) it holds that T ∈ TNHT(G) iff T /∈ TIT(G)
iff T is represented as non-Helly triangle in ρ.

The representation problem is obviously reducible to the canonical representation problem.
Therefore it remains to show that the canonical representation problem for uniform CA
graphs is reducible to the non-Helly triangle representability problem. To obtain a canonical
representation for a uniform CA graph we can use the invariant flip set function given in
Lemma 4.4. To compute this function we need to figure out the unique ov-partitions for each
vertex. By Lemma 4.11 this can be done by computing the equivalence relation ∼u for each
vertex u. It can be verified that this relation is computable in logspace using queries of the
form T ∈ TNHT(G). J

The isomorphism problem for CA graphs can be reduced to the one for non-uniform CA
graphs in polynomial-time due to Theorem 4.5. However, a reduction from the canonical
representation problem for CA graphs to the one for non-uniform CA graphs does not
immediately follow from Theorem 4.5 unless uniform CA graphs can be recognized in
polynomial-time. An alternative approach to construct such a reduction is to solve the
non-Helly triangle representability problem for uniform CA graphs with an additional
requirement.

I Definition 4.13. The globally invariant non-Helly triangle representability problem for
uniform CA graphs is defined as follows. Let A be an algorithm that correctly decides the
non-Helly triangle representability problem for uniform CA graphs. Let fA be the function
computed by A, i.e. for a graph G and an ov-triangle T of G it holds that fA(G,T ) = 1 iff
A accepts (G,T ). We say A decides the globally invariant non-Helly triangle representability
problem for uniform CA graphs if fA is an invariant for all graphs. Stated differently, the
output of A must be independent of the vertex labels.

I Lemma 4.14. The canonical representation problem for CA graphs is logspace-reducible
to the globally invariant non-Helly triangle representability problem for uniform CA graphs
and the canonical representation problem for vertex-colored non-uniform CA graphs.
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Proof. Suppose we are given an algorithm A which solves the globally invariant non-Helly
triangle representability problem for uniform CA graphs. We argue that A can be used to
compute a globally invariant flip set function for uniform CA graphs. From Lemma 3.6 it
then follows that the canonical representation problem for CA graphs reduces to that for
vertex-colored non-uniform CA graphs.

Given a CA graph G let ∆(G,A) be the set of ov-triangles T of G such that A accepts
(G,T ). If G is a uniform CA graph then ∆(G,A) = TNHT(G). Consider Definition 4.8 and
4.10 and suppose that each occurrence of TNHT(G) is replaced by ∆(G,A). Let us call the
new relation ∼Au . Clearly, in the case of uniform CA graphs ∼u and ∼Au coincide. Next,
consider the following variant of Funiform:

FAuniform(G) =
⋃

u∈V (G)
X∈(Nov(u)/∼A

u )

{
{u} ∪Ncd(u) ∪Ncc(u) ∪X

}

where (Nov(u)/ ∼Au ) denotes the equivalence classes of ∼Au . If ∼Au is not an equivalence
relation let (Nov(u)/ ∼Au ) = ∅. If G is a uniform CA graph then it follows from Lemma 4.11
that Funiform(G) = FAuniform(G). Therefore FAuniform is an invariant flip set function for uniform
CA graphs. Additionally, it can be verified that FAuniform is globally invariant due to the fact
that the answer of A is independent of the vertex labels. Also, the function FAuniform can be
computed in logspace using queries of the form T ∈ ∆(G,A). Observe that ∆(G,A) only
provides n3 bits of information with n = |V (G)| and therefore can be computed ‘in a single
query’ by a functional oracle which outputs the n3 bits of information. J

5 Non-Uniform CA Graphs and Restricted CA Matrices

In the first part of this section we examine the structure of non-uniform CA graphs. Every
such graph must have two ov-triangles which have exactly one vertex in common and both are
representable as interval triangle and as non-Helly triangle. This pair of ov-triangles enforces
a particular structure in non-uniform CA graphs. In the second part we introduce restricted
CA matrices, which try to partly capture this structure. Roughly speaking, restricted CA
matrices can be seen as a generalization of the neighborhood matrices of non-uniform CA
graphs. We pay the price of considering this more general class of structures in order to
provide a logspace reduction from the canonical representation problem for CA graphs to
that of restricted CA matrices.

