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Abstract Let B = (X,Y,E) be a bipartite graph. A half-square of B has one
color class of B as vertex set, say X ; two vertices are adjacent whenever they
have a common neighbor in Y . Every planar graph is a half-square of a planar
bipartite graph, namely of its subdivision. Until recently, only half-squares
of planar bipartite graphs, also known as map graphs (Chen, Grigni and Pa-
padimitriou [STOC 1998, J. ACM 2002]), have been investigated, and the most
discussed problem is whether it is possible to recognize these graphs faster and
simpler than Thorup’s O(n120)-time algorithm (Thorup [FOCS 1998]).

In this paper, we identify the first hardness case, namely that deciding if a
graph is a half-square of a balanced bisplit graph is NP-complete. (Balanced
bisplit graphs form a proper subclass of star convex bipartite graphs.) For
classical subclasses of tree convex bipartite graphs such as biconvex, convex,
and chordal bipartite graphs, we give good structural characterizations of their
half-squares that imply efficient recognition algorithms. As a by-product, we
obtain new characterizations of unit interval graphs, interval graphs, and of
strongly chordal graphs in terms of half-squares of biconvex bipartite, convex
bipartite, and of chordal bipartite graphs, respectively. Good characterizations
of half-squares of star convex and star biconvex bipartite graphs are also given,
giving linear-time recognition algorithms for these half-squares.
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1 Introduction

The square of a graph H , denoted H2, is obtained from H by adding new
edges between two distinct vertices whenever their distance is two. Then, H is
called a square root of G = H2. Given a graph G, it is NP-complete to decide
if G is the square of some graph H ([28]), even for a split graph H ([19]).

Given a bipartite graph B = (X,Y,EB), the subgraphs of the square B2

induced by the color classes X and Y , B2[X ] and B2[Y ], are called the two
half-squares of B ([3,4]).

While not every graph is the square of a graph and deciding if a graph is
the square of a graph is hard, every graph G = (V,EG) is half-square of a
bipartite graph: if B = (V,EG, EB) is the bipartite graph with EB = {ve | v ∈
V, e ∈ EG, v ∈ e}, then clearly G = B2[V ]. So one is interested in half-squares
of special bipartite graphs. Note that B is the subdivision of G, hence every
planar graph is half-square of a planar bipartite graph.

Let B be a class of bipartite graphs. A graph G = (V,EG) is called half-
square of B if there exists a bipartite graph B = (V,W,EB) in B such that
G = B2[V ]. Then, B is called a B half-root of G. With this notion, the following
decision problem arises.

Half-Square Of B

Instance: A graph G = (V,EG).
Question: Is G half-square of a bipartite graph in B, i.e., does there

exist a bipartite graph B = (V,W,EB) in B s.t. G = B2[V ]?

In this paper, we discuss Half-Square Of B for several restricted bipartite
graph classes B.

Previous results and related work. Half-squares of bipartite graphs have
been introduced in [3,4] in order to give a graph-theoretical characterization
of the so-called map graphs. A map graph is the (point-)intersection graph of
simply-connected and interior-disjoint regions of the Euclidean plane. More
precisely, a map of a graph G = (V,EG) is a function M taking each vertex
v ∈ V to a closed disc homeomorph M(v) (the regions) in the plane, such
that all M(v), v ∈ V , are interior-disjoint, and two distinct vertices v and v′

of G are adjacent if and only if the boundaries of M(v) and M(v′) intersect. A
map graph is one having a map. It turns out that map graphs are exactly half-
squares of planar bipartite graphs ([3,4]). As we have seen at the beginning,
every planar graph is a map graph but not the converse; map graphs may have
arbitrary large cliques. As such, map graphs form an interesting and important
graph class. The main problem concerning map graphs is to recognize if a given
graph is a map graph. In [32], Thorup shows that Half-Square Of Planar,
that is, deciding if a graph is a half-square of a planar bipartite graph, can
be solved in polynomial time 1. Very recently, in [27], it is shown that Half-
Squares Of Outerplanar and Half-Square Of Tree are solvable in

1 Thorup did not give the running time explicitly, but it is estimated to be roughlyO(n120)
with n being the vertex number of the input graph; cf. [4].
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linear time. Other papers deal with solving hard problems in map graphs
include [2,6,7,8,10]. Some applications of map graphs have been addressed
in [5]. The paper [1] discussed a relation between map graphs and 1-planar
graphs, an interesting topic in graph drawing.

Our results. We identify the first class B of bipartite graphs for which Half-
Square Of B is NP-hard. Our class B is a subclass of the class of the bisplit
bipartite graphs and of star convex bipartite graphs (all terms are given later).
For some other subclasses of tree convex bipartite graphs, such as star convex
and star biconvex, convex and biconvex, and chordal bipartite graphs, we
give structural descriptions for their half-squares, that imply polynomial-time
recognition algorithms:

– Recognizing half-squares of balanced bisplit graphs (a proper subclass of
star convex bipartite graphs) is hard, even when restricted to co-bipartite
graphs;

– Half-squares of star convex and star biconvex can be recognized in linear
time;

– Half-squares of biconvex bipartite graphs are precisely the unit interval
graphs;

– Half-squares of convex bipartite graphs are precisely the interval graphs;
– Half-squares of chordal bipartite graphs are precisely the strongly chordal

graphs.

