Skip to main content
Log in

Parameterized Algorithms for Max Colorable Induced Subgraph Problem on Perfect Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We address the parameterized complexity of Max Colorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril (Inf Process Lett 24:133–137, 1987) showed that this problem is NP-complete even on split graphs if q is part of input, but gave an \(n^{O(q)}\) algorithm on chordal graphs. We first observe that the problem is W[2]-hard when parameterized by q, even on split graphs. However, when parameterized by \(\ell \), the number of vertices in the solution, we give two fixed-parameter tractable algorithms.

  • The first algorithm runs in time \(5.44^{\ell } (n+t)^{{\mathcal {O}}(1)}\) where t is the number of maximal independent sets of the input graph.

  • The second algorithm runs in time \({\mathcal {O}}(6.75^{\ell + o(\ell )} n^{{\mathcal {O}}(1)})\) on graph classes where the maximum independent set of an induced subgraph can be found in polynomial time.

The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. Finally, we show that (under standard complexity-theoretic assumption) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense:

  1. (a)

    On split graphs, we do not expect a polynomial kernel if q is a part of the input.

  2. (b)

    On perfect graphs, we do not expect a polynomial kernel even for fixed values of \(q\ge 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Addario-Berry, L., Kennedy, W.S., King, A.D., Li, Z., Reed, B.A.: Finding a maximum-weight induced k-partite subgraph of an i-triangulated graph. Discret. Appl. Math. 158(7), 765–770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Gutin, G.Z., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19(2), 247–253 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast subset convolution. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 67–74. San Diego, 11–13 June (2007)

  5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Analysis of data reduction: transformations give evidence for non-existence of polynomial kernels. In: Technical Report, (2008)

  6. Bodlaender, H.L.: Kernelization: new upper and lower bound techniques. In: IWPEC, pp. 17–37. (2009)

  7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byskov, J.M.: Algorithms for k-colouring and finding maximal independent sets. In: SODA, pp. 456–457. (2003)

  10. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett. 32(6), 547–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dabrowski, K., Lozin, V.V., Müller, H., Rautenbach, D.: Parameterized algorithms for the independent set problem in some hereditary graph classes. In IWOCA, Volume 6460 of Lecture Notes in Computer Science, pp. 1–9. Springer, Berlin (2010)

  12. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and ids. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  15. Drange, P.G., Dregi, M.S., Fomin, F.V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M. Reidl, F., Villaamil, F.S., Saurabh, S., Siebertz, S., Sikdar, S.: Kernelization and sparseness: the case of dominating set. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, pp. 31:1–31:14. Orléans, 17–20 February 2016

  16. du Cray, H.P., Sau, I.: Improved FPT algorithms for weighted independent set in bull-free graphs. Discrete Math. 341(2), 451–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer, New York (2006)

    Google Scholar 

  18. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: SODA, pp. 503–510, (2010)

  20. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct pcps for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  24. Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: fast exponential algorithms and combinatorial bounds. SIAM J. Discrete Math. 26(4), 1758–1780 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)

    Article  MATH  Google Scholar 

  26. Hols, E.C., Kratsch, S.: A randomized polynomial kernel for subset feedback vertex set. Theor. Comput. Syst. 62(1), 63–92 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools for kernelization. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pp. 450–459. New Brunswick, 20–23 October 2012

  29. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms 10(4), 20:1–20:15 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Lovasz, L.: Perfect graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, vol. 2, pp. 55–67. Academic Press, London (1983)

    Google Scholar 

  31. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In FOCS, pp. 182–191. (1995)

  32. Niedermeier, R.: Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in Mathematics and Its Applications). Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  33. Philip, G., Rai, A., Saurabh, S.: Generalized pseudoforest deletion: algorithms and uniform kernel. In: Mathematical Foundations of Computer Science 2015—40th International Symposium Part II, MFCS 2015, Milan, pp. 517–528. 24–28 August 2015

  34. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theor. Comput. Syst. 41(3), 563–587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raman, V., Saurabh, S.: Short cycles make w-hard problems hard: FPT algorithms for w-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thomassé, S., Trotignon, N., Vuskovic, K.: A polynomial turing-kernel for weighted independent set in bull-free graphs. Algorithmica 77(3), 619–641 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Trotignon, N.: Perfect graphs: a survey. CoRR, arXiv:abs/1301.5149, (2013)

  38. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Inf. Process. Lett. 24(2), 133–137 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Rai.

Additional information

A preliminary version of the article appeared in the proceedings of Workshop on Graph-Theoretic Concepts in Computer Science (WG) 2013. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 306992.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, N., Panolan, F., Rai, A. et al. Parameterized Algorithms for Max Colorable Induced Subgraph Problem on Perfect Graphs. Algorithmica 81, 26–46 (2019). https://doi.org/10.1007/s00453-018-0431-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0431-8

Keywords

Navigation