I Definition 5.1. Given a CA graph G, an induced 4-cycle C = (u,w,w′, u′) of G and
v ∈ V (G) \ C. We say (C, v) is a non-uniformity witness of G if {u, v, w}, {u′, v, w′} ∈
TIT(G) ∩ TNHT(G). We also simply call (C, v) a witness of G.

I Theorem 5.2. A CA graph G is non-uniform iff G has a non-uniformity witness.

Proof. “⇒”: Let G be a non-uniform CA graph. Due to Theorem 4.7 there exists an
ov-triangle T of G with T ∈ TIT(G) ∩ TNHT(G). Let T = {u, v, w} and ρI ∈ N (G) such
that v is in-between u and w, i.e. ρI(v) ⊂ ρI(u) ∪ ρI(w). First, we show that there exists an
induced 4-cycle C = (u,w,w′, u′) in G.

From the non-Helly triangle representation of T it follows that N [u]∪N [v]∪N [w] = V (G).
Since v is in-between u and w this means N [u]∪N [w] = V (G). It holds that u and w overlap.
Therefore one of the conditions in the definition of the neighborhood matrix for u and w to
form a circle cover must be violated. Let us assume w.l.o.g. that the violated condition is that
there exists a u′ ∈ N [u] \N [w] such that N [u′] 6⊆ N [u]. This means u′ must overlap with u
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Figure 7 Examples of non-uniform CA graphs and one uniform CA graph X4

and there exists a w′ ∈ N [u′] \N [u]. Since w′ /∈ N [u] it follows from N [u] ∪N [w] = V (G)
that w′ ∈ N [w] and because w is disjoint from u′, and because w′ intersects with both u′
and w it follows that w′ overlaps with u′ and w. Therefore C = (u,w,w′, u′) is an induced
4-cycle in G.

It remains to show that {u′, v, w′} is an ov-triangle and that it is in both TIT(G) and
TNHT(G). Consider the representation ρI from before. Assume for the sake of contradiction
that v does not overlap with u′. Then due to ρI it must be the case that u′ is disjoint from v

and thus u′ ∈ NT (u). However, due to fact that T is representable as non-Helly triangle this
would imply that u′ is contained by u, which is not the case. Therefore u′ overlaps with v as
the other intersections types are out of question. For the same reason w′ overlaps with v and
hence T ′ = {u′, v, w′} is an ov-triangle. Now, it can be verified that in every representation
of G where T is a non-Helly triangle it follows that T ′ must be an interval triangle and vice
versa. This concludes that T ′ is in TIT(G) ∩ TNHT(G).

“⇐”: Follows directly from Theorem 4.7. J

In Figure 7 five non-uniform CA graphs and one uniform CA graph (X4) are given by
their CA models. We explain how to verify this claim. First, we have to check that every
CA model is normalized. This means the graphs which are induced by these models must
be twin-free and without a universal vertex. Additionally, the intersection types of the arcs
must match the intersection types in the induced graph (or more precisely its neighborhood
matrix). A quick way to determine whether two overlapping arcs also overlap in the graph is
to check if they jointly occur in an induced n-cycle for some n ≥ 4.

To see that the first five CA graphs are non-uniform we have to find an ov-triangle that is
representable as both interval and non-Helly triangle. In the case of 3K2 this ov-triangle can
be {u, v, w}. In the given representation {u, v, w} is represented as interval triangle. Observe
that v and v′ are in the same orbit and therefore the labels v and v′ can be swapped in the
representation. After swapping v and v′ the ov-triangle {u, v, w} is represented as non-Helly
triangle. For the graph X0 we can also choose the ov-triangle {u, v, w}. In this case there
is an automorphism which swaps u with u′ and w with w′ and has the other vertices as
fix-points. After changing the labels in the representation according to this automorphism it
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1 2 3 4 5 6 7
u cs ov cs ov di di di di ov ov ov cs ov ov di di ov
w di di di di cs ov cs ov di di ov ov ov cs ov ov ov
w′ di di di di cs cs ov ov ov ov di di ov ov ov cs ov
u′ cs cs ov ov di di di di ov cs ov ov di di ov ov ov
Table 2 Intersection types of restricted CA matrices with witness cycle (u,w,w′, u)

