
ar
X

iv
:1

80
3.

01
27

6v
1

 [
cs

.D
S]

 4
 M

ar
 2

01
8

Station Assignment with Reallocation∗

Austin Halper † Miguel A. Mosteiro ‡ Yulia Rossikova §

Prudence W. H. Wong ¶

Abstract

We study a dynamic allocation problem that arises in various scenarios where

mobile clients joining and leaving the system have to communicate with static sta-

tions via radio transmissions. Restrictions are a maximum delay, or laxity, between

consecutive client transmissions and a maximum bandwidth that a station can share

among its clients. We study the problem of assigning clients to stations so that

every client transmits to some station, satisfying those restrictions. We consider

reallocation algorithms, where clients are revealed at its arrival time, the departure

time is unknown until they leave, and clients may be reallocated to another station,

but at a cost proportional to the reciprocal of the client’s laxity. We present neg-

ative results for previous related protocols that motivate the study; we introduce

new protocols that expound trade-offs between station usage and reallocation cost;

we determine experimentally a classification of the clients attempting to balance

those opposite goals; we prove theoretically bounds on our performance metrics;

and we show through simulations that, for realistic scenarios, our protocols behave

much better than our theoretical guarantees.

1 Introduction

We study a dynamic allocation problem that arises in various scenarios where data

on mobile devices has to be gathered and uploaded periodically to one of the many

static access points available 1. Examples include wearable health-monitoring sys-

tems, where ambulatory patients carry physiological sensors and the data gathered

must be periodically uploaded, and participatory sensing [33, 35], where communi-

ties of mobile device users upload periodically information about their environment.

For example, in the SPA system [38], sensors are attached to participants periodically

sampling the heart rate, blood pressure, movement etc.; while in the MobGeoSen ap-

plication [32], mobile phones update periodically their geo-location and associated

∗A preliminary version of this work appeared in SEA 2015 [34].
†Pace University, Computer Science Dept., New York, NY, USA, ah17939n@pace.edu
‡Pace University, Computer Science Dept., New York, NY, USA, mmosteiro@pace.edu
§Kean University, Computer Science Dept., Union, NJ, USA, rossikoy@kean.edu
¶University of Liverpool, Dept. of Computer Science, Liverpool, UK, pwong@liverpool.ac.uk
1We consider an upstream model, but the same results apply to downstream communication.

1

http://arxiv.org/abs/1803.01276v1

environment. Depending on individuals the frequency different participants need to

communicate may differ, e.g., depending on the health conditions.

Mobile devices, called clients, join and leave the system continuously, and they

communicate with the static access points, called stations, via radio transmissions.

The ephemeral nature of the clients is modeled by characterizing each client with a

life interval (from its arrival time to departure time), during which the client has to

communicate with some station periodically. The need of periodic communication is

modeled by the client’s laxity, which bounds the maximum duration a client is not

transmitting to some stations. The intrinsically shared nature of the access to stations

is modeled by a maximum station bandwidth shared among its connected clients, by

a client bandwidth required for each transmission, and by the client laxity governing

how often it must connect to some stations.

Based on the above model, we study the problem of assigning clients to stations

so that every client transmits to some stations satisfying the laxity and bandwidth con-

straints. We consider settings where clients are revealed at its arrival time and their

departure time is only revealed when they depart (as in online algorithms). Clients

may be reassigned from one station to another and we call such reassignment realloca-

tion. As to be further elaborated in the next paragraph, reallocation has been considered

in a similar context in the Windows Scheduling problem [23], where the cost of reallo-

cation is proportional to the number of clients reallocated. While counting the number

of clients reallocated ensures that we do not reallocate too much, this may not be a fair

cost and it is typical in scheduling to consider reallocation (or migration) in terms of

the sizes of the jobs instead of the number, e.g., [37]. Intuitively reallocation causes

more disturbance to a client with small laxity. Therefore, we assume reallocation in-

curs a cost inversely proportional to a client’s laxity 2. Reallocation usually involves

handover from one station to another incurring a cost that is time related and also signal

related [20].

We aim to reduce the number of active stations (a station is active if it has at least

one client allocated to it to transmit) and reduce the reallocation cost. However, these

two goals are orthogonal, e.g., we can reallocate the clients every time a client ar-

rives/departs so that the number of active stations is minimized while incurring a very

high reallocation cost; alternatively we can keep the reallocation cost to zero but we

may use many active stations after a sequence of client departures. In this paper, we

quantify the trade-off between both performance metrics: number of active stations and

reallocation cost. We call this problem Station Assignment Problem with Reallocation

(SA).

Previous work. To the best of our knowledge, the closest work to the present paper

is [23], where reallocation algorithms were presented for Windows Scheduling (WS).

The WS problem [10,11,16,23] is a particular case of SA where the bandwidth require-

ment of each client is the same and each channel (a.k.a. station in our case) can only

serve one client at a time. WS has applications to various areas such as communication

networks, supply chain, job scheduling, media on demand systems, etc. In [23], a unit

cost is incurred for each client reallocated and the objective is to minimize an aggre-

2As a first step we consider a reallocation cost in terms of laxity. It is of interest to consider bandwidth

in the cost and we leave this future work.

2

gate sum reflecting the amortized reallocation cost and the number of channels used. A

protocol called Classified Reallocation is showed to guarantee an amortized constant

number of reallocations. This protocol is also evaluated experimentally together with

two other protocols Preemptive Reallocation and Lazy Reallocation.

WS [10,11,16] was first studied without reallocation and the objective was mainly

to minimize the number of channels. As pointed out in [29], the WS problem can be

shown to be NP-hard by assembling results available in literature [9, 11, 28]. For the

static case [10, 11] where a client never departs, we can have online algorithm whose

number of channels is only an additive of O(
√

H) from the optimal H, where H is the

sum of reciprocal laxities of all clients [11]. For the dynamic case [16] where a client

may depart, the maximum number of channels used over time by the online algorithm

is at most a constant times that of the optimal [16]. This means that the comparison

is against peak load which may occur at different time in the online algorithm and the

optimal offline algorithm. In [23] and this work, we compare against current load.

As noted in [11], WS is closely related to the classical bin packing problem [17–

19]. In addition to this, introducing bandwidth in our model gives another perspec-

tive in relation to bin packing. If all clients have very large laxity (such that the laxity

constraint does not restrict them from being assigned to the same station) and the only

concern becomes the bandwidth, then the problem of minimizing the number of sta-

tions becomes the same as minimizing the number of bins. Therefore, lower bounds

on the approximation ratios of bin packing, i.e., 1.54037 for asymptotic approximation

ratio [7] and 1.5 for absolute approximation ratio [21], apply to the station usage ratio

of our problem when reallocation is not allowed.

SA and other assignment problems. SA generalizes several problems. It generalizes

the WS problem that considered periodic transmission to capture bandwidth sharing.

Different objectives are considered, in [10, 11, 16] the goal is to minimize the number

of channels used while in [23] the goal is to minimize a combined cost of the number of

reallocated clients and number of channels. We extend the later cost function such that

the number of reallocated clients is weighted inversely by the client laxity. The problem

in [25] considers clients with the same laxity and characterizes adversarial arrivals that

admit feasible solutions. This makes the problem substantially different from ours as

the periodic transmission can be handled as if the bandwidth is shared equally among

the clients. We generalize the study to allow different laxities, and provide trade-off

between reallocation cost and number of stations.

Our problem differs from existing scheduling problems despite sharing similari-

ties. SA shares the idea of assigning tasks of different bandwidth to stations as the

load balancing problem [5] of assigning jobs of different loads to machines, yet the

load balancing problem does not consider periodic transmission, does not allow real-

location, and the objective is to minimize the maximum load. Interval coloring [1, 22]

concerns the number of machines used but not periodic tasks. Periodic tasks have been

considered in real time scheduling [12] but the periodic appearance of the tasks is deter-

mined by the input, while in our problem the periodic appearance is determined by the

algorithm to satisfy the laxity constraint. The SA problem is also related to online as-

signment problems such as b-matching [31], fractional matching [6], and adwords [24].

Among other details, the objective function is different.

We consider two orthogonal objectives which is common in scheduling context.

3

E.g., in energy efficient scheduling problems, one would minimize the use of energy to

provide acceptable quality of service. There are two typical approaches of optimiza-

tion: to minimize the summation of two costs, e.g., energy efficient flow time schedul-

ing minimizes the sum of energy usage and total flow time of the tasks [2]; and to

formulate two performance ratios as we do in this work, e.g., energy efficient through-

put scheduling derives online algorithm that is t-throughput-competitive and e-energy-

competitive [15]. Moreover, jointly targeting high bandwidth and low delay is also

quite common in practice. For instance, in [30], the authors present a greedy schedul-

ing policy for wireless networks aimed to achieve provably good performance in terms

of both, throughput and delay. The model is different from ours (multiple radio chan-

nels, which can be viewed as a discrete version of our continuous-bandwidth alloca-

tion, but only one base station and only one packet per client), but the two-dimensional

optimization is the same.

