
ar
X

iv
:1

50
3.

08
07

8v
1

 [
cs

.D
S]

 2
7

M
ar

 2
01

5

Parameterized Complexity of Asynchronous

Border Minimization∗

Robert Ganian1, Martin Kronegger1, Andreas Pfandler1,2,

and Alexandru Popa3

1Vienna University of Technology, Vienna, Austria

firstname.lastname@tuwien.ac.at

2University of Siegen, Siegen, Germany

3Nazarbayev University, Astana, Kazakhstan

alexandru.popa@nu.edu.kz

March, 2015

Abstract. Microarrays are research tools used in gene discovery as well
as disease and cancer diagnostics. Two prominent but challenging problems
related to microarrays are the Border Minimization Problem (BMP) and the
Border Minimization Problem with given placement (P-BMP).

In this paper we investigate the parameterized complexity of natural vari-
ants of BMP and P-BMP, termed BMPe and P-BMPe respectively, under
several natural parameters. We show that BMPe and P-BMPe are in FPT
under the following two combinations of parameters: 1) the size of the al-
phabet (c), the maximum length of a sequence (string) in the input (ℓ) and
the number of rows of the microarray (r); and, 2) the size of the alpha-
bet and the size of the border length (o). Furthermore, P-BMPe is in FPT
when parameterized by c and ℓ. We complement our tractability results with
corresponding hardness results.

1 Introduction

DNA and peptide microarrays [3, 12] are important research tools used in gene discovery,
multi-virus discovery as well as disease and cancer diagnosis. Apart from measuring the
amount of gene expression [18], microarrays are an efficient tool for making a qualitative

∗Supported by the Austrian Science Fund (FWF): P25518-N23 and P26696, and the German Research
Foundation (DFG) under grant ER 738/2-1.

1

http://arxiv.org/abs/1503.08078v1

PSfrag replacements

S = ACGTA

e1 =

e2 =

e3 =

e4 =

e5 =

M1

M2

M3

M4

M5

A
A

A A

C

C

CC

C

G

T
T

T

AC

CACT

TA

unmasked region

masked region

p = CT

(a)

(b)

(c)

(d)

A

C

G

T

D

ε1
ε2
ε3
ε4

Figure 1: Asynchronous synthesis of a 2 × 2 microarray. The deposition sequence D = CTAC
corresponds to four masks M1, M2, M3, and M4. The masked regions are shaded
and the border between the masked and unmasked regions is represented by bold lines.

statement about the presence or absence of biological target sequences in a sample. For
example, peptide microarrays are used for detecting tumor biomarkers [2, 16, 19].

A microarray is a plastic or glass slide consisting of thousands of sequences of nu-
cleotides called probes that are assigned to one cell in the array. The synthesis pro-
cess [10] consists of two components: probe placement and probe embedding. In the probe
placement, the goal is to determine an assignment of each probe to a unique cell of the
array. If the placement is given one has to create the sequences at their respective cells
(probe embedding). This can be achieved with help of the following two operations: It is
possible to mask a certain set of cells. Furthermore, one can append a certain nucleotide
to the probes in all those cells which are currently unmasked. Essentially, the nucleotides
are represented as characters and the probes as strings. In probe embedding we want
to find a common supersequence of all probes, called the deposition sequence, and a
sequence of 2D arrays describing the masks. The cells of a mask can be either masked
(opaque) or unmasked (transparent) allowing the deposition of the nucleotide associated
with the mask. For any cell, the concatenation of the nucleotides for which the cell is
transparent has to match the probe in that cell of the microarray. See Figure 1 for an
example [15].

Due to diffraction, the cells on the border between the masked and the unmasked
regions are often subject to unintended illumination [10], and can compromise experi-
mental results. Therefore, unintended illumination should be minimized. The magnitude
of unintended illumination can be measured by the border length of the masks used,
which is the number of borders shared between masked and unmasked regions, e.g., in
Figure 1, the border length of M1,M3,M4 is 2 and M2 is 4 which yields a total border
length of 10.

The problem of finding both the placement and the embedding is termed the Border
Minimization Problem (BMP). If the placement is given and the task is to find only the
embedding, we speak of P-BMP. We refer the reader to Section 2 for formal definitions
of BMP and P-BMP.

Variants of border minimization. In this paper we consider the exhaustive vari-
ants of BMP and P-BMP, termed BMPe and P-BMPe respectively. The difference is
that in P-BMPe (and, consequently, in BMPe) we assume that a mask is always applied

2

c or c, r c, ℓ c, ℓ, r c, o

P-BMPe paraNP-h (Prop. 2) FPT (Prop. 4) FPT (Prop. 4) FPT (Thm. 4)
BMPe paraNP-h (Thm. 1) open FPT (Thm. 3) FPT (Thm. 5)

Table 1: Overview of results.

exhaustively (we call this the exhaustive rule). More precisely, when a mask that synthe-
sizes a character c is applied, the mask has a transparent cell wherever the corresponding
sequence begins with the character c.

Without this assumption it is possible to artificially increase the length of the depo-
sition sequence which, as a consequence, also increases the length of the sequence of
masks. In most application scenarios this is undesirable, since applying a mask requires
an additional cycle of work that causes a waste of material and can also introduce new
errors. A second advantage of these exhaustive variants is that they allow the concise
description of solutions: a solution to P-BMPe is fully characterized by the deposition
sequence, while for P-BMP it is also necessary to explicitly describe each mask in the
sequence. To clarify, we remark that an optimal exhaustive solution need not always be
an optimal solution for P-BMP (or BMP): there are cases where the border length can
increase.

We illustrate the usefulness of the assumption by a simple example. In the P-BMPe

instance a|b|a, this assumption indeed helps to reduce the number of masks without
increasing the border length. A non-exhaustive optimal solution might work on the left
a first, while an exhaustive optimal solution works on both a concurrently. Even though
the border length is in both cases 4, the non-exhaustive case could require an additional
mask.

Our results. Our results are summarized in Table 1. In this paper we investigate
the parameterized complexity of the BMPe and P-BMPe problems under several natural
parameters. First of all, throughout this work we consider the number of available nu-
cleotides c (i.e., the alphabet size) as a parameter. Notice that this assumption does not
impose a serious restriction, since in practice the number of available nucleotides is very
limited (or even constant). Orthogonal to this assumption we explore the parameterized
complexity of the BMPe and P-BMPe problem with respect to three natural parameters,
i.e., the maximum length of a sequence in the array (ℓ), the maximum border length
cost (o), and the maximum number of rows in the array (r). Since errors become more
likely as the length of the sequence grows, the length of the constructed probes will be
rather limited. Notice that the parameter o models the cost of a solution and hence is
also a natural parameter. Finally, with the maximum number of rows r the shape of the
array is restricted in the sense that the one dimension does not grow arbitrarily. This is,
in particular, interesting because it allows to generalize from the one-dimensional case
studied in [17].