2 Preliminaries

Let G = (V,EG) be a graph with vertex set V (G) = V and edge set E(G) =
EG. A stable set (a clique) in G is a set of pairwise non-adjacent (adjacent)
vertices. The complete graph on n vertices, the complete bipartite graph with
s vertices in one color class and t vertices in the other color class, the cycle
with n vertices are denoted Kn,Ks,t, and Cn, respectively. A K3 is also called
a triangle, a complete bipartite graph is also called a biclique, a complete
bipartite graph K1,n is also called a star.

The neighborhood of a vertex v in G, denoted by NG(v), is the set of all
vertices in G adjacent to v; if the context is clear, we simply write N(v). A
universal vertex v in G is one with N(v) = V \ {v}, i.e., v is adjacent to all
other vertices in G.

For a subset W ⊆ V , G[W ] is the subgraph of G induced by W , and
G − W stands for G[V \ W ]. We write B = (X,Y,EB) for bipartite graphs
with a bipartition into stable sets X and Y . For subsets S ⊆ X , T ⊆ Y we
denote B[S, T ] for the bipartite subgraph of B induced by S ∪ T .

We will consider half-squares of the following well-known subclasses of
bipartite graphs: Let B = (X,Y,EB) be a bipartite graph.

– B is X-convex if there is a linear ordering on X such that, for each y ∈ Y ,
N(y) is an interval in X . Being Y -convex is defined similarly. B is convex
if it is X-convex or Y -convex. B is biconvex if it is both X-convex and



4 Hoang-Oanh Le, Van Bang Le

Y -convex. We write Convex and Biconvex to denote the class of convex
bipartite graphs, respectively, the class of biconvex bipartite graphs.

– B is chordal bipartite if B has no induced cycle of length at least six.
Chordal Bipartite stands for the class of chordal bipartite graphs.

– B is tree X-convex if there exists a tree T = (X,ET ) such that, for each y ∈
Y , N(y) induces a subtree in T . Being tree Y -convex is defined similarly.
B is tree convex if it is tree X-convex or tree Y -convex. B is tree biconvex
if it is both tree X-convex and tree Y -convex. When T is a star, we also
speak of star convex and star biconvex bipartite graphs.
Tree Convex and Tree Biconvex are the class of all tree convex bipar-
tite graphs and all tree biconvex bipartite graphs, respectively, and Star
Convex and Star Biconvex are the class of all star convex bipartite
graphs and all star biconvex bipartite graphs, respectively.

It is known that Biconvex ⊂ Convex ⊂ Chordal Bipartite ⊂ Tree
Biconvex ⊂ Tree Convex. All inclusions are proper; see [31,23] for more
information on these graph classes.

Given a graph G, we often use the following two kinds of bipartite graphs
associated to G:

Definition 1 Let G = (V,EG) be an arbitrary graph.

– The bipartite graph B = (V,EG, EB) with EB = {ve | v ∈ V, e ∈ EG, v ∈
e} is the subdivision of G.

– Let C(G) denote the set of all maximal cliques of G. The bipartite graph
B = (V, C(G), EB) with EB = {vQ | v ∈ V,Q ∈ C(G), v ∈ Q} is the
vertex-clique incidence bipartite graph of G.

Note that the subdivision of a planar graph is planar, and subdivisions and
vertex-clique incidence graphs of triangle-free graphs coincide.

Proposition 1 Every graph is half-square of its vertex-clique incidence bipar-
tite graph. More precisely, if B = (V, C(G), EB) is the vertex-clique incidence
bipartite graph of G = (V,EG), then G = B2[V ]. Similar statement holds for
subdivisions.

Proof For distinct vertices u, v ∈ V , uv ∈ EG if and only if u, v ∈ Q for some
Q ∈ C(G), if and only if u and v are adjacent in B2[V ]. That is, G = B2[V ].
⊓⊔

3 Recognizing half-squares of balanced bisplit graphs is hard

A graph G = (V,E) is a split graph if there is a partition V = Q ∪̇S of its
vertex set into a clique Q and stable set S. Recall that a biclique is a complete
bipartite graph. Following the concept of split graphs, we call a bipartite graph
bisplit if it can be partitioned into a biclique and a stable set. In this section,
we show that Half-Square Of Balanced Bisplit is NP-hard. Balanced
bisplit graphs form a proper subclass of bisplit graphs, and are defined as
follows.
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Definition 2 A bipartite graph B = (X,Y,EB) is called balanced bisplit if it
satisfies the following properties:

(i) |X | = |Y |;
(ii) there is partition X = X1 ∪̇X2 such that B[X1, Y ] is a biclique;
(iii) there is partition Y = Y1 ∪̇Y2 such that the edge set of B[X2, Y2] is a

perfect matching.