Our objective function takes into account the assignment cost, which is often the

optimization criteria in scheduling and network design problems. A good example is

energy efficient speed-scaling scheduling where the speed of a processor is scalable

to a higher speed consuming more energy while more productive. In [8] the objective

function is the energy usage (modeled as an arbitrary power function) plus fractional

weighted flow time. This is generalized in [26] to parallel machines where the objective

function is energy plus an arbitrary assignment cost. Similar cost functions have been

considered for the minimum-cost network-design problem, where packets have to be

routed through a network of speed scalable routers, and the goal is to minimize the

aggregate cost of assigning a packet to a link and the energy consumption of supporting

the current load on the router [4]. On the other hand, scheduling in wireless networks

with reallocation of resources has also been considered [13] yet reallocation is assumed

to incur no cost.

Reallocation has been considered in the context of scheduling [3, 14, 36]. In [14],

a distinction is made between reassignment within server (reschedule) and between

servers (migration). Here, we assume rescheduling within a station is free and we use

“reallocation” to refer to reassignment to other stations. It is often that the number/size

of jobs reallocated is bounded, but by different quantities, e.g., by a function of the

number of jobs in the system [14], the size of the arriving job [36] or the number of

machines [3]. In our problem, we bound the reallocation by the weight (cumulative

inverse laxity) of the clients departed.

2 Our Results

In this paper, we study reallocation algorithms for SA assuming that clients have laxity

and bandwidth requirements (arbitrary for the analysis, set to specific values for exper-

imental evaluation), that clients depart from the system at arbitrary times, and that they

may be reallocated, but at some cost proportional to the resources needed. Specifically,

our contributions are the following.

• We define a characterization of SA reallocation algorithms, which we call (α,β)-
performance, as a combination of the competitive ratio on station usage (α) and

the cost of reallocations contrasted with the resources released by departures (β).

4

• We show a sequence of negative results proving that worst-case guarantees can-

not be provided by previous protocols Classified Reallocation and Preemptive

Reallocation [23], even if they are modified to our reallocation cost function.

• We present a novel SA protocol called Classified Preemptive Reallocation (CPR)

where clients are classified according to laxity and bandwidth requirements, and

upon departures the remaining clients are preemptively reallocated to minimize

station usage, but only within their class. The protocol presented includes a range

of classifications that exposes trade-offs between reallocation cost and station

usage. In fact, we first found experimentally what is the classification function

that seems to balance these goals (i.e. neither of the number of active stations

nor the reallocation cost is the largest observed), and then we provided theoretical

guarantees for all functions considered.

• In our main theorem, we prove bounds on both of our performance metrics, and

we instantiate those bounds into three classifications and for specific scenarios

in two corollaries (refer to Section 5 for the specific bounds.)

• Finally, we present the results of our extensive simulations that allowed us to

find the function that maintains both, station usage and reallocation cost, below

the maximum observed. Additionally, our simulations show that, for a variety of

realistic scenarios, CPR performs better than expected by the worst-case theoret-

ical analysis, and close to optimal on average.

3 Definitions

Model. We consider a set S of stations and a set C of clients. Each client must transmit

packets to some station. Time is slotted so that each time slot is long enough to transmit

one packet. A client can be assigned to transmit to only one station in any given time

slot. Starting from some initial time slot 1, we refer to the infinite sequence of time

slots 1,2,3, . . . as global time. Each client c ∈C is characterized by an arrival time ac

and a departure time dc, that define a life interval τc = [ac,dc] in which c is active. That

is, client c is active from the beginning of time slot ac up to the end of time slot dc. We

define C(t)⊆C to be the set of clients that are active during time slot t. With respect to

resources required, each client c is characterized by a bandwidth requirement bc, and a

laxity wc, such that 0 < wc ≤ |τc|. I.e., c must transmit to some station in S at least one

packet within each wc consecutive time slots in τc
3. On the other hand, each station

s ∈ S is characterized by a station bandwidth or capacity B, which is the maximum

aggregated bandwidth of clients that may transmit to s in each time slot.

Notation. Let the schedule of a client c be an infinite sequence σc of values from the

alphabet {0}∪ S. Let σc(t) be the tth value of σc. A station assignment is a set σ of

schedules that models the transmissions from clients to stations. That is, for each client

c ∈ C and time slot t, it is σc(t) = s if c is scheduled to transmit to station s ∈ S in

time slot t, and σc(t) = 0 if c does not transmit in time slot t. If a client c is scheduled

to transmit to a station s we say that c is assigned to station s. Note that a client is

assigned to a station from its arrival time or when it is reallocated to this station until

3To maintain station usage low, we will assume that the laxity can be relaxed during reallocation.

5

its departure time or when it is reallocated to another station (not only at the instant

time that it transmits). We say that a station that has clients assigned is active, and

inactive or empty otherwise.

Problem. The Station Assignment problem (SA) is defined as follows. For a given

set of stations and set of clients, obtain a station assignment such that (i) each client

transmits to some station at least once within each period of length its laxity during its

life interval, (ii) in each time slot, no station receives from clients whose aggregated

bandwidth is more than the station capacity. Notice that, for any finite set of stations,

there are sets of clients such that the SA problem is not solvable. We assume in this

work that S is infinite and what we want to minimize is the number of active stations.

Algorithms. We study reallocation algorithms for SA. That is, the parameters wc and

bc needed to assign the client to some station are revealed at time ac, but the departure

time dc is unknown to the algorithm until the client actually leaves the system (as in

online algorithms). Then, at the beginning of time slot t, an SA reallocation algorithm

returns the transmission schedules of all clients that are active in time slot t, possibly

reassigning some clients from one station to another. (I.e., the schedules of clients that

were already active may be changed from one time slot to another.) We refer to the

reassignment of one client as a reallocation, whereas all the reassignments that happen

at the beginning of the same time slot are called a reallocation event.

Performance Metric. Previous work [23] has considered the number of clients real-

located as the reallocation cost. In the present work, we consider a different scenario

where the cost of reallocating a client is proportional to resources requested by that

client. Specifically, we assume a cost for the reallocation of each client c of ρ/wc,

where ρ > 0 is a scaling factor that generalizes this cost to different settings. For our

simulations, we set ρ = 1, since ρ is also a multiplicative factor in our reallocation

metric and, hence, does not provide additional information about the performance of

our protocols in terms of reallocation.

Then, letting R (ALG, t) be the cost of the reallocation event incurred by algorithm

ALG at time t, and R(ALG, t) be the set of clients being reallocated, the overall cost is

the following.

R (ALG, t) = ρ
∑

c∈R(ALG,t)

1

wc

. (1)

We will drop the specification of the algorithm whenever clear from the context.

With respect to performance, we aim for algorithms with low reallocation cost and

small number of active stations. Unfortunately, these are contradictory goals. Indeed,

the reallocation cost could be zero if no client is reallocated (online algorithm), but the

number of active stations could be as big as the number of active clients (e.g. initially

multiple clients assigned to each station, and then all but one client from each active

station depart). On the other hand, the number of active stations could possibly be

reduced by applying an offline algorithm on each time slot, but the reallocation cost

could be large. Thus, we characterize algorithms with both metrics as follows.

For any SA algorithm ALG, let S(ALG, t) be the number of active stations at time t

in the schedule, let D(ALG, t) be the set of clients departed since the last reallocation

up to time t. Denoting
∑

c∈C′ 1/wc as the weight of the clients in C′ ⊆C, let D(ALG, t)

6

be the weight of the clients departed since the last reallocation up to time t, that is,

D(ALG, t) =
∑

c∈D(ALG,t)

1

wc

.

Also, we denote the minimum number of active stations needed at time t as S(OPT, t).
Throughout, we will drop the specification of the algorithm whenever it is clear from

the context. Then, we say that an SA reallocation algorithm ALG achieves an (α,β)-
performance if the following holds for any input.

max
t

S(ALG, t)

S(OPT, t)
≤ α

max
t:R (ALG,t)>0

R (ALG, t)

D(ALG, t)
≤ β.

In words, the overhead on the number of stations used by ALG is never more than

a multiplicative factor α over the optimal, and the reallocation cost, amortized on the

“space” left available by departing clients is never more than β. The reallocation cost is

only measured at the time when ALG reallocates some clients, i.e., when R (ALG, t)>
0, because it is not meaningful to consider times in between reallocation events. The

rationale of comparing R (ALG, t) against D(ALG, t) is as follows. When clients do not

depart, the WS problem admits very good approximation performance even without

reallocation (recall in the introduction that in such case there is online algorithm that

differs from the optimal offline algorithm by only an additive term [11]). Therefore,

we are motivated to study how algorithms may benefit from reallocation when there is

departure by reusing the space released by the departure.

