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Abstract

A fundamental problem in distributed computing is the distribution
of requests to a set of uniform servers without a centralized controller.
Classically, such problems are modeled as static balls into bins processes,
where m balls (tasks) are to be distributed among n bins (servers). In a
seminal work, Azar et al. [4] proposed the sequential strategy Greedy[d]
for n = m. Each ball queries the load of d random bins and is allocated to
a least loaded of them. Azar et al. showed that d = 2 yields an exponential
improvement compared to d = 1. Berenbrink et al. [7] extended this to
m� n, showing that for d = 2 the maximal load difference is independent
of m (in contrast to the d = 1 case).

We propose a new variant of an infinite balls-into-bins process. In each
round an expected number of λn new balls arrive and are distributed (in
parallel) to the bins. Subsequently, each non-empty bin deletes one of its
balls. This setting models a set of servers processing incoming requests,
where clients can query a server’s current load but receive no information

∗A preliminary version of this paper was published in the proceedings of PODC’16
†The author did some of the research while affiliated with Simon Fraser University.
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about parallel requests. We study the Greedy[d] distribution scheme in
this setting and show a strong self-stabilizing property: for any arrival
rate λ = λ(n) < 1, the system load is time-invariant. Moreover, for any
(even super-exponential) round t, the maximum system load is (w.h.p.)
O
(

1
1−λ · log n

1−λ

)
for d = 1 and O

(
log n

1−λ

)
for d = 2. In particular,

Greedy[2] has an exponentially smaller system load for high arrival rates.

keywords— balls-into-bins, self-stabilizing, 2-choice, positive recurrent, maxi-
mum load
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1 Introduction

One of the fundamental problems in distributed computing is the distribution
of requests, tasks, or data items to a set of uniform servers. In order to simplify
this process and to avoid a single point of failure, it is often advisable to use
a simple, randomized strategy instead of a complex, centralized controller to
allocate the requests to the servers. In the most näıve strategy (1-Choice), each
client sends its request to a server chosen uniformly at random. A more elaborate
scheme (2-Choice) chooses two servers, queries their current loads, and sends
the request to a least loaded of them. Both approaches are typically modeled as
balls-into-bins processes [2, 4, 5, 7, 13, 20, 22], where requests are represented as
balls and servers as bins. While the latter approach leads to considerably better
load distributions [4, 7], it loses some of its power in synchronous settings, where
requests arrive in parallel and cannot take each other into account [2, 22].

We propose and study a novel infinite batch-based balls-into-bins process
to model the client-server scenario. In a round, each server (bin) consumes
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one of its current tasks (balls). Afterward, expectedly λn tasks arrive and are
allocated using a given distribution scheme. The arrival rate λ is allowed to be
a function of n (e.g., λ = 1−1/poly(n)). Standard balls-into-bins results imply
that, for high arrival rates, with high probability1 (w.h.p.) in each round there
is a bin that receives Θ(log n/ log log n) balls. Most other infinite balls-into-
bins-type processes limit the total number of concurrent balls in the system by
n [4, 5] and show a fast recovery. Since we do not limit the number of balls, our
process can, in principle, result in an arbitrary high system load. In particular,
if starting in a high-load situation (e.g., exponentially many balls), we cannot
recover in a polynomial number of steps. Instead, we regard the system load as
a Markov chain and adapt the following notion of self-stabilization: The system
is positive recurrent (expected return time to a typical low-load situation is
finite), and taking a snapshot of the load situation at an arbitrary (even super-
exponential large) time step yields (w.h.p.) a time-independent maximum load.
Positive recurrence is a standard notion for stability and basically states that
the system load is time-invariant. For irreducible, aperiodic Markov chains
it implies the existence of a unique stationary distribution (cf. Section 1.2).
While this alone does not guarantee a good load in the stationary distribution,
together with the snapshot property we can look at an arbitrary time window
of polynomial size (even if it is exponentially far away from the start) and give
strong load guarantees. In particular, we give the following bounds on the load
in addition to showing positive recurrence:

1-Choice Process: The maximum load at an arbitrary time is (w.h.p.) bounded
by O

(
1

1−λ · log n
1−λ

)
. We also provide a lower bound which is asymptot-

ically tight for λ ≤ 1 − 1/poly(n). While this implies that already the
simple 1-Choice process is self-stabilizing, the load properties in a “typ-
ical” state are poor: even an arrival rate of only λ = 1 − 1/n yields a
superlinear maximum load.

2-Choice Process: The maximum load at an arbitrary time is (w.h.p.) bounded
by O

(
log n

1−λ
)
. This allows to maintain an exponentially better system

load compared to the 1-Choice process; for any λ ≤ 1 − 1/ poly(n) the
maximum load remains logarithmic.

Note that the resulting processes can be seen as queuing processes.

1.1 Related Work

We will continue with an overview of related work. We start with classical results
for sequential and finite balls-into-bins processes, go over to parallel settings,
and give an overview of infinite and batch-based processes similar to ours. We
also briefly mention some results from queuing theory (which is related but
studies slightly different quality of service measures and system models).

1An event E occurs with high probability (w.h.p.) if Pr(E) = 1− n−Ω(1).
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Sequential Setting. There are many strong, well-known results for the clas-
sical, sequential balls-into-bins process. In the sequential setting, m balls are
thrown one after another and allocated to n bins. For m = n, the maximum
load of any bin is known to be (w.h.p.) (1+o(1)) · ln(n)/ ln lnn for the 1-Choice
process [13, 20] and ln ln(n)/ ln d+ Θ(1) for the d-Choice process with d ≥ 2 [4].
If m ≥ n · lnn, the maximum load increases to m/n+Θ

(√
m · ln(n)/n

)
[20] and

m/n+ln ln(n)/ ln d+Θ(1) [7], respectively. In particular, note that the number
of balls above the average grows with m for d = 1 but is independent of m for
d ≥ 2. This fundamental difference is known as the power of two choices. A
similar (if slightly weaker) result was shown by Talwar and Wieder [24] using
a quite elegant proof technique (which we also employ and generalize for our
analysis in Section 3). Czumaj and Stemann [10] study adaptive allocation pro-
cesses where the number of a ball’s choices depends on the load of queried bins.
The authors subsequently analyze a scenario that allows reallocations.

Berenbrink et al. [9] adapt the threshold protocol from [2] (see below) to a
sequential setting and m ≥ n bins. Here, ball i randomly chooses bins until it
sees a load smaller than 1 + i/n. While this is a relatively strong assumption on
the balls, this protocol needs only O(m) choices in total (allocation time) and
achieves an almost optimal maximum load of dm/ne+ 1.

Parallel Setting. Several papers (e.g., [2, 22]) investigated parallel settings of
multiple-Choice games for the case m = n. Here, all m balls have to be allocated
in parallel, but balls and bins might employ some (limited) communication.
Adler et al. [2] consider a trade-off between the maximum load and the number
of communication rounds r the balls need to decide for a target bin. Basically,
bounds that are close to the classical (sequential) processes can only be achieved
if r is close to the maximum load [2]. The authors also give a lower bound on
the maximum load if r communication rounds are allowed, and Stemann [22]
provides a matching upper bound via a collision-based protocol.

Infinite Processes. In infinite processes, the number of balls to be thrown
is not fixed. Instead, in each of infinitely many rounds, balls are thrown or
reallocated and bins (possibly) delete old balls. Azar et al. [4] consider an
infinite, sequential process starting with n balls arbitrarily assigned to n bins.
In each round one random ball is reallocated using the d-Choice process. For any
t > cn2 log log n, the maximum load at time t is (w.h.p.) ln ln(n)/ ln d+ O(1).

Adler et al. [1] consider a system where in each round m ≤ n/9 balls are
allocated. Bins have a FIFO queue, and each arriving ball is stored in the queue
of two random bins. After each round, every non-empty bin deletes its frontmost
ball (which automatically removes its copy from the second random bin). It is
shown that the expected waiting time is constant and the maximum waiting time
is (w.h.p.) ln ln(n)/ ln d+O(1). The restriction m ≤ n/9 is the major drawback
of this process. A further study of this process, based on differential methods
and experiments, was conducted in [6]. The balls’ arrival times are binomially
distributed with parameters n and λ = m/n. Their results indicate a stable
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behavior for λ ≤ 0.86. A similar model was considered by Mitzenmacher [18],
who considers ball arrivals as a Poisson stream of rate λn for λ < 1. It is shown
that the 2-Choice process reduces the waiting time exponentially compared to
the 1-Choice process.

Czumaj [11] presents a framework to study the recovery time of discrete-
time dynamic allocation processes. In each round one of n balls is reallocated
using the d-Choice process. Two models are considered: in the first, the ball to
be reallocated is chosen by taking a ball from a random bin. In the second, the
ball to be reallocated is chosen by selecting a random ball. From an arbitrary
initial assignment, the system is shown to recover to the maximum load from [4]
within O

(
n2 lnn

)
rounds in the former and O(n lnn) rounds in the latter case.

Becchetti et al. [5] consider a similar (but parallel) process. In each round
one ball is chosen from every non-empty bin and reallocated to a randomly
chosen bin (one Choice per ball). The authors show that (w.h.p.) starting
from an arbitrary configuration, it takes O(n) rounds to reach a configuration
with maximum load O(log n). Moreover, if the process starts in a configuration
with maximum load O(log n), then the maximum load stays in O(log n) for
poly(n) rounds. An interesting connection to our work is that the analysis of [5]
is based on an auxiliary Tetris-process. This process can be seen a special
version of our 1-Choice process and is defined as follows: starting from a state
with at least n/4 empty bins, in each round every non-empty bin deletes one
ball. Subsequently, exactly 3n/4 new balls are allocated to the bins (one choice
per ball).