holds that {u, v, w} is represented as non-Helly triangle. We remark that 3K2 and X0 are
minimal in the sense that no induced subgraph of them is a non-uniform CA graph. Next, let
us consider the graphs X1 to X3. Observe that the black arcs in each of these graphs form
an induced 3K2 subgraph. We assume that the black arcs are labeled with u, u′, v, v′, w, w′
in the same way that the representation of 3K2 is labeled. It holds that v and v′ are in
the same orbit in all of these four graphs because they have the same open neighborhood.
Therefore {u, v, w} is representable as both interval and non-Helly triangle due to the same
argument that we made for 3K2.

To show that X4 is uniform we argue that it has a unique normalized representation,
i.e. |N (X4)| = 1. Observe that this graph has a unique CA model. Additionally, it has no
non-trivial automorphism (it is rigid). Therefore X4 has a unique CA representation.

I Fact 5.3. Every non-uniform CA graph contains 3K2 or X0 as induced subgraph.

Proof. Let G be a non-uniform CA graph. Due to Theorem 5.2 there exists a witness
(C, v) of G with C = (u,w,w′, u′). Since G does not contain a universal vertex it holds
that V (G) \ N [v] is non-empty. Due to the fact that {u, v, w} and {u′, v, w′} can be
represented as interval triangles it follows that NC(C \ {x}) ⊆ N [v] for all x ∈ C. Therefore
V (G) \ N [v] ⊆ NC(C) ∪ NC(u, u′) ∪ NC(w,w′). Suppose there is a v′ ∈ NC(C) \ N [v].
Then the vertices of C along with v and v′ form an induced 3K2-subgraph of G. Assume
that this is not the case, i.e. NC(C) ⊆ N [v]. Since u and v overlap it must hold that
N [u] \N [v] 6= ∅. The only vertices that can be adjacent to N [u] but not to N [v] must be
in NC(u, u′) since NC(C) ⊆ N [v]. Therefore there exists a vertex x ∈ NC(u, u′) that is not
adjacent to v. For the same reason there must be a vertex y ∈ NC(w,w′) not adjacent
to v because N [w] \ N [v] 6= ∅. The vertices of C along with v, x and y form an induced
X0-subgraph. J

I Definition 5.4 (Restricted CA Matrix). Let λ be a CA matrix. We say λ is a restricted CA
matrix if it contains an induced 4-cycle C = (u,w,w′, u′) called witness cycle such that:
1. NC(u,w), NC(u′, w′) and NC(x) are empty for every x ∈ C
2. For all x ∈ NC(C) it holds that x overlaps with all vertices in C

Observe that the intersection matrix of every CA model that is shown in Figure 7 is a
restricted CA matrix.

I Fact 5.5. Given an intersection matrix λ, vertices x, y1, . . . , yk of λ and intersection types
α1, . . . , αk, we say x is an (α1, . . . , αk)-neighbor of (y1, . . . , yk) if λx,yi

= αi for all i ∈ [k].
A CA matrix λ is restricted iff λ contains an induced 4-cycle C = (u,w,w′, u′) such that for
all vertices x ∈ V (λ) \C there exists a column α in Table 2 such that x is a α-neighbor of C.

