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Abstract

We introduce a new technique for the analysis of online algorithms, namely bijective analysis,
that is based on pair-wise comparison of the costs incurred by the algorithms. Under this
framework, an algorithm A is no worse than an algorithm B if there is a bijection π defined over
all request sequences of a given size such that the cost of A on σ is no more than the cost of B
on B(π(σ)). We also study a relaxation of bijective analysis, termed average analysis, in which
we compare two algorithms based on their corresponding average costs over request sequences
of a given size.

We apply these new techniques in the context of two fundamental online problems, namely
paging and list update. For paging, we show that any two lazy online algorithms are equiva-
lent under bijective analysis. This result demonstrates that, without further assumptions on
characteristics of request sequences, it is unlikely, or even undesirable, to separate online paging
algorithms based on their performance. However, once we restrict the set of request sequences to
those exhibiting locality of reference, and in particular using a model of locality due to Albers,
Favrholdt, and Giel [JCSS 2005], we demonstrate that Least-Recently-Used (LRU) is the unique
optimal strategy according to average analysis. This is, to our knowledge, the first deterministic
model to provide full theoretical backing to the empirical observation that LRU is preferable
in practice. Concerning list update, we obtain similar conclusions, in terms of the bijective
comparison of any two online algorithms, and in terms of the superiority (albeit not necessarily
unique) of the Move-To-Front (MTF) heuristic in the presence of locality of reference.

1 Introduction

Paging is a fundamental problem in the context of analysis of online algorithms. A paging algorithm
mediates between a slower memory and a faster memory, also called cache. Assuming a cache of size
k, the paging strategy must decide which k memory pages to keep in the cache without the benefit
of knowing in advance the sequence of upcoming page requests. Upon a request for a page, in the
event the page is already in the cache the request is called a hit and is handled at no cost to the
algorithm. On the other hand, in the event the request is not currently in the cache (namely, when

∗This work is an extended, combined version of two papers: On the separation and equivalence of paging strategies,
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 229-237, and List
Update with Locality of Reference, in Proceedings of the Eighth Latin American Theoretical Informatics Symposium,
2008, pp. 399-410.
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a cache miss occurs) the online algorithm must decide irrevocably which page to evict, and then
brings the requested page into the cache. The objective is to design efficient online algorithms, in
the sense that on a given request sequence the total number of cache misses is as small as possible.

The best known theoretical framework for evaluating the performance of paging strategies (and
online algorithms in general) is competitive analysis. The competitive ratio, first introduced formally
by Sleator and Tarjan [51], has served as the standard measure for the study and classification of
online algorithms. Assuming a cost-minimization problem (such as paging), an algorithm is said
to be α-competitive if the cost of serving any specific request sequence does not exceed α times
the optimal cost (up to some additive constant) of the best offline algorithm that knows the entire
sequence. The competitive ratio has been applied to a variety of problems and settings, mainly
due to its amenability to analysis: the measure is relatively simple to define, yet powerful enough
to quantify the performance of online algorithms in a variety of settings. On the other hand, for
the case of paging algorithms, competitive analysis has long been known to produce unrealistically
pessimistic measures. More precisely, competitive analysis fails to distinguish between algorithms
which differ vastly in performance in practical settings. Indeed, the first measure alternative to
competitive analysis, namely resource augmentation, was proposed by Sleator and Tarjan in their
original paper introducing competitive analysis [51].

As a concrete example, consider the well-studied paging strategies Flush-When-Full (FWF),
Least-Recently-Used (LRU) and First-In-First-Out (FIFO). For the case of LRU and FIFO, Young
established experimental values of the competitive ratio no larger than four [54]. In contrast,
all three algorithms have a competitive ratio of (theoretical) value equal to the cache size, k.
Furthermore, it has long been empirically established that LRU (and in particular, some of its more
practical implementations) are among the most preferable paging strategies [50]. An additional
drawback of competitive analysis is that finite lookahead yields no improvement in the performance
of an online algorithm [16]. Once again, this is a rather counterintuitive conclusion: in practice, one
expects that lookahead should improve performance, and that a “reasonable” theoretical measure
should reflect this reality.

Such anomalies have been observed since the early days of competitive analysis, and there is
a vast literature studying alternative proposals to the competitive analysis of online algorithms in
general, and for the paging problem in particular, e.g., [3, 5, 14, 15, 19, 20, 22, 45, 42, 56, 52] (see the
survey [32] for a discussion on performance measures). In general, known alternative approaches
rely on one or more of the following: i) defining a new measure as substitute of the competitive
ratio; ii) limiting the power of the adversary; iii) employing different definitions for the concept of
the “cost” of an algorithm; iv) incorporating certain assumptions concerning the request sequences.

Note that competitive analysis uses the concept of an optimal offline algorithm as a baseline for
comparing online algorithms. While this may be convenient, it is rather indirect: one could argue
that in comparing two online algorithms, all we need to study is the relative cost of the algorithms
on the request sequences. The approach we follow in this paper stems from this basic observation,
and focuses not on a specific worst case request sequence, but rather on the performance of an
algorithm on all possible sequences. We provide a formal definition of this intuitive observation,
which is based on bijective mappings of the set of all possible request sequences of a given length
onto itself. We term this technique bijective analysis. This form of analysis establishes a very strong
relation between the compared algorithms which, however, may be difficult to prove or may even
not exist. Thus, we also define a relaxation of bijective analysis based on the average cost incurred
by an algorithm on all requests of the same length. We term this latter form of analysis average
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analysis. Formal definitions are provided in Section 3.
We also address the impact of a well-known phenomenon in the context of the paging problem,

namely, locality of reference. It has been established that “real-life” sequences usually exhibit a
high degree of locality of reference, and thus efficient algorithms tend to take advantage of this
property. Informally, locality of reference suggests that the currently requested item is likely to be
requested again in the near future. For the paging problem, several models for capturing locality of
reference have been proposed [3, 14, 17, 40, 52] (more details are given in Section 2). In our work
we adopt an intuitive model of locality of reference due to Albers, Favrholdt and Giel [3], termed
concave analysis, which in turn is based on Denning’s concept of the working set [29]. The reason
is that the model is fairly inclusive, i.e., tends to incorporate any sequence that exhibits, to some
degree, locality characteristics, but also is conceptually simple so as to facilitate the analysis based
on the techniques of this work.