Batch-Processes. Batch-based processes allocate m balls to n bins in batches
of (usually) n balls each, where each batch is allocated in parallel. They lie
between (pure) parallel and sequential processes. For m = τ · n, Stemann [22]
investigates a scenario with n players each having m/n balls. To allocate a
ball, every player independently chooses two bins and allocates copies of the
ball to both of them. Every bin has two queues (one for first copies, one for
second copies) and processes one ball from each queue per round. When a ball
is processed, its copy is removed from the system and the player is allowed to
initiate the allocation of the next ball. If τ = lnn, all balls are processed in
O(lnn) rounds and the waiting time is (w.h.p.) O(ln lnn). Berenbrink et al.
[8] study the d-Choice process in a scenario where m balls are allocated to n
bins in batches of size n each. The authors show that the load of every bin is
(w.h.p.) m/n ± O(log n). As noted in Lemma 1, our analysis can be used to
derive the same result by easier means.

Queuing Processes. Batch arrival processes have also been considered in
the context of queuing systems. A key motivation for such models stems from
the asynchronous transfer mode (ATM) in telecommunication systems. Tasks
arrive in batches, are stored in a FIFO queue and served by a fixed number
of servers which remove the tasks from the queue and process them. Several
papers [3, 15, 16, 21] consider scenarios where the number of arriving tasks is
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determined by a finite state Markov chain. Results study steady state properties
of the system to determine properties of interest (e.g., waiting times or queue
lengths). Sohraby and Zhang [21] use spectral techniques to study a multi-server
scenario with an infinite queue. Alfa [3] considers a discrete-time process for n
identical servers and tasks with constant service time s ≥ 1. To ensure a stable
system, the arrival rate λ is assumed to be at most n/s and tasks are assigned
cyclical, allowing to study an arbitrary server (instead of the complete system).
Kamal [15] and Kim et al. [16] study a system with a finite capacity. The tasks
which arrive when the buffer is full are lost. The authors study the steady state
probability and give empirical results to show the decay of waiting times as n
increases.

1.2 Model & Preliminaries

We model our load balancing problem as an infinite, parallel balls-into-bins
process. Time is divided into discrete, synchronous rounds. There are n bins
and n generators, and the initial system is assumed to be empty. At the start of
each round, every non-empty bin deletes one ball. Afterward, every generator
generates a ball with a probability of λ = λ(n) ∈ [0, 1] (the arrival rate). This
generation scheme allows us to consider arrival rates that are arbitrarily close
to one (like 1 − 1/ poly(n)). Generated balls are distributed in the system
using a distribution process. In this paper we analyze two specific distribution
processes:

• The 1-Choice process Greedy[1] assigns every ball to a random bin.

• The 2-Choice process Greedy[2] assigns every ball to a least loaded among
two randomly chosen bins.

See Figure 1 for an illustration. It is worth mentioning, that the maximum load
in Greedy[2] does not need to be smaller than in Greedy[1] as the following
(artificial) example shows. Consider two bins (n = 2) with different initial loads
and λ = 1. In Greedy[1] each bin receives n/2 ± c

√
n new balls for some

constant c. On the other side, in Greedy[2] the bin with the smaller initial
load receives 3n/4± c

√
n new balls. However, as our results indicate, this effect

becomes negligible when n grows.

Notation. The random variable Xi(t) denotes the load (number of balls) of
the i-th fullest bin at the end of round t. Thus, the load situation (configuration)
after round t can be described by the load vector X(t) = (Xi(t))i∈[n] ∈ Nn. We

define ∅(t) := 1
n

∑n
i=1Xi(t) as the average load at the end of round t. The

value ν(t) denotes the fraction of non-empty bins after round t and η(t) :=
1 − ν(t) the fraction of empty bins after round t. It will be useful to define
1i(t) := min

(
1, Xi(t)

)
and ηi(t) := 1i(t) − ν(t) (which equals η(t) if i is a non-

empty bin and −ν(t) otherwise). For random variables X and Y we write
X ≺ Y if X is stochastically dominated by Y . That is, if for all k we have
Pr(X ≥ k) ≤ Pr(Y ≥ k).
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Step t (beginning) Step t (after assignment)

ball 1 ball 2 ball 3 ball 4

ball 1

ball 2

ball 3

ball 4

Step t (end)

ball 1

ball 2

ball 3

ball 4

Figure 1: The figure depicts a typical round of Greedy[2]. In this example we have n = 5 and 4
balls arrive. Balls 1, 2, and 3 choose the same bin with a load of 2 and a bin with larger node and
hence all move the same bin resulting in that bin having the highest load. Moreover, Ball 4 chooses
two bins with equal load and chooses one of these uniformly at random. At the end of the round
all non-empty bins delete one ball (marked gray).

Markov Chain Preliminaries. The random process (X(t))t∈N has the Markov
property, since X(t) depends only on X(t− 1) and the random choices during
round t. We refer to this Markov chain as X. Note that X is time-homogeneous
(transition probabilities are time-independent), irreducible (every state is reach-
able from every other state2), and aperiodic (path lengths have no period; in
fact, our chain is lazy). Recall that such a Markov chain is positive recurrent
(or ergodic) if the probability to return to the start state is 1 and the expected
return time is finite. In particular, this implies the existence of a unique station-
ary distribution. Positive recurrence is a standard formalization of the intuitive
concept of stability. See [17] for an excellent introduction into Markov chains
and the involved terminology.

2 The 1-Choice Process

We present two main results for the 1-Choice process: Theorem 1 states the
stability of the system under the 1-Choice process for an arbitrary λ, using the
standard notion of positive recurrence (cf. Section 1). In particular, this implies
the existence of a stationary distribution for the 1-Choice process. Theorem 2
strengthens this by giving a high probability bound on the maximum load for an
arbitrary round t ∈ N. Together, both results imply that the 1-Choice process is
self-stabilizing. That is, the system is positive recurrent and taking a snapshot
of the load situation at an arbitrary time step yields (w.h.p.) a time-independent
maximum load.

Theorem 1 (Stability). Let λ = λ(n) < 1. The Markov chain X of the 1-
Choice process is positive recurrent.

Theorem 2 (Maximum Load). Let λ = λ(n) < 1. Fix an arbitrary round t
of the 1-Choice process. The maximum load of all bins is (w.h.p.) bounded by
O
(

1
1−λ · log n

1−λ
)
.

2The state space includes all vectors with non-increasing entries over Nn.
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Note that for high arrival rates of the form λ(n) = 1 − ε(n), the bound
given in Theorem 2 is inversely proportional to ε(n). For example, for ε(n) =
1/n the maximal load is O(n log n). Theorem 3 shows that this dependence is
unavoidable: the bound given in Theorem 2 is tight for large values of λ.

Theorem 3. Let n be sufficiently large. Let λ = λ(n) ≥ 3/4 and consider step

t := 9λ log(n)/(64(1− λ)
2
). With probability 1 − o(1) there is a bin i in step t

with load Ω
(

1
1−λ · log n

)
.

The proofs of these results can be found in the following subsections. We first
prove a bound on the maximum load (Theorem 2). Afterward, we prove stability
of the system (Theorem 1). Finally we prove the lower bound (Theorem 3).

2.1 Maximum Load – Proof of Theorem 2

The main idea of the proof is to bound the maximum load for any bin i and
to take union bound of all resources. The load of bin i decreases whenever
it is large and, thus, performs a biased random walk towards a load of zero.
However, when the load is zero, it increases in expectation, such that standard
drift theorems cannot not be applied directly. Nevertheless, the increase of the
load for any given state has an exponential tail, which allows us to apply Hajek’s
Theorem (Theorem 7) to derive exponential tail bounds on the load of i at any
(possibly super-exponential) number of time steps.

of Theorem 2. We prove Theorem 2 using a (slightly simplified) “drift theorem”
from Hajek [14] (cf. Theorem 7 in Appendix A). As mentioned in Section 1.2,
our process is a Markov chain, such that we need to condition only on the
previous state (instead of the full filtration from Theorem 7). Our goal is to
bound the load of a fixed bin i at time t using Theorem 7 and, subsequently,
to use this with a union bound to bound the maximum load over all bins.
To apply Theorem 7, we have to prove that the maximum load difference of
bin i between two rounds is exponentially bounded (Majorization) and that,
given a high enough load, the system tends to lose load (Negative Bias). We
start with the majorization. Recall that for random variables X and Y we
write X ≺ Y if X is stochastically dominated by Y , i.e., for all k it holds
Pr(X ≥ k) ≤ Pr(Y ≥ k). The load difference |Xi(t+ 1)−Xi(t)| is bounded by
max(1, Bi(t)) ≤ 1 + Bi(t), where Bi(t) is the number of tokens bin i receives
during round t + 1. In particular,

(
|Xi(t + 1) − Xi(t)| | X(t)

)
≺ 1 + Bi(t).

Note that Bi(t) is binomially distributed with parameters n and λ/n since each
of the potential n balls has probability λ to spawn and, given that it spawned,
with probability 1/n it ends up in bin i. Using standard inequalities we bound

Pr(Bi(t) = k) ≤
(
n

k

)
·
(
λ

n

)k
≤
(e · n

k

)k
·
(

1

n

)k
=
ek

kk
(1)
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and calculate

E
[
eBi(t)+1

]
= e ·

n∑
k=0

ek · e
k

kk
= e ·

de3−1e∑
k=0

e2k

kk
+ e ·

∞∑
k=e3

e2k

kk

≤ Θ(1) +

∞∑
k=1

e−k = Θ(1).