Notice that the above ratios are strong guarantees, in the sense that they are the

maximum of the ratios instead of the ratio of the maxima. (This distinction was called

previously in the literature against current load versus against peak load respectively.)

Moreover, the reallocation ratio computed as the maximum over reallocation events is

also stronger than the ratio of cumulative weights since the system started.

4 Algorithms

Broadcast Trees. A common theme in WS algorithms with periodic transmission

schedules is to represent those schedules with Broadcast Trees [10, 16, 23]. Broadcast

trees are a convenient representation because they allow to visualize easily how the

laxities are combined. Consider for instance two clients a and b, both with laxity 2.

Both clients may be assigned to the same station alternating their transmissions. This

assignment is represented by one binary tree where a and b hang from the root of a

broadcast tree, modeling such station schedule. Throughout the paper, we refer to a set

of broadcast trees as the forest, and to the distance in edges from a node to the root of a

broadcast tree as the depth. Generalizing, the 2d nodes at depth d in a complete binary

tree represent the time slots t mod 2d (see Figure 1(a)). Then, to indicate that some

(periodic) time slot has been reserved for a client c to transmit to a given station s, we

7

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

PSfrag replacements

t mod 4≡ 1

1,2,3, . . .
1,3,5, . . .
2,4,6, . . .
1,5,9, . . .

2,6,10, . . .
3,7,11, . . .
4,8,12, . . .

c

b

a

1 2 3 4 5 6 7 8 910111213. . .
(a) Mapping node - time-slot.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

PSfrag replacements

t mod 4≡ 1
1,2,3, . . .
1,3,5, . . .
2,4,6, . . .
1,5,9, . . .

2,6,10, . . .
3,7,11, . . .
4,8,12, . . .

cccc

c

b

a

1 2 3 4 5 6 7 8 910111213. . .
(b) First client assigned.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

PSfrag replacements

t mod 4≡ 1
1,2,3, . . .
1,3,5, . . .
2,4,6, . . .
1,5,9, . . .

2,6,10, . . .
3,7,11, . . .
4,8,12, . . .

cccc

c

bbb

b

aa

a

1 2 3 4 5 6 7 8 910111213. . .
(c) Some clients assigned.

Figure 1: Illustration of a binary broadcast tree. (a) A depth-2 tree corresponds to

periodic broadcast of period 22. (b) Clients are assigned to leaves, e.g., client c with

laxity 4 is assigned the black node meaning time slot 1,5,9, etc. are reserved for it. (c)

Open leaf (white node) corresponds to available slot.

say informally that c is assigned to the corresponding node in the broadcast tree of s.

Throughout the rest of the paper, we use both indistinctively.

Notice that once a client c is assigned to a node i, no other client can be assigned as a

subtree of i, because all the time slots represented by i have been reserved for c. (Refer

to Figure 1(b)) However, sibling clients are possible because they represent interleaving

reservations (as in the example with a and b in the previous paragraph). Thus, if at

any internal node only one child has a client assigned, an empty leaf is placed in the

other child, making explicit the availability of the corresponding (periodic) time slot.

Consequently, in broadcast trees all nodes have exactly zero or all possible children.

Consider for instance the tree shown in Figure 1(c), where black nodes represent clients

assigned and white nodes represent available slots. The transmission schedule in this

example is depicted in the figure. Refer to [10,16] for further details on broadcast trees.

WS algorithms. In [16] Chan et al. presented a WS algorithm that allocates clients

with laxities that are powers of 2 preserving the following invariant. For each station,

the broadcast tree modeling the station schedule has at most one available leaf at each

depth. In order to preserve this invariant, when a client departs from a tree, the re-

maining clients in the same tree are rearranged for free. This invariant allows to upper

bound the space available at each tree, but if reallocations among trees are possible,

the same idea can be extended to all trees simultaneously. Indeed, that is the approach

followed in the algorithm Preemptive Reallocation (PR) [23], maintaining the invariant

that throughout all trees there is at most one available leaf at each depth. For laxities

that are powers of 2, PR achieves an optimal station usage of H(C(t)) for time slot t,

where H(C(t)) = ⌈
∑

c∈C(t) 1/wc⌉, because the sum of all empty leaves (i.e., the sum

of the inverse of laxities of all clients that could be placed in those leaves) is less than

1. Such guarantee is met re-establishing the invariant each time a client departs, possi-

bly through reallocations among trees, at a constant cost per client reallocated between

trees (within the tree are still free). It was shown experimentally that for various inputs

the number of clients reallocated, amortized on the number of arrivals and departures, is

8

constant [23]. However, we show in Lemma 1 that there are arrival/departure schedules

for which the amortized cost in PR is unbounded. Furthermore, we show in Lemma 2

that if we simply modify PR to reallocate the sibling subtree of smaller weight (rather

than the subtree with less clients) to restore the invariant, there are arrival schedules for

which the reallocation-cost ratio is exponential for our cost function (Equation 1).

A WS algorithm with provable bounded reallocation cost guarantees was shown

also in [23]. The protocol, called Classified Reallocation (CR), guarantees that all

clients assigned to the same station have the same laxity, except for one distinguished

station that handles all laxities linear and above. At any time t, CR has an additive over-

head on station usage of at most 1+ log(min{maxc∈C(t) wc,⌈⌈C(t)⌉⌉}/minc∈C(t) wc)
4,

for laxities that are powers of 2. To attain constant amortized reallocation cost, clients

are moved to/from the distinguished station only after the number of clients in the sys-

tem has halved/doubled. However, for the reallocation cost function in Equation 1, that

is a reallocation cost that depends on the resource requirements of the clients reallo-

cated, CR has an arbitrarily bad reallocation cost ratio, as we show in Lemma 3.

Classified Preemptive Reallocation. The negative results in Lemmas 1, 2, and 3 apply

to WS. Given that WS is a particular case of SA fixing bc = B for all clients, the same

negative results apply to SA. Thus, should the reallocation cost be maintained low, a

new approach is needed. We present now an online SA protocol (Algorithm 1) which

we call Classified Preemptive Reallocation (CPR), that provides guarantees in station

usage and reallocation cost. The protocol may be summarized as follows. Clients are

classified according to laxity and bandwidth requirements. Upon arrival, a client is

allocated to a station within its corresponding class to guarantee a usage excess (with

respect to optimal) of at most one station per class plus one station throughout all

classes. Upon departure of a client, if necessary to maintain the above-mentioned guar-

antee, clients are reallocated, but only within the corresponding class. The protocol

includes three different classifications providing different trade-offs between realloca-

tion cost and station usage. We recreate the idea of broadcast trees, but now we have

multiple trees representing the schedule of each station. On one hand, we use broadcast

trees with depth bounded by the class laxities. We call them broadcast subtrees to re-

flect that they are only part of a regular broadcast tree. On the other hand, we have the

multiplicity yielded by the shared station capacity B. An example of broadcast subtrees

can be seen in Figure 2. Further details follow.

The mechanism to allocate an arriving client can be described as follows. Upon ar-

rival, a client c is classified according to its laxity and bandwidth requirement. Specif-

ically, c is assigned to a class for clients with bandwidth requirement B/⌊⌊B/bc⌋⌋ and

laxity in [wlow,whigh), for some wlow and whigh that depend on the classification cho-

sen, as shown in Algorithm 2. Notice that each station has up to ⌊⌊B/bc⌋⌋ · ⌈⌈wlow⌉⌉
subtrees. That is, ⌊⌊B/bc⌋⌋ ways to share its capacity B and ⌈⌈wlow⌉⌉ ways to share

its schedule (see Figure 2). Within its class, we assign c to an available leaf at depth

⌊logwc⌋−⌈logwlow⌉ in any subtree in the forest (see Figure 2(b)). If there is no such

leaf available, we look at smaller depths up in the forest one by one. If we find an avail-

able leaf at depth ⌈logwlow⌉ ≤ i < ⌊logwc⌋−⌈logwlow⌉, we allocate to that leaf a new

subtree with c assigned at depth ⌊logwc⌋− i with respect to the root of the broadcast

4Throughout, log means log2 unless otherwise stated.

9

PSfrag replacements

Station 1

Station 2

(a) Arrival of client i with wi = 8.

PSfrag replacements

Station 1

Station 2

(b) Arrival of client j with w j = 4.

PSfrag replacements

Station 1 Station 2

(c) Arrival of client k with wk = 4.

Figure 2: Illustration of allocation mechanism. Class: laxities [4,16), bandwidth 1/2.