Our results We begin by showing that a very large class of natural paging strategies known as lazy
algorithms are equivalent under bijective analysis. In contrast, we show that LRU is strictly better
than FWF (note that the latter is not a lazy strategy). Both of these results describe natural, “to-be-
expected” properties of the corresponding paging strategies which competitive analysis nevertheless
fails to yield. The equivalence of lazy algorithms provides strong evidence of an inherent difficulty in
separating algorithms in any general setting. In fact, it implies that in order to obtain a theoretical
separation between paging algorithms we must either induce a partition of the space of request
sequences (e.g. as in Albers et al. [3] and Borodin et al. [17]) or assume a distribution on the
sequence space (e.g. as in Becchetti [14], Koutsoupias and Papadimitriou [42], Karlin et al. [40]
and Young [55]). The latter group of approaches uses probabilistic assumptions on the sequence
space. However, since we are interested in separating algorithms under a deterministic model,
we adopt concave analysis as introduced by Albers et al., which we then apply in the context of
average analysis. Using this approach, we show formally our main result: namely that LRU is
never outperformed in any possible subpartition on the request sequence space induced by concave
analysis (c.f. Corollary 10), while it always outperforms any other paging algorithm in at least
one subpartition of the request-sequence space (c.f. Theorem 11). This result proves separation
between LRU and all other algorithms and provides theoretical backing to the observation that
LRU is often preferable in practice.

We then apply the new technique to other problem domains. First, we provide concrete evidence
that in the context of paging, lookahead is beneficial. Specifically, we show that under bijective
analysis, LRU with lookahead as small as one (that is, the sequence is revealed to the algorithm as
overlapping consecutive pairs of requests) is strictly better than LRU without any lookahead.

Second, we turn our attention to another fundamental problem in online computation, namely
the list update problem. We first show that under the cost formulation of Mart́ınez and Roura [43]
and Munro [45] (to which we refer as the modified cost model) all online list update algorithms that
do not use paid exchanges are equivalent according to bijective analysis. We then address the issue
of locality of reference in the context of list update. In particular, we show how the model of Albers
et al. [3] can be extended, so as to properly capture the effect of locality of reference in list-update
applications related to compression algorithms. We provide experimental results obtained on the
Calgary Corpus, which is frequently used as a standard benchmark for evaluating the performance
of compression algorithms (and by extension for list update algorithms, e.g. [13]). We thus resolve
the open problem posed by Hester and Hirschberg [35], in that we provide a theoretical model which
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captures the effect of locality in list update applications. Our main result proves that under both
the standard cost model (i.e., the canonical cost formulation introduced by Sleator and Tarjan [51]),
as well as under the modified cost formulation, the Move-To-Front algorithm (MTF) is an optimal
algorithm according to average analysis (albeit not necessarily uniquely optimal).

Our results on list update also address a problem posed by Mart́ınez and Roura [43], namely
defining an alternative measure to the competitive ratio that demonstrates the superiority of MTF
in the modified cost model. This is motivated by the observation that in the modified cost model,
all list-update algorithms have asymptotically the same non-constant competitive ratio [43]. Our
results provide evidence that bijective and average analysis are not tied to the paging problem, but
rather can be applied, with success, to other online optimization problems.

Structure of the paper In Section 2 we give an overview of related work and introduce some
standard definitions. In Section 3 we give formal definitions of the concepts of bijective and average
analysis. In Subsection 4.1 we show strong equivalence between all lazy algorithms according to
bijective analysis. These results formalize ideas that while perhaps familiar to many researchers
of online problems had yet to be proved in a rigorous manner. We also show that LRU is strictly
better than FWF under this measure. In Subsection 4.2 we present our main result, i.e., separation
between LRU and all other paging strategies using average analysis coupled with concave analysis.

In Section 5 we demonstrate how to apply this framework to other problems, namely paging
with lookahead and list update. More specifically, in Subsection 5.1 we show that bijective analysis
captures the effect of lookahead. This is in contrast to the competitive ratio under which an
algorithm with lookahead performs no better than a similar algorithm without lookahead. Finally,
in Subsection 5.2 we apply our measures to list update algorithms and prove the optimality of
MTF, under average analysis.

2 Preliminaries and Related Work

We begin with some well-known definitions concerning paging strategies. The algorithms Least-
Recently-Used (LRU), First-In-First-Out (FIFO), and Flush-When-Full (FWF) are among the best
known, and most studied eviction strategies. In the event of a cache miss, LRU evicts the page
that is least recently used, whereas FIFO evicts the page that was brought into the cache earliest,
and FWF simply empties the cache. All these paging algorithms have competitive ratio k, which
is the best among all deterministic online paging algorithms [51, 52]. A paging algorithm is called
conservative if it incurs at most k faults on any sequence that contains at most k distinct pages.
On the other hand, a marking algorithm A works in phases, as follows. At the beginning of each
phase, all pages in the cache are unmarked and a page becomes marked the first time it is requested.
When an eviction is necessary, the marking algorithm A should evict an unmarked page, if possible;
otherwise, it starts a new phase, removing all marks.