Note that by (i) and (iii), |X1| = |Y1|, and by (ii) and (iii), every vertex in X1

is universal in B2[X ].

In order to prove the NP-hardness of Half-Square Of Balanced Bis-
plit, we will reduce the following well-known NP-complete problem Edge
Clique Cover to it.

Edge Clique Cover

Instance: A graph G = (V,EG) and a positive integer k.
Question: Do there exist k cliques in G such that each edge of G is

contained in some of these cliques?

Edge Clique Cover is NP-complete [15,17,29], even when restricted to co-
bipartite graphs [21]. (A co-bipartite graph is the complement of a bipartite
graph.)

Theorem 1 Half-Square Of Balanced Bisplit is NP-complete, even
when restricted to co-bipartite graphs.

Proof It is clear that Half-Square Of Balanced Bisplit is in NP, since
guessing a bipartite-half root B = (V,W,EB) with |W | = |V |, verifying that B
is balanced bisplit, and that G = B2[V ] can obviously be done in polynomial
time. Thus, by reducing Edge Clique Cover to Half-Square Of Bal-
anced Bisplit, we will conclude that Half-Square Of Balanced Bisplit
is NP-complete.

Let (G = (V,EG), k) be an instance of Edge Clique Cover. Note that
we may assume that k ≤ |EG|, and that G is connected and has no universal
vertices. We construct an instance G′ = (V ′, EG′) of Half-Square Of Bal-
anced Bisplit as follows: G′ is obtained from G by adding a set U of k new
vertices, U = {u1, . . . , uk}, and all edges between vertices in U and all edges
uv with u ∈ U , v ∈ V . Thus, V ′ = V ∪ U , G′[V ] = G and the k new vertices
in U are exactly the universal vertices of G′. Clearly, G′ can be constructed in
polynomial time O(k|V |) = O(|EG| · |V |), and in addition, if G is co-bipartite,
then G′ is co-bipartite, too. We now show that (G, k) ∈ Edge Clique Cover
if and only if G′ ∈ Half-Square Of Balanced Bisplit.

First, suppose that the edges of G = (V,EG) can be covered by k cliques
Q1, . . . , Qk in G. We are going to show that G′ is half-square of some balanced
bisplit bipartite graph. Consider the bipartite graph B = (V ′,W,EB) (see also
Figure 1) with

W = W1 ∪W2, where W1 = {w1, . . . , wk}, and W2 = {wv | v ∈ V }.

In particular, |V ′| = |W | = k + |V |. The edge set EB is as follows:
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– B has all edges between U and W , i.e., B[U,W ] is a biclique,
– B has edges vwv, v ∈ V . Thus, the edge set of B[V,W2] forms a perfect

matching, and
– B has edges vwi, v ∈ V , 1 ≤ i ≤ k, whenever v ∈ V is contained in clique

Qi, 1 ≤ i ≤ k.

U

ui

V

v
V ′ = U ∪ V

W1

wi

W2

wv

W = W1 ∪W2

Fig. 1 The balanced bisplit graph B = (V ′,W,EB) proving G′ = B2[V ′]; v ∈ V is adjacent
to wi ∈ W1 if and only if v ∈ Qi.

Thus, B is a balanced bisplit graph. Moreover, by the construction of B,
we have in B2[V ′]:

– U = {u1, . . . , uk} is a clique (as B[U,W ] is a biclique),
– every vertex u ∈ U is adjacent to all vertices v ∈ V (recall that G is

connected, so every v ∈ V is in some Qi, and wi ∈ W1 is a common
neighbor of u and v), and

– no two distinct vertices v, z ∈ V have, in B, a common neighbor in W2.
So u and z are adjacent in B2[V ′] if and only if v and z have a common
neighbor wi in W1, if and only if v and z belong to a clique Qi in G, if and
only if u and z are adjacent in G.

That is, G′ = B2[V ′].

Conversely, suppose G′ = H2[V ′] for some balanced bisplit graph H =
(V ′, Y, EH) with |V ′| = |Y | and partitions V ′ = X1 ∪̇X2 and Y = Y1 ∪̇Y2

as in Definition 2. We are going to show that the edges of G can be covered
by k cliques. As H [X1, Y ] is a biclique, all vertices in X1 are universal in
H2[V ′] = G′. Hence

X1 = U

because no vertex in V = V ′ \ U is universal in G′ (recall that G has no
universal vertex). Therefore (recall that G′[V ] = G)

X2 = V and G = H2[V ].



Half-squares of restricted bipartite graphs 7

Note that, as H is a balanced bisplit graph, |Y1| = |U | = k. Write Y1 =
{q1, . . . , qk} and observe that no two vertices in V have a common neighbor
in Y2. Thus, for each edge vz in G = H2[V ], v and z have a common neighbor
qi in Y1. Therefore, the k cliques Qi in H2[V ], 1 ≤ i ≤ k, induced by the
neighbors of qi in V , cover the edges of G. ⊓⊔

Theorem 1 indicates that recognizing half-squares of restricted bipartite
graphs is algorithmically much more complex than recognizing squares of bi-
partite graphs; the latter can be done in polynomial time ([18]).