More precisely, we show fpt-algorithms for BMPe and P-BMPe if we are given either
c, ℓ, r or c, o as parameters. We complement these results with parameterized intractabil-

3

ity results, i.e., by showing paraNP-hardness. We use a polynomial time reduction from
P-BMPe to BMPe to build upon the result that P-BMPe parameterized by c and r is
paraNP-hard1 and obtain hereby paraNP-hardness for BMPe parameterized by c and r.
Notice that with the exception of BMPe parameterized by c and ℓ, we obtain a full
parameterized complexity map of the two considered problems with respect to all addi-
tional parameters considered in this paper. We furthermore provide a reduction relating
the complexity of BMPe parameterized by c and ℓ to k-Balanced Partition on grids,
a well-studied problem whose parameterized complexity on grids is open (Proposition 3).

The rest of the paper is organized as follows. In Section 2 we introduce the problems
formally and give preliminaries. Then, in Section 3 we show the reduction from P-BMPe

to BMPe. Section 4 introduces the fpt-algorithms and, finally, in Section 5 we present
conclusions and open problems.

2 Preliminaries

For n ∈ N, we use [n] to denote the set {1, . . . , n}. For two sequences s1, s2, we use s1 ·s2
to mark their concatenation.

The microarray has size r ×m, where r is the number of rows and m is the number
of columns. The multiset of input sequences (also called probes) is denoted by S =
{s1, s2, . . . , sr·m} and the input alphabet by Σ. Moreover, let c = |Σ|. For any sequence
si, we denote the length of the sequence by ℓi and the t-th character of a sequence si by
si[t]. We use ℓ for the maximum length of the probes, i.e., ℓ = maxi∈[r·m] ℓi. Two cells of
the array v1 = (x1, y1) and v2 = (x2, y2) are said to be neighbors if |x1−x2|+|y1−y2| = 1.
For each cell v, we denote the set of neighbors of v by N (v).

In order to give the formal definition of BMP, we introduce several notions related to
the synthesis process.

Definition 1. A placement of the probe sequences is a bijective function ϕ that maps
each probe sequence to a unique cell in the array.

Definition 2. A deposition sequenceD for a set of sequences S is a sequence of characters
which is a common supersequence of all sequences in S.

Definition 3. An embedding of a sequence si into a deposition sequenceD is a length-|D|
sequence εi over alphabet Σ ∪ {−} such that:

1. εi contains precisely |si| characters other than “−” occurring at positions εi[u1],
εi[u2], . . . , εi[u|si|],

2. u1 is the minimum position such that εi[u1] = si[1],

3. for 2 ≤ j ≤ |si|, uj is the minimum position such that εi[uj] = si[j] and uj−1 < uj.

1Although in [17] only NP-hardness is proven for P-BMP, the reduction can also be used to show
paraNP-hardness for P-BMPe when parameterized by c and r.

4

Informally, εi captures how a sequence is built (or, equivalently, deleted) by the de-
position sequence; notice that due to the exhaustive rule, the embedding is uniquely
determined by the deposition sequence. An embedding of a set of probes S into a depo-
sition sequence D is then denoted by εD = {ε1, ε2, . . . , ε|S|}. Note that we will drop the
subscript when the associated deposition sequence is clear from the context. The final
key notion we need are masks.

Definition 4. A mask M (for some character c) is a 2D-array such that M(i, j) is
either c or a space “−” (here the space means that the character is not deposited into
this cell).

The sequence of masks associated with a deposition sequence D and a placement ϕ

is ω = M1, . . . ,M|D| where Mi(a, b) = εϕ−1(a,b)[i] for i ∈ [|D|]. Notice that due to the
exhaustive rule, a mask for character c is always maximal with respect to c, i.e., there
is no “−” in the mask that could be replaced by c. We introduce now the border length
of a given placement of the probes in the array, which is the value we aim to optimize.

Definition 5. Let borderD(si, sj) be the Hamming distance between εi and εj (with
respect to deposition sequence D). The border length of a placement ϕ and a deposition
sequence D is then defined as the sum of borders over all pairs of neighboring probe
sequences

BL(ϕ,D) =
∑

∀i, j ∈ N : i < j < |S|
∧ ϕ(sj) ∈ N (ϕ(si))

borderD(si, sj). (1)

We can also equivalently define border length in terms of the border length of all the
masks.

Definition 6. For any mask M of deposition character x, the border length of M,
denoted by BL(M), is defined as the number of pairs of neighboring cells (i1, j1) and
(i2, j2) such that M(i1, j1) = x and M(i1, j1) 6= M(i2, j2). For a placement and de-
position sequence that corresponds to a sequence of masks M1, M2, · · · , M|D|, we
let

BL(ϕ,D) =

|D|∑

h=1

BL(Mh) (2)

The BMPe and the P-BMPe problem are defined as follows.

Problem 1. In the BMPe problem, we are given r,m ∈ N and a multiset of r · m
sequences S. The objective is to find a placement ϕ and a deposition sequence D so that
BL(ϕ,D) is minimized.

Problem 2. In the P-BMPe problem, we are given r,m ∈ N and a multiset of r · m
sequences S and a placement ϕ. The objective is to find a deposition sequence D so that
BL(ϕ,D) is minimized.

5

For a set π ⊆ {c, r, ℓ, o}, we denote by BMPe
π (P-BMPe

π) the BMPe (P-BMPe) problem
parameterized by π. For a problem BMPe

π (P-BMPe
π) where o ∈ π, we assume that an

upper bound on the border length o is additionally given in the input and only solutions
with minimum border length ≤ o are admitted.

We conclude this section with some useful observations. A deposition sequence D is
called redundant if it contains a character D[i] such that εj [i] = “−” for each εj ∈ ε.
Note that for any redundant deposition sequence D and any placement ϕ, it holds that
BL(ϕ,D) = BL(ϕ,D′), where D′ is obtained by deleting the redundant character D[i].
We say that a deposition sequence D is good if it is not redundant.

Observation 1. Let (ϕ,D) be such that BL(ϕ,D) is minimized for some (S, r,m). If D
is redundant, then there exists a subsequence D′ of D such that BL(ϕ,D′) = BL(ϕ,D)
and D′ is good.