According to the above definitions, LRU and FIFO are conservative algorithms, whereas LRU
and FWF are marking algorithms. A lazy paging algorithm (also called demand paging algorithm)
does not evict any page upon a hit and evicts at most one page upon a fault. LRU and FIFO are
lazy, while FWF is not.

Next we give an overview of some known alternative approaches to competitive analysis. We
refer the reader to the survey [32] for a detailed discussion. Loose competitiveness, which was
first proposed by Young in [54] and later refined in [57], considers an offline adversary that is
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oblivious to the cache size k. The adversary must then produce a sequence that is bad for most
values of k rather than for just a specific value. It also ignores those sequences on which the
online algorithm incurs a cost less than a certain threshold. This results in a weaker adversary
and gives rise to paging algorithms of constant performance ratio. The diffuse adversary model
by Koutsoupias and Papadimitriou [42] as well as Young [55, 56] refines the competitive ratio by
restricting the set of legal request sequences to those derived from a class (family) of probability
distributions. This restriction follows from the observation that although a good performance
measure could in fact use the actual distribution over the request sequences, determining the exact
distribution of real-life phenomena is a difficult task (e.g., depending on the intended application
different distributions might arise). By restricting the input to a class ∆ε of distributions, they
are able to show more realistic ratios for the performance of well known paging algorithms. The
Max/Max ratio, introduced by Borodin and Ben-David [15] compares online algorithms based on
their amortized worst-case behaviour (here the amortization arises by dividing the cost of the
algorithm over the length of the request sequence). This measure is based on directed comparison
of online algorithms and reflects the influence of lookahead. However, it does not provide better
separation results than competitive analysis of paging algorithms.

Continuing the discussion on measures alternative to the competitive ratio, the relative worst
order ratio [19, 20, 25] combines some of the desirable properties of the Max/Max ratio and the
random order ratio (this last introduced in [41] in the context of the online bin packing problem). As
with the Max/Max ratio, it allows for direct comparison of two online algorithms. Informally, this
measure compares the performance of two algorithms on a given request sequence by considering
the worst-case ordering (permutation) of the sequence, for each algorithm. It then selects among all
possible sequences the one that maximizes this worst-case performance. This measure reflects the
influence of lookahead for paging and separates the performance of LRU from FWF [20]. Panagiotou
and Souza proposed a model that explains the efficiency of LRU in practice [47]. In their work,
they classified request sequences according to some parameters and proved an upper bound on
the competitive ratio of LRU as a function of these parameters. They were able to argue that, in
practice, typical request sequences have parameters that lead to a constant competitive ratio for
LRU. Last, more recently, Dorrigiv et al. [30] introduced relative order analysis as a technique for
directly comparing the performance of two online algorithms, based on the normalized difference
of their cost, and they were able to obtain separation results for various algorithms.

Several theoretical models and techniques have been proposed in order to capture and exploit
locality of reference. Borodin et al.[17] proposed the access graph model in which the space of request
sequences can then be modeled by a graph in which paths between vertices correspond to request
sequences. Chrobak and Noga showed that the competitive ratio of LRU is at least as good as FIFO
on every access graph [28]. Irani et al. showed the existence of strongly competitive algorithms in
the access graph model [37]. In a generalization of the access graph model, Karlin, Phillips, and
Raghavan [40] proposed a model in which the space of request sequences has a distribution induced
by a Markov chain process. In another generalization, Boyar et al. [22] applied relative interval
analysis in the access graph model, as well as relative worst order analysis [21], again in the access
graph model. In other work, Becchetti [14] refined the diffuse adversary model of Koutsoupias and
Papadimitriou described earlier by considering only probabilistic distributions in which locality of
reference is present. Using this model he proves that the performance of LRU improves as locality
increases while the reverse is true for FWF. Torng [52] considered the decomposition of request
sequences to appropriately defined phases, and modeled locality of reference by restricting the input
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to sequences with long average phase length. Using the full access cost model, [52] showed constant
performance ratios for LRU on sequences with significant locality of reference and proved that the
model reflects the influence of lookahead. However, all conservative and marking algorithms have
the same performance in this model.

Most relevant to this paper is the work of Albers, Favrholdt, and Giel [3], which introduced
a model in which request sequences are classified according to a measure of locality of reference.
The measure itself is based on Denning’s working set concept [29] which is supported by extensive
experimental results. This technique, which we term concave analysis, reflects the fact that efficient
algorithms must perform competitively in each class of inputs of comparable locality of reference,
as opposed to the worst case alone. It should be noted that Albers et al. [3] focused on the fault
rate as the measure of the cost of an algorithm, as opposed to the traditional definition of cost as
the number of cache misses. Under this model, they showed that LRU has better performance than
FWF and FIFO.

Subsequently to the conference versions of this paper, Angelopoulos and Schweitzer [12] were
able to prove that LRU (as well as MTF in the context of list update) is optimal by combining
bijective analysis and concave analysis. Although bijective analysis implies average analysis, we
believe that the results of our work are still very much relevant, not only because of chronological
precedence, but mostly because we provide different analysis techniques than [12]. Note that
bijective analysis is not always applicable, and as a result two algorithms may be incomparable. In
contrast, average analysis provides a less stringent way of comparing two algorithms, and although
weaker than bijective analysis, is applicable to a much wider class of online problems1. We are
hopeful that our analysis approach can be applied to a much wider range of online optimization
problems.

3 Bijective analysis and average analysis

In this section we introduce a new technique for comparing the performance of online algorithms.
At a high level, this is achieved by pairwise comparisons of the cost of algorithms over all possible
request sequences of the same size.