Subtrees are depicted connected to a broadcast tree to reflect their location in the station

schedule.

subtree (see Figures 2(a) and 2(c)). If no such leaf is available at any depth, a new

broadcast subtree T is created with c assigned at depth ⌊logwc⌋−⌈logwlow⌉, and T is

assigned to a newly activated station. Refer to Algorithm 1 for further details.

The above allocation mechanism maintains the following invariant: (1) there is at

most one leaf available at any depth larger than ⌈logwlow⌉ of the forest, and (2) there

is at most one station with leaves available at depth ⌈logwlow⌉ (an empty broadcast

subtree). When a client departs, this invariant is re-established through reallocations as

follows. When a client c departs, if ⌊logwc⌋> ⌈logwlow⌉, we check if there was already

a leaf ℓ available at depth ⌊logwc⌋−⌈logwlow⌉. If there was one, either the sibling of

c or the sibling of ℓ has to be reallocated to re-establish the invariant. We greedily

choose to reallocate whichever sibling has smaller weight of the two (see Figure 3(a)).

The process does not necessarily stop here because, if ⌊logwc⌋− 1 > ⌈logwlow⌉ and

there was a leaf already available at depth ⌊logwc⌋− 1−⌈logwlow⌉, together with the

newly available leaf at depth ⌊logwc⌋− 1−⌈logwlow⌉ due to the reallocation at depth

⌊logwc⌋−⌈logwlow⌉, it yields two leaves available at depth ⌊logwc⌋− 1−⌈logwlow⌉.
Hence, again one of the sibling subtrees has to be reallocated (see Figure 3(b)). This

transitive reallocations upwards the forest may continue until a depth where no real-

location is needed or until the depth ⌈logwlow⌉+ 1 is reached, when the reallocation

10

PSfrag replacements

Station 1 Station 2

depart

reallocate

(a) Departure of client j with w j = 4.

PSfrag replacements

Station 1 Station 2

depart reallocate

(b) Upwards reallocation of sibling with smaller weight.

Figure 3: Illustration of reallocation mechanism. Class: laxities [4,16), bandwidth

1/2. After the second reallocation Station 2 is left empty and, hence, deactivated.

Subtrees are depicted connected to a broadcast tree to reflect their location in the station

schedule.

leaves a broadcast subtree empty. In the latter case, we reallocate a whole broadcast

subtree so that only one station has empty subtrees and the invariant is re-established.

Refer to Algorithm 1 for further details.

Notice that when a client is reallocated (even within a station) its laxity may be

violated once. Consider for instance the schedule in Figure 1(c). Let wa = 4, that is,

a is transmitting at its lowest possible frequency. If at the end of time slot 7 client

b departs, at the beginning of time slot 8 client a will be reallocated to the slot of

client b, that is, to transmit next in slot 11. This new schedule violates wa because

the previous slot when a transmitted was 5. For WS, in [16] the issue is approached

making a client transmit once more within the original schedule. As the authors say,

this approach introduces a transition delay. In their model, there is no impact on station

usage because their ratio is against peak load. However, for a ratio against current

load such as our model, reserving a slot for a client in more than one station implies

an overhead on station usage. Indeed, for any given allocation/reallocation policy, an

adversarial input can be shown so that either the laxity is stretched or the station usage

is not optimal. Hence, in our model we assume that when a client is reallocated the

laxity may be stretched, folding the cost in the reallocation cost.

11

5 Analysis

We start with negative results in Lemmas 1, 2, and 3, which apply to WS, and to SA

fixing bc = B for all clients. The proofs are all based on showing an adversarial client

set for which the claim holds.

Lemma 1 There exists a client arrival/departure schedule such that, in Preemptive

Reallocation [23], the ratio of number of clients reallocated against the number of

arrivals plus departures is unbounded.

Proof. Consider the following adversarial client arrival/departure schedule divided

in rounds. In the first round, 2 clients of laxity 2 arrive. Then, for each round r =
2,3,4, . . . , two clients of laxity 2r arrive and, after these clients have been allocated, a

client of laxity 2r−1 departs. Figure 4 shows the status of the forest right before each

departure.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��PSfrag replacements

depart

reallocate

(a) First departure.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

PSfrag replacements

depart
reallocate

(b) Second departure.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

PSfrag replacements

depart
reallocate

(c) Third departure.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��PSfrag replacements

depart
reallocate

(d) ith departure.

Figure 4: Illustration of Lemma 1.

To compute the reallocation cost, consider any round r ≥ 2. After the departure,

two leaves are left available at depth r of the forest. For example, refer to Figure 4(c)

depicting round 4. After the client at depth 4 departs, two leaves are left available at

that depth. To restore the invariant, PR reallocates the sibling subtrees of the available

leaves, so that they are assigned to the same parent node. In doing so, now two leaves

are left available at depth r− 1 of the forest. Because PR reallocates the subtree with

less clients assigned, similar reallocations are repeated transitively up through the for-

est until one of the trees is left empty. (Refer to Figure 4(c).) Then, the number of

reallocated clients in round r is r, whereas the number of arriving or departing clients

in each round is always 3. Given that the number of rounds is infinite, the overall real-

location cost ratio is unbounded.

Lemma 2 For Preemptive Reallocation [23], modified so that the sibling subtree of

smaller weight is reallocated to restore the invariant, rather than the subtree with

less clients, the following holds. For any d > 0, there exists a client arrival/departure

schedule such that it is maxt:R (t)>0 R (t)/D(t)≥ ρ(2d− 1)2/2d .

12

Proof. Given d > 0, consider the following adversarial client arrival/departure sched-

ule divided in phases. First a client of laxity 2d arrives. After this client was assigned, a

sequence of clients arrive one by one so that a new client arrives only after the previous

client was assigned. The sequence of laxities of those clients is the following.

2d+1,2d+2, . . . ,22d−1,22d,

2d ,2d+1, . . . ,22d−2,22d−1,

2d−1,2d ,2d+1, . . . ,22d−2,

. . .

22,23, . . . ,2d−1,2d ,2d+1.

Then, another client of laxity 2d arrives. Figure 5(a) illustrates the assignment of clients

by PR for d = 3. Finally, after all clients have been assigned, the client that arrived first

departs. No other client arrives or departs afterwards. The client departure leaves two

leaves available at depth d. Then, the sibling subtree of smaller weight is reallocated

(refer to Figure 5(a)). In turn, this reallocation leaves two leaves available at depth

d− 1, which triggers the reallocation of the sibling subtree of smaller weight (refer to

Figure 5(b)). These transitive reallocations continue upwards the tree depth-by-depth

up to depth 2 (refer to Figure 5(c)), when the last reallocation leaves one of the trees

empty (refer to Figure 5(d)).

Then, at the time slot t when all clients have been reallocated, we have

R (t)

D(t)
=

ρ
∑

c∈R(t) 1/wc

1/2d

=
ρ
∑d+1

i=2

∑d−1
j=0 1/2i+ j

1/2d

=
ρ(2d− 1)2

2d
.

Lemma 3 For any integer x > 0 and any w ≥ 2x+5 arbitrarily big such that w is a

power of 2, there exists a client arrival/departure schedule such that, in Classified

Reallocation [23], we have maxt:R (t)>0 R (t)/D(t)≥ ρ/4

7·2x w.

Proof. We use the terminology “channel” in [23] in this proof. The thresholds to

reallocate from/to the big channel in CR are the following [23]. For any time t, if a

client c allocated to the big channel has laxity wc < ⌈⌈|C(t)|⌉⌉, c is reallocated to other

channel according to wc, call it wc-channel. On the other hand, if at any time t a client c

that is not allocated to the big channel has laxity wc > 2⌈⌈|C(t)|⌉⌉, then c is reallocated

to the big channel.

Consider an adversarial scenario where the system has 2x clients with laxity 2x+2

and 7 ·2x clients with laxity w, where w is a power of 2 such that w≥ 2x+5. (The order

in which these clients have arrived is irrelevant.) Because the total number of clients

is 2x+3, the clients with laxity w ≥ 2x+5 > 2 · 2x+3 are allocated to the big channel,

whereas the clients with laxity 2x+2 < 2x+3 are allocated to a (2x+2)-channel. After

13

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

PSfrag replacements

depart

reallocate

(a) Before first reallocation.

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

PSfrag replacements

depart
reallocate

(b) Before second reallocation.

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

PSfrag replacements

depart
reallocate

(c) Before third reallocation.

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

PSfrag replacements

depart

reallocate

(d) Final assignment.

Figure 5: Illustration of Lemma 2.

14

these clients have been allocated, adversarially, all the clients with laxity w depart.

Because the new number of clients in the system is now 2x, the remaining clients, all

with laxity 2x+2 > 2 ·2x have to be reallocated to the big channel. Then, at time t after

reallocation, the following holds.