(2)

This shows that the Majorization condition from Theorem 7 holds (with λ′ = 1
and D = Θ(1)). To see that the Negative Bias condition is also given, note
that if bin i has non-zero load, it is guaranteed to delete one ball and receives in
expectation n ·λ/n = λ balls. We get E[Xi(t+ 1)−Xi(t) | Xi(t) > 0] ≤ λ−1 <
0, establishing the Negative Bias condition (with ε0 = 1 − λ). Thus, we can
apply Theorem 7 with η := min(1, (1−λ)/(2D), 1/(2−2λ)) = (1−λ)/(2D) and
get for b ≥ 1

Pr(Xi(t) ≥ b) ≤ e−b·η +
2D

η · (1− λ)
· eη·(−b) ≤ 2 · (2D)

2

(1− λ)
2 · e

(1−λ)·(−b)
2D

≤ (4D)
2

(1− λ)
2 · e

−b·(1−λ)
(4D)2 ≤ c

(1− λ)
2 · e

− b·(1−λ)c ,

(3)

where c ≥ (4D)
2

denotes a suitable constant. Applying the Union bound to

all n bins and choosing b := c
1−λ · ln

(
c·nh+1

(1−λ)2

)
, where h > 2 is a constant, yields

Pr
(
maxi∈[n]Xi(t) ≥ b

)
≤ n−h. Since

b =
c

1− λ
· ln

(
c · nh+1

(1− λ)
2

)
≤ c2 · (h+ 1)

1− λ
· ln
(

n

1− λ

)
= O

(
1

1− λ
· ln
(

n

1− λ

))
,

(4)

we get the desired statement.

2.2 Stability – Proof of Theorem 1

In the following, we provide an auxiliary result that will prove useful for deriving
the stability of the 1-Choice process.

Corollary 1. Let λ = λ(n) < 1. Fix an arbitrary round t of the 1-Choice
process and a bin i. There is a constant c > 1 such that the expected load of bin
i is bounded by 6c

1−λ · ln
(

n
1−λ

)
.

Proof. By Theorem 2, the maximum load of all bins is with high probability
bounded by c · 1

1−λ · log n
1−λ , for a sufficiently large constant c. Let

γ :=
c

1− λ
· ln

(
e · cn

(1− λ)
2

)
. (5)
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Partitioning time into windows of γ rounds and with Equation (3), we calculate

E[Xi(t)] =

γ∑
b=1

b · Pr(Xi(t) = b) +

∞∑
k=1

(k+1)γ∑
b=k·γ+1

b · Pr(Xi(t) = b)

≤ γ +

∞∑
k=1

(k + 1)γ · Pr(Xi(t) > k · γ)

≤ γ +

∞∑
k=1

(k + 1)γ · c

(1− λ)
2 · e

− k·γ·(1−λ)c

≤ γ +

∞∑
k=1

(k + 1)γ · c

(1− λ)
2 · e

−k · e− ln(cn/(1−λ)2)

≤ γ +

∞∑
k=1

(k + 1)γ · e−k ≤ 3γ ≤ 6c

1− λ
· ln
(
e · cn
1− λ

)
.

(6)

This finishes the proof.

of Theorem 1. We prove Theorem 1 using a result from Fayolle et al. [12]
(cf. Theorem 6 in Appendix A). Note that X is a time-homogeneous irreducible
Markov chain with a countable state space. In the following, let

∆ :=
12e2 · c2n2

(1− λ)
3 , (7)

where c is the constant from Corollary 1. For a configuration x, we define the
auxiliary potential Ψ(x) :=

∑n
i=1 xi as the total system load of configuration x.

Consider the (finite) set C := {x | Ψ(x) ≤ n ·∆ } of all configurations with not
too much load. To prove positive recurrence, it remains to show that Condition 1
(expected potential drop if not in a high-load configuration) and Condition 2
(finite potential) of Theorem 6 hold. Let us start with Condition 1. Fix a round
t and let x = X(t) 6∈ C. By definition of C, we have Ψ(x) > n · ∆. Hence,
there is at least one bin i with load xi ≥ Ψ(x)/n > ∆. Thus, by definition of
the process, during each of the next ∆ rounds bin i deletes exactly one ball. On
the other hand, bin i receives in expectation ∆ · λn · 1

n = λ∆ balls during the
next ∆ rounds. We get

E[Xi(t+ ∆)− xi |X(t) = x] = λ∆−∆ = −(1− λ) ·∆. For any bin j 6= i,
we assume pessimistically that no ball is deleted. Note that the expected load
increase of each of these bins can be majorized by the load increase in an empty
system running for ∆ rounds. Thus, we can use Corollary 1 to bound the

expected load increase in each of these bins by 6c
1−λ ·ln

(
2·cn
1−λ

)
≤ 6e2·c2·n

(1−λ)2
= (1−λ)∆

2n ,

by definition of ∆. We get

E[Ψ(X(t+ ∆)) |X(t) = x] ≤ −(1− λ) ·∆ + (n− 1) · (1− λ)∆

2n

≤ −1− λ
2
·∆.

(8)
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This proves Condition 1 of Theorem 6. For Condition 2, assume x = X(t) ∈ C.
We bound the system load after ∆ rounds trivially by

E[Ψ(X(t+ ∆)) |X(t) = x] ≤ Ψ(x) + ∆ · n ≤ n ·∆ + ∆ · n <∞ (9)

(note that the finiteness in Theorem 6 is with respect to time, not n). This
finishes the proof.

2.3 Lower Bound on Maximum Load – Proof of Theo-
rem 3

In expectation, the load of any non-empty bin decreases. Thus, to derive a
meaningful lower bound, we need to make use of the variance of the number
of balls that are assigned to a bin over a period of suitable length. To do so,
we make use of Theorem 8 (due to Raab and Steger [20]; see appendix), which
lower-bounds the maximum number of balls a bin receives when m balls are
allocated into n bins.

of Theorem 3. We assume that we start at an empty system and apply Theo-
rem 8 to m := λtn many balls. The theorem states that, due to the variance,
one of the bins is likely to get more than c1λt + c2

√
tλ log n many balls for

suitable constants c1 and c2. This allows us to show that the load of this bin
is large, even if we assume, pessimistically, that it deletes a ball during each of
the t time steps.

Let M(t′) be the number of balls allocated during the first t′ ∈ N steps, and
let Ymax(t′) be the maximum number of balls allocated to any bin. Set

t :=
9λ log(n)

64(1− λ)
2 (10)

and let ε := (1 − λ)/λ. Since all balls are independent and E[M(t)] = t · λn ≥
n log n (due to λ ≥ 3/4), it follows by Chernoff’s inequality that

Pr(M(t) ≤ (1− ε) · t · λn) ≤ e−ε
2E[M(t)]/2 ≤ 1

n2
. (11)

By Theorem 8 Cases 3 and 4 (depending on the size of 1 − λ) we get for α :=√
8/9 (w.h.p.)

Ymax(t) ≥

≥ (1− ε) · t · λ+
√

2(1− ε) · t · λ log n ·min

{
α,

√
1− log log n

2α log n

}
= (1− ε) · t · λ+ α

√
2(1− ε) · t · λ log n.

(12)
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Let Xmax(t) denote the load of the bin of maximum load. We derive,

Xmax(t) ≥ (1− ε) · t · λ+

√
(1− ε) · 16

9
t · λ log n− t

= (1− ε) · t · λ+

√
1− ε

4
· λ log n

(1− λ)
− t

=

√
1− ε

4
· λ log n

(1− λ)
− 2(1− λ)t

=

√
1− ε

4
· λ log n

(1− λ)
− 9λ log(n)

32(1− λ)

=

√1− 1−λ
λ

4
− 9

32

 · λ log n

(1− λ)
= Ω

(
λ log n

1− λ

)
,

(13)

where the last inequality holds since λ ≥ 3/4.

3 The 2-Choice Process

We continue with the study of the 2-Choice process. Here, new balls are dis-
tributed according to Greedy[2] (cf. description in Section 1.2). Our main
results are the following theorems, which are equivalents to the corresponding
theorems for the 1-Choice process.

Theorem 4 (Stability). Let λ = λ(n) ∈ [1/4, 1). The Markov chain X of the
2-Choice process is positive recurrent.

Theorem 5 (Maximum Load). Let λ = λ(n) ∈ [1/4, 1). Fix an arbitrary round
t of the 2-Choice process. The maximum load of all bins is (w.h.p.) bounded by
O
(
log n

1−λ
)
.

Note that Theorem 5 implies a much better behaved system than we saw in
Theorem 2 for the 1-Choice process. In particular, it allows for an exponentially
higher arrival rate: for λ(n) = 1− 1/ poly(n) the 2-Choice process maintains a
maximal load of O(log n). In contrast, for the same arrival rate the 1-Choice
process results in a system with maximal load Ω(poly(n)).

Our analysis of the 2-Choice process relies to a large part on a good bound
on the smoothness (the maximum load difference between any two bins). This
is stated in the following proposition. This result is of independent interest,
showing that even if the arrival rate is λ(n) = 1−e−n, where we get a polynomial
system load, the maximum load difference is still logarithmic.

Proposition 1 (Smoothness). Let λ = λ(n) ∈ [1/4, 1]. Fix an arbitrary round
t of the 2-Choice process. The load difference of all bins is (w.h.p.) bounded by
O(lnn).
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Analysis Overview. To prove these results, we combine three different po-
tential functions: For a configuration x with average load ∅ and for a suitable
constant α < 1 (to be fixed later), we define

Φ(x) :=
∑
i∈[n]

eα·(xi−∅) +
∑
i∈[n]

eα·(∅−xi), Ψ(x) :=
∑
i∈[n]

xi, and

Γ(x) := Φ(x) + n
1−λ ·Ψ(x).

(14)

The potential Φ measures the smoothness (the maximum load difference to the
average) of a configuration and is used to prove Proposition 1 (Section 3.1).
The proof is based on the observation that whenever the load of a bin is far
from the average load, it decreases in expectation. The potential Ψ measures
the total load of a configuration and is used, in combination with our results on
the smoothness, to prove Theorem 5 (Section 3.2). The potential Γ entangles
the smoothness and total load, allowing us to prove Theorem 4 (Section 3.3).
The proof is based on the fact that whenever Γ is large (i.e., the configuration
is not smooth or it has a huge total load), it decreases in expectation.