As a consequence, when searching for optimal solutions of these problems it suffices
to consider only good deposition sequences. Aside from the trivial (quadratic) algorithm
for computing the border length for a fixed deposition sequence and placement, we will
utilize another algorithm which will in some cases yield better running times:

Proposition 1. For any given (ϕ,D,S, r,m), there exists an algorithm which computes
BL(ϕ,D) in time O(|S|+ p2 · |D|), where p is the number of distinct sequences in S.

Proof. The algorithm proceeds in four steps. First, in time O(|S|) it finds all unique
sequences in S and stores them in a set Q along with a mapping η : S → Q which maps
sequences from S to their representative in Q. Second, in time O(p2 · |D|) it computes
and stores borderD(q1, q2) for each q1, q2 ∈ Q. Third, in time O(|S|) for each sequence
s ∈ S it computes the set Rs = ϕ−1(N (ϕ(s))) of neighboring sequences. Finally, in time

O(|S|) it computes 1
2

∑

∀s∈S,r∈Rs

borderD(η(s), η(r)) which is easily seen to be equal to

BL(ϕ,D).

2.1 Parameterized Complexity

Parameterized algorithmics is a promising approach to obtain efficient algorithms for
fragments of computationally hard problems. The aim is to find a parameter that de-
scribes the structure of the instance such that the combinatorial explosion can be con-
fined to this parameter. In a parameterized complexity analysis the runtime of an algo-
rithm is studied with respect to the input size n and a parameter k ∈ N (or a combination
of parameters). For a more detailed introduction we refer to the literature [4, 9].

Formally, a parameterized problem is a subset of Σ∗×N, where Σ is the input alphabet.
If a combination of parameters k1, . . . , kl is considered, the second component of an
instance (x, k) is given by k =

∑
1≤i≤l ki. The class FPT (fixed-parameter tractable)

contains all problems that can be decided by an algorithm running in f(k) · nO(1) time,
where f is a computable function and n is the input size. Such algorithms are often
called fixed-parameter tractable (fpt).

6

Let L1 and L2 be parameterized problems, with L1 ⊆ Σ∗
1 × N and L2 ⊆ Σ∗

2 × N. A
parameterized reduction (or fpt-reduction) from L1 to L2 is a mapping P : Σ∗

1 × N →
Σ∗
2 × N such that (1) (x, k) ∈ L1 iff P (x, k) ∈ L2; (2) the mapping can be computed by

an fpt-algorithm with respect to parameter k; (3) there is a computable function g such
that k′ ≤ g(k), where (x′, k′) = P (x, k).

There is a variety of classes capturing parameterized intractability. For our results,
we require only the class paraNP [8], which is defined as the class of problems that
are solvable by a nondeterministic Turing-machine in fpt-time. We will make use of
the characterization of paraNP-hardness given by Flum and Grohe [9], Theorem 2.14:
any parameterized problem that remains NP-hard when the parameter is set to some
constant is paraNP-hard. Showing paraNP-hardness for a problem rules out the existence
of an fpt-algorithm under the usual complexity theoretic assumptions.

3 Hardness

In this section we overview and present new (parameterized) intractability results for
BMPe and P-BMPe with respect to several combinations of parameters. As our starting
point, we notice that the NP-hardness proof for P-BMP of Popa, Wong and Yung [17]
can be straightforwardly adapted to P-BMPe

c,r.

Proposition 2 (cf. [17, Theorem 1]). P-BMPe
c,r is paraNP-hard.

Proof. Observe that the reduction used in the proof of Theorem 1 in [17] constructs
instances of BMP which only contain 3 characters. Furthermore, while the instances are
formally defined as square arrays, all rows below the 5-th contain only a dummy character
$ and hence can be omitted without loss of generality. Finally, by Lemma 2 in [17]
it follows that optimal exhaustive solutions for these BMP instances are also optimal
solutions (in fact, it is these exhaustive solutions that are used to prove Theorem 1
in [17]).

The hardness result for BMPe relies on a new polynomial-time reduction from P-BMPe

to BMPe. We believe that this reduction is an interesting result on its own, as it is one of
the first results that relates the complexity of these two problems in a general setting. We
begin by showcasing a tool for forcibly “separating” any optimal deposition sequence.

Lemma 1. Let I = (S, r,m) be an instance of BMPe such that each s ∈ S consists
of a prefix spre ∈ Σ∗

pre, a fixed separator sep ∈ (x∗y∗)∗ and a suffix ssuf ∈ Σ∗
suf, where

Σpre,Σsuf, {x, y} form a partition of Σ. Let u ≥ 8 ·maxs∈S(|spre|)+ 8 ·maxs∈S(|ssuf|)+ 1.
If sep = (xr·m·u · yr·m·u)r·m·u then every optimal good deposition sequence has the form
Dpre · sep ·Dsuf where Dpre ∈ Σ∗

pre and Dsuf ∈ Σ∗
suf.

Proof. Notice that r · m · u − 1 forms a trivial upper-bound on the border length of
I, as witnessed by any deposition sequence of the form Dpre · sep · Dsuf (regardless of
placement). Indeed, there are at most 4r ·m pairs of neighboring cells in the array, and
for each such pair the border length is bounded by the hamming distance between the

7

embeddings placed on these cells, where any deposition sequence of this form yields a
bound of 2 ·maxs∈S(|spre|) + 2 ·maxs∈S(|ssuf|).

Consider any optimal good deposition sequence D and let p ∈ Σpre, q ∈ Σsuf. Con-
sider for a contradiction that qp is a subsequence of D. Then pre · qp would also be a
subsequence of D; however, each mask for a character in pre would yield an increase of
the border length by at least 1, since the array contains a cell in the array where this
mask cannot be applied (specifically, this is the cell containing the sequence beginning
with p). This would already break the upper-bound provided above. hence qp cannot be
subsequence of D.

Next, consider for a contradiction that qy is a subsequence of D. Then sep · qy =
(xr·m·uyr·m·u)r·m·u ·qy would also be a subsequence of D. This means that there exist two
embeddings ε1, ε2 which differ in the positions of their first, second, third,. . . ,(r ·m · u)2-
th y characters. Let offsetx be the number of masks for x which occur between the
position of the first y character in ε1 and the first y character in ε2; notice that 0 <

offsetx ≤ r ·m · u. Each mask for x in the offset has a border length of at least 1, since
there is a sequence s2 in the array which begins with y. If offsetx < r·m·u then the upper-
bounded on the border length of D is broken by the fact that that xr·m·uyr·m·u occurs
(r ·m·u)-many times in succession in the deposition sequence, and each occurrence would
necessarily increase the border length by at least 1. On the other hand, if offsetx = r ·m·u
then the upper-bound on the border length would be broken already by all the masks
for x which occur in the offset.