R (t)

D(t)
=

ρ
∑

c∈R(t) 1/wc
∑

c∈D(t) 1/wc

=
ρ/4

7 ·2x
w.

The above lemmas show that the application of previous WS reallocation algo-

rithms to SA is not feasible. The following theorem gives guarantees on station usage

and reallocation cost for CPR. The proof starts by analyzing CPS to show that the

invariant is re-established after each arrival or departure. Then, competitiveness on sta-

tion usage is derived from the invariant properties. Finally, to bound β, a worst case

scenario minimizing the weight of departed clients and maximizing the reallocated

weight is shown.

Theorem 4 At any time slot t, CPR achieves an (α,β)-performance as follows.

α = max
t

4(1+Γ(ALG, t)+ S(OPT, t))

S(OPT, t)

β = max
t

ρ(2⌊⌊whighmax(t)⌋⌋/⌈⌈wlowmax(t)⌉⌉− 1).

Where Γ(ALG, t) is the number of classes used by CPR at time t, and whighmax(t) and

wlowmax(t) are the maximum upper and lower limits of a class at time t.

Proof. We start by showing that the invariant in Algorithm 1 is preserved. Re-

call that the invariant is the following. At any time slot t and for any class of clients

〈wlow,whigh,x〉, there is at most one leaf available at any depth larger than ⌈logwlow⌉ of

the forest. There might be more than one leaf available at depth ⌈logwlow⌉ (an empty

broadcast subtree), but only in one station in the class.

The arrival of clients does not change the invariant, but the departure of a client c

at a given depth i > ⌈logwlow⌉ may change the number of leaves available at depth i.

If there was no leaf available at depth i before the departure, the number of available

leaves at depth i is at most one after departure and the invariant is preserved. If, on

the other hand, there was a leaf ℓ available at depth i, either the sibling of c or the

sibling of ℓ will be reallocated in Line 1 of the algorithm. This reallocation leaves

two sibling leaves available at depth i, which combined yield a leaf available at depth

i− 1. The same argument applies transitively upwards the tree. If the invariant is

re-established before reaching depth ⌈logwlow⌉, we are done. If on the other hand a

broadcast subtree is emptied, the invariant is re-established (if necessary) reallocating

a whole broadcast subtree in Line 1. Notice that reallocating one subtree is enough

to re-establish the invariant, since before the departure there was (at most) one station

15

with empty subtrees, and the departure (possibly followed by reallocations) may empty

only one subtree.

To bound α, we observe that the invariant above guarantees that there is at most

one station per class with empty broadcast subtrees. For the stations with non-empty

subtrees, aggregating the at most one available leaf at each depth larger than 0 (and

smaller than ⌊logwhigh⌋) of each forest, we have an additional available space of at

most one station, throughout all classes. So, the overhead in station usage is the number

classes plus one. Additionally, we have to take into account that clients are scheduled

to transmission periods that are powers of 2, and with a bandwidth that is a power of 2

fraction of the capacity B, which introduces a multiplicative factor in station usage of

at most 4. Thus, we have

max
t

S(ALG, t)

S(OPT, t)
≤max

t

4(1+Γ(ALG, t)+ S(OPT, t))

S(OPT, t)

To bound β, we compute the maximum weight of clients reallocated upon a de-

parture. We notice that, for any class of clients 〈wlow,whigh,x〉, in the worst case

a departure at depth ⌊logwhigh⌋ triggers transitive reallocations upwards up to depth

⌈logwlow⌉− 1 in the forest, followed by a reallocation of a whole broadcast subtree

of weight at most 1/⌈⌈wlow⌉⌉. The aggregated weight of all those reallocations is

then 1/⌈⌈wlow⌉⌉+1/(2⌈⌈wlow⌉⌉)+1/(4⌈⌈wlow⌉⌉)+ · · ·+1/⌊⌊whigh⌋⌋= 2/⌈⌈wlow⌉⌉−
1/⌊⌊whigh⌋⌋. Replacing, we obtain

max
t:R (ALG,t)>0

R (ALG, t)

D(ALG, t)
≤ max

wlow,whigh

ρ(2/⌈⌈wlow⌉⌉− 1/⌊⌊whigh⌋⌋)
1/⌊⌊whigh⌋⌋

≤max
t

ρ(2⌊⌊whighmax(t)⌋⌋/⌈⌈wlowmax(t)⌉⌉− 1).

Instantiating Theorem 4 in the classification factors of Algorithm 2, we obtain

bounds for all three algorithms, shown in Corollary 5.

Corollary 5 At any time slot t, CPR achieves an (α,β)-performance as follows.

1. Constant factor. If the client classification boundaries are [wi,wi+1), where

w1 = 1, and wi = 2wi−1, for any i > 1, then

α = 4

1+
1+

(

1+ log
⌈⌈B/bmin(t)⌉⌉
⌈⌈B/bmax(t)⌉⌉

)(

1+ log
⌊⌊wmax(t)⌋⌋
⌊⌊wmin(t)⌋⌋

)

H(C(t))

β = 3ρ.

2. Logarithm factor. If the client classification boundaries are [wi,wi+1), where

w1 = 1,w2 = 2,w3 = 4, and wi = wi−1 logwi−1, for any i > 3, then

α = 4

1+
1+

(

1+ log
⌈⌈B/bmin(t)⌉⌉
⌈⌈B/bmax(t)⌉⌉

)(

1+ log⌊⌊wmax(t)⌋⌋
log logmax{4,⌊⌊wmin(t)⌋⌋}

)

H(C(t))

β = ρ(2logwmax(t)− 1).

16

3. Linear factor. If the client classification boundaries are [wi,wi+1), where w1 =
1,w2 = 2, and wi = w2

i−1, for any i > 2, then

α = 4

1+
1+

(

1+ log
⌈⌈B/bmin(t)⌉⌉
⌈⌈B/bmax(t)⌉⌉

)(

1+ log
logmax{2,⌊⌊wmax(t)⌋⌋}
logmax{2,⌊⌊wmin(t)⌋⌋}

)

H(C(t))

β = ρ
(

2
√

wmax(t)− 1
)

.

Where H(C(t)) = ⌈∑c∈C(t) 1/wc⌉, wmax(t) = maxc∈C(t) wc, wmin(t) = minc∈C(t) wc,

bmax(t) = maxc∈C(t) bc, and bmin(t) = minc∈C(t) bc.

Proof. Using that S(OPT, t)≥ H(C(t)), and bounding the values of maxt Γ(ALG, t)
and maxt⌊⌊whighmax(t)⌋⌋/⌈⌈wlowmax(t)⌉⌉ in Theorem 4, the claim follows.

We note that the choice of classification factor gives a trade-off on the performance

on station usage and reallocation cost, i.e., the station usage improves as we move

from constant to logarithm to linear factor while the reallocation cost improves as we

move from linear to logarithm to constant factor. We comment that the logarithm

classification gives good performance for both measurement.

To provide intuition, we instantiate Corollary 5 on a setting where all laxities are

powers of 2 and all bandwidth requirements are the full capacity of a station, as follows.

Corollary 6 For a set of clients C such that, for all c ∈C, it is bc = B and wc = 2i for

some i ≥ 0, and for all t it is wmax(t) > wmin(t) ≥ 4, the following holds. At any time

slot t, CPR achieves an (α,β)-performance as follows.

1. If the client classification boundaries are [wi,wi+1), where w1 = 1, and wi =
2wi−1, for any i > 1, then

α = 1+(2+ log(wmax(t)/wmin(t)))/H(C(t))

β = 3ρ.

2. If the client classification boundaries are [wi,wi+1), where w1 = 1,w2 = 2,w3 =
4, and wi = wi−1 logwi−1, for any i > 3, then

α = 1+(2+ logwmax(t)/ loglogwmin(t))/H(C(t))

β = ρ(2logwmax(t)− 1).

3. If the client classification boundaries are [wi,wi+1), where w1 = 1,w2 = 2, and

wi = w2
i−1, for any i > 2, then

α = 1+(2+ log(logwmax(t)/ logwmin(t)))/H(C(t))

β = ρ
(

2
√

wmax(t)− 1
)

.

Where H(C(t)) = ⌈∑c∈C(t) 1/wc⌉, wmax(t) = maxc∈C(t) wc, wmin(t) = minc∈C(t) wc,

bmax(t) = maxc∈C(t) bc, and bmin(t) = minc∈C(t) bc.