Observe that balanced bisplit graphs are star convex: Let B = (X,Y,EB)
be a bipartite graph with the properties in Definition 2. Fix a vertex u ∈ X1

and consider the star T = (X, {uv | v ∈ X − u}). Since every vertex y ∈ Y is
adjacent to u, N(y) induces a substar in T . Note, however, that the hardness
of Half-Square Of Balanced Bisplit does not imply the hardness of
Half-Square Of Star Convex. This is because the proof of Theorem 1
strongly relies on the properties of balanced bisplit graphs.

Indeed, we will show in the next section that half-squares of star-convex
bipartite graphs can be recognized in polynomial time.

4 Half-squares of star convex and star biconvex bipartite graphs

We need more notations for stating our results. Let G = (VG, EG) and H =
(VH , EH) be two (vertex-disjoint) graphs. For a vertex v ∈ VG, we say that
the graph with

– vertex set (VG \ {v}) ∪ VH and
– edge set (EG \ {e ∈ EG | v ∈ e}) ∪EH ∪ {ux | u ∈ NG(v), x ∈ VH}

is obtained from G by substituting the vertex v of G by the graph H . Thus,
substituting a vertex v of G by the graph H results in the graph obtained from
G− v and H by adding all edges between NG(v) and VH .

Recall that a split graph is one, whose vertex set can be partitioned into a
clique and a stable set. In a graph, a connected component is big if it has at
least two vertices.

Lemma 1 Let B = (X,Y,EB) be a star convex bipartite graph with an asso-
ciated star T = (X,ET ). Then

(i) B2[X ] has at most one big connected component and the big connected
component has a universal vertex.

(ii) B2[Y ] is obtained from a split graph by substituting vertices by cliques.

Proof Let x0 be the center vertex of the star T = (X,ET ). Note that, if N(y)
has at least two vertices, then N(y) must contain x0.

(i): If |N(y)| ≤ 1 for all y ∈ Y , then B2[X ] is clearly edgeless, and (i) trivially
holds. So, assume that

Y0 := {y ∈ Y : |N(y)| ≥ 2}
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is not empty. Write

X0 := N(Y0) and X1 := X \X0.

Then |X0| ≥ 2 and x0 ∈ X0. Moreover, for every u ∈ X1 and v ∈ X , u and v

have no common neighbor in Y . Thus, B2[X ] consists of the big component
induced by X0 in which x0 is a universal vertex and |X1| many one-vertex
components.

(ii): Partition Y into Y0 and Y1 with

Y0 := {y ∈ Y | x0 ∈ N(y)} and Y1 := Y \ Y0.

Then, clearly,

Y0 is a clique in B2[Y ].

Let Y1 6= ∅ (otherwise, (ii) obviously holds), and write N(Y1) = {x1, . . . , xp}
for some p ≥ 1. Note that every vertex y ∈ Y1 has degree one since x0 6∈ N(y).
Thus, B[{x1, . . . , xp}, Y1] consists of p vertex-disjoint stars (xi, N(xi)∩ Y1) at
center vertices xi, 1 ≤ i ≤ p. For each i, fix a vertex yi ∈ N(xi) ∩ Y1. (See
Figure 2.)

x0 x1 x2
· · ·

xp

X

Y0 Y1

y1 y2 yp
Y

Fig. 2 Proof of Lemma 1 (ii) illustrated.

Then, as no two of y1, . . . , yp have a common neighbor in X ,

{y1, . . . , yp} is a stable set in B2[Y ].

Thus, B2[Y ] is obtained from the split graph B2[Y0 ∪ {y1, . . . , yp}] by substi-
tuting yi by clique with vertex set N(xi) ∩ Y1, 1 ≤ i ≤ p. ⊓⊔

The following facts show that the reverse statements in Lemma 1 hold true,
too.

Fact 1 Let G = (V,EG) have at most one big connected component, and let
the big connected component have a universal vertex. Then G is half-square of
a star convex bipartite graph.
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Proof It is obvious that graphs having no edges are half-squares of star convex
bipartite graphs. So, let U be the set of universal vertices of the big component
of G, let I be the set of isolated vertices of G, and let R be set of the remaining
vertices of G, R = V \ (U ∪ I). Thus, G[U ∪R] is the big component of G.

If R = ∅, let B = (V,W,EB) with W = {w} and EB = {wu | u ∈ U}. If
R 6= ∅, construct a bipartite graph B = (V,W,EB) as follows.

– W = R′ ∪ ER, where R′ = {x′ | x ∈ R} and ER = EG[R] is the edge set
(possibly empty) of G[R],

– B[U,R′∪ER] is a biclique, the edge set of B[R,R′] is the perfect matching
{xx′ | x ∈ R},

– the remaining edges of B are between R and ER. Two vertices x ∈ R and
e ∈ ER are adjacent in B if and only if x is an endvertex of the edge e in
G[R]. That is, B[R,ER] is the subdivision of G[R].