By a symmetric argument, we obtain that xp also cannot occur as a subsequence of
D. Hence the deposition sequence must have the form Dpre · sep ·Dsuf.

Observe that “flipping” the array horizontally or vertically preserves the optimal bor-
der length but formally changes the placement ϕ. The purpose of the following key
lemma is to provide a tool to fix the optimal positions of probes in the array; to this
end, we will be considering placements which are unique up to these simple symmetries.

Lemma 2. Let a, b, x, y ∈ Σ and r,m, t ∈ N. Consider an r × m array, and probes
S = {ai·t · sep · bj·t | i ∈ [r] and j ∈ [m]}. Then:

1. the unique optimal placement ϕ0 (up to simple symmetries) places each probe ai·t ·
sep · bj·t in cell (i, j),

2. the unique optimal good deposition sequence is D0 = ar·t · sep · bm·t, and

3. for any placement ϕ 6= ϕ0 (except for symmetries of ϕ0) and any deposition se-
quence D, it holds that BL(ϕ,D) ≥ BL(ϕ0,D0) + t.

Proof. We proceed in two steps. First, we compute the border length of (ϕ0,D0). Then,
we establish that ϕ0 is the only optimal placement up to the above-mentioned simple
symmetries, and that other placements yield a border length which is lower-bounded by
t+BL(ϕ0,D0). Notice that D0 is the only optimal good deposition sequence regardless
of placement by Lemma 1.

Claim. BL(ϕ0,D0) = ((r − 1) ·m+ r · (m− 1)) · t.

8

s1,1 s1,2 s1,3 · · · s1,m−2 s1,m−1 s1,m
s2,1 s2,2 s2,3 · · · s2,m−2 s2,m−1 s2,m
...

...
... · · ·

...
...

...

sr−1,1 sr−1,2 sr−1,3 · · · sr−1,m−2 sr−1,m−1 sr−1,m

sr,1 sr,2 sr,3 · · · sr,m−2 sr,m−1 sr,m

Figure 2: An r ×m array. The corners and the perimeter are highlighted in gray.

Proof of Claim: For character a, we start with t-many masks that contain character a
in each cell. Notice that these masks have border length zero. Then we continue with
t-many masks that have character “−” in the first row and character a everywhere else.
Each of these masks has border length m. Next we use t-many masks, where the first two
rows contain character “−”, and so on. In total, we obtain a border length of (r−1) ·m ·t
for character a. For character x and y, all masks contain character x or y in each cell and
hence all have a border length of zero. Finally, for character b the procedure is analogous
– we simply swap columns and rows. This gives a border length of r · (m − 1) · t for
character b. �

Now consider any optimal solution (ϕ,D). The fact that D = D0 follows from Lemma
1. We now proceed to the core of our proof. Notice that for each pair of probes s1, s2 ∈ S
it holds that borderD0(s1, sj) ≥ t. We say that s1, s2 are similar if borderD0(s1, sj) = t.
Since the number of pairs of cells which are neighbors in an r × m array is exactly
(r − 1) · m + r · (m − 1) and BL(ϕ0,D0) = ((r − 1) · m + r · (m − 1)) · t, any optimal
placement ϕmay only place probes which are similar into neighboring cells. Furthermore,
if a placement ϕ is not optimal, then BL(ϕ,D) ≥ t + BL(ϕ0,D0) since for any s1, s2
which are not similar it holds that borderD0(s1, sj) ≥ 2t.

Let us denote the cells which have at most 3 neighbors in the array the perimeter
and the cells which have at most 2 neighbors the corners. For the final part of the
proof, we use the inductive assumption that ϕ0 is the unique optimal placement for all
r′ × m′ arrays such that r′ < r and m′ < m as long as the placement of at least two
corners is fixed. Furthermore, we assume that min(r,m) > 1; the lemma trivially holds
for min(r,m) = 0, and is easily seen that min(r,m) = 1 the optimal placement must be
an ascending sequence, which is unique if its corners/endpoints are fixed.

For each s ∈ S, let sim(s) denote the set of probes which are similar to s. Notice that
there are precisely four probes such that |sim(s)| = 2 and precisely 2r + 2m− 4 probes
such that |sim(s)| = 3, and there is a unique (up to symmetry) placement of these probes
in the corners and perimeter so that similar probes are placed on neighboring cells (see
Fig. 2). Let S0 contain all the probes placed into the perimeter.

Notice that the placement of these probes on the perimeter precisely matches ϕ0, and
the placement of probes such that |sim(s)| ≤ 2 in S ′ = S − S0 is fixed by the placement
of S0 in the perimeter.

If min(r,m) = 2 then this concludes the proof. If min(r,m) = 3 then the remaining
placement reduces to the placement of S ′ = S−S0 into a one-dimensional array, which is
unique when the corners are fixed. Finally, ifmin(r,m) = 4 then the remaining placement

9

reduces to the placement of S ′ into an (r− 2)× (m− 2) array, which is again unique by
our inductive hypothesis.

With Proposition 2 and Lemma 2, we can proceed to:

Theorem 1. BMPe
c,r is paraNP-hard.

Proof. We provide a reduction from P-BMPe
c,r, which is paraNP-hard by Proposition 2.

Let Σ′ be the language of P-BMPe
c,r, x1, y1, x2, y2 6∈ Σ′ and Σ = Σ′ + {x1, y1, x2, y2}.

From any instance I ′ = (S ′, ϕ′, r,m) of P-BMPe
c,r, we construct an instance I = (S, r,m)

of BMPe
c,r as follows. For each s ∈ S ′ such that ϕ′(s) = (i, j) we put ai·t ·sep1 ·b

j·t ·sep2 ·s
into S, where:

• t > (maxs∈S′ |s| · r ·m)2.

• sep1 = (xr·m·u1
1 yr·m·u1

1)r·m·u1

• sep2 = (xr·m·u2
2 yr·m·u2

2)r·m·u2

• the constants u1, u2 for sep1 and sep2 respectively are sufficiently large so as to
satisfy the condition of Lemma 1; for instance, u2 > 100t3 and u1 > 1000t4.

By Lemma 1 we have that any optimal good deposition sequence for I must have
the form ar·u · sep1 · b

m·u · sep2 ·D
′. Let us now compare an arbitrary solution (ϕ,D) to

(ϕ′,D). By Lemma 2, either ϕ is equivalent to ϕ′ by symmetry, or the border length of
masks for a, x1, y1, b in (ϕ,D) will be at least t greater than the border length of these
masks in (ϕ′,D). However, t was chosen to be sufficiently large to exceed the worst-case
border length of all masks for Σ′. So we conclude that any optimal solution for I must
use a placement which is either the same as or symmetric to ϕ′.