17

6 Simulations

In this section, we present the main results of our experimental simulations of the CPR

algorithm. We highlight here that the classification factor (logarithmic) that main-

tains simultaneously station usage and reallocation cost below the maximum observed

was found through experimentation with various functions. For the specific cases pre-

sented (constant, logarithmic, and linear factors) we have focused on a scenario where

∀c ∈ C,bc = 1/2i, and wc = 2 j, where i, j ≥ 0 and B was normalized to 1. For all

the evaluations the reallocation cost of each client c has been set to the inverse of its

laxity 1/wc. That is, ρ = 1, since the scaling factor ρ is also a multiplicative factor in

our reallocation metric and, hence, does not provide additional information about the

performance of our protocols in terms of reallocation.

Our theoretical bounds on performance apply to worst-case scenarios. Hence, the

purpose of these simulations is to complement those bounds evaluating how much bet-

ter (if anything) our protocol behaves in practice for average cases. Given that the main

feature of the protocol is to allocate (and reallocate) “efficiently”, we aim to stress

such feature considering inputs that entail extremal cases of arrivals. That is, smooth

distributions of arrivals as well as batched arrivals. The set of inputs chosen are repre-

sentative of those cases. Moreover, they are also the customary choices in experimental

evaluation for other problems such as job scheduling, packet routing, etc. Other reallo-

cation algorithms were not simulated since, to the best of our knowledge, this is the first

time that restrictions on laxity and bandwidth under a reallocation cost proportional to

resources requested have been considered.

We have produced various sets of clients (recall that each client is characterized

by a time of arrival, a time of departure, a bandwidth, and a laxity). The laxity of

each client was chosen independently at random from {1,2,4, . . . ,wmax}, for each

wmax = 1024,4096, and 16384. We evaluated three distributions over that range: uni-

form, biased towards small laxities, and biased towards large laxities. Biased means

probability 0.7 of choosing from one half of the range (lower or higher), and then

uniform probability within the half chosen. The bandwidth of each client c was cho-

sen at random as bc = 1/2i with probability 1/2i for each i = 1,2, . . . For each of

n = 4000,8000, and 16000 clients, time was discretized in 2n slots.

The arrival time of each client was chosen: (a) uniformly at random within the in-

terval [1,2n]; (b) in 3 batches of n/3 clients arriving at t = 1, t = n/2, and t = n; and (c)

as a Poisson process with mean rate λ = 0.7. The choice of a Poisson process intends

to model another case where the arrival schedule does not include bursts, whereas the

value chosen for λ intends to model an arrival schedule that is somewhat dense (0.7
expected arrivals per unit of time until all n clients have arrived). For each client, the

departure time was chosen uniformly at random from the interval [ta,2n], where ta is

the time of arrival of such client. The inputs for n = 4000 and wmax = 1024 are illus-

trated in Figure 6 showing the H(C(t)) function, which is a lower bound on the optimal

number of stations needed.

With respect to the protocol, three different classification factors: constant, loga-

rithmic, and linear, were used, as detailed in Algorithm 2. We implemented the pro-

tocol and input generator in Java 8. The simulations were carried out on one of the

Linux servers at Pace University. The specifications are IntelrXeonrCPU X5450 @

18

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

H
(C

(t
))

Time slots

Active clients aggregated weight

U L U A
U L B A
U L P A

SB L U A
SB L B A
SB L P A
LB L U A
LB L B A
LB L P A

Figure 6: Cumulative inverse laxity (H(C(t))) vs. time for n = 4000 and wmax = 1024.

Key: L: laxity, A: arrival, U: uniform, B: batched, P: Poisson, SB: small-biased, LB:

large-biased.

3.00GHz, 2GB RAM, 150GB HD, running Debian 8 x64.

For each of the 243 scenarios that arise from the combination of the above variants

(3 wmax, 3 laxity distributions, 3 arrival distributions, 3 numbers of clients, and 3 pro-

tocols), we evaluated experimentally the (α,β)-performance of CPR. Our simulations

showed that the performance in practical settings is indeed as expected or better than

the theoretical bounds (as in Corollary 5). The discussion and plots that follow, refer to

n = 4000 and wmax = 1024, but similar results were obtained for the other cases. The

source code, the input data, and the raw output data are publicly available in [27].

It can be seen in Figures 9, 10, and 11 that the reallocation vs. departures weight

ratio (bounded by β) is frequently at most 1. For constant factor classification on

uniform arrival distribution and uniform laxity no client was ever reallocated. Hence,

this case is not plotted. Also, the ratio is defined on reallocation events. Hence, no data

points are shown in time slots without reallocations.

To quantify the latter observations, we compute statistics of the reallocation vs.

departures weight ratio, over time slots where some client has been reallocated. The

results are shown in Figure 7. It can be seen that in all cases the average plus one

standard deviation is below 2.5. For comparison, we compute the bounds β proved in

Corollary 5. Recall that the sample space for wmax in the simulations was [1,1024].
Nevertheless, being pessimistic and replacing wmax = 8, and the value ρ = 1 used in

our simulations, we have that the theoretical upper bound is β≥ 3 for all classification

factors. For larger values of wmax the gap between our observations and the theoretical

bound is even larger, showing that on realistic inputs our protocol behaves much better

than the worst-case theoretical bounds.

19

0

0.5
1

1.5
2

2.5

U
nifLax-U

nifA
rr-C

onst

Sm
allB

iasedLax-U
nifA

rr-C
onst

LargeB
iasedLax-U

nifA
rr-C

onst

U
nifLax-B

atchedA
rr-C

onst

Sm
allB

iasedLax-B
atchedA

rr-C
onst

LargeB
iasedLax-B

atchedA
rr-C

onst

U
nifLax-PoissonA

rr-C
onst

Sm
allB

iasedLax-PoissonA
rr-C

onst

LargeB
iasedLax-PoissonA

rr-C
onst

U
nifLax-U

nifA
rr-Log

Sm
allB

iasedLax-U
nifA

rr-Log

LargeB
iasedLax-U

nifA
rr-Log

U
nifLax-B

atchedA
rr-Log

Sm
allB

iasedLax-B
atchedA

rr-Log

LargeB
iasedLax-B

atchedA
rr-Log

U
nifLax-PoissonA

rr-Log

Sm
allB

iasedLax-PoissonA
rr-Log

LargeB
iasedLax-PoissonA

rr-Log

U
nifLax-U

nifA
rr-Linear

Sm
allB

iasedLax-U
nifA

rr-Linear

LargeB
iasedLax-U

nifA
rr-Linear

U
nifLax-B

atchedA
rr-Linear

Sm
allB

iasedLax-B
atchedA

rr-Linear

LargeB
iasedLax-B

atchedA
rr-Linear

U
nifLax-PoissonA

rr-Linear

Sm
allB

iasedLax-PoissonA
rr-Linear

LargeB
iasedLax-PoissonA

rr-Linear

R
ea

ll
o

ca
ti

o
n

s/
d

ep
ar

tu
re

s
ra

ti
o

Statistics over time slots with reallocations

avg
+1 std

Figure 7: Reallocation/Departure ratio statistics for different classification factors, lax-

ity distributions, and arrival distributions, for n = 4000 and wmax = 1024.

With respect to station usage, Figure 12 shows that after a period upon initial ar-

rivals and a period before last departures, the station usage ratio against H(C(t)), which

is only a lower bound of the optimal, (bounded by α) is most of the time below 4, and

frequently below 2. We make this observation more precise by computing the per-

centage of time slots when the station usage ratio against H(C(t)) is below 4 for each

combination of classification factor and arrival distribution. The results are shown in

Table 1.

Should the reallocation ratio be minimized, the constant factor classification achieves

better performance at a higher station usage. On the other hand, if station usage must

be kept low, the linear factor classification performs better incurring in higher reallo-

cation cost. The logarithmic factor balances both costs. Figure 8 illustrates these trade

offs. In comparison with the bounds proved in Corollary 5, for the scenarios simulated

CPR behaves better than expected. As we see in the figure, these trade-offs appear in

all input distributions, although in some the impact is milder (e.g. large-biased laxities

with uniform or Poisson arrivals).

The inputs chosen for our evaluation are intuitively representative of a variety of

likely cases. Namely, bursts and smooth arrivals, more/even/less demanding clients,

etc. Should a comparison among factors regardless of distributions be needed (e.g.,

if the distribution is unknown, but the extremal values of bandwidths, laxities, and

H(C(t)) are known) the worst-case guarantees in the analysis must be used.

