Skip to main content
Log in

Structural Parameterizations of Undirected Feedback Vertex Set: FPT Algorithms and Kernelization

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an acyclic graph. We consider the parameterized and kernelization complexity of feedback vertex set where the parameter is the size of some structure in the input. In particular, we consider parameterizations where the parameter is (instead of the solution size), the distance to a class of graphs where the problem is polynomial time solvable, and sometimes smaller than the solution size. Here, by distance to a class of graphs, we mean the minimum number of vertices whose removal results in a graph in the class. Such a set of vertices is also called the ‘deletion set’. In this paper, we show that

  • FVS is fixed-parameter tractable by an \({{\mathcal {O}}}(2^k n^{{{\mathcal {O}}}(1)})\) time algorithm, but is unlikely to have polynomial kernel when parameterized by the number of vertices of the graph whose degree is at least 4. This answers a question asked in an earlier paper. We also show that an algorithm with running time \({{\mathcal {O}}}((\sqrt{2} - \epsilon )^k n^{{{\mathcal {O}}}(1)})\) is not possible unless SETH fails.

  • When parameterized by k, the number of vertices, whose deletion results in a split graph, we give an \({{\mathcal {O}}}(3.148^k n^{{{\mathcal {O}}}(1)})\) time algorithm.

  • When parameterized by k, the number of vertices whose deletion results in a cluster graph (a disjoint union of cliques), we give an \({{\mathcal {O}}}(5^k n^{{{\mathcal {O}}}(1)})\) algorithm.

Regarding kernelization results, we show that

  • When parameterized by k, the number of vertices, whose deletion results in a pseudo-forest, FVS has an \({{\mathcal {O}}}(k^7)\) vertices kernel improving from the previously known \({{\mathcal {O}}}(k^{10})\) bound.

  • When parameterized by the number k of vertices, whose deletion results in a mock-d-forest, we give a kernel with \({{\mathcal {O}}}(k^{3d+3})\) vertices. We also prove a lower bound of \(\varOmega (k^{d+2})\) size (under complexity theoretic assumptions). Mock-forest is a graph where each vertex is contained in at most one cycle. Mock-d-forest for a constant d is a mock-forest where each component has at most d cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \({{\mathcal {O}}}^*\) notation suppresses the polynomial factors.

  2. A preliminary version [34] of this paper had a stronger lemma (Lemma 25 of [34]) which gave an upper bound of 3 for \(|X'|\), and this resulted in an overall \({{\mathcal {O}}}(k^6)\) vertex kernel for this problem. However, the lemma had an error.

References

  1. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19(2), 247–253 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., van Dijk, T.C.: A cubic kernel for feedback vertex set and loop cutset. Theory Comput. Syst. 46(3), 566–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures. Algorithmica 73(1), 63–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Rooij, J., Wojtaszczyk, J.O.: Solving Connectivity Problems Parameterized by Treewidth in Singly Exponential Time. In: IEEE 52nd annual symposium on foundations of computer science, FOCS 2011, Palm Springs, CA, USA, October 22–25, 2011, pp. 150–159 (2011)

  9. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. CoRR abs/1103.0534 (2011)

  10. Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5–6), 179–182 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  12. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diestel, R.: Graph Theory. Graduate texts in mathematics, vol. 173, 4th edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  15. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In: IEEE symposium of foundations of computer science FOCS, pp. 470–479 (2012)

  18. Fomin, F., Strømme, T.: Vertex cover structural parameterization revisited. In: Graph-Theoretic Concepts in Computer Science—42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, pp. 171–182 (2016)

  19. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Article  MathSciNet  Google Scholar 

  20. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discrete Appl. Math. 86(2–3), 213–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Francisco (1979)

    MATH  Google Scholar 

  23. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited—upper and lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jansen, B.M.P., Kratsch, S.: Data reduction for graph coloring problems. Inf. Comput. 231, 70–88 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

    Article  MathSciNet  Google Scholar 

  28. Kloks, T., Liu, C., Poon, S.: Feedback vertex set on chordal bipartite graphs. CoRR abs/1104.3915v2 (2011)

  29. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kolay, S., Panolan, F.: Parameterized Algorithms for Deletion to (r, l)-Graphs. In: Proceedings of foundation of software technology and theoretical computer science FSTTCS, pp. 420–433 (2015)

  31. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on AT-free graphs. Discrete Appl. Math. 156(10), 1936–1947 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Majumdar, D., Raman, V., Saurabh, S.: Kernels for Structural Parameterizations of Vertex Cover—Case of Small Degree Modulators. In: 10th international symposium of parameterized and exact computation IPEC, pp. 331–342 (2015)

  33. Majumdar, D., Raman, V.: FPT Algorithms for FVS Parameterized by Split and Cluster Vertex Deletion Sets and Other Parameters. In: International Frontiers of Algorithmics Workshop FAW, pp. 209–220 (2017)

  34. Majumdar, D.: Structural Parameterizations of Feedback Vertex Set. In: 11th international symposium of parameterized and exact computation IPEC, pp. 21:1–21:16 (2016)

  35. Rizzi, R.: Minimum weakly fundamental cycle bases are hard to find. Algorithmica 53(3), 402–424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thomassé, S.: A 4k\({}^{\text{2 }}\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discrete Math. 72(1–3), 355–360 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptapriyo Majumdar.

Additional information

Preliminary versions of this paper appeared in proceedings of IPEC 2016 [34] and FAW 2017 [33].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, D., Raman, V. Structural Parameterizations of Undirected Feedback Vertex Set: FPT Algorithms and Kernelization. Algorithmica 80, 2683–2724 (2018). https://doi.org/10.1007/s00453-018-0419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0419-4

Keywords

Navigation