Given an online algorithm A and a request sequence σ, let A(σ) be the cost incurred by A on σ,
and let In be the set of all request sequences of length n. The first comparison model we introduce
is bijective analysis. In this model, we aim to pair-up request sequences for two algorithms A and
B using a bijective mapping in such a way that the cost of A on sequence σ is no more than the
cost of B on the image of σ. More formally, we propose the following definition.

Definition 1. We say that an online algorithm A is no worse than an online algorithm B according
to bijective analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0, there is a bijection
b : In ↔ In satisfying A(σ) ≤ B(b(σ)) for each σ ∈ In. We denote this by A �b B. Otherwise we
denote the situation by A 6�b B. Similarly, we say that A and B are the same according to bijective
analysis if A �b B and B �b A. This is denoted by A ≡b B. Finally we say A is better than B
according to bijective analysis if A �b B and B 6�b A. We denote this by A ≺b B.

Observe that, similar to Max/Max ratio, this measure considers sequences of the same length
and allows for direct comparison of two online algorithms. However, it induces a comparison of

1For an extension of average analysis to problems in which the input contains elements with real-valued weights,
see [24]
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their performance on all sequences in In, rather than only on the worst sequence. A related, and
less stringent comparison model can be obtained by considering the average number of faults that
a paging algorithm incurs on request sequences of a certain length.

Definition 2. We say that an online algorithm A is no worse than an online algorithm B according
to average analysis if there exists an integer n0 ≥ 1 such that for each n ≥ n0,

∑
I∈In A(I) ≤∑

I∈In B(I). We denote this by A �a B. Otherwise we denote the situation by A 6�a B. A ≡a B,
and A ≺a B are defined as for bijective analysis.

Observation 1. If A 6�a B, then A 6�b B. As well, if A �b B, then A �a B with similar statements
holding for ≡b and ≺b.
Example 3. We use a simple example to illustrate the above definitions. Let A, B, and C be three
online algorithms and In = {σ1, σ2, · · · , σ10} be the set of all possible request sequences of length n.
Suppose that the cost of A, B, C, and the optimal offline algorithm OPT on the request sequences
are as follows:

σ A(σ) B(σ) C(σ) OPT (σ)

σ1 5 6 6 3

σ2 7 8 8 2

σ3 3 4 3 3

σ4 9 4 3 1

σ5 7 10 8 3

σ6 5 7 6 4

σ7 3 6 4 2

σ8 7 6 7 5

σ9 5 8 5 2

σ10 7 10 9 3

We have
∑

σA(σ) = 58,
∑

σ B(σ) = 69, and
∑

σ C(σ) = 59. Therefore A ≺a B, A ≺a C, and
C ≺a B. We have B 6�b A, because B 6�a A. We also have A �b B by considering the bijection
that maps σ1, σ2,. . . , σ10 to σ1, σ2, σ3, σ5, σ6, σ7, σ4, σ9, σ8, and σ10, respectively. Therefore
A is better than B according to bijective analysis, i.e., A ≺b B. Since A ≺a C, we conclude that
C 6�b A. We also have A 6�b C because C incurs a cost less than 5 on 3 sequences while A incurs
a cost less than 5 only on 2 sequences. Thus, although A is better than C according to average
analysis, the two algorithms are not comparable according to bijective analysis. As a last example,
consider the competitive ratio of these algorithms. The (strict) competitive ratios of A, B, and C
are 9, 4, and 4 respectively. Although A seems to have better overall performance than B and C,
its bad performance on a single sequence, namely σ4, results in a bad competitive ratio.

4 Separation between LRU and other paging algorithms

4.1 Paging without assumptions on request sequences

In this section we consider the model in which each request in In is possible, e.g., we consider
all possible requests, whether or not they exhibit locality of reference. We begin with a simple,
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yet striking observation: as will be shown in Theorem 4, all lazy paging algorithms are equivalent
according to bijective analysis. For the remainder of this section let N denote the number of pages
in slow memory. In addition, given a sequence σ, we denote by C(σ) the set of continuations of
σ, namely the set of all sequences in I|σ|+1 of length |σ|+ 1 whose prefix is σ. For a continuation
sequence σ′ ∈ C(σ), and a given paging algorithm A, we say that the last request of σ′ is a last-hit
(resp. last-fault) request with respect to A, if A incurs a page hit (resp. page fault) on the last
request of σ′.

Theorem 4. Let A and B be two lazy paging algorithms. Then we have A ≡b B.

Proof. We will show that A �b B; using the same arguments, we can obtain that B �b A, hence
A ≡b B. More precisely, we will show, by induction on n, that for all n ≥ 1 there is a bijection
πn : In ↔ In such that A(σ) ≤ B(πn(σ)), for every σ ∈ In. For n ≤ k, this is true since
on any sequence of length at most the cache size, A and B make the same decisions (i.e., no
evictions). Suppose that the result holds for n, we will show the existence of an appropriate
bijection πn+1 : In+1 ↔ In+1. The crucial observation is that, on the one hand, for any σ ∈ In
in which at least k pages have been requested, there are exactly k last-hit sequences in C(σ) and
exactly N − k last-fault sequences in C(σ), for both A and B (albeit not necessarily the same
sequences). On the other hand, for any σ ∈ In in which fewer than k pages have been requested,
A and B incur the same cost on σ. Combining these observations with the induction hypothesis,
we obtain that for every σ ∈ In, there exists a bijection φσ : I1 ↔ I1 such that for any (single)
request r we have that

A(σr) ≤ B(πn(σ)φσ(r)).

Therefore, the bijection πn+1 : In+1 ↔ In+1 which maps σr to πn(σ)φσ(r) has the desired property,
and the theorem follows.