Before we continue with our analysis, let us make a simple but useful ob-
servation concerning the smoothness: For any configuration x and value b ≥ 0,
the inequality Φ(x) ≤ eα·b implies (by definition of Φ) maxi|xi −∅| ≤ b. That
is, the load difference of any bin to the average is at most b and, thus, the load
difference between any two bins is at most 2b.

Observation 1. Consider a configuration x with average load ∅ and let b ≥ 0.
If Φ(x) ≤ eα·b, then |xi − ∅| ≤ b for all i ∈ [n]. In particular, maxi(xi) −
mini(xi) ≤ 2b.

3.1 Bounding the Smoothness – Proof of Proposition 1

The goal of this section is to prove Proposition 1. The key ingredient for its
proof is the following statement: There are values 0 < c < 1 and γ > 0 such
that

E[Φ(X(t+ 1)) |X(t)] ≤ c · Φ(X(t)) + γ (15)

holds for all rounds t ≥ 0. Once Equation (15) is proven, taking the expected
value on both sides yields E[Φ(X(t+ 1))] ≤ c ·E[Φ(X(t))]+γ. This recursion is

solved by E[Φ(X(t))] ≤ γ · (1− c)−1
. In the rest of this section, we prove that

Equation (15) holds for a constant c and γ = O(n), such that we immediately get
the following bound on the expected smoothness (potential Φ) at an arbitrary
time t:

Lemma 1. Let λ ∈ [1/4, 1]. Fix an arbitrary round t of the 2-Choice process.
There is a constant ε > 0 such that E[Φ(X(t))] ≤ n/ε.

In Lemma 1, we chose λ ∈ [1/4, 1] for convenience; the proof works with minor
modifications for any λ = Θ(1) (i.e., for any constant λ, no matter whether λ < 1
or λ > 1). Also, our analysis easily adapts to the process without deletions by

13



setting λ = 1 and ηi(t) = 0. This yields the same results as [8] using a simpler
analysis.

Proposition 1 emerges by combining Observation 1, Lemma 1, and Markov’s
inequality:

Pr

(
max
i
Xi(t)−min

i
Xi(t) ≥

4

α
· ln
(n
ε

))
≤ Pr

(
Φ(X(t)) ≥ n2

ε2

)
≤ ε

n
.

It remains to prove Equation (15). Our proof follows the lines of [19, 24]3.
We start by splitting the potential Φ(x) in two parts:

Φ(x) = Φ+(x) + Φ−(x), (16)

with the upper potential Φ+(x) :=
∑
i e
α·(xi−∅) and with the lower potential

Φ−(x) :=
∑
i e
α·(∅−xi). For a fixed bin i, we use Φi,+(x) := eα·(xi−∅) and

Φi,−(x) := eα·(∅−xi) to denote i’s contribution to the upper and lower poten-
tial, respectively. When we consider the effect of a fixed round t + 1, we will
sometimes omit the time parameter and use prime notation to denote the value
of a parameter at the end of round t+ 1. For example, we write Xi and X ′i for
the load of bin i at the beginning and at the end of round t+ 1, respectively.

Two simple but useful identities regarding the potential drops ∆i,+(t+1) :=
Φi,+(X(t + 1)) − Φi,+(X(t)) and ∆i,−(t + 1) := Φi,−(X(t + 1)) − Φi,−(X(t))
due to a fixed bin i during round t+ 1 are as follows:

Observation 2. Fix a bin i, let K denote the number of balls that are placed
during round t+ 1 and let k ≤ K be the number of these balls that fall into bin
i. Then,

1. ∆i,+(t+ 1) = Φi,+(X(t)) ·
(
eα·(k−ηi(t)−K/n) − 1

)
and

2. ∆i,−(t+ 1) = Φi,−(X(t)) ·
(
e−α·(k−ηi(t)−K/n) − 1

)
.

Proof. Remember that 1i is an indicator value which equals 1 if and only if
the i-th bin is non-empty in configuration X. Bin i looses exactly 1i balls
and receives exactly k balls, such that X ′i −Xi = −1i + k. Similarly, we have
∅′ − ∅ = −ν + K/n for the change of the average load. With the identity
ηi = 1i − ν (see Section 1.2), this yields

∆i,+(t+ 1) = eα·
(
X′i−∅

′
)
− eα·

(
Xi−∅

)
= eα·

(
Xi−∅

)
·
(
eα·
(
−1i+k+ν−K/n

)
− 1

)
= Φi,+ ·

(
eα·(k−ηi−K/n) − 1

)
,

(17)

proving the first statement. The second statement follows similarly.

3Talwar and Wieder [24] use the same potential function to analyze variants of the sequen-
tial d-Choice process without deletions. Our analysis turns out a bit more involved, since we
have to consider deletions and argue over whole batches (of random size) instead of single
balls.
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3.1.1 Preliminaries to Bound the Potential Drop

We now derive the main technical lemma that states general bounds on the
expected upper and lower potential change during one round. This will be used
to derive different bounds on the potential change depending on the situation

(Section 3.1.2). For this, let pi :=
(
i
n

)2 − ( i−1
n

)2
= 2i−1

n2 (the probability that a
ball thrown with Greedy[2] falls into the i-th fullest bin). We also define

α̂ := eα − 1 and α̌ := 1− e−α. (18)

Note that α̂ ∈ (α, α + α2) and α̌ ∈ (α − α2, α) for α ∈ (0, 1.7). This follows
from the Taylor approximation ex ≤ 1 + x+ x2, which holds for x ∈ (−∞, 1.7]
(we will use this approximation several times in the analysis). Finally, let

δ̂i := λn · (1/n · 1− − pi · α̂/α) and δ̌i := λn · (1/n · 1+ − pi · α̌/α), (19)

where 1− := 1 − α/n < 1 < 1+ := 1 + α/n. These δ̂i and δ̌i values can be
thought of as upper/lower bounds on the expected difference in the number of
balls that fall into bin i under the 1-Choice and 2-Choice process, respectively
(note that 1+, 1−, α̂/α, and α̌/α are all close to 1).

Lemma 2. Consider a bin i after round t and a constant α ≤ 1.

1. For the expected change of i’s upper potential during round t+ 1 we have

E[∆i,+(t+ 1) |X(t)]

Φi,+(X(t))
≤ −α ·

(
ηi + δ̂i

)
+ α2 ·

(
ηi + δ̂i

)2

. (20)

2. For the expected change of i’s lower potential during round t+ 1 we have

E[∆i,−(t+ 1) |X(t)]

Φi,−(X(t))
≤ α ·

(
ηi + δ̌i

)
+ α2 ·

(
ηi + δ̌i

)2
. (21)

Proof. For the first statement, we use Observation 2 to calculate

E[∆i,+(t) |X]/Φi,+ =

=

n∑
K=0

K∑
k=0

(
n

K

)(
K

k

)
(piλ)

k ·
(
(1− pi)λ

)K−k · (1− λ)
n−K ·

(
eα·(k−ηi−K/n) − 1

)
=

n∑
K=0

(
n

K

)
(1− λ)

n−K
λK

K∑
k=0

(
K

k

)
· pki · (1− pi)

K−k ·
(
eα·(k−ηi−K/n) − 1

)
=

n∑
K=0

(
n

K

)
(1− λ)

n−K
λK ·

(
e−α(ηi+K/n)

K∑
k=0

(
K

k

)
(eα · pi)k(1− pi)K−k − 1

)

=

n∑
K=0

(
n

K

)
(1− λ)

n−K
λK ·

(
e−α(ηi+K/n) · (1 + α̂ · pi)K − 1

)
,
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where we first apply the law of total expectation together with Observation 2
and, afterward, twice the binomial theorem. Continuing the calculation using
the aforementioned Taylor approximation ex ≤ 1 + x+ x2 (which holds for any

x ∈ (−∞, 1.7]), and the definition of δ̂i yields

= e−αηi ·
(
1− λ+ λe−α/n · (1 + α̂ · pi)

)n
− 1

≤ e−αηi ·
(
1− λ(1− e−α/n) + λ · α̂ · pi

)n
− 1

≤ e−αηi ·
(

1− λ · α
n
· (1− α/n) + λ · α̂ · pi

)n
− 1

≤ e−αηi ·
(

1− α

n
· δ̂i
)n
− 1

≤ e−α·(ηi+δ̂i) − 1.

Now, the claim follows by another application of the Taylor approximation. The
second statement follows similarly.

Before we apply Lemma 2 to derive different bounds on the potential drop
for various situations, we provide three auxiliary claims:

Claim 1. Consider a bin i and the values δ̂i and δ̌i as defined before Lemma 2.
If α ≤ ln(10/9), then max(|δ̂i|, |δ̌i|) ≤ 5λ/4.

Proof. Remember that δ̂i = λn·(1/n·1−−pi ·α̂/α) and δ̌i = λn·(1/n·1+−pi ·α̌/α),
where 1− = 1− α/n < 1 < 1 + α/n = 1+ (see proof of Lemma 2). Note that if
α ≤ ln(10/9), we have 1+ < 5/4 and 1− > 8/9. Since the pi are non-decreasing
in i, it is sufficient to consider the extreme cases i = 1 and i = n.

The claims hold trivially for i = 1, since p1 = 1/n2 and both |1/n · 1− − pi ·
α̂/α| ≤ 1/n and |1/n · 1+ − pi · α̌/α| ≤ 1+/n. For the other extreme, i = n, we

have pn ≤ 2/n. From this and the definition of α̂ = eα − 1, we get |δ̂i| ≤ 5
4λ,

since 2
n ·

α̂
α −

1
n · 1

− ≤ 2
n

10/9−1
ln(10/9) −

1
n · 1

− < 5
4n . Similarly, |δ̌i| ≤ 5

4λ follows

together with 2
n
α̌
α −

1
n · 1

+ < 1
n (which holds for any α > 0).