Finally, observe that after the last mask of sep2 is applied, the remainder of I is
equivalent to I ′, and hence D′ is also a solution to I ′.

Theorem 1 and Proposition 2 show that one cannot hope to find an fpt-algorithm for
BMPe or P-BMPe parameterized by any subset of {c, r}. These results complete the
hardness part of our complexity map for BMPe or P-BMPe. For BMPe

c,ℓ it remains open
whether the problem is fixed parameter tractable. Still, we can relate this problem to
k-Balanced Partition, a problem studied well in the literature [1, 5, 6].

In a k-Balanced Partition instance we are given a graph G = (V,E) with |V | = n.
The question is to find a partition of the vertices V into k sets V1, . . . , Vk such that
|Vi| ≤ ⌈n

k
⌉ for all 1 ≤ i ≤ k, and the cut size (i.e., the number of edges {x, y} such

that x ∈ Vi, y ∈ Vj, and i 6= j) is minimized. We remark that, to the best of our
knowledge, the parameterized complexity of k-Balanced Partition parameterized by
k is open on solid rectangular grids [5]. Below we show that k-Balanced Partition

on solid rectangular grids can be reduced to BMPe and hence BMPe is at least as hard
as k-Balanced Partition.

Proposition 3. There is a polynomial time reduction from k-Balanced Partition

on solid rectangular grids to BMPe.

10

Proof. Let G = (V,E) be a solid rectangular grid of size r ×m with |V | = n. Further,
let l, x ∈ N0 such that n = l · k + x and Σ = {c1, . . . , ck}. We construct a probe set
S = {f(i) copies of sequence ci | i ∈ [l]}, where function f(i) = l + 1 if 1 ≤ i ≤ x and
f(i) = l otherwise. It is easy to verify that the placement ϕ of a BMPe solution gives
also a solution to k-Balanced Partition if the characters in Σ are seen as partition
sets V1, . . . Vk.

4 Fpt-Algorithms

In the following sections we discuss fpt-algorithms for several parameters. The first group
focuses on sequences of moderate length and an array whose size is primarily growing
in one dimension, i.e., on the parameters c, ℓ, and r. In contrast, the second group
parameterizes by c and the maximum admissible border length o.

4.1 Fpt-Algorithm for P-BMPe
c,ℓ

Our first algorithm provides a basic introduction to the techniques used later on.

Observation 2. For any instance (S, r,m) of BMPe
c,ℓ, there are at most cℓ unique

sequences in S.

Lemma 3. For any instance (S, r,m) of BMPe
c,ℓ or any instance (S, ϕ, r,m) of P-BMPe

c,ℓ

it holds that |D| ≤ cℓ · ℓ for any good deposition sequence D.

Proof. Assume towards contradiction that there is a good deposition sequence D which
contains |D| > cℓ · ℓ characters. Since the total number of distinct sequences si ∈ S is
bounded by cℓ, the total number of distinct embeddings εi is also bounded by cℓ. Each
embedding εi contains at most ℓ characters in Σ\{−}. Hence by the pigeon-hole principle
there must exist some j ∈ [|D|] such that εi[j] = “−” for all i ∈ [|S|], which implies that
D is not good (contradiction).

At this point we can already prove:

Proposition 4. P-BMPe
c,ℓ is fixed parameter tractable, and there exists an algorithm

for P-BMPe
c,ℓ which runs in time cc

O(ℓ)
|S|.

Proof. By Lemma 3, it suffices to search for deposition sequences of length at most cℓ · ℓ.
We loop through all of the at most cc

ℓ·ℓ such deposition sequences, and for each sequence
D we compute BL(ϕ,D) in time O(|S| + p2 · |D|) by Proposition 1. By Observation 2
and Lemma 3, we obtain that O(|S|+ p2 · |D|) = O(|S| + c3ℓℓ), which altogether yields

the runtime bound of cc
O(ℓ)

|S|.

11

4.2 Fpt-Algorithm for BMPe
c,ℓ,r

We first introduce some notation for our arrays. Given an r×m array A, a column is an
r × 1 sub-array of A. A column placement into a column of A is a mapping ϕ : [r] → S
from the cells of A to the multiset of probes.

Observation 3. For any instance (S, r,m) of BMPe, it holds that there are at most cℓ·r

distinct column placements.

Hence for any fixed r and S, we can enumerate all possible column placements as
ϕ1, ϕ2, . . . , ϕcℓ·r . Observe that, for any two column placements ϕt, ϕt′ , it holds that either
(i) t = t′ and ϕt(x) = ϕt′(x) for all x ∈ [r], or (ii) t 6= t′ and ϕt(x) 6= ϕt′(x) for at least
one x ∈ [r].

Any placement ϕ : s ∈ S 7→ (a ∈ N, b ∈ N) into A can be uniquely decomposed
into a sequence of column placements (ϕi(1), ϕi(2), . . . ϕi(m)) where ϕi(x)(y) = ϕ(x, y)

and i : [m] → [cℓ·r]. The column placement ϕi(j) with j ∈ [m] denotes that the j-th
column of A is of placement i(j). Furthermore, since ϕ is closed under permutation of
non-distinct sequences in S, each column placement can be uniquely identified by an
r-tuple of sequences from S, formally ϕi(x) = (s1, s2, . . . , sr) ⇐⇒ ϕi(x)(y) = sy for all
y ∈ [r].

Next, we prove that when searching for optimal solutions for BMPe it suffices to restrict
ourselves to placements such that identical column placements appear in “consecutive
blocks”.

Lemma 4. Let (S, r,m) be an instance of BMPe, D be a deposition sequence and ϕ

be a placement which decomposes into (ϕi(1), ϕi(2), . . . ϕi(m)). Then if there exist a, b ∈
[m], a + 1 < b, such that ϕi(a) = ϕi(b) but ϕi(a+1) 6= ϕi(b), then BL(ϕ,D) ≥ BL(ϕ′,D),
where ϕ′ decomposes into

(ϕi(1), . . . ϕi(a), ϕi(b), ϕi(a+1), ϕi(a+2), . . . , ϕi(b−1), ϕi(b+1), . . . , ϕi(m)).

Proof. Recall that by Equation 1, BL(ϕ,D) is equal to the sum of Hamming distances
of embeddings borderD(sp, sq) between neighboring sp, sq ∈ S. Since the embeddings,
and hence also the Hamming distances, are the same for BL(ϕ,D) as for BL(ϕ′,D), the
only difference between these values may arise from which sequences are neighbors.