Next, we will show how bijective analysis can provide a strict separation between LRU and
FWF. Using the same arguments as in the proof of Theorem 4, one can argue that LRU �b FWF .
The following lemma shows that LRU is strictly better than FWF, namely LRU ≺b FWF . This
implies that LRU is superior to FWF under bijective analysis.

Lemma 5. FWF 6�b LRU.

Proof. We prove this by contradiction. Suppose that we have FWF �b LRU and thus there is
an n0 ≥ 1 such that for each n ≥ n0 we have the bijection bn : In ↔ In with the corresponding
properties. Recall that we can partition a sequence into a number of consecutive phases so that each
phase contains exactly k distinct pages. LRU incurs at most k faults in each phase. On the other
hand, FWF empties its cache at the beginning of each phase and incurs exactly k faults in each
phase. Therefore we have LRU(σ) ≤ FWF (σ) for each sequence σ (hence also LRU �b FWF ).
Thus the desired bijection exists only if we have FWF (σ) = LRU(σ) for every sequence of length
n ≥ n0. Consider a sequence σ = p1p2 . . . ph (h ≥ max(2, n0)) such that σ contains at least k + 1
distinct pages and ph is the first page of a phase. Therefore ph causes FWF to flush its cache,
which now contains only one page after serving σ. Now consider the set of continuations of σ. The
number of last-fault sequences among these for LRU and FWF is N − k and N − 1, respectively.
Therefore there are at least k− 1 sequences for which the cost of LRU is strictly less than the cost
of FWF and hence a bijection as required does not exist.
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It is worth noting that Theorem 4 explains why several performance measures fail to separate
lazy algorithms such as LRU and FIFO, in that the multisets of the costs incurred by the algorithms
on all requests of the same length are identical. In fact, Theorem 4 supports the observation that
unless we constrain, or partition, the space of request sequences to the ones most often appearing
in practice, it is unlikely (and arguably, even undesirable) to separate different paging algorithms.
Since locality of reference is a definitive characteristic of typical sequences in paging, this naturally
leads to the question of how it affects the comparison of algorithms, according to our measures.

4.2 Paging with locality of reference

In Subsection 4.1, we proved that all lazy algorithms are strongly equivalent according to bijective
analysis. However, this analysis ignored that in practice request sequences exhibit locality of ref-
erence. We follow the model of Albers et al. [3], according to which a request sequence has high
locality of reference if the number of distinct pages in a window of size n is small. More precisely,
consider the function that represents the maximum number of distinct pages in a window of size
w, in a request sequence of size n ≥ w. Extensive experiments with real data have shown that this
function can be bounded by a concave function for most practical request sequences [3]. Let then
f denote an increasing concave function. We say that a request sequence is consistent with f if
the number of distinct pages in any window of size w is at most f(w), for any w ∈ N . Now we
can model locality by considering only those request sequences that are consistent with f . Albers
et al. consider a slightly more restrictive class of functions called concave? functions.

Definition 6. [3] A function f : N → R+ is concave? if

1. f(1) = 1 and

2. ∀w ∈ N : f(w + 1)− f(w) ≥ f(w + 2)− f(w + 1).

We additionally require that f be surjective on the integers between 1 and its maximum value.

Note that with the exception of the requirement f(1) = 1, the definition describes a typical
concave function. For instance, the function f : {1, . . . , 8} → {1, . . . , 6}, with f(x) = x, if 1 ≤ x ≤ 4,
and f(x) = x/2 + 2, if 4 < x ≤ 8 is an example of a concave? function.

Let If denote the set of request sequences that are consistent with a given concave? function
f . We can apply bijective and average analysis over this restricted set of sequences, by adapting
Definition 1 and Definition 2 appropriately, i.e., by replacing the set I with the set If . We denote
the corresponding relations by A �fb B, A �fa B, etc. Note that given any sequence, we can obtain
a new sequence that is consistent with f by repeating each request a sufficient number of times.
Therefore, even if we restrict sequences to those with high locality of reference, there is still a
worst-case sequence for LRU (compared to OPT) that is consistent with f . In other words, the
competitive ratio of LRU is the same as in the standard model2.

Figure 1 illustrates the partition of the request-sequence space induced by the choice of function
f . Observe that the performance of a paging algorithm is now evaluated within the subset of request
sequences of a given length whose locality of reference is consistent with f . For this purpose, we
will denote by Ifn the sequences of length n in If .

Note that the inductive argument used to prove that all lazy algorithms (Theorem 4) are
equivalent according to bijective analysis does not necessarily carry through under concave analysis.

2This is one of the reasons that Albers et al. [3] use the fault rate, instead of overall cost, as a performance measure.
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If1

2

If2

2

If1

4

If2

4

⌃⇤
⌃4⌃1 ⌃3⌃2

Fig. 1 Partition of the input space induced by di↵erent choices of f .

relations by A �f
b B, A �f

a B, etc. Note that given any sequence, we can obtain
a new sequence that is consistent with f by repeating each request a su�cient
number of times. Therefore, even if we restrict sequences to those with high
locality of reference, there is still a worst-case sequence for LRU (compared to
OPT) that is consistent with f . In other words, the competitive ratio of LRU
is the same as in the standard model3.

Figure 1 illustrates the partition of the request-sequence space induced by
the choice of function f . Observe that the performance of a paging algorithm is
now evaluated within the subset of request sequences of a given length whose
locality of reference is consistent with f . For this purpose, we will denote by
If

n the sequences of length n in If .

Note that the inductive argument used to prove that all lazy algorithms
(Theorem 1) are equivalent according to bijective analysis does not necessar-
ily carry through under concave analysis. The problem is that the bijective
mapping may very well map a sequence consistent with f to a sequence which
is not consistent with f .