Claim 2. There is a constant ε > 0 such that

1.
∑
i≤ 3

4n
pi · Φi,+ ≤ (1− 2ε) · Φ+

n and

2.
∑
i∈[n] pi · Φi,− ≥ (1 + 2ε) ·

Φ−−
∑
i≤n

4
Φi,−

n .

Proof. For Part 1, note that the Φi,+ are non-increasing in i, that they sum
up to Φ+, and that the pi are non-decreasing in i. Thus, the left hand side of

the claim’s first statement is maximized if Φi,+ = 4Φ+

3n for all i. Now note that
there is a constant ε such that4

∑
i>3n/4 pi ≥

1
4 +ε. We get

∑
i≤3n/4 pi ≤

3
4 −ε.

4This is easily verified by hand. Alternatively, [23, Appendix A] gives
∑
i≥3n/4 pi ≥ 1

4
+ε′

and the statement follows by noting that p3n/4 = o(1).
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With this, the result follows by∑
i≤ 3

4n

pi · Φi,+ ≤
(

3

4
− ε
)

4Φ+

3n
=

(
1− 4ε

3n

)
· Φ+ ≤ (1− 2ε) · Φ+

n
. (22)

Part 2 follows similarly.

Claim 3. Consider a round t and a constant α ≥ 0. Then:

1.
∑
i∈[n] αηi(αηi − 1) · Φi,+(X(t)) ≤ α2ην ·min

(
n,Φ+(X(t))

)
and

2.
∑
i∈[n] αηi(αηi + 1) · Φi,−(X(t)) ≤ α2ην · Φ−(X(t)).

Proof. For the first statement, we calculate∑
i∈[n]

αηi(αηi − 1) · Φi,+(X(t))

=
∑
i≤νn

αηi(αηi − 1) · Φi,+(X(t)) +
∑
i>νn

αηi(αηi − 1) · Φi,+(X(t))

= αη(αη − 1) ·
∑
i≤νn

Φi,+(X(t)) + αν(1 + αν) ·
∑
i>νn

Φi,+(X(t))

≤ αη(αη − 1) · ν · Φ+(X(t)) + αν(1 + αν) · η ·min
(
n,Φ+(X(t))

)
≤ α2ην ·min

(
n,Φ+(X(t))

)
,

(23)

where the first inequality uses that Φi,+(X(t)) is non-increasing in i and that
Φi,+(X(t)) ≤ 1 for all i > νn. The claim’s second statement follows by a similar
calculation, using that Φi,−(X(t)) is non-decreasing in i (note that we cannot
apply the same trick as above to get min

(
n,Φ−(X(t))

)
instead of Φ−(X(t))).

3.1.2 Bounding the Potential Drop in Different Situations

With these tools in place, we can derive the bounds on the potential drop in
different situations. We start with a relative bound on the upper potential
change ∆+(t+ 1) :=

∑
i∈[n] ∆i,+(t+ 1) and lower potential change ∆−(t+ 1) :=∑

i∈[n] ∆i,−(t+ 1) during round t+ 1, respectively.

Lemma 3. Consider a round t and a constant α ≤ ln(10/9) (< 1/8). Let
R ∈ {+,−} and λ ∈ [1/4, 1]. For the expected upper and lower potential drop
during round t+ 1 we have

E[∆R(t+ 1) |X(t)] < 2αλ · ΦR(X(t)). (24)
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Proof. We prove the statement for R = +. The case R = − follows similarly.
Using Lemma 2 and summing up over all i ∈ [n] we get

E[∆+(t+ 1) |X] ≤
∑
i∈[n]

(
−α · (ηi + δ̂i) + α2 · (ηi + δ̂i)

2
)
· Φi,+

=
∑
i∈[n]

(
ηiα(ηiα− 1) + α2 · (2ηiδ̂i + δ̂2

i )− α · δ̂i
)
· Φi,+

≤
∑
i∈[n]

(
ηiα(ηiα− 1) + 5α2λ+

5

4
αλ

)
· Φi,+.

Here, the last inequality uses λ ≤ 1 and |δ̂i| ≤ 5
4λ (Claim 1). We now apply

Claim 3, νη ≤ 1/4 ≤ λ, and α < 1/8 to get

E[∆+(t) |X] ≤
(
α2λ+ 5α2λ+

5

4
αλ

)
· Φ+ < 2αλ · Φ+, (25)

the desired statement.

The next two lemmas derive bounds that are used to bound the upper/lower
potential change in reasonably balanced configurations.

Lemma 4. Consider a round t and the constants ε (from Claim 2) and α ≤
min(ln(10/9), ε/4). Let λ ∈ [1/4, 1] and assume X 3

4n
(t) ≤ ∅(t). For the ex-

pected upper potential drop during round t+ 1 we have

E[∆+(t+ 1) |X(t)] ≤ −εαλ · Φ+(X(t)) + 2αλn. (26)

Proof. To calculate the expected upper potential change, we use Lemma 2 and
sum up over all i ∈ [n] (using similar inequalities as in the proof of Lemma 3

and the definition of δ̂i):

E[∆+(t+ 1) |X] ≤ 6α2λ · Φ+ −
∑
i∈[n]

α · δ̂i · Φi,+

=
(
6α2λ− αλ · 1−

)
· Φ+ + α̂λn

∑
i∈[n]

pi · Φi,+.
(27)

We now use that Φi,+ = eα·(Xi−∅) ≤ 1 for all i > 3
4n (by our assumption on

X 3
4n

). This yields

E[∆+(t+ 1) |X] ≤
(
6α2λ− αλ · 1−

)
· Φ+ + α̂λn

∑
i≤ 3

4n

pi · Φi,+ + 2αλn. (28)

Finally, we apply Claim 2 and the definition of 1− and α̂ to get

E[∆+(t+ 1) |X] ≤
(
6α2λ− αλ · 1− + (1− 2ε) · α̂λ

)
· Φ+ + 2αλn

≤
(
4α2λ− 2ε · αλ

)
· Φ+ + 2αλn.

(29)

Using α ≤ ε/4 yields the desired result.
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Lemma 5. Consider a round t and the constants ε (from Claim 2) and α ≤
min(ln(10/9), ε/8). Let λ ∈ [1/4, 1] and assume Xn

4
(t) ≥ ∅(t). For the expected

lower potential drop during round t we have

E[∆−(t+ 1) |X(t)] ≤ −εαλ · Φ−(X(t)) +
αλn

2
. (30)

Proof. To calculate the expected lower potential change, we use Lemma 2 and
sum up over all i ∈ [n] (as in the proof of Lemma 4):

E[∆−(t+ 1) |X] ≤ 6α2λ · Φ− +
∑
i∈[n]

α · δ̌i · Φi,−

=
(
6α2λ+ αλ · 1+

)
· Φ− − α̌λn

∑
i∈[n]

pi · Φi,−.
(31)

We now use that Φi,− = eα·(∅−Xi) ≤ 1 for all i ≤ n
4 (by our assumption on Xn

4
)

and apply Claim 2 to get

E[∆−(t) |X] ≤
(
6α2λ+ αλ · 1+

)
· Φ− − (1 + 2ε) · α̌λn ·

Φ− − n
4

n

=
(
6α2λ+ αλ · 1+ − (1 + 2ε) · α̌λ

)
· Φ− + (1 + 2ε) · α̌λn

4

≤
(
8α2λ− 2ε · αλ

)
· Φ− +

αλn

2
,

(32)

where the last inequality used the definitions of 1+, α̌, as well as α̌ > α − α2.
Using α ≤ ε/8 yields the desired result.

The following two lemmas bound the potential drop in configurations with many
balls far below the average to the right and with many balls far above the average
to the left.

Lemma 6. Consider a round t and constants α ≤ 1/46 (< ln(10/9)) and
ε ≤ 1/3. Let λ ∈ [1/4, 1] and assume X 3

4n
(t) ≥ ∅(t) and E[∆+(t+ 1) |X(t)] ≥

− εαλ4 · Φ+(X(t)). Then, Φ+(X(t)) ≤ ε
4 · Φ−(X(t)) or Φ(X(t)) = ε−8 ·O(n).

Proof. Let L :=
∑
i∈[n] max(Xi −∅, 0) =

∑
i∈[n] max(∅−Xi, 0) be the “excess

load” above and below the average. First note that the assumption X 3
4n
≥ ∅

implies Φ− ≥ n
4 · exp( αLn/4 ) (using Jensen’s inequality). On the other hand, we

can use the assumption E[∆+(t+ 1) |X] ≥ − εαλ4 ·Φ+ to show an upper bound
on Φ+. To this end, we use Lemma 2 and sum up over all i ∈ [n] (as in the
proof of Lemma 4):

E[∆+(t+ 1) |X] ≤ 6α2λ · Φ+ −
∑
i∈[n]

α · δ̂i · Φi,+

= 6α2λ · Φ+ −
∑
i≤n3

α · δ̂i · Φi,+ −
∑
i>n

3

α · δ̂i · Φi,+.
(33)
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For i ≤ n/3 we have pi = 2i−1
n2 ≤ 2

3n and, using the definition of 1− and α̂,

δ̂i = λn ·
(
1/n · 1− − pi · α̂/α

)
≥ (1 − 5α)λ/3. Setting Φ≤n/3,+ :=

∑
i≤n/3 Φi,+

and Φ>n/3,+ :=
∑
i>n/3 Φi,+, together with Claim 1 this yields

E[∆+(t+ 1) |X] ≤

≤ 6α2λ · Φ+ −
α(1− 5α)λ

3
· Φ≤n/3,+ +

5

4
αλ · Φ>n/3,+

=

(
6α2λ− α(1− 5α)λ

3

)
· Φ+ +

(
5

4
αλ+

α(1− 5α)λ

3

)
· Φ>n/3,+

≤ − εαλ

2
· Φ+ + 2αλ · Φ>n/3,+,

(34)

where the last inequality uses α ≤ 1/46 ≤ 1
23 −

3
46ε. With this, the assumption

E[∆+(t+ 1) |X] ≥ − εαλ4 ·Φ+ implies Φ+ ≤ 8
ε ·Φ>n/3,+ ≤

8
ε ·

2n
3 e

αL
n/3 = 16n

3ε e
3αL
n

(the last inequality uses that none of the 2n/3 remaining bins can have a load
higher than L/(n/3)). To finish the proof, assume Φ+ > ε

4 · Φ− (otherwise the
lemma holds). Combining this with the upper bound on Φ+ and with the lower
bound on Φ−, we get

16n

3ε
e

3αL
n ≥ Φ+ >

ε

4
· Φ− ≥

εn

16
· e 4αL

n . (35)

Thus, the excess load can be bounded by L < n
α · ln

(
256
3ε2

)
. Now, the lemma’s

statement follows from Φ = Φ+ + Φ− <
5
ε · Φ+ ≤ 80n

3ε2 e
3αL
n = ε−8 ·O(n).