7 Conclusions and Future Work

In this paper, we study a dynamic allocation problem SA and associated reallocation

algorithms assuming that clients have laxity and bandwidth requirements. We charac-

terize these algorithms by defining the notion (α,β)-performance as combination of the

20

6

8

10

12

14

16

18

20

22

0 2 4 6 8 10 12 14 16

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Reallocations / Departures ratio (beta)

Uniform arrivals and Uniform laxities
Batched arrivals and Uniform laxities
Poisson arrivals and Uniform laxities

Uniform arrivals and Small-biased laxities
Batched arrivals and Small-biased laxities
Poisson arrivals and Small-biased laxities

Uniform arrivals and Large-biased laxities
Batched arrivals and Large-biased laxities
Poisson arrivals and Large-biased laxities

Figure 8: Worst case α vs. β. n = 4000, wmax = 1024, wmin = 1, ρ = 1. Each col-

ored line corresponds to the 3 data points obtained for each input. The leftmost point

corresponds to the Constant factor algorithm, the middle point corresponds to the Log-

arithmic factor, and the rightmost point corresponds to the Linear factor.

competitive ratio on station usage (α) and the cost of reallocations (β). We show that

previous protocols that work well for unit cost per client reallocation do not work well

when the cost is more general. We then present a new protocol called Classified Pre-

emptive Reallocation and prove bounds on both of our performance metrics. We also

present experimental simulation results on average cases supplementing our theoretical

analysis on worst case.

There are a few future directions. To further understand the performance of al-

gorithms, it is desirable to derive lower bounds on the performance ratio of a general

algorithms. In this paper we assume that each station has the same capacity. An ob-

vious generalization is to consider stations having different capacities. In addition, we

may extend cost model to introduce a weight to each client and the reallocation cost

is then calculated as a weighted cost. In terms of the setting, we aim to quantify the

resources required to complete all requests from clients. A direction is to consider lim-

ited resources and striking a balance between completing more clients and not violating

the resource limitation.

Acknowledgements

The authors thank the support from a Visiting Fellowship and the initiative Networks

Sciences & Technologies (NeST) by School of EEE & CS, University of Liverpool, as

well as Pace University NYFC SRC Award and Kenan Fund Award.

21

References

[1] Udo Adamy and Thomas Erlebach. Online coloring of intervals with bandwidth.

In Proceedings of the 1st International Workshop on Approximation and Online

Algorithms, volume 2909 of Lecture Notes in Computer Science, pages 1–12.

Springer, 2003.

[2] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time

minimization. ACM Transactions on Algorithms, 3(4):49, 2007.

[3] Susanne Albers and Matthias Hellwig. On the value of job migration in online

makespan minimization. In Proceedings of the 20th Annual European Symposium

on Algorithms, volume 7501 of Lecture Notes in Computer Science, pages 84–95.

Springer, 2012.

[4] Matthew Andrews, Spyridon Antonakopoulos, and Lisa Zhang. Minimum-cost

network design with (dis)economies of scale. In Proceedings of the 51st Annual

IEEE Symposium on Foundations of Computer Science, pages 585–592. IEEE

Computer Society, 2010.

[5] Yossi Azar. On-line load balancing. In Proceedings of Developments from a

June 1996 Seminar on Online Algorithms: The State of the Art, pages 178–195.

Springer-Verlag, 1996.

[6] Yossi Azar and Arik Litichevskey. Maximizing throughput in multi-queue

switches. Algorithmica, 45:69–90, 2006.

[7] János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain

classes of bin packing algorithms. In Proceedings of the 8th International Work-

shop on Approximation and Online Algorithms (WAOA), pages 25–36, 2010.

[8] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary

power function. ACM Transactions on Algorithms, 9(2):18:1–18:14, 2013.

[9] Amotz Bar-Noy, Randeep Bhatia, Joseph Naor, and Baruch Schieber. Minimizing

service and operation costs of periodic scheduling. In Proceedings of the 9th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 11–20, 1998.

[10] Amotz Bar-Noy and Richard E Ladner. Windows scheduling problems for broad-

cast systems. SIAM Journal on Computing, 32(4):1091–1113, 2003.

[11] Amotz Bar-Noy, Richard E Ladner, and Tami Tamir. Windows scheduling as

a restricted version of bin packing. ACM Transactions on Algorithms, 3(3):28,

2007.

[12] Sanjoy Baruah and Joël Goossens. Scheduling real-time tasks: Algorithms and

complexity. In J. Leung, editor, Handbook of Scheduling: Algorithms, Models

and Performance Analysis, pages 15–1–15–41. CRC Press, 2004.

22

[13] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, A. Vitaletti, S. Diggavi,

S. Muthukrishnan, and T. Nandagopal. Parallel scheduling problems in next gen-

eration wireless networks. Networks, 45(1):9–22, 2005.

[14] Michael A. Bender, Martı́n Farach-Colton, Sándor P. Fekete, Jeremy T. Fineman,

and Seth Gilbert. Reallocation problems in scheduling. In Proceedings of the 25th

ACM Symposium on Parallelism in Algorithms and Architectures, pages 271–279.

ACM, 2013.

[15] Ho-Leung Chan, Joseph Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum

Mak, and Prudence W. H. Wong. Optimizing throughput and energy in online

deadline scheduling. ACM Transactions on Algorithms, 6(1):1–22, 2009.

[16] Wun-Tat Chan and PrudenceW.H. Wong. On-line windows scheduling of tempo-

rary items. In Proceedings of the 15th International Symposium on Algorithms

and Computation, volume 3341 of Lecture Notes in Computer Science, pages

259–270. Springer, 2004.

[17] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Bin packing approximation

algorithms: A survey. In Dorit S. Hochbaum, editor, Approximation Algorithms

for NP-Hard Problems, pages 46–93. PWS, 1996.

[18] Edward G Coffman Jr, János Csirik, Gábor Galambos, Silvano Martello, and

Daniele Vigo. Bin packing approximation algorithms: survey and classification.

In Handbook of Combinatorial Optimization, pages 455–531. Springer, 2013.

[19] Edward G. Coffman, Jr., Gabor Galambos, Silvano Martello, and Daniele Vigo.

Bin packing approximation algorithms: Combinatorial analysis. In D.-Z. Du and

P. M. Pardalos, editors, Handbook of Combinatorial Optimization, pages 151–

207. Kluwer Academic Publishers, 1998.

[20] Luca Cominardi, Fabio Giust, Carlos Jesus Bernardos, and Antonio de la Oliva.

Distributed mobility management solutions for next mobile network architec-

tures. Computer Networks, 121:124–136, 2017.

[21] Leah Epstein. Bin packing with rejection revisited. Algorithmica, 56(4):505–528,

2010.

[22] Leah Epstein, Thomas Erlebach, and Asaf Levin. Variable sized online interval

coloring with bandwidth. Algorithmica, 53(3):385–401, 2009.

[23] Martı́n Farach-Colton, Katia Leal, Miguel A. Mosteiro, and Christopher Thraves.

Dynamic windows scheduling with reallocation. In Proceedings of the 13th Inter-

national Symposium on Experimental Algorithms, volume 8504 of Lecture Notes

in Computer Science, pages 99–110. Springer, 2014.

[24] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and S. Muthukrishnan. Online

stochastic matching: Beating 1-1/e. In Proceedings of the 50th Annual IEEE

Symposium on Foundations of Computer Science, pages 117 –126. IEEE Com-

puter Society, 2009.

23

[25] Antonio Fernández Anta, Dariusz R. Kowalski, Miguel A. Mosteiro, and Pru-

dence W. H. Wong. Station assignment with applications to sensing. In Pro-

ceedings of the 9th International Symposium on Algorithms and Experiments for

Sensor Systems, Wireless Networks and Distributed Robotics, volume 8243 of

Lecture Notes in Computer Science, pages 155–169. Springer, 2013.

[26] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual

for non-linear optimization with applications to speed scaling. In Proceedings

of the 10th Workshop on Approximation and Online Algorithms, volume 7846 of

Lecture Notes in Computer Science, pages 173–186. Springer, 2012.

[27] Austin Halper, Miguel A. Mosteiro, Yulia Rossikova, and Prudence W. H. Wong.

Station assignment with reallocation simulator code and data. http://csis.

pace.edu/˜mmosteiro/pub/sourceBSreallocJournal/ , 2017.

[28] Robert Holte, Al Mok, Louis Rosier, Igor Tulchinsky, and Donald Varvel. The

pinwheel: a real-time scheduling problem. In Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, volume II, Software Track,

pages 693–702, 1989.

[29] Tobias Jacobs and Salvatore Longo. A new perspective on the windows schedul-

ing problem. CoRR, abs/1410.7237, 2014.

[30] Bo Ji, Gagan R. Gupta, Manu Sharma, Xiaojun Lin, and Ness B. Shroff. Achiev-

ing optimal throughput and near-optimal asymptotic delay performance in multi-

channel wireless networks with low complexity: A practical greedy scheduling

policy. IEEE/ACM Transactions on Networking, 23(3):880–893, 2015.

[31] Bala Kalyanasundaram and Kirk Pruhs. An optimal deterministic algorithm for

online b-matching. Theoretical Computer Science, 233(1-2):319–325, 2000.