Consider a fixed concave? function f , and let A be an arbitrary paging
algorithm We call a sequence bad for A if A incurs a fault on its last re-
quest; otherwise we call it a good sequence for A. Let Bh(A) be the number

of sequences in If
h that are bad for A. For a sequence � 2 If

h , let Bh+1(A |�)

denote the number of sequences in If
h+1 that have � as their prefix and are bad

for A. Define Gh(A) and Gh+1(A |�) in an analogous way for good sequences.
Intuitively, an e�cient algorithm maintains its good sequences in the set of
sequences with high locality of reference. Observe that LRU naturally fits this
criterion: the most recently accessed pages are exactly those that are in its
cache, and therefore good (i.e. last-hit) sequences for LRU are more likely to
be sequences with high locality of reference. We formalize this intuition in the
remainder of this section.

Lemma 2 For any integer h > 0 and any paging algorithm A, Bh(LRU) 
Bh(A).

3 This is one of the reasons that Albers et al. [3] use the fault rate, instead of overall cost,
as a performance measure.

Figure 1: Partition of the input space induced by different choices of f .

The problem is that the bijective mapping may very well map a sequence consistent with f to a
sequence which is not consistent with f .

Consider a fixed concave? function f , and let A be an arbitrary paging algorithm We call a
sequence bad for A if A incurs a fault on its last request; otherwise we call it a good sequence for
A. Let Bh(A) be the number of sequences in Ifh that are bad for A. For a sequence σ ∈ Ifh , let

Bh+1(A |σ) denote the number of sequences in Ifh+1 that have σ as their prefix and are bad for
A. Define Gh(A) and Gh+1(A |σ) in an analogous way for good sequences. Intuitively, an efficient
algorithm maintains its good sequences in the set of sequences with high locality of reference.
Observe that LRU naturally fits this criterion: the most recently accessed pages are exactly those
that are in its cache, and therefore good (i.e. last-hit) sequences for LRU are more likely to be
sequences with high locality of reference. We formalize this intuition in the remainder of this
section.

Lemma 7. For any integer h > 0 and any paging algorithm A, Bh(LRU) ≤ Bh(A).

Proof. We prove the lemma by induction on h. We can assume, without loss of generality, that A
is a lazy paging algorithm (since any non-lazy algorithm can be transformed to a lazy one without
increasing its cost). Let f be any concave? function. If h = 1, then every sequence of Ih is consistent
with f and each algorithm incurs a fault on its last request (recall that algorithms start with an

empty cache). Therefore we have B1(LRU) = |If1 | = N = B1(A). If h > 1, consider an arbitrary

sequence σ ∈ Ifh−1. If σ has at most k distinct pages, then LRU and A have the same pages in their
cache after serving σ and therefore Bh(LRU |σ) = Bh(A |σ). Otherwise, LRU has filled its cache
with k pages after serving σ, while A’s cache contains at most k pages. The next page requested
can be an arbitrary page, provided that adding that page does not violate consistency with f .

From the definition of f , given σ ∈ Ifh−1, if we append the last request in σ to the end of

σ, we obtain a sequence in Ifh that is always consistent with f . If we append the second to
last request, the resulting sequence may or may not be consistent with f , however if the second
to last request is not consistent neither is any other request. This implies that for every good
request for A that is consistent with f , there is a good request for LRU that is consistent with f .
Hence Gh(LRU |σ) ≥ Gh(A |σ). Since the good and bad sequences form a partition of the set of
continuations of σ consistent with f 3, the inequality above implies Bh(LRU |σ) ≤ Bh(A |σ). To

3Note that in the context of concave analysis, each continuation must naturally belong in the set If
h .
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conclude observe that Bh(X) =
∑

σ∈Ih−1
Bh(X |σ) for any algorithm X. Hence

Bh(LRU) =
∑

σ∈Ih−1

Bh(LRU |σ) ≤
∑

σ∈Ih−1

Bh(A |σ) = Bh(A)

as claimed.

Lastly, we will show that LRU strictly outperforms all other paging algorithms. To this end,
we will use the following definition related to average analysis.

Definition 8. Let m be an integer, A and B be online algorithms, and f be a concave? function.
A is said to (m, f)-dominate B if we have∑

σ∈Ifm

A(σ) ≤
∑
σ∈Ifm

B(σ).

A is said to dominate B if there exists an integer m0 ≥ 1 so that for each m ≥ m0 and every
concave? function f , A (m, f)-dominates B.

Observation 2. A �fa B if and only if there exists an integer m0 ≥ 1 so that A (m, f)-dominates
B for each m ≥ m0.

Lemma 9. For every paging algorithm A, LRU dominates A.

Proof. We can assume, without loss of generality, that A is a lazy paging algorithm. Let f be
an arbitrary concave? function and m be a positive integer. For any 1 ≤ i ≤ m, let Fi,m(A) be

the number of sequences in Ifm for which A incurs a fault on the ith request. We will show that
Fi,m(LRU) ≤ Fi,m(A) for any 1 ≤ i ≤ m which will imply optimality of LRU. For i = 1, we have

F1,m(LRU) = F1,m(A) = |Ifm|. Assume that i > 1. Let σ be an arbitrary sequence in Ifi−1, and let

Tσ denote the set of sequences in Ifm that have σ as their prefix. Denote by Fi,m(A |σ) the number
of sequences in Tσ for which A incurs a fault on the ith request.