It is not difficult to verify, by construction, that G = B2[V ]. Moreover, B is
star convex: Fix a vertex u ∈ U and let T = (V,ET ) be the star with edge set
ET = {uv | v ∈ V \ {u}}. Clearly, for every w ∈ W , N(w) forms a substar in
T . ⊓⊔

Fact 2 Graphs obtained from split graphs by substituting vertices by cliques
are half-squares of star convex bipartite graphs.

Proof We first show that split graphs are half-squares of star convex bipartite
graphs. Let G = (V,EG) be a split graph with a partition of its vertex set
V = Q ∪ S into clique Q and stable set S. Construct a bipartite graph H =
(X,V,EH) as follows.

– X = {x0} ∪ {xs | s ∈ S},

– EH = {x0q | q ∈ Q} ∪ {xss | s ∈ S} ∪
⋃

s∈S

{xsq | q ∈ NG(s)}.

By construction, G = H2[V ]. Moreover, H is star convex with the associated
star T = (X, {x0xs | s ∈ S}).

Now, if G′ = (V ′, EG′) is obtained from G by substituting v ∈ V by
clique Qv, then G′ clearly is the half-square B2[V ′] of the bipartite graph
B = (X,V ′, EB) obtained from H by substituting vertices v by stable sets Qv.
Obviously, B is star convex with the same star T associated to H . ⊓⊔

By Lemma 1 and Facts 1 and 2, we obtain:

Theorem 2 A graph is a half-square of a star convex bipartite graph if and
only if

(i) it has at most one big connected component and the big connected compo-
nent has a universal vertex, or

(ii) it is obtained from a split graph by substituting vertices by cliques.

In case of star biconvex bipartite graphs, we obtain:
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Theorem 3 A graph is a half-square of a star biconvex bipartite graph if and
only if it has at most one big connected component and the big connected com-
ponent is obtained from a split graph having a universal vertex by substituting
vertices by cliques.

Proof The necessity part follows directly from Theorem 2.
For the sufficiency part, we first show that split graphs in which the big

connected component has a universal vertex are half-squares of star biconvex
bipartite graphs. Let G = (V,EG) be a split graph with a partition of its
vertex set V = Q ∪ S into clique Q and stable set S. Let I ⊆ S be the set of
all isolated vertices of G (thus, G − I is the big component of G). Construct
a bipartite graph H = (X,V,EH) as follows.

– X = {x0} ∪ {xs | s ∈ S \ I} ∪ {xi | i ∈ I},

– EH = {x0q | q ∈ Q} ∪ {xss | s ∈ S \ I} ∪ {xii | i ∈ I} ∪
⋃

s∈S\I

{xsq | q ∈

NG(s)}.

By construction, G = H2[V ]. Moreover,H is star biconvex with the associated
stars T1 = (X, {x0xs | s ∈ S \ I} ∪ {x0xi | i ∈ I}) and T2 = (V, {uv | v ∈
V \ {u}}), where u ∈ Q is a universal vertex of G− I (hence u ∈ NG(s) for all
s ∈ S \ I).

Now, if G′ = (V ′, EG′) is obtained from G by substituting vertices v ∈ V \I
by cliques Qv, then G′ clearly is the half-square B2[V ′] of the bipartite graph
B = (X,V ′, EB) obtained from H by substituting vertices v by stable sets
Qv. Obviously, B is star biconvex with the same star T1 associated to H and
the star T ′

2 = (V ′, {u′v′ | v′ ∈ V ′ \ {u′}}), where u′ is a vertex in Qu (u is a
universal vertex of G− I). ⊓⊔

By definition, if G is obtained from a graph H by substituting vertex
v ∈ V (H) by clique Qv with |Qv| ≥ 2, then Qv is a module in G, that is,
every vertex in G outside Qv is adjacent to all or to none vertices in Qv. Now,
note that all maximal clique modules of a given graph can be computed in
linear time (see, e.g, [25, Corollary 7.4]). Note also that split graphs can be
recognized in linear time (cf. [13]), and a partition into a clique and a stable set
of a given split graph can be computed in linear time ([14]). Thus, Theorems 2
and 3 and their proofs imply:

Corollary 1 Half-Square Of Star Convex and Half-Square Of Star
Biconvex can be solved in linear time. A star (bi)convex bipartite half-root,
if any, can be constructed in linear time.

5 Half-squares of biconvex and convex bipartite graphs

In this section, we show that half-squares of convex bipartite graphs are pre-
cisely the interval graphs and half-squares of biconvex bipartite graphs are
precisely the unit interval graphs.
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Recall that G = (V,EG) is an interval graph if it admits an interval rep-
resentation I(v), v ∈ V , such that two vertices in G are adjacent if and only
if the corresponding intervals intersect. Let G be an interval graph. It is well-
known ([11,12]) that there is a linear ordering of the maximal cliques of G, say
C(G) = (Q1, . . . , Qq), such that every vertex of G belongs to maximal cliques
that are consecutive in that ordering, that is, for every vertex u of G, there
are indices ℓ(u) and r(u) with

{i | 1 ≤ i ≤ q and u ∈ Qi} = {i | ℓ(u) ≤ i ≤ r(u)}.