Lemma 7. Consider a round t and constants α ≤ 1/32 (< ln(10/9)) and
ε ≤ 1. Let λ ∈ [1/4, 1] and assume Xn

4
(t) ≤ ∅(t) and E[∆−(t+ 1) |X(t)] ≥

− εαλ4 · Φ−(X(t)). Then, Φ−(X(t)) ≤ ε
4 · Φ+(X(t)) or Φ(X(t)) = ε−8 ·O(n).

Proof. Let L :=
∑
i∈[n] max(Xi −∅, 0) =

∑
i∈[n] max(∅−Xi, 0) be the “excess

load” above and below the average. First note that the assumption Xn
4
≤ ∅

implies Φ+ ≥ n
4 · e

αL
n/4 (using Jensen’s inequality). On the other hand, we can

use the assumption E[∆−(t+ 1) |X] ≥ − εαλ4 · Φ− to show an upper bound on
Φ−. To this end, we use Lemma 2 and sum up over all i ∈ [n] (as in the proof
of Lemma 5):

E[∆−(t+ 1) |X] ≤ 6α2λ · Φ− +
∑
i∈[n]

α · δ̌i · Φi,−

= 6α2λ · Φ− +
∑
i≤ 2n

3

α · δ̌i · Φi,− +
∑
i> 2n

3

α · δ̌i · Φi,−.
(36)

For i ≥ 2n/3 we have pi = 2i−1
n2 ≥ 4

3n −
1
n2 . Using this with pi ≤ pn ≤ 2/n and

α̌ ≥ α−α2, we can bound δ̌i = λn ·
(
1/n ·1+−pi · α̌/α

)
≤ λ ·(−1/3+ 1+α

n )+2αλ ≤
−λ/6 + 2αλ. Setting Φ≤2n/3,− :=

∑
i≤2n/3 Φi,− and Φ>2n/3,− :=

∑
i>2n/3 Φi,−,
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together with Claim 1 this yields

E[∆−(t+ 1) |X] ≤

≤ 6α2λ · Φ− +
5

4
αλ · Φ≤2n/3,− −

αλ

6
· Φ>2n/3,− + 2α2λ · Φ>2n/3,−

≤
(
8α2λ− αλ/6

)
· Φ− +

(
5

4
αλ+ αλ/6

)
· Φ≤2n/3,−

≤ − εαλ

2
· Φ− + 2αλ · Φ≤2n/3,−,

(37)

where the last inequality uses α ≤ 1/32 ≤ 1
16 −

1
48ε. With this, the assumption

E[∆−(t+ 1) |X] ≥ − εαλ4 · Φ− implies that Φ− ≤ 8
ε · Φ≤2n/3,− ≤ 8

ε ·
2n
3 e

αL
n/3 =

16n
3ε e

3αL
n (the last inequality uses that none of the 2n/3 remaining bins can have

a load higher than L/(n/3)). To finish the proof, assume Φ− >
ε
4 ·Φ+ (otherwise

the lemma holds). Combining this with the upper bound on Φ− and with the
lower bound on Φ+, we get

16n

3ε
e

3αL
n ≥ Φ− >

ε

4
· Φ+ ≥

εn

16
· e 4αL

n . (38)

Thus, the excess load can be bounded by L < n
α · ln

(
256
3ε2

)
. Now, the lemma’s

statement follows from Φ = Φ+ + Φ− <
5
ε · Φ− ≤

80n
3ε2 e

3αL
n = ε−8 ·O(n).

3.1.3 Proving Equation (15)

With the lemmas from Section 3.1.2, we are finally ready to prove Equation (15).
More exactly, we argue that for the constant ε from Claim 2 and α ≤ min(1/32, ε/8),
for any λ ∈ [1/4, 1] we have

E[Φ(X(t+ 1)) |X(t)] ≤
(

1− εαλ

4

)
· Φ(X(t)) + ε−8 ·O(n). (39)

This follows via a case analysis analogously to [24]:

Case 1: xn
4
≥ ∅ and x 3n

4
≤ ∅

The bound follows from Lemma 4 and Lemma 5.

Case 2: xn
4
≥ x 3n

4
> ∅

For E[∆+(t+ 1) |X(t)] ≤ −εαλ
4 · Φ+ the results follows from Lemma 5.

Otherwise, E[∆+(t+ 1) |X(t)] > −εαλ
4 · Φ+ and Lemma 6 yields two

subcases:

Case 2.1: Φ+(X(t)) ≤ ε
4 · Φ−(X(t))

Using Lemma 3 and Lemma 5 we obtain
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E[∆(t+ 1) |X(t)] ≤

≤ 2αλ · Φ+(X(t))− εαλ · Φ−(X(t)) +
αλn

2

≤ − εαλ

2
· Φ−(X(t)) +

αλn

2

≤ − εαλ

4
· Φ(X(t)) + ε−8 ·O(n).

(40)

Case 2.2: Φ(X(t)) = ε−8 ·O(n)

Using Lemma 3 we get E[∆(t+ 1) |X(t)] ≤ 2αλε−8 · O(n). Our
choice of α (< 1/8), λ (< 1), and ε (� 1) yields 2αλ ≤ (1− εαλ/4).
Using the case assumption, we compute

E[∆(t+ 1) |X(t)] ≤ 2αλε−8 ·O(n) ≤
(

1− εαλ

4

)
· ε−8 ·O(n)

≤ −εαλ
4
· Φ(X(t)) + ε−8 ·O(n).

(41)

Case 3: x 3n
4
≤ xn

4
≤ ∅

Similar to the previous case, for E[∆−(t+ 1) |X(t)] ≤ −εαn4 ·Φ− the result
follows from Lemma 4. For E[∆−(t+ 1) |X(t)] ≥ −εαn

4 · Φ−, Lemma 7
yields two subcases that are proven analogously to Cases 2.1 and 2.2 (using
Lemma 4 instead of Lemma 5).

Thus, all cases lead to Equation (39).

3.2 Maximum Load – Proof of Theorem 5

The goal of this section is to prove Theorem 5. Recall the definitions of Φ(x)
and Ψ(x) from Equation (14). For any fixed round t, we will prove that (w.h.p.)
Ψ(X(t)) = O(n · lnn) and that the average load is ∅ = O(lnn). Using Union
bounds and Proposition 1, we see that (w.h.p.) the maximum load at the end
of round t is bounded by ∅ + O(lnn) = O(lnn).

It remains to prove a high probability bound on Ψ(X(t)) for arbitrary t.
To get an intuition for our analysis, consider the toy case t = poly(n) and
assume that exactly λ · n ≤ n balls are thrown each round. Here, we can
combine Observation 1 and Lemma 1 to bound (w.h.p.) the load difference
between any pair of bins and for all t′ < t by O(lnn) (via a union bound over
poly(n) rounds). Given this bound on load difference, we can use the following
combinatorial observation (formally stated in Lemma 8). If the load distance
to the average is bounded by some b ≥ 0, the bound on the number of balls
Ψ ≤ 2b · n is invariant under the 2-Choice process, since under our assumptions
all bins are non-empty and thus at least as many balls are deleted as spawn.
In particular, we get for b = O(lnn) that Ψ(X(t)) ≤ 2b · n = O(n · lnn), as
required.
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timet

bound on load difference (Φ(t))

min load mini{Xi(t)}

t′ T

Figure 2: To bound the system load at time t, consider the minimum load and our bound on
the load difference over time. We consider the last time T when there was an empty bin. The
system load can only increase if there is an empty bin, and this increase is bounded by our bound
on the load difference. Using that the system load decreases linearly in time while every increase is
bounded by our logarithmic bound on the load difference, we find a small interval [t′, t] containing
T . Due to the monotonic of our bound on Ψ, this will allow us to derive strong bounds on Ψ(t). on
the maximum load.

The case t = ω(poly(n)) is considerably more involved. In particular, the
fact that the number of balls in the system is only guaranteed to decrease
when the total load is high and the load distance to the average is low makes
it challenging to design a suitable potential function that drops fast enough
when it is high. Thus, we deviate from this standard technique and elaborate
on the idea of the toy case: Instead of bounding (w.h.p.) the load difference
between any pair of bins by O(lnn) for all t′ < t (which is not possible for
t� poly(n)), we prove (w.h.p.) an adaptive bound of O(ln(t− t′) · f(λ)) for all
t′ < t, where f is a suitable function (Lemmas 9 and 10). Then we consider
the last round T < t with an empty bin. Observation 1 yields a bound of
Ψ(X(T )) = 2·O(ln(t− T ) · f(λ))·n on the total load at time T . Using the same
combinatorial observation as in the toy case, we get that (w.h.p.) Ψ(X(t)) ≤
Ψ(X(T )) = 2 ·O(ln(t− T ) · f(λ)) ·n. The final step is to show that the load at
time T (the load is is logarithmic in t− T ) decreases linearly in t− T , showing
that the time interval [t− T, t] cannot be too large (or we would get a negative
load at time t). Since the interval [t−T, t] is short, we get a good bound on Ψ(T ).
Using Ψ(t) ≤ Ψ(T ) (due to the definition of T ) together with the smoothness
bounds of Lemma 9 yields the claim. See Figure 2 for an illustration.