If σ contains at most k distinct pages, then LRU and A behave the same on σ and we have
Fi,m(LRU |σ) = Fi,m(A |σ). Suppose then that σ has more than k distinct pages. We can partition
Tσ into four subsets: (1) T 1

σ : sequences in which neither LRU nor A incur a fault on the ith page
request, (2) T 2

σ : sequences in which both LRU and A incur a fault on the ith page request, (3) T 3
σ :

sequences in which A incurs a fault on the ith page request, but LRU does not. (4) T 4
σ : sequences

in which LRU incurs a fault on the ith page request, but A does not.
We have Fi,m(LRU |σ) = |T 2

σ |+ |T 4
σ |, and Fi,m(A |σ) = |T 2

σ |+ |T 3
σ |. We show that |T 4

σ | ≤ |T 3
σ |

by proving that there exists a one-to-one mapping d from T 4
σ to T 3

σ . For 1 ≤ q ≤ 4, let P qσ be the
set of pages that are requested as the ith page of a sequence in T qσ . Let ρ ∈ Ifi be a sequence that
contributes to Bi(LRU |σ) and p be its ith request. Denote by τ the sequence of length m obtained
by appending m− i requests to page p to ρ. Since ρ is consistent with f and p is the last request
of ρ, τ is consistent with f and thus τ ∈ Tσ. Note that LRU incurs a fault on the ith request of
τ . Therefore τ belongs to either T 2

σ or T 4
σ and p is in one of the sets P 2

σ and P 4
σ . Also any page

in P 2
σ ∪ P 4

σ contributes (one unit of cost) to Bi(LRU |σ). To see this, let q be a page in P 2
σ ∪ P 4

σ .

Then q is the ith request of a sequence ρ′ ∈ T 2
σ ∪ T 4

σ . Let τ ′ ∈ Ifi be the prefix of ρ′ that contains
i requests. LRU incurs a fault on the last request of τ ′. Thus τ ′ is a bad sequence for LRU and q
contributes to Bi(LRU |σ). Hence we have Bi(LRU |σ) = |P 2

σ |+ |P 4
σ |. Using analogous arguments
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we get Bi(A |σ) = |P 2
σ | + |P 3

σ |. We know that Bi(LRU |σ) ≤ Bi(A |σ) from the proof of Lemma
7; therefore |P 4

σ | ≤ |P 3
σ | and there is a one-to-one mapping r from P 4

σ to P 3
σ .

We will now use the mapping r so as to define the desired mapping d. Consider an arbitrary
sequence S = p1p2 . . . pm ∈ T 4

σ . Let x = pi and y = r(x). According to definitions we know that
on the ith request of a sequence in Tσ, x is a fault for LRU and a hit for A, whereas y is a hit for
LRU and a fault for A. Let σx ∈ Ifi be the sequence obtained by appending the page x to σ, and

σy ∈ Ifi be the sequence obtained by appending the page y to σ. On serving σx, the last page (x)
is a fault for LRU; therefore x is not among the last k distinct pages in σ. LRU does not incur
a fault on the last page of σy; thus y is among the last k distinct pages of σ. In other words, if
starting from the i-th request we convert each x in a sequence in Tσx to y, we obtain a sequence
that is consistent with f , i.e., a sequence in Tσy . This gives us a one-to-one mapping from Tσx to
Tσy . Using a similar process for all the pages in P 4

σ , we obtain a one-to-one mapping from T 4
σ to

T 3
σ . Therefore

|T 4
σ | ≤ |T 3

σ | ⇒ Fi,m(LRU |σ) ≤ Fi,m(A |σ). (1)

Since

Fi,m(LRU) =
∑

σ∈Ii−1

Fi,m(LRU |σ) (2)

and

Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A |σ), (3)

we obtain Fi,m(LRU) ≤ Fi,m(A). We also have∑
σ∈Ifm

LRU(σ) =
∑

1≤i≤m
Fi,m(LRU) (4)

and ∑
σ∈Ifm

A(σ) =
∑

1≤i≤m
Fi,m(A). (5)

Therefore ∑
σ∈Ifm

LRU(σ) ≤
∑
σ∈Ifm

A(σ). (6)

Thus LRU (m, f)-dominates A for every concave? function f , and every integer m ≥ 1. Hence
LRU dominates A.

Corollary 10. For any concave? function f and any paging algorithm A, LRU �fa A.

Therefore LRU is an optimal algorithm when we restrict request sequences to those with high
locality of reference (in the model of concave* functions). A natural question is whether LRU is
the unique optimal algorithm. The following result answers this question in the affirmative.
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Theorem 11. No paging algorithm (other than LRU) dominates LRU, with respect to average
analysis.

Proof. Consider a paging algorithm A which is different from LRU. We will show that there exists
a concave? function f such that A 6�fa LRU, assuming that A is oblivious of the function f . We
say that a concave? function f belongs to class Fz if f(x) = x for x < z + k and f(x) = z + k for
x ≥ z + k. First, if the content of the cache of LRU and A is always the same there is nothing to
show. Hence we focus on situations where their cache content differs.

Define ζ as the smallest z such that there is a concave? function fζ ∈ Fz such that A and LRU
have different behavior on a sequence consistent with fζ . Let σ′ denote a sequence of length i− 1
consistent with fζ up to the point at which LRU’s cache contents first differ from those of A. That
is, a request for a page p caused an eviction of a page pa in LRU while it caused the eviction of a
page pb in A. As in the proof of Lemma 9, we need only focus on the parameters T 3

σ′ and T 4
σ′ . We

will also use the same notation as in that proof. Consider a sequence σ′′ ∈ T 3
σ′ . A incurs a fault on

the ith request of σ′′, while LRU does not. Just before the ith request (i.e., just after serving σ′),
A’s cache contains all pages in LRU’s cache except for pb. Therefore, the only option for the ith

request of σ′′ is pb. Hence, P 3
σ′ can only contain pb, i.e., P 3

σ′ ⊆ {pb}. We append some requests to
page p to σ′ so as to obtain a sequence σ for which P 3