If C and D are distinct maximal cliques of G, then C \D and D \ C are
both not empty, that is, for every j ∈ {1, . . . , q}, there are vertices u and v

such that r(u) = ℓ(v) = j.
Recall that unit interval graphs are those interval graphs admitting an

interval representation in which all intervals have the same length. It is well
known ([30]) that a graph is a unit interval graphs if and only if it has an
interval representation in which no interval is properly contained in another
interval (a proper interval graph), if and only if it is a K1,3-free interval graph.

Lemma 2 The half-squares of a biconvex bipartite graph are K1,3-free.

Proof Let B = (X,Y,EB) be a biconvex bipartite graph. By symmetry we
need only to show that B2[X ] is K1,3-free. Suppose, by contradiction, that
x1, x2, x3, x4 induce a K1,3 in B2[X ] with edges x1x2, x1x3 and x1x4. Let yi
be a common neighbor of x1 and x2, yj be a common neighbor of x1 and
x3, and yk be a common neighbor of x1 and x4. Then, yi, yj , yk are pairwise
distinct and induce, in B, a subdivision of K1,3; see also Figure 3. This is
a contradiction because biconvex bipartite graphs do not contain an induced
subdivision of the K1,3. Thus, the half-squares of a biconvex bipartite graph
are K1,3-free. ⊓⊔

x1 x2 x3 x4

yi yj yk

Fig. 3 The subdivision of K1,3 is convex, but not biconvex.

Lemma 3

(i) Every interval graph is half-square of a convex bipartite graph. More pre-
cisely, if G = (V,EG) is an interval graph and B = (V, C(G), EB) is the
vertex-clique incidence bipartite graph of G, then G = B2[V ] and B is
C(G)-convex.
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(ii) If B = (X,Y,EB) is X-convex, then B2[Y ] is an interval graph.

Proof (i): Let G = (V,EG) be an interval graph, and let B = (V, C(G), EB) be
the vertex-clique incidence bipartite graph of G. Since each v ∈ V appears in
the interval {Qi | ℓ(v) ≤ i ≤ r(v)} in C(G) = (Q1, . . . , Qq), B is C(G)-convex.
Moreover, by Proposition 1, G = B2[V ].

(ii): This is because X admits a linear ordering such that, for each y ∈ Y ,
N(y) is an interval in X . This collection is an interval representation of B2[Y ]
because y and y′ are adjacent in B2[Y ] if and only if N(y) ∩N(y′) 6= ∅. ⊓⊔

Theorem 4 A graph is half-square of a biconvex bipartite graph if and only
if it is a unit interval graph.

Proof First, by Lemma 3 (ii), half-squares of biconvex bipartite graphs are in-
terval graphs, and then by Lemma 2, half-squares of biconvex bipartite graphs
are unit interval graphs.

Next we show that every unit interval graph is half-square of some bi-
convex bipartite graph. Let G = (V,EG) be a unit interval graph. Let B =
(V, C(G), EB) be the vertex-clique incidence bipartite graph of G. By Lemma 3
(i), G = B2[V ] and B is C(G)-convex. We now are going to show that B is
V -convex, too.

Consider a linear order in C(G), C(G) = (Q1, . . . , Qq), such that each v ∈
V is contained in exactly the cliques Qi, ℓ(v) ≤ i ≤ r(v). Let v ∈ V be
lexicographically sorted according (ℓ(v), r(v)). We claim that B is V -convex
with respect to this ordering. Assume, by a contradiction, that some Qi has
neighbors v, u and non-neighbor x with v < x < u in the sorted list, say. In
particular, v, u belong to Qi, but x not; see also Figure 4.

Qℓ(v)

. . .

Qℓ(x)−1 Qℓ(x)

. . .

Qr(x) Qr(x)+1

. . .
Qi

v

.

..

.

..

v

y

.

..

v

x

.

..

v

x

.

..

v

z

.

..

v

u

.

..

Fig. 4 Assuming v < x < u, and v, u ∈ Qi, but x 6∈ Qi.

Since x < u and ℓ(u) ≤ i, we have ℓ(x) < i. Since x is not in Qi, we
therefore have

ℓ(x) ≤ r(x) < i.

In particular, r(x) + 1 ≤ i. Since v < x and r(v) ≥ i, we have

ℓ(v) < ℓ(x).
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Hence ℓ(x) − 1 ≥ 1. Now, by the maximality of the cliques, there exists y ∈
Qℓ(x)−1 with r(y) = ℓ(x) − 1 (hence y is non-adjacent to x), and there exists
z ∈ Qr(x)+1 with ℓ(z) = r(x) + 1 (hence z is non-adjacent to x and y; note
that r(x)+1 = i and z = u are possible). But then v, x, y, and z induce a K1,3

in G, a contradiction.
Thus, we have seen that every unit interval graph is half-square of a bicon-

vex bipartite graph. ⊓⊔

We next characterize half-squares of convex bipartite graphs as interval
graphs. This is somehow surprising because the definition of being convex
bipartite is asymmetric with respect to the two half-squares.