We say that two neighboring cells v1 = (x1, y1) and v2 = (x2, y2) are x-neighbors if
|x1−x2| = 1 and y-neighbors otherwise, i.e., if |y1−y2| = 1; let Nx(v) and Ny(v) contain
the x-neighbors and y-neighbors of v, respectively. Notice that y-neighborhoods are iden-
tical between ϕ and ϕ′, since the latter is obtained by permuting whole columns of the
former. On the other hand, consider the difference between x-neighboring sequences in ϕ

and ϕ′. Notice that ϕ′ is obtained by a simple permutation of the column placements of ϕ
and in particular these differ only in the borders between {ϕi(a), ϕi(a+1), ϕi(b−1), ϕi(b), ϕi(b+1)}.
For convenience, we use bd to denote the total “horizontal” border between two column
placements; formally:

bd(u, t) =
∑

∀x ∈ [r]

borderD(ϕi(u)(x), ϕi(t)(x)).

12

Now we can express the difference between the border lengths of both placements as
BL(ϕ′,D) = BL(ϕ,D)+bd(a, b)+bd(b, a+1)+bd(b−1, b+1)−bd(a, a+1)−bd(b−1, b)−
bd(b, b+1). Since ϕi(a) = ϕi(b), it holds that bd(a, b) = 0 and bd(b, a+1) = bd(a, a+1).
Furthermore, since the triangle inequality holds for Hamming distances (and borderD
is defined as a Hamming distance between two sequences), we obtain bd(b− 1, b+ 1)−
bd(b− 1, b) − bd(b, b+ 1) ≤ 0. Hence we conclude that BL(ϕ′,D) ≤ BL(ϕ,D).

We say that a placement ϕ is consecutive if it decomposes into column placements
(ϕi(1), ϕi(2), . . . ϕi(m)) where for each ϕi(a), ϕi(b) such that ϕi(a) = ϕi(b) and a < b it holds
that ϕi(a) = ϕi(c) for all a < c < b.

Corollary 1. For any BMPe instance (S, r,m), there exists an optimal solution (ϕ,D)
such that ϕ is consecutive.

Proof. Let (ϕ′,D) be a solution for (S, r,m). We can repeatedly apply Lemma 4 until
we obtain a consecutive placement—notice that the number of times Lemma 4 can be
applied is bounded by m.

The next algorithm uses an Integer Linear Programming (ILP) subroutine. ILP is a
well-known framework for formulating problems and a powerful tool for the development
of fpt-algorithms for optimization problems. In following we only give a brief overview
of the framework before we present the algorithm.

Definition 7 (p-Variable Integer Linear Programming Optimization). Let A ∈ Z
q×p, b ∈

Z
q×1 and c ∈ Z

1×p. The task is to find a vector x ∈ Z
p×1 which minimizes the objective

function c × x̄ and satisfies all q inequalities given by A and b, specifically satisfies
A · x̄ ≥ b. The number of variables p is the parameter.

Lenstra [14] showed that p-ILP, together with its optimization variant p-OPT-ILP

(defined above), are in FPT. His running time was subsequently improved by Kannan
[13] and Frank and Tardos [11] (see also [7]).

Theorem 2 ([7, 11, 13, 14]). p-OPT-ILP can be solved using O(p2.5p+o(p) ·L) arithmetic
operations in space polynomial in L, L being the number of bits in the input.

We are now ready to prove the main theorem of this subsection.

Theorem 3. BMPe
c,ℓ,r is fixed parameter tractable, and there exists an algorithm for

BMPe
c,ℓ,r which runs in time cc

O(ℓ·r)
· |S|.

Proof. We give a multi-step algorithm for BMPe
c,ℓ,r:

1. We branch on the choice of deposition sequence D. By Observation 1, it suffices
to consider only good deposition sequences, and by Lemma 3 the number of good
deposition sequences is bounded by cc

O(ℓ)
.

13

2. In view of Corollary 1, we branch on which column placements appear in ϕ and the
order in which they appear. Formally, we construct the set of all distinct column
placements T = {ϕ1, . . . }, branch on all nonempty subsets T ′ ⊆ T . We then branch
on all mappings f : [t] → [|T |] where t = |T ′|. Since |T | ≤ cℓ·r by Observation 3,

there are at most O(cc
O(ℓ·r)

) choices of f .

For each fixed f , we hence obtain a template Qf = (ϕf(1), ϕf(2), . . . , ϕf(t)). A consecu-
tive placement ϕ matches a template Qf if there exists a multiplicity function h : t → N

such that ϕ decomposes into (h(1) · ϕf(1), h(2) · ϕf(2), . . . , h(t) · ϕf(t)) where x · ϕz is
shorthand for x consecutive copies of ϕz.

3. We compute the following constants:

• For each column placement ϕi = (s1, s2, . . . , sr) ∈ T ′ we compute the total
cost of its “vertical borders” bdverti as follows:

bdverti =
∑

∀z ∈ [r − 1]

borderD(sz, sz+1).

• We also compute the total “horizontal cost”, which depends only on D and
Qf (since identical column placements do not have horizontal borders), as
follows:

costh =
∑

∀z ∈ [r],w ∈ [t− 1]

borderD(ϕ
−1
f(w)(z), ϕ

−1
f(w+1)(z)).

• For each distinct s ∈ S let #s contain the number of occurrences of s in S.

• For each distinct s ∈ S and ϕi let #
i
s contain the number of occurrences of s

in ϕi.

4. We construct and solve an p-OPT-ILP instance I to compute the multiplic-
ity function h which contains the “vertical cost” variable costv, the variables
h(1), . . . , h(t) and the following constraints:

a) For each distinct s ∈ S: #s =
∑

∀z ∈ [t]

h(z) ·#z
s.

b) ∀z ∈ [t] : h(z) > 0.

c) costv =
∑

∀z ∈ [t]

h(z) · bdvertz .

d) Minimize costv.

The intuition of the constraints is as follows. Constraints of type a) ensure that
the choice of multiplicities does not introduce too many/too few occurrences of
some probe s in the array. By the constraints of type b) it is ensured that the
multiplicities are strictly positive. With help of constraint c) the vertical border
cost for a certain choice of multiplicities is computed, which is in turn minimized
by constraint d).

14

5. Finally, for each choice of D, T ′ and f we store costv + costh and the table of
values h = (h(1), . . . , h(t′)) from the optimal solution of I. After the branching
is complete, we choose an arbitrary branch with minimum costv + costh and read
the values D, f, h associated with this branch. The algorithm then outputs (ϕ,D)
where ϕ is computed from the template Qf given by f and the multiplicity function
given by h.