Lemma 8. Let b ≥ 0 and consider a configuration x with Ψ(x) ≤ 2b · n and
Φ(x) ≤ eα·b. Let x′ denote the configuration after one step of the 2-Choice
process. Then, Ψ(x′) ≤ 2b · n.

Proof. We distinguish two cases: if there is no empty bin, then all n bins delete
one ball. Since the maximum number of new balls is n, the number of balls
cannot increase. That is, we have Ψ(x′) ≤ Ψ(x) ≤ 2b · n. Now consider the
case that there is at least one empty bin. Let η ∈ (0, 1] denote the fraction of
empty bins (i.e., there are exactly η ·n > 0 empty bins). Since the minimal load
is zero, Observation 1 implies maxi xi ≤ 2b. Thus, the total number of balls in
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configuration x is at most (1− η)n · 2b. Exactly (1− η)n balls are deleted (one
from each non-empty bin) and at most n new balls enter the system. We get
Ψ(x′) ≤ (1− η)n · 2b− (1− η)n+ n = (1− η)n · (2b− 1) + n ≤ 2b · n.

The next lemma bounds the probability of two events: First, it bounds Φ
over an arbitrary time interval [0, t) using a union bound over all past rounds
t′ < t. Note that t can be arbitrary large. Thus, in order to get a high probability
bound, we must make the bound adaptive and allow for larger errors the further
back in time we go. Second, the lemma shows that (w.h.p.) not too many balls
are created.

Lemma 9. Let λ ∈ [1/4, 1). Fix a round t. For i ∈ N with t − i · 8 logn
1−λ ≥ 0

define Ii := [t− i · 8 lnn
1−λ , t]. Let Yi be the number of balls which spawn in Ii.

1. Define the (good) smooth event St :=
⋂
t′<t {Φ(X(t′)) ≤ |t− t′|2 · n2 }.

Then, Pr(St) = 1−O
(
n−1

)
.

2. Define the (good) bounded balls event Bt :=
⋂
i {Yi ≤

1+λ
2 · |Ii| · n }. Then,

Pr(Bt) = 1−O
(
n−1

)
.

Proof. Consider an arbitrary time t′ < t. By Lemma 1 we have E[Φ(t′)] ≤ n/ε.
Using Markov’s inequality, this implies

Pr(Φ(t′) ≥ |t− t′|2 · n2) ≤ 1/(ε · |t− t′|2 · n). (42)

Using the union bound over all t′ < t we calculate

Pr
(
S̄t
)
≤
∑
t′<t

Pr
(
Φ(t′) ≥ |t− t′|2 · n2

)
≤ 1

εn
·
∑
t′<t

1

|t− t′|2
≤ π2

6ε · n
= O

(
n−1

)
,

where the last inequality uses the solution to the Basel problem. This proves
the first statement.

For the second statement, let Zi := |Ii| · n − Yi be the number of balls
that did not spawn during Ii. Note that Zi is a sum of |Ii| · n independent
indicator variables with E[Zi] = (1 − λ) · |Ii| · n = 8i · lnn. Chernoff yields
Pr(Zi ≤ (1− λ) · |Ii| · n/2) ≤ e−8i·lnn/8 = n−i. The desired statement follows
from applying the identity Zi = |Ii| · n− Yi and taking the union bound.

Lemma 10. Fix a round t and assume that both St and Bt hold. Then,

Ψ(X(t)) ≤ 9n

α
· ln
(

n

1− λ

)
. (43)

Proof. Let T < t be the last time when there was an empty bin and set ∆ :=
t−T . Note that T is well defined, as we have Xi(0) = 0 for all i ∈ [n]. Since St
holds, we have

Φ(X(T )) ≤ ∆2 · n2 = exp
(
ln(∆2 · n2)

)
. (44)
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By definition of T , we have miniXi(T ) = 0. Together with Observation 1
we get

max
i
Xi(T ) ≤ 2 ln

(
∆2 · n2

)
/α. (45)

Summing up over all bins (and pulling out the square), this implies that
Ψ(X(T )) ≤ 4n · ln

(
∆ · n

)
/α. Applying Lemma 8 yields

Ψ(X(T + 1)) ≤ 4n · ln
(
∆ · n

)
/α. (46)

By the definition of T , is must be the case that there is no empty bin in X(t′′)
for all t′′ ∈ {T + 1, T + 2, . . . , t− 1 }. Thus, during each of these rounds exactly
n balls are deleted. To bound the number of deleted balls, let i be maximal with
Ii ⊆ [T, t] (as defined in Lemma 9). Recall that Ii = [t − i · 8 lnn

1−λ , t]. Since Bt
holds and using the maximality of i, the number of balls Y that spawn during
[T, t] is bounded by

(1 + λ)|Ii| · n/2 +
8 lnn

1− λ
· n ≤ (1 + λ)∆ · n/2 +

8 lnn

1− λ
· n. (47)

We calculate

Ψ(X(t)) ≤ Ψ(X(T + 1))−∆ · n+ Y

≤ 4n

α
ln(∆ · n)− 1− λ

2
∆ · n+

8 lnn

1− λ
· n

=
1− λ

2
· n ·

(
8

α(1− λ)
· ln(∆ · n)−∆ +

16 lnn

(1− λ)
2

)

≤ 1− λ
2
·∆ · n ·

(
24

α(1− λ)
2 ·

ln(∆ · n)

∆
− 1

)
.

(48)

With f = f(λ) := 24/
(
α(1− λ)

2)
the last factor becomes f · ln(∆ · n)/∆ − 1.

It is negative if and only if ∆ > f · ln(∆ · n). This inequality holds for any
∆ > −f ·W−1(− 1

f ·n ), where W−1 denotes the lower branch of the Lambert W
function5. This implies that ∆ ≤ −f ·W−1(− 1

f ·n ), since otherwise we would have

Ψ(X(t)) < 0, which is clearly a contradiction. Using the Taylor approximation
W−1(x) = ln(−x)− ln

(
ln(−1/x)

)
− o(1) as x→ −0, we get

∆ ≤ −f ·W−1

(
− 1

f · n

)
≤ f · ln(f ·n)+f · ln

(
ln(f ·n)

)
+f ≤ 2f · ln(f ·n). (49)

Finally, we use this bound on ∆ to get

Ψ(X(t)) ≤ Ψ(X(+1)) ≤ 4n

α
· ln(∆ · n) ≤ 4n

α
· ln
(
2fn · ln(fn)

)
≤ 4n

α
· ln

(
48n

α(1− λ)
2 · ln

(
24n

α(1− λ)
2

))
≤ 9n

α
· ln
(

n

1− λ

)
.

(50)

5Note that − 1
f ·n ≥ −1/e, so that W−1(− 1

f ·n ) is well defined.
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Now, by combining Lemma 10 with the fact that the events St and Bt hold
with high probability (Lemma 9), we immediately get that (w.h.p.) Ψ(X(t)) =
O(n · lnn). As described at the beginning of this section, combining this with
Proposition 1 proves Theorem 5.

3.3 Stability – Proof of Theorem 4

This section proves Theorem 4. In order to do so, we consider the potential
Γ (defined in Equation 14) and show that, for a sufficiently high value of, this
potential decreases (11).6 To show this drop, we argue along the following lines.
For the potential to be large and since the potential is the sum of two potentials
Φ and Ψ, one of must have size at least Γ(x)/2. If Φ(x) is large, then we can
even assume a worst-case increase of Ψ and invoke Equation (39) to show that
Φ drops considerably resulting in an overall potential drop of Γ. Similarly, if
Ψ(x) ≥ Γ(x)/2, then, due to the careful construction of Γ, we can show that
all bins are non-empty, and the overall potential decreases in expectation. This
overall potential decrease of Γ allows to apply Theorem 6 yielding stability.

Lemma 11 (Negative Bias Γ). Let λ ∈ [1/4, 1). If Γ(X(t)) ≥ 2 n4

(1−λ)2λ
, then

E[Γ(X(t+ 1))− Γ(X(t)) |X(t)] ≤ −1. (51)

Proof. Assume X(t) = x is fixed. By definition of Γ(·), we have Φ(x) ≥ Γ(x)/2
or Ψ(x) ≥ Γ(x)/2. We now show that in both cases

E[Γ(X(t+ 1))− Γ(x) |X(t) = x] ≤ −1. (52)

1. If Φ(x) ≥ Γ(x)/2, then we have, by Equation (39), a potential drop of

E[Φ(X(t+ 1))− Φ(x) |X(t) = x] ≤ −(εαλ/4) · Φ(x) + n log n

≤ −(εαλ/8) · Γ(x) + n log n.
(53)

Note that, by definition of Ψ, Ψ(X(t + 1)) − Ψ(x) ≤ n. Together with

Γ(x) ≥ 8(n logn+n2/(1−λ)+1)
eαλ ,

E[Γ(X(t+ 1))− Γ(x) |X(t) = x]

≤ − εαλ

8
Γ(x) + n log n+ (n/(1− λ)) · n ≤ −1.

(54)

2. Otherwise, i.e., if Φ(x) < Γ(x)/2, we have that

(i) the load difference is, by Observation 1, bounded by 2 ln(Γ(x)/2)/α,
and

6It might look tempting to use Γ together with Hajek’s theorem to bound the maximum
system load. However, this would require (exponentially) sharper bounds on Φ. Furthermore,
it might be tempting to use the stability of Greedy[1] to prove stability of Greedy[2], however,
as discussed earlier, it is not clear to achieve this, as it seems challenging to couple or majorize
the processes.
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(ii) Ψ(x) ≥ Γ(x)/2 must hold. This implies that ∅ ≥ 1
n

(
Γ(x)/2

n
1−λ

)
=

(1−λ)·Γ(x)
2n2 .