Proof. We use the numbers in the table headline to refer to the different columns. For exam-
ple, 2.3 refers to the third column from left in the second part of the table: (di, cs, ov, di).
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“⇒”: Let λ be a restricted CA matrix with witness cycle C = (u,w,w′, u′). We need to
show for every x ∈ V (λ) \ C there exists a column α in Table 2 such that x is a α-neighbor
of C. Due to the definition of restricted CA matrices it must hold that x is in (exactly) one
of the following seven sets: NC(C), NC(u, u′), NC(w,w′) or NC(C \ {z}) for a z ∈ C. If x is
in NC(C) then x overlaps with every vertex of C by definition. This corresponds to the last
column 7.1 of the table. If x ∈ NC(u, u′) then x is disjoint from w and w′. In that case x is
an α-neighbor of C where α must be one of the four columns in part one of the table. For
the same reason if x ∈ NC(w,w′) then it is an α-neighbor of C where α corresponds to one
of the two columns in the second part of the table. If x is in NC(C \ {w}) then x is disjoint
from w and x overlaps with both u and w′. The intersection type between x and u′ can be
one of the following: x overlaps with u or x is contained by u or x contains u. The first two
cases are covered by the third part of the table. However, if x contains u then there exists no
corresponding column in the table since it does not have any cd-entries. This can be resolved
by using the following observation: if x is in NC(C \ {w}) and contains u′ then (u,w,w′, x)
is a witness cycle of λ as well. As a consequence we can assume without loss of generality
that a witness cycle C of λ can be chosen such that there exists no x ∈ NC(C \ {w}) which
contains u′. The same argument applies to the remaining three cases x ∈ NC(C \ {z}) with
z ∈ {u, u′, w′}.

“⇐”: clear. J

In the remainder of this section we prove that the canonical representation problem for
CA graphs is logspace-reducible to the canonical representation problem for vertex-colored
restricted CA matrices. The proof outline looks as follows. First, we define a subset of
uniform CA graphs, namely ∆-uniform CA graphs, for which the globally invariant non-
Helly triangle representability problem can be solved in logspace. Therefore the canonical
representation problem for CA graphs is logspace-reducible to that of CA graphs which are
not ∆-uniform. This reduction follows from a slightly modified version of Lemma 4.14. Then
we show that the neighborhood matrix of a non-∆-uniform CA graph can be converted into
a vertex-colored restricted CA matrix by flipping ‘long’ arcs. By coloring the flipped arcs
the isomorphism type is preserved.

I Definition 5.6. For a graph G we define ∆G as the following set of ov-triangles (see
Definition 4.6). An ov-triangle T of G is in ∆G if there exist three pairwise different vertices
u, v, w in T such that the following holds:
1. N [u] ∪N [v] ∪N [w] = V (G)
2. For all z ∈ T it holds that if a vertex x ∈ NT (z) then x cd z
3. If there exist u′, w′ such that (u,w,w′, u′) is an induced 4-cycle and v overlaps with u′

and w′ then N [v] ⊆ N [u′] ∪N [w′]

I Definition 5.7. A CA graph G is ∆-uniform if ∆G ∩ TIT(G) = ∅.

Let us explain the intuition behind these two definitions. The set ∆G approximates
TNHT(G). More precisely, whenever an ov-triangle T = {u, v, w} is in TNHT(G) this implies
that T satisfies certain constraints such as for example N [u] ∪N [v] ∪N [w] = V (G). The
set ∆G consists of three such constraints. Therefore if an ov-triangle is representable as
non-Helly triangle it must also be in ∆G, i.e. TNHT(G) ⊆ ∆G. The ∆-uniform CA graphs
can be alternatively seen as the subset of uniform CA graphs where the constraints of ∆G

suffice to characterize TNHT(G), i.e. ∆G = TNHT(G).