Running time. The number of branches processed after Step 1 and Step 2 is bounded
by cc

O(ℓ)
2c

ℓ·r
cc

O(ℓ·r)
= cc

O(ℓ·r)
and this branching can be initialized in O(|S|) time. Step 3

and the construction of I can both also be completed in linear time, assuming multisets
are implemented via a multiplicity function. I contains t ≤ cℓ·r variables and has size
linear in S, and can thus be solved in time at most cc

O(ℓ·r)
· |S| by Theorem 2. The time

required to process Step 5 is easily seen to be dominated by Step 1 and 4.

Correctness. Assume for a contradiction that the algorithm outputs (ϕ,D) but there
exists an optimal solution (ϕ′,D′) such that BL(ϕ′,D′) < BL(ϕ,D). Consider the tem-
plate Q′

f and multiplicity function h′ associated with ϕ′. During the computation of our
algorithm, the branch of Q′

f and D′ had correctly computed the cost′h component of
BL(ϕ′,D′). Furthermore, since (ϕ′,D′) is optimal, we obtain that h′ must be an optimal
solution for the p-OPT-ILP instance I ′ constructed for this branch; let cost′v be the
output of I ′. Then BL(ϕ′,D′) = cost′v + cost′h implies that cost′v + cost′h < costv + costh,
which contradicts the assumed choice of branch D and Qf in Step 5.

4.3 Fpt-Algorithm for P-BMPe
c,o

Given an r×m array, a mask M is called trivial if M(i, j) 6= “−” for all i ∈ [r], j ∈ [m].
Given a deposition sequence D, we say that a subsequence D′ of D is primal if it is
obtained from D by deleting all characters which are associated with a trivial mask.
Notice that the border length of each mask associated with each character in a primal
sequence is at least one, and the border length of all trivial masks is 0. For the purpose
of providing concise running times, we use n to denote the size of the input.

Observation 4. For any instance of P-BMPe and BMPe, the number of primal se-
quences is bounded by

∑o
i=1 c

i ≤ o · co.

Additionally, since the number of “borders” between distinct probes is bounded from
below by the number of distinct probes, we obtain:

Observation 5. Given a multiset S of probes. For any Yes-instance of P-BMPe and
BMPe over S, the number of distinct probes in S is upper-bounded by o+ 1.

Lemma 5. For any instance of P-BMPe and BMPe, any primal sequence D′ corresponds
to at most one good deposition sequence D. Furthermore, there exists an algorithm which
runs in time O(o ·n) and which either computes this D from D′ or correctly outputs that
no such D exists.

15

Proof. We provide the polynomial time algorithm to compute D from D′; uniqueness
follows by the fact that the algorithm is deterministic.

Algorithm(D′)
1 (i := 1)
2 Check whether a trivial mask for any character x ∈ Σ can be applied.
3 If not, go to 5.
4 If yes, apply it, set D := D + x, and go to 2.
5 Apply the mask for D′[i]. Set D := D +D′[i].
6 i := i+ 1.
7 If (i ≤ |D′|) then go to 2.
8 Check whether a trivial mask for any character x ∈ Σ can be applied.
9 If not, go to 11.
10 If yes, apply it, set D := D + x, and go to 8.
11 If there remains a nonempty probe s, then reject.
12 Output D.

The algorithm runs in time O(|D′| ·(c+ |S|·maxs∈S |s|)) = O(o ·n). Correctness follows
from the definition of primal sequences.

Theorem 4. P-BMPe
c,o is fixed-parameter tractable, and there exists an algorithm for

P-BMPe
c,o which runs in time O(oco · (n+ o2)).

Proof. This algorithm builds upon Observation 4. We can branch on all primal sequences.
For each candidate sequence D′ we check whether the primal sequence corresponds to a
deposition sequence D via Lemma 5. For each such D, we compute and store BL(ϕ,D).
Finally, a solution with a minimum BL(ϕ,D) is selected. Observe that an applicable
trivial mask can be found in linear time. Along with Observation 5, this yields a total
runtime of O(oco · (n+ o2)) by Proposition 1 and Lemma 5.

4.4 Fpt-Algorithm for BMPe
c,o

For a multiset S and s ∈ S, we denote by S−s the set of sequences in S which are distinct
from s. An instance (S, r,m, o) of BMPe

c,o is then called s-enveloped if |S−s| ≤ o2.

Lemma 6. Any instance (S, r,m, o) of BMPe
c,o such that r > o and m > o which is not

s-enveloped for any s ∈ S is a no-instance.

Proof. Consider any placement ϕ. For s ∈ S, we say that a column (or row) is s-uniform
(w.r.t. ϕ) if all cells in the column (or row) are only assigned sequences which are not
distinct from s. Furthermore, we say that a column (or row) is uniform if all cells in the
column (or row) are not distinct from some sequence in S.

Each non-uniform column and each non-uniform row contains at least one tuple of
neighboring distinct sequences, which (regardless of D) contributes to an increase of
BL(ϕ,D) by at least 1. Hence any solution (ϕ,D) of (S, r,m, o) must contain at most

16

o rows and at most o columns which are not uniform. Furthermore, if there exists an
s-uniform column (or row) for some s ∈ S, then all other uniform columns (rows) must
also be s-uniform—otherwise ϕ would contain more than o non-uniform rows (columns),
which we have already argued cannot happen.

To complete the proof, consider the possible cells where a sequence which is distinct
from s may appear. Clearly such sequences may only appear in the at most o non-
uniform columns and in the at most o non-uniform rows, and these intersect in at most
o2 cells.

We now consider two specific subcases of the problem before giving the theorem.

Lemma 7. There is an algorithm which solves any instance (S, r,m, o) of BMPe
c,o such

that m > 2o and r > 2o in time O(o3 · co · (n+ o2)).

Proof. By Lemma 6, there is either a sequence s ∈ S which represents the majority of
sequences in S, or (S, r,m, o) is a no-instance; since only at most one quarter of sequences
in S are distinct from s, the sequence s is unique and can be computed in time |S|.

Next, by Corollary 1 (and the symmetric statement for rows), we can assume without
loss of generality that all s-uniform columns and all s-uniform rows are placed consec-
utively in ϕ. Notice that in this case only the first and last o columns and rows can be
non-s-uniform. Since any sequence q distinct from s can only be placed in columns and
rows that are not s-uniform, the number of possibilities for ϕ(q) is bounded by 4o2.