From (i) and (ii) we have that the minimum load is at least (1−λ)·Γ(x)
2n2 −

ln(Γ(x)/2)/α. From Lemma 12 and Γ(x) ≥ 2 n4

(1−λ)2λ
, it follows that every

bin has load at least load 1. Thus each bin will delete one ball and the
number of balls arriving is λn in expectation. Hence,

E[Ψ(X(t+ 1))−Ψ(x) |X(t) = x] = − n

1− λ
(1− λ)n. (55)

Now,

E[Γ(X(t+ 1))− Γ(x) |X(t) = x]

= E[Φ(X(t+ 1))− Φ(x) |X(t) = x]− n

1− λ
(1− λ)n

≤ n log n− n

1− λ
(1− λ)n ≤ −1.

(56)

Thus, E[Γ(X(t+ 1))− Γ(x) |X(t) = x] ≤ −1, which yields the claim.

We now proceed with a technical result.

Lemma 12. For all x ≥ 2 n4

(1−λ)2λ
it holds that (1−λ)·x

2n2 − 2 ln(x/2)/α ≥ 1.

Proof. Define f(x) = (1−λ)·x
2n2 − 2 ln(x/2)/α. We have f

(
2 n4

(1−λ)2λ

)
≥ n2

(1−λ)λ −
2
α ln

(
n4

(1−λ)2λ

)
≥ 1, where the last inequality holds for large enough of n since

α is a constant. Moreover, for all x ≥ 2 n4

(1−λ)2λ
we have f ′(x) = 1−λ

n2 − 2
αx ≥ 0.

Thus, the claim follows.

We are ready to prove Theorem 4.

of Theorem 4. The proof proceeds by applying Theorem 6. We now define the
parameters of Theorem 6. Let ζ(t) = X(t) and hence Ω is the state space of X.
First we observe that Ω is countable since there are a constant number of bins (n
is consider a constant in this matter) each having a load which is a natural num-

ber. We define φ(X(t)) to be Γ(X(t)). We define C = {x | Γ(x) ≤ 2 n4

(1−λ)2λ
}.

Define β(x) = 1 and η = 1. We now show that the preconditions (a) and (b) of
Theorem 6 are fulfilled.

• Let x 6∈ C. By definition of C and φ(X(t)), and from Lemma 11 we have

E[φ(X(t+ 1))− φ(x) |X(t) = x]

≤ E[Γ(X(t+ 1))− Γ(x) |X(t) = x] ≤ −1.
(57)
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• Let x ∈ C. Recall that Γ(X(t)) = Φ(X(t)) + Ψ(X(t)). By Lemma 7 and
the fact that the number of balls arriving in one round is bounded by n,
we derive,

E[φ(X(t+ 1)) |X(t) = x] =

= E[Φ(X(t+ 1)) |X(t) = x] + E[Ψ(X(t+ 1)) |X(t) = x]

≤
((

1− εαλ

4

)
2 n4

(1−λ)2λ

)
+

n

1− λ
n <∞.

(58)

The claim follows by applying Theorem 6 with Equations (57) and (58).

4 Conclusion

Our results show that the power of two choices carries over to generalized setting
with deletion: Similar to the classic setting without deletions, the maximum load
under Greedy[[] 2] is exponentially smaller than the load under Greedy[[] 1].
Moreover, Greedy[2] can handle much larger arrival rates w.r.t. the maximum
load difference.

One might assume that our (upper) bounds for Greedy[1] carry over to
Greedy[2] (and, in general, to Greedy[d]) via a simple coupling (similar to [4]).
However, we are not aware of such a coupling in the parallel setting. In fact, for
näıve approaches to such a coupling, it is not hard to come up with situations
where Greedy[2] behaves worse than Greedy[1] (in one step). It would be
interesting to find arguments that, for example, for any d ∈ N Greedy[d+ 1]
behaves “better” than Greedy[d].

Another open questions is concerned with arrival rates λ ≥ 1 (this would
require a slight reformulation of our model, which currently assumes the exis-
tence of n generators that generate balls with a probability of λ). As mentioned
in Section 3.1, our assumptions on λ for proving bounds on the smoothness
(Proposition 1) are merely for convenience. The corresponding proofs carry
over (with minor modifications) to any constant λ, no matter whether λ < 1
or λ > 1. Thus, for Greedy[2] we know that the load difference between any
two bins is still logarithmic, even for arrival rates > 1. Still, the maximum load
obviously diverges for λ ≥ 1. It would be interesting to quantify this divergence
in terms of λ.

Compliance with Ethical Standards

Funding: Petra Berenbrink is supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). Peter Kling is partly supported
by the Natural Sciences and Engineering Research Council of Canada (NSERC)
and the Pacific Institute for the Mathematical Sciences (PIMS). Lars Nagel is
supported by the German Ministry of Education and Research under Grant
01IH13004. Christopher Wastell is supported by EPSRC.

28



Conflict of Interest: The authors declare that they have no conflict of interest.

References

[1] Micah Adler, Petra Berenbrink, and Klaus Schröder. Analyzing an infinite
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A Auxiliary Results

The following theorem gives necessary and sufficient conditions for a Markov
Chain to be positive recurrent. Roughly speaking, we want that the Markov
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Chain returns to a finite number of states: Given the state x of the system
at some time t, we need to show that there exists some potential ζ(·) which is
decreasing linearly (in β(x), the length of a suitably chosen period) for “most
states” (first condition). For a finite number of states (set C), whose size can
be a function of n but not of t, the potential is not required to decrease but the
potential is required to be finite after β(x) time steps (second condition).

Theorem 6 (Fayolle et al. [12, Theorem 2.2.4]). A time-homogeneous irre-
ducible aperiodic Markov chain ζ with a countable state space Ω is positive re-
current if and only if there exists a positive function φ(x), x ∈ Ω, a number
η > 0, a positive integer-valued function β(x), x ∈ Ω, and a finite set C ⊆ Ω
such that the following inequalities hold:

1. E[φ(ζ(t+ β(x)))− φ(x) | ζ(t) = x] ≤ −ηβ(x), x 6∈ C

2. E[φ(ζ(t+ β(x))) | ζ(t) = x] <∞, x ∈ C

The following theorem gives a tail bound on a potential for which the fol-
lowing two properties hold: In increase in the potential has a tail bound (first
condition) and whenever the potential is large, in decreases in expectation (sec-
ond condition).

Theorem 7 (Simplified version of Hajek [14, Theorem 2.3]). Let (Y (t))t≥0 be
a sequence of random variables on a probability space (Ω,F , P ) with respect to
the filtration (F(t))t≥0. Assume the following two conditions hold:

(i) (Majorization) There exists a random variable Z and a constant λ′ > 0,

such that E
[
eλ
′Z
]
≤ D for some finite D, and (|Y (t+ 1)−Y (t)|

∣∣F(t)) ≺ Z
for all t ≥ 0; and

(ii) (Negative Bias) There exist a, ε0 > 0, such for all t we have

E[Y (t+ 1)− Y (t) | F(t), Y (t) > a] ≤ −ε0.

Let η = min {λ′, ε0 · λ′2/(2D), 1/(2ε0) }. Then, for all b and t we have

Pr(Y (t) ≥ b | F(0)) ≤ eη(Y (0)−b) +
2D

ε0 · η
· eη(a−b).

Proof. The statement of the theorem provided in [14] requires besides (i) and (ii)
to choose constants η, and ρ such that 0 < ρ ≤ λ′, η < ε0/c and ρ = 1−ε0·η+cη2

where c =
E
[
eλ
′Z

]
−(1+λ′E[Z])

λ′2 =
∑∞
k=2

λ′k−2

k! E
[
Zk
]
. With these requirements it

then holds that for all b and t

Pr(Y (t) ≥ b | F(0)) ≤ ρteη(Y (0)−b) +
1− ρt

1− ρ
·D · eη(a−b). (59)

In the following we bound Equation (59) by setting η = min {λ′, ε0 · λ′2/(2D), 1/(2ε0) }.
The following upper and lower bound on ρ follow.
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• ρ = 1− ε0 · η+ cη2 ≤ 1− ε0 · η+ ε0 · η · c ·λ′2/(2D) ≤ 1− ε0 · η+ ε0 · η/2 =
1− ε0 · η/2, where we used c ≤ D/λ′2.

• ρ = 1− ε0 · η + cη2 ≥ 1− ε0/(2ε0) ≥ 0.

We derive, from Equation (59) using that for any t ≥ 0 we have 0 ≤ ρt ≤ 1

Pr(Y (t) ≥ b | F(0)) ≤ ρteη(Y (0)−b) +
1− ρt

1− ρ
·D · eη(a−b) ≤ eη(Y (0)−b) +

1

1− ρ
·D · eη(a−b)

≤ eη(Y (0)−b) +
2D

ε0 · η
· eη(a−b),

(60)

since 1
(1−ρ) ≤

2
ε0·η . This yields the claim.

Theorem 8 (Raab and Steger [20, Theorem 1]). Let M be the random vari-
able that counts the maximum number of balls in any bin, if we throw m balls
independently and uniformly at random into n bins. Then Pr(M > kα) = o(1)
if α > 1 and Pr(M > kα) = 1− o(1) if 0 < α < 1, where

kα =



logn

log
n logn
m

(
1 + α

log log
n logn
m

log
n logn
m

)
if n

polylog(n) ≤ m� n log n

(dc − 1 + α) log n if m = c · n log n for some constant c
m
n + α

√
2mn log n if n log n� m ≤ n polylog(n)

m
n +

√
2mn log n

(
1− 1

α
log logn
2 logn

)
if m� n(log n)

3
,

where dc is largest solution of 1 + x(log c− log x+ 1)− c = 0. We have d1 = e
and d1.00001 = 2.7183.
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