I Lemma 5.8. For every graph G it holds that TNHT(G) ⊆ ∆G. If G is a ∆-uniform CA
graph then TNHT(G) = ∆G.
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Proof. For the first claim consider a graph G. If G is not a CA graph then TNHT(G) = ∅.
Therefore we can assume that G is a CA graph. Given an ov-triangle T ∈ TNHT(G) we
show that it must be in ∆G. Let ρ ∈ N (G) be a representation such that T = {u, v, w} is
represented as non-Helly triangle in it. Since ρ(u) ∪ ρ(v) ∪ ρ(w) covers the whole circle it
follows that N [u]∪N [v]∪N [w] = V (G), which is the first condition of Definition 5.6. To see
that the second condition holds we consider a vertex x ∈ NT (u) without loss of generality.
Since x is not adjacent to v and w it holds that ρ(x) ⊆ C \ (ρ(v) ∪ ρ(w)) where C denotes
the whole circle. Since C \ (ρ(v) ∪ ρ(w)) ⊂ ρ(u) it follows that ρ(x) ⊂ ρ(u). Due to the fact
that ρ is a normalized representation this implies that x is contained by u. To see that the
third condition of ∆G holds let u′, w′ be vertices such that (u,w,w′, u′) is an induced 4-cycle
of G. Since T is represented as non-Helly triangle in ρ it must hold that {u′, v, w′} is an
interval triangle in ρ with ρ(v) ⊂ ρ(u′) ∪ ρ(w′) and therefore N [v] ⊆ N [u′] ∪N [w′].

For the second claim let G be a ∆-uniform CA graph. From the previous claim we know
that TNHT(G) ⊆ ∆G. Since every ov-triangle must be in TNHT(G) ∪ TIT(G) it follows that
∆G ⊆ TNHT(G) ∪ TIT(G). The definition of ∆-uniform requires ∆G ∩ TIT(G) = ∅ and thus
∆G ⊆ TNHT(G). J

I Fact 5.9. ∆-uniform CA graphs are a strict subset of uniform CA graphs.

Proof. Assume there exists a ∆-uniform CA graph G which is not uniform. This means
there exists an ov-triangle T ∈ TNHT(G) ∩ TIT(G). Due to the previous lemma it holds that
TNHT(G) ⊆ ∆G. This implies that T ∈ ∆G ∩ TIT(G) which contradicts that G is ∆-uniform.
Therefore every ∆-uniform CA graph is uniform.

An example of a uniform CA graph that is not ∆-uniform is the graph X4 in Figure 7. In
the third paragraph after Theorem 5.2 we argued that X4 is a uniform CA graph because it
has a unique normalized representation. Assume that the black arcs of X4 are labeled with
u, u′, v, v′, w, w′ in the same way that the representation of 3K2 is labeled in Figure 7. To
see that X4 is not ∆-uniform it suffices to check that the ov-triangle {u, v, w} is in ∆X4 and
represented as interval triangle. J

I Corollary 5.10. The globally invariant non-Helly triangle representability problem for
∆-uniform CA graphs can be solved in logspace.

Proof. Given a CA graph G and an ov-triangle T output yes iff T ∈ ∆G. This is correct
because in the case of a ∆-uniform CA graph G it holds that ∆G = TNHT(G) (Lemma 5.8).
Clearly, ∆G is computable in logspace and an invariant. J

I Lemma 5.11. Let G be a CA graph that is not ∆-uniform. Then there exists an induced
4-cycle C = (u,w,w′, u′) such that N [u]∪N [w] = N [u′]∪N [w′] = V (G) and a vertex v that
overlaps with every vertex in C.

Proof. The argument is essentially the same as the one made for the “⇒”-direction in
the proof of Theorem 5.2. The difference is that instead of the stronger assumption that
T ∈ TNHT(G) we only require that T ∈ ∆G.

Since G is not ∆-uniform there exists an ov-triangle T = {u, v, w} of G such that T ∈ ∆G

and there is a representation ρ ∈ N (G) such that T is represented as interval triangle in ρ.
Furthermore, let us assume w.l.o.g. that ρ(v) ⊂ ρ(u) ∪ ρ(w). Since T ∈ ∆G it holds that
N [u] ∪ N [v] ∪ N [w] = V (G). Due to the interval representation of T in ρ it follows that
N [u] ∪ N [w] = V (G). Since u and w do not form a circle cover it must hold that there
exists a vertex u′ ∈ N [u] \N [w] such that N [u′] \N [u] is non-empty. If u′ is disjoint from
v it follows that u′ must be contained by u from the second condition in Definition 5.6 of
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∆G. This cannot be the case and therefore u′ ∈ NT (u, v). For u′ to have a neighbor which
is not adjacent to u it must hold that ρ(u′) 6⊆ ρ(u). Therefore u′ overlaps with u and v.
Let w′ ∈ N [u′] \N [u]. If w′ ∈ NT (w) then w′ would be contained by w due to the second
condition of ∆G. Again, this cannot be the case and therefore w′ ∈ NT (v, w). From the
representation ρ it follows that w must overlap with u′, v and w. Then C = (u,w,w′, u′) is
an induced 4-cycle of G such that v overlaps with every vertex of C. It remains to show that
N [u′] ∪N [w′] = V (G). Due to the third condition of ∆G it holds that N [v] ⊆ N [u′] ∪N [w′].
Additionally, it holds that ρ(u) \ ρ(v) ⊂ ρ(u′) and ρ(w) \ ρ(v) ⊂ ρ(w′). As a consequence
N [u′] ∪N [w′] = V (G). J