We now summarize the algorithm. First, we find s in time |S|. Second, for each of the
at most o2 sequences q distinct from s we branch on the at most 4o2 possible values of
ϕ(q), resulting in a placement ϕ. Third, for each such choice of ϕ we use the algorithm
for P-BMPe

c,o from Theorem 4 to find an optimal deposition sequence D and store the
obtained BL(ϕ,D). Finally, we choose a tuple (ϕ,D) with a minimum BL(ϕ,D). The
bound on the running time follows from Theorem 4.

Lemma 8. There is an algorithm which solves any instance (S, r,m, o) of BMPe
c,o such

that m > 2o and r ≤ 2o in time n · co
O(o)

.

Proof. By Observation 5, we obtain that the number of distinct column placements is
bounded by or ≤ o2o.

Now we reuse the algorithm given in the proof of Theorem 3 with the only difference
that in Step 1 we branch on primal sequences and compute the corresponding (good)
deposition sequence in polynomial time. The number of primal sequences is bounded
by o · co (Observation 4), the time required to compute the corresponding deposition
sequence is bounded O(o · n) by Lemma 5. For each fixed deposition sequence, the

running time of steps 2–4 of the algorithm in Theorem 3 is bounded by co
O(o)

, and hence
the runtime bound of o2o · (o · n+ n · co

O(o)
) = n · co

O(o)
.

Theorem 5. BMPe
c,o is fixed parameter tractable, and there exists an algorithm for

BMPe
c,o which runs in time n · co

O(o)
.

17

Proof. In case m > 2o and r > 2o we use the algorithm described in the proof of
Lemma 7. In case m > 2o and r ≤ 2o (or, by symmetry, if m ≤ 2o and r > 2o) we
use the algorithm described in the proof of Lemma 8. In case m ≤ 2o and r ≤ 2o we
branch over all of the at most (4o2)! placements ϕ, resulting in at most (4o2)! instances
of P-BMPe

c,o which can be solved individually in time O(oco ·(n+o2)) by Theorem 4.

5 Conclusion

In this work we considered the parameterized complexity of BMPe and P-BMPe, two
fundamental problems related to the optimal design of microarrays, with respect to
combinations of parameters centered around the number of distinct characters c. We
presented fpt-algorithms for both BMPe and P-BMPe if the maximum probe length and
the number of rows are viewed as additional parameters (c, ℓ, r); and if the border length
is the additional parameter (c, o). In addition, we showed that P-BMPe parameterized by
c and ℓ is in FPT. For c, r (and also c alone) we showed paraNP-hardness for both BMPe

and P-BMPe. Hence, under the usual complexity theoretic assumptions, one cannot hope
to find an fpt-algorithm for these settings.

On our agenda for future work is to settle the question whether there is an fpt-
algorithm for BMPe, parameterized by c, ℓ. Another direction for future research is to
study further (structural) parameters for these two problems. Furthermore, in our com-
plexity analysis we plan to consider more sophisticated target functions that take other
criteria in addition to the border length into account.

References

[1] K. Andreev and H. Räcke. Balanced graph partitioning. Theory Comput. Syst.,
39(6):929–939, 2006.

[2] M. Chatterjee, S. Mohapatra, A. Ionan, G. Bawa, R. Ali-Fehmi, X. Wang, J. Nowak,
B. Ye, F. A. Nahhas, K. Lu, S. S. Witkin, D. Fishman, A. Munkarah, R. Morris,
N. K. Levin, N. N. Shirley, G. Tromp, J. Abrams, S. Draghici, and M. A. Tain-
sky. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and
detection on arrays. Cancer Research, 66(2):1181–1190, 2006.

[3] M. Cretich and M. Chiari. Peptide Microarrays Methods and Protocols, volume 570
of Methods in Molecular Biology. Human Press, 2009.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, New York, 1999.

[5] A. E. Feldmann. Balanced Partitions of Grids and Related Graphs. PhD thesis,
ETH Zürich, 2012.

[6] A. E. Feldmann. Fast balanced partitioning is hard even on grids and trees. Theo-
retical Computer Science, 485:61–68, 2013.

18

[7] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In ISAAC, Lecture Notes in Com-
puter Science, pages 294–305. Springer, 2008.

[8] J. Flum and M. Grohe. Describing parameterized complexity classes. Information
and Computation, 187(2):291–319, 2003.

[9] J. Flum and M. Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

[10] S. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas. Light-
directed, spatially addressable parallel chemical synthesis. Science, 251(4995):767–
773, 1991.

[11] A. Frank and É. Tardos. An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

[12] D. Gerhold, T. Rushmore, and C. T. Caskey. DNA chips: promising toys have
become powerful tools. Trends in Biochemical Sciences, 24(5):168–173, 1999.

[13] R. Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

[14] H. Lenstra. Integer programming with a fixed number of variables. Math. Oper.
Res., 8:538–548, 1983.

[15] C. Li, P. Wong, Q. Xin, and F. Yung. Approximating border length for DNA
microarray synthesis. In Proc. 5th TAMC, pages 410–422, 2008.

[16] C. Melle, G. Ernst, B. Schimmel, A. Bleul, S. Koscielny, A. Wiesner, R. Bogumil,
U. Möller, D. Osterloh, K.-J. Halbhuber, and F. von Eggeling. A technical tri-
ade for proteomic identification and characterization of cancer biomarkers. Cancer
Research, 64(12):4099–4104, 2004.

[17] A. Popa, P. W. H. Wong, and F. C. C. Yung. Hardness and approximation of
the asynchronous border minimization problem - (extended abstract). In TAMC,
Lecture Notes in Computer Science, pages 164–176. Springer, 2012.

[18] D. K. Slonim, P. Tamayo, J. P. Mesirov, T. R. Golub, and E. S. Lander. Class
prediction and discovery using gene expression data. In Proc. 4th RECOMB, pages
263–272, 2000.

[19] J. B. Welsh, L. M. Sapinoso, S. G. Kern, D. A. Brown, T. Liu, A. R. Bauskin, R. L.
Ward, N. J. Hawkins, D. I. Quinn, P. J. Russell, R. L. Sutherland, S. N. Breit,
C. A. Moskaluk, H. F. Frierson, Jr., and G. M. Hampton. Large-scale delineation
of secreted protein biomarkers overexpressed in cancer tissue and serum. PNAS,
100(6):3410–3415, 2003.

19

	1 Introduction
	2 Preliminaries
	2.1 Parameterized Complexity

	3 Hardness
	4 Fpt-Algorithms
	4.1 Fpt-Algorithm for P-BMPec,
	4.2 Fpt-Algorithm for BMPec,,r
	4.3 Fpt-Algorithm for P-BMPec,o
	4.4 Fpt-Algorithm for BMPec,o

	5 Conclusion