Theorem 5 A graph is a half-square of a convex bipartite graph if and only
if it is an interval graph.

Proof By Lemma 3 (i), interval graphs are half-squares of convex bipartite
graphs. It remains to show that half-squares of convex bipartite graphs are
interval graphs. Let B = (X,Y,EB) be an X-convex bipartite graph. By
Lemma 3 (ii), B2[Y ] is an interval graph. We now are going to show that
B2[X ] is an interval graph, too.

Let B′ = (X,Y ′, EB′) be obtained from B by removing all vertices y ∈ Y

with NB(y) is properly contained in NB(y
′) for some y′ ∈ Y . Clearly, B2[X ] =

B′2[X ]. We show thatB′ is Y ′-convex, hence, by Lemma 3 (ii), B2[X ] = B′2[X ]
is an interval graph, as claimed. To this end, letX = {x1, . . . , xn} such that, for
every y ∈ Y ′,NB′(y) is an interval inX . (Recall thatB, hence B′ isX-convex.)
For y ∈ Y ′ let left(y) = min{i | xi ∈ NB′(y)}, and sort y ∈ Y ′ increasing
according left(y). Then, for each x ∈ X , NB′(x) is an interval in Y ′: Assume,
by contradiction, that there is some x ∈ X such that NB′(x) is not an interval
in Y ′. Let y be a leftmost and y′ be a rightmost vertex in NB′(x). By the
assumption, there is some y′′ ∈ Y ′ \NB′(x) with left(y) ≤ left(y′′) ≤ left(y′).
Then, as NB′(y), NB′(y′′) and NB′(y′) are intervals in X , NB′(y′′) must be
a subset of NB′(y); see also Figure 5. Since x ∈ NB′(y) but x 6∈ NB′(y′′),
NB′(y′′) must be a proper subset of NB′(y), contradicting to the fact that in
B′, no such pair of vertices exists in Y ′. Thus, B′ is Y ′-convex.

x

y y′′ y′

N(y)

N(y′′)

N(y′)

Fig. 5 Assuming left(y) ≤ left(y′′) ≤ left(y′), and x is adjacent to y and y′, but non-
adjacent to y′′.
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Note that B′ is indeed biconvex, hence, by Theorem 4, B2[X ] = B′2[X ] is
even a unit interval graph. ⊓⊔

Since (unit) interval graph with n vertices and m edges can be recognized
in linear time O(n + m) and all maximal cliques of an (unit) interval graph
can be listed in the same time complexity (cf. [13]), Theorems 5 and 4 imply:

Corollary 2 Half-Square Of Convex and Half-Square Of Biconvex
can be solved in linear time. A (bi)convex bipartite half-root, if any, can be
constructed in linear time.

6 Half-squares of chordal bipartite graphs

In this section, we show that half-squares of chordal bipartite graphs are pre-
cisely the strongly chordal graphs. Recall that a graph is chordal if it has no
induced cycle of length at least four. It is well-known (see, e.g., [13,26,31])
that a graph G = (V,EG) is chordal if and only if it admits a tree represen-
tation, that is, there exists a tree T such that, for each vertex v ∈ V , Tv is a
subtree of T and two vertices in G are adjacent if and only if the correspond-
ing subtrees in T intersect. Moreover, the vertices of T can be taken as the
maximal cliques of the chordal graph (a clique tree). Recall also that a graph
is strongly chordal if it is chordal and has no induced k-sun, k ≥ 3. Here, a
k-sun consists of a stable set {s1, . . . , sk} and a clique {t1, . . . , tk} and edges
siti, siti+1, 1 ≤ i ≤ k. (Indices are taken modulo k.)

We first begin with the following fact.

Lemma 4 Let B = (V,W,EB) be a bipartite graph without induced C6 and
let k ≥ 3. If B2[V ] contains an induced k-sun, then B contains an induced
cycle of length 2k.

Proof We first show that

every clique Q in B2[V ] stems from a star in B.

Suppose, by a contradiction, that there is some clique Q in B2[V ] such that,
for any vertex w ∈ W , Q \ N(w) 6= ∅. Choose a vertex w1 ∈ W with Q′ :=
Q ∩ N(w1) is maximal. Let v1 ∈ Q \ N(w1). Since Q is a clique in B2[V ],
there is a vertex w2 ∈ W adjacent to v1 and some vertices in Q′. Choose
such a vertex w2 with Q′ ∩N(w2) is maximal. By the choice of w1, there is a
vertex v2 ∈ Q′ \N(w2). Again, since Q is a clique in B2[V ], there is a vertex
w3 ∈ W adjacent to both v1 and v2. By the choice of w2, there is a vertex
v3 ∈ Q′ ∩N(w2) non-adjacent to w3. But then w1, v2, w3, v1, w2 and v3 induce
a C6 in B, a contradiction. Thus, there must be a vertex w ∈ W such that
Q ⊆ N(w).