I Corollary 5.12. Canonical representations for CA graphs without induced 4-cycle can be
computed in logspace.

Proof. By Lemma 5.11 the class of CA graphs without induced 4-cycle is a subset of ∆-
uniform CA graphs and due to Corollary 5.10 and Theorem 4.12 a canonical representation
for such graphs can be computed in logspace. J

I Corollary 5.13. Helly CA graphs are a strict subset of ∆-uniform CA graphs.

Proof. Assume G is a Helly CA graph which is not ∆-uniform. Then due to Lemma 5.11
there exists an induced 4-cycle C and a vertex v not in C which overlaps with every vertex
in C. In any normalized representation of G it must hold that v forms a non-Helly triangle
with two vertices from C. This contradicts that G is Helly. The graph is a ∆-uniform
CA graph which is not Helly. J

I Theorem 5.14. The canonical representation problem for CA graphs is logspace-reducible
to the canonical representation problem for vertex-colored restricted CA matrices.

Proof. For brevity let Z denote the set of all CA graphs which are not ∆-uniform. Since the
globally invariant non-Helly triangle representability problem for ∆-uniform CA graphs can
be solved in logspace (see Corollary 5.10) it follows from a modified version of Lemma 4.14
that the canonical representation problem for CA graphs is logspace-reducible to the canonical
representation problem for vertex-colored Z. To see this replace ‘uniform’ with ‘∆-uniform’
and ‘non-uniform’ with ‘non-∆-uniform’ in the statement (and proof) of Lemma 4.14.

For a CA graph G let us say a subset of vertices X of G is an R-flip set if λ(X)
G is a

restricted CA matrix. To find canonical representations for Z we construct an invariant
vertex set selector f such that f(G) contains at least one R-flip set for every G ∈ Z. Then
to obtain a canonical representation for G ∈ Z let X̂ denote the R-flip set in f(G) such that
canon(λ(X̂)

G , cX̂) is lexicographically minimal with cX being the coloring which assigns every
vertex v ∈ X the color red and the other vertices are blue. Let ρ be a canonical normalized
representation for (λ(X̂)

G , cX̂). Then ρ(X̂) is a canonical representation for G. Notice, that
ρ(X̂) can be computed in logspace by computing canonical representations for vertex-colored
restricted CA matrices. The correctness of this approach follows from the same argument
made in the proof of Theorem 3.5 in the flip trick section. The analogy is straightforward.
The R-flip sets in this context correspond to flip sets and the invariant vertex set selector f
takes the place of the invariant flip set function. Given a CA graph G and X ⊆ V (G) it can
be easily checked in logspace whether λ(X)

G is a restricted CA matrix.
For a CA graph G let C(G) denote the set of all ordered induced 4-cycles in G. Now, we

claim that the following logspace-computable function f is an invariant vertex set selector
with the desired property:
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f(G) =
⋃

C∈C(G)

{
{x ∈ V (G) \ C | ∃y ∈ C : x cs y}

}
It is not difficult to check that f is invariant. It remains to argue why f(G) contains at
least one R-flip set for every G ∈ Z. Let G ∈ Z and C = (u,w,w′, u′) is an induced 4-cycle
in G such that N [u] ∪ N [w] = N [u′] ∪ N [w′] = V (G). The existence of such an induced
4-cycle is guaranteed by Lemma 5.11. Observe that if there exists a u1 ∈ NC(u,w, u′) with
u1 cs u then C1 = (u1, w, w

′, u′) also satisfies the previous condition N [u1] ∪N [w] = V (G).
Therefore we can assume that there exists no z ∈ C and z1 ∈ NC(N [z]∩C) such that z1 cs z.
From N [u]∪N [w] = N [u′]∪N [w′] = V (G) it immediately follows that NC(u,w), NC(u′, w′)
and NC(x) are empty for every x ∈ C.