[32] Eiman Kanjo, Steve Benford, Mark Paxton, Alan Chamberlain, Danae Stanton

Fraser, Dawn Woodgate, David Crellin, and Adrian Woolard. Mobgeosen: facil-

itating personal geosensor data collection and visualization using mobile phones.

Personal and Ubiquitous Computing, 12(8):599–607, 2008.

[33] Wazir Zada Khan, Yang Xiang, Mohammed Y. Aalsalem, and Quratul-Ain Ar-

shad. Mobile phone sensing systems: A survey. IEEE Communications Surveys

and Tutorials, 15(1):402–427, 2013.

[34] Miguel A. Mosteiro, Yulia Rossikova, and Prudence W.H. Wong. Station assign-

ment with reallocation. In Proceedings of the 14th International Symposium on

Experimental Algorithms, Lecture Notes in Computer Science, pages 151–164.

Springer, 2015.

[35] Francesco Restuccia, Sajal K. Das, and Jamie Payton. Incentive mechanisms for

participatory sensing: Survey and research challenges. TOSN, 12(2):13:1–13:40,

2016.

24

http://csis.pace.edu/~mmosteiro/pub/sourceBSreallocJournal/
http://csis.pace.edu/~mmosteiro/pub/sourceBSreallocJournal/

[36] Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with

bounded migration. In Proceedings of the 31st International Colloquium on Au-

tomata, Languages and Programming, volume 3142 of Lecture Notes in Com-

puter Science, pages 1111–1122. Springer, 2004.

[37] Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with

bounded migration. Math. Oper. Res., 34(2):481–498, 2009.

[38] Kewei Sha, Guoxing Zhan, Weisong Shi, Mark Lumley, Clairy Wiholm, and

Bengt Arnetz. Spa: A smart phone assisted chronic illness self-management

system with participatory sensing. In Proceedings of the 2Nd International Work-

shop on Systems and Networking Support for Health Care and Assisted Living

Environments, HealthNet ’08, pages 5:1–5:3, New York, NY, USA, 2008. ACM.

25

Algorithm 1: Classified Preemptive Reallocation. ⌊⌊x⌋⌋ is the largest power of 2

that is not larger than x. We represent the transmission schedules with broadcast

trees. A node with both children available becomes an available leaf. A station

with no client assigned becomes non-active. 〈wlow,whigh〉 are the boundaries of

the class of the input client. Refer to Algorithm 2 for further details on the clas-

sification.

Algorithm

upon arrival or departure of a client c do

if arrival then allocate(c,〈wlow ,whigh〉)
else consolidate(c,〈wlow ,whigh〉)

endupon

Procedure allocate(c,〈wlow ,whigh〉)
for each depth i = ⌊logwc⌋−⌈logwlow⌉ down to 0 do

for each active station s of class 〈wlow,whigh,1/⌊⌊B/bc⌋⌋〉 do

if there is a leaf ℓ available at depth i in the broadcast tree of s then
allocate to ℓ a new subtree with client c assigned at depth

⌊logwc⌋− i−⌈logwlow⌉ of the broadcast subtree

return

end

end

end

activate a new station s in class 〈wlow,whigh,1/⌊⌊B/bc⌋⌋〉
choose one of the leaves ℓ at depth 0 of the broadcast subtrees of s

allocate to ℓ a new subtree with client c assigned at depth

⌊logwc⌋−⌈logwlow⌉ of the broadcast subtree

Procedure consolidate(c,〈wlow ,whigh〉)
for each depth i = ⌊logwc⌋−⌈logwlow⌉ down to 1 do

if there are two active stations of class 〈wlow,whigh,1/⌊⌊B/bc⌋⌋〉 both

with a leaf at depth i available then reallocate sibling subtree of smaller

weight

else return

end

// reallocations cleared a whole broadcast subtree

if there are two active stations of class 〈wlow,whigh,1/⌊⌊B/bc⌋⌋〉 with empty

broadcast subtrees then reallocate a subtree from the station with at least

one empty subtree to the station with exactly one empty subtree

26

Algorithm 2: Class Computation. ⌊⌊x⌋⌋ is the largest power of 2 that is not larger

than x. The parameter f actor indicates how the client classes are defined.

Function findLaxityClass(c,factor)

if 1≤ ⌊⌊wc⌋⌋< 2 then return 〈1,2〉
if 2≤ ⌊⌊wc⌋⌋< 4 then return 〈2,4〉
w← 4

if f actor = constant then

while ⌊⌊wc⌋⌋ ≥ 2w do // whigh = 2wlow

w← 2w

end

return 〈w,2w〉
end

else if f actor = logarithmic then

while ⌊⌊wc⌋⌋ ≥ w log2 w do // whigh = wlow log2 wlow

w← w log2 w

end

return 〈w,w log2 w〉
end

else // f actor = linear

while ⌊⌊wc⌋⌋ ≥ w2 do // whigh = w2
low

w← w2

end

return 〈w,w2〉
end

27

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor BatchedArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor PoissonArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor UnifArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor BatchedArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor PoissonArrivals and SmallBiasedLaxity distributions.

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor UnifArrivals and LargeBiasedLaxity distributions.

0.0001

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor BatchedArrivals and LargeBiasedLaxity distributions.

0.001

0.01

0.1

1

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Constant factor PoissonArrivals and LargeBiasedLaxity distributions.

Figure 9: Reallocation/Departure ratio (β) vs. time for constant classification factor,

n = 4000 and wmax = 1024.

28

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorUnifArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorBatchedArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorPoissonArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorUnifArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorBatchedArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorPoissonArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorUnifArrivals and LargeBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorBatchedArrivals and LargeBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Logarithmic factorPoissonArrivals and LargeBiasedLaxity distributions.

Figure 10: Reallocation/Departure ratio (β) vs. time for logarithmic classification fac-

tor, n = 4000 and wmax = 1024.

29

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor UnifArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor BatchedArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor PoissonArrivals and UnifLaxity distributions.

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor UnifArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor BatchedArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor PoissonArrivals and SmallBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor UnifArrivals and LargeBiasedLaxity distributions.

0.001

0.01

0.1

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor BatchedArrivals and LargeBiasedLaxity distributions.

0.001

0.01

0.1

1

10

0 1000 2000 3000 4000 5000 6000 7000 8000

R
ea

ll
o

ca
ti

o
n

s
/

D
ep

ar
tu

re
s

ra
ti

o
(b

et
a)

Time slots

Linear factor PoissonArrivals and LargeBiasedLaxity distributions.

Figure 11: Reallocation/Departure ratio (β) vs. time for linear classification factor,

n = 4000 and wmax = 1024.

30

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

UnifArrivals and LargeBiasedLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

UnifArrivals and SmallBiasedLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

UnifArrivals and UnifLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

BatchedArrivals and LargeBiasedLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

BatchedArrivals and SmallBiasedLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

BatchedArrivals and UnifLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

PoissonArrivals and LargeBiasedLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

PoissonArrivals and SmallBiasedLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

1

10

100

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ta

ti
o

n
u

sa
g

e
ra

ti
o

(a
lp

h
a)

Time slots

PoissonArrivals and UnifLaxity distributions.

Constant factor
Logarithmic factor

Linear factor

Figure 12: Station usage ratio (α) vs. time, for n = 4000 and wmax = 1024.

31

Laxity distribution Arrival distribution Factor percentage

Unif Unif Const 69.0875

SmallBiased Unif Const 76.5625

LargeBiased Unif Const 9.575

Unif Batched Const 83.4
SmallBiased Batched Const 89.225

LargeBiased Batched Const 79.3125

Unif Poisson Const 73.3875

SmallBiased Poisson Const 80.9
LargeBiased Poisson Const 41.475

Unif Unif Log 90.1875

SmallBiased Unif Log 91.9375

LargeBiased Unif Log 75.925

Unif Batched Log 95.0
SmallBiased Batched Log 95.3375

LargeBiased Batched Log 88.825

Unif Poisson Log 90.0625

SmallBiased Poisson Log 94.05

LargeBiased Poisson Log 78.4375

Unif Unif Linear 91.05

SmallBiased Unif Linear 91.9375

LargeBiased Unif Linear 86.725

Unif Batched Linear 96.0
SmallBiased Batched Linear 95.925

LargeBiased Batched Linear 90.875

Unif Poisson Linear 92.5875

SmallBiased Poisson Linear 94.7375

LargeBiased Poisson Linear 83.275

Table 1: Percentage of time slots when the station usage ratio is below 4, for each

classification factor, laxity distribution, and arrival distribution, for n = 4000 and

wmax = 1024.

32

	1 Introduction
	2 Our Results
	3 Definitions
	4 Algorithms
	5 Analysis
	6 Simulations
	7 Conclusions and Future Work