Now, consider a k-sun inB2[V ] with stable set {s1, . . . , sk}, clique {t1, . . . , tk},
and edges siti, siti+1, 1 ≤ i ≤ k. Let w ∈ W such that {t1, . . . , tk} ⊆ N(w),
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and let wi ∈ W such that {si, ti, ti+1} ⊆ N(wi), 1 ≤ i ≤ k. Since si is adja-
cent, in the k-sun, only to ti and ti+1, we have in B, that wi is non-adjacent
to {t1, . . . , tk} \ {ti, ti+1}. That is, t1, w1, t2, w2, . . . , tk, wk induce a C2k in B.
⊓⊔

Theorem 6 A graph is half-square of a chordal bipartite graph if and only if
it is a strongly chordal graph.

Proof We first show that half-squares of chordal bipartite graphs are chordal.
Let B = (X,Y,EB) be a chordal bipartite graph. It is known that B is tree
convex ([16,22]). Thus, there is a tree T = (X,ET ) such that, for each y ∈ Y ,
N(y) induces a subtree in T . Then, for distinct vertices y, y′ ∈ Y , y and
y′ are adjacent in B2[Y ] if and only if N(y) ∩ N(y′) 6= ∅, and thus, B2[Y ]
has a tree representation, hence chordal. Now, by Lemma 4, B2[Y ] cannot
contain any sun k-sun, k ≥ 3, showing that it is a strongly chordal graph. By
symmetry, B2[X ] is also strongly chordal. We have seen that half-squares of
chordal bipartite graphs are strongly chordal graphs.

Next, letG = (V,EG) be a strongly chordal graph, and letB = (V, C(G), EB)
be the vertex-clique incidence bipartite graph of G. By Proposition 1, G =
B2[V ]. Moreover, it is well-known ([9]) that B is chordal bipartite. Thus, ev-
ery strongly chordal graph is a half-square of some chordal bipartite graph,
namely of its vertex-clique incidence bipartite graph. ⊓⊔

Testing if G is strongly chordal can be done in O(min{n2,m logn}) time
([9,24,31]). Assuming G is strongly chordal, all maximal cliques Q1, . . . , Qq

of G can be listed in linear time (cf. [13,31]); note that q ≤ n. So, Theorem 6
implies:

Corollary 3 Half-Square Of Chordal Bipartite can be solved in time
O(min{n2,m logn}), where n and m are the vertex and edge number of the in-
put graph, respectively. A chordal bipartite half-root, if any, can be constructed
in the same time complexity.

In the rest of this section, we give another proof for a characterization of
half-squares of trees found in [27]. Note that half-squares of trees generalize
trees: Let G = (V,EG) be a tree. Then the subdivision T = (V,EG, ET ) of G
is also a tree and G = T 2[V ] (cf. Proposition 1). Thus, trees are half-squares
of some trees. But half-squares of trees are more general.

A block graph is one in which every maximal 2-connected subgraph (a
block) is a complete graph; equivalently, a block graph is a chordal graph
without induced K4 − e, a K4 minus an edge. In particular, trees are block
graphs.

Theorem 7 ([27]) A graph is half-square of a tree if and only if it is a block
graph.

Proof Let T = (V,W,ET ) be a tree. By symmetry, we only consider the half
square T 2[V ]. By Theorem 6, T 2[V ] is chordal. Since T has no cycle, T 2[V ]
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cannot contain K4 − e as an induced subgraph: for, if {a, b, c} and {b, c, d}
are the two triangles of an induced K4 − e in T 2[V ], then {a, b, c} ⊆ NT (w1)
and {b, c, d} ⊆ NT (w2) for some w1, w2 ∈ W , and b, c, w1, w2 would induce a
4-cycle in T . Thus, T 2[V ] is a block graph.

Conversely, let G = (V,EG) be a (connected) block graph. Then, as the
maximal cliques in G are exactly the blocks of G, the vertex-clique incidence
bipartite graph B(V, C(G), EB) of G is a tree. Thus, block graphs are half-
squares of trees. ⊓⊔

7 Conclusions

Until recently, only half-squares of planar bipartite graphs (the map graphs)
have been investigated, and the most considered problem is if it is possible to
recognize these graphs faster and simpler than Thorup’s O(n120)-time algo-
rithm.

In this paper, we initiate an investigation of half-squares of not necessarily
planar bipartite graphs. We have shown the first NP-hardness result, namely
that recognizing if a graph is half-square of a balanced bisplit graph is NP-
complete. For classical subclasses of tree convex bipartite graphs such as star
convex and star biconvex, convex and biconvex, and chordal bipartite graphs,
we have given good structure characterizations for their half-squares. These
structural results imply that half-squares of these restricted classes of tree
convex bipartite graphs can be recognized efficiently.

Recall that chordal bipartite graphs form a subclass of tree biconvex bi-
partite graphs ([16,22]), and that half-squares of chordal bipartite graphs can
be recognized in polynomial time (Corollary 3), while the complexity of rec-
ognizing half-squares of tree (bi)convex bipartite graphs is unknown. So, an
obvious question is: what is the computational complexity of Half-Square
Of Tree (Bi)convex?
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