We prove that λ(X) is a restricted CA matrix with witness cycle C where λ is the
neighborhood matrix of G and X = {x ∈ V (G) \ C | ∃y ∈ C : x cs y}. Note that X ∈ f(G)
via C. To reference the neighborhoods of G (which are the same as the ones of λ) or λ(X)

we write NG and Nλ(X) to distinguish between them. First, we show that Nλ(X)

C (u,w) = ∅.
Assume the opposite, i.e. there exists x ∈ Nλ(X)

C (u,w). If x was not flipped, i.e. x /∈ X,
then it also holds that x ∈ NG

C (u,w), which contradicts that NG
C (u,w) is empty. If x

was flipped, i.e. x ∈ X, then it must be the case that x contains u′ and w′ in λ. This
means NG[u′] ∪ NG[w′] ⊆ NG[x] which implies that x is a universal vertex in G since
NG[u′] ∪ NG[w′] = V (G), contradiction. For the same reason it holds that Nλ(X)

C (u′, w′)
and Nλ(X)

C (z) are empty for all z ∈ C. It remains to show that for all x ∈ Nλ(X)

C (C) it
holds that x overlaps with all vertices of C in λ(X). Notice that λ(X)

x,z ∈ {ov, cs, cc} for
every z ∈ C. Otherwise x would not be in NC(C). We consider the following two cases: in
the first one we assume that x contains one vertex of C in λ(X) and in the second one we
assume that x forms a circle cover with one vertex of C in λ(X). We prove that neither of
these cases can occur and therefore x must overlap with all vertices of C in λ(X). For the
first case assume that w.l.o.g. x contains u in λ(X) and intersects with the other vertices
of C in λ(X). If x ∈ X then it was flipped. It follows that x was disjoint from u in λ and
therefore x ∈ NG

C (w,w′, u′). Since x ∈ X it also must hold that x contains at least one of the
vertices w,w′, u′ in G. It follows that x contains w′ since it cannot contain the other two in λ.
However, this contradicts our choice of C which says that there exists no w′1 ∈ NG

C (w,w′, u′)
such that w′1 contains w′ in λ. If x /∈ X then it must hold that x already contained u in λ.
But then x should be in X, contradiction. For the second case assume x forms a circle cover
with u in λ(X). If x forms a circle cover with u then this implies that x contains w′ in λ(X)

and therefore this reduces to the first case. We conclude that both conditions of Definition
5.4 are satisfied and hence λ(X) is a restricted CA matrix. J

6 Further Research

Finding a polynomial-time isomorphism test for CA graphs remains an open problem. We
have shown that it suffices to consider only non-uniform CA graphs for this problem. This
particular class of CA graphs offers quite a lot of structure, which is caused by what we
named non-uniformity witnesses. It seems plausible that such witnesses can be exploited
to devise an isomorphism test. Additionally, we proved that the canonical representation
problem for CA graphs is logspace-reducible to that of restricted CA matrices. The central
question with regard to the flip trick is how invariant flip sets for restricted CA matrices or
non-uniform CA graphs can be computed. Also, we remark that CA representations for CA
graphs can be computed in logspace if flip sets for restricted CA matrices can be found in
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logspace. Another interesting problem is to extend Definition 5.6 of ∆G such that it captures
TNHT(G) on uniform CA graphs, i.e. ∆G = TNHT(G) for all uniform CA graphs G. If this
can be done in such a way that ∆G remains an invariant and computable in logspace then
everything that is said about ∆-uniform CA graphs in section 5 also applies to uniform CA
graphs.
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