σ = {pb}. Slightly misusing our notation (and
for the ease of the proof), let |σ| = i − 1. We can use the same one-to-one mapping d that was
defined in the proof of Lemma 9 to show that |T 4

σ | ≤ |T 3
σ |. Thus each sequence ρ ∈ T 4

σ is mapped
to a distinct sequence d(ρ) ∈ T 3

σ .
Our main argument will be to prove that |T 4

σ | < |T 3
σ | by showing that there is a sequence ρ′ in

T 3
σ such that d(ρ) 6= ρ′ for any ρ ∈ T 4

σ . Let σ0 be the suffix of σ starting just after the last request
for pa and Q = {q1, q2, . . . , qa} be pages that do not appear in σ0pa (we will specify a lower bound
on |Q| later on). We clarify that Q has to include all pages in σ not requested in σ0. Define α as
the starting index of σ0 in σ, i.e., the request at index α− 1 of σ is to pa and σ0 is the subsequence
of σ from index α to index i−1. LRU always keeps the k most recently accessed pages in its cache.
Furthermore, on a fault it evicts the k-th most recently accessed page. Since pa is the last page
evicted by LRU in serving σ, it is the (k + 1)-th most recently used page in σ. Similarly, since pb
is in LRU’s cache after serving σ, pb is among the k most recently accessed pages in σ. Therefore
the number of distinct pages in σ0pa and σ0pb is k + 1 and k, respectively.

Let ρ1 and ρ2 be continuations of σpa and σpb, respectively, defined as follows. We append new
pages from Q to ρ1 and ρ2 until appending a new page qt causes an inconsistency with fζ in the
suffix starting with σ0pa in ρ1. To see that this inconsistency with fζ will eventually occur, consider
sequences ρ′1 and ρ′2 obtained after appending ζ pages from Q to σpa and σpb, respectively (note
that we can pick Q such that |Q| ≥ ζ since there is no restriction on the number of pages in the
sequence). Let λ be the length of σ0pa, then the suffix of ρ′1 starting at index α has length λ + ζ
and contains k + 1 + ζ distinct pages. Since fζ(λ + ζ) = k + ζ, this subsequence is inconsistent
with fζ . The suffix of ρ′2 starting at index α contains k + ζ distinct pages and does not violate
consistency with f . There is a small caveat in this construction. We might first violate consistency
with fζ in a subsequence τ of ρ1 and ρ2 that does not start with σ0. There are two cases that we
should consider.

1. τ starts after the start of σ0, i.e., at an index β > α of σ. This case cannot happen as τ
will have at most k + ζ distinct pages and we have fζ(x) = x for x ≤ ζ + k. To see this,
observe that we have not yet had an inconsistency with fζ in a suffix of ρ1 that starts with
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σ0. Therefore τ contains fewer than ζ pages from Q. The prefix of τ not containing pages
from Q (a suffix of σ0pa or σ0pb) will have at most k+ 1 distinct pages. Therefore τ contains
at most k + ζ distinct pages.

2. τ starts before the start of σ0, say at an index γ < α of σ. We change our construction
slightly to rule out this case. Recall that Q is defined as the set of pages that do not appear
in σ0pa. We partition Q into two disjoint subsets R and S as follows. Let σ1 be the prefix of
σ that ends just before the start of σ0. Denote by R = {r1, . . . , rb} the pages in Q that are
requested in σ1, ordered by their last request in σ1, e.g., if the last request to r1 in σ1 is at
index u and the last request to r2 in σ1 is at index v, we have u > v. Let S = {s1, . . . , sc} be
the pages in Q\R. Now to construct ρ1 and ρ2, we append pages from r1, r2, . . . , rb, s1, . . . , sc
in this order to σpa and σpb, respectively (note that we might not need all these pages to get
our desired sequences). We claim that we cannot have an inconsistency with fζ in a suffix
of ρ1 (ρ2) that starts at index γ before the desired inconsistency at the suffix of ρ1 (ρ2) that
starts at index α. Assume for the sake of contradiction that the first inconsistency occurs
after adding a page q on a suffix of ρ1 (ρ2) that starts at index γ while the suffix of ρ1 (ρ2)
that starts at index α remains consistent with fζ .

We will consider the two possible cases for q. Suppose first that q = ru ∈ R. Let τ and τ0

be the suffixes of ρ1 (ρ2) that start at indices γ and α > γ, respectively. So, we have an
inconsistency in τ while τ0 remains consistent with fζ . Since this is the first inconsistency in
τ , ru is a new page in τ . Therefore τ does not contain rv for v > u. τ0 has all requests to rv
for v ≤ u and thus τ does not contain any additional pages, as compared to τ0. Since τ is a
longer sequence than τ , τ0 contains all pages in τ and τ is not consistent with fζ , τ

0 cannot
be consistent with fζ , which is a contradiction. Suppose, as the second case, that q = su ∈ S.
In this case, the set of distinct pages in τ is the same as the set of distinct pages in τ0 as both
sequences have all pages in R∪ {s1, . . . , su} as well as pages in σ0pa. Therefore τ0 is also not
consistent with fζ and we have a contradiction.

Now consider the sequence σ that we have constructed as above. We have σ ∈ T 3
σ but it is easy

to see that no sequence in T 4
σ is mapped by d to ρ2 (in fact d(ρ1) = ρ2 but ρ1 is not consistent with

fζ). Therefore |T 4
σ | < |T 3

σ | which leads to∑
σ∈Ifm

LRU(σ) <
∑
σ∈Ifm

A(σ),

for any m > |σ| by the same arithmetic manipulation as in equations (1)-(6) in the proof of Lemma
9.

5 Further applications of bijective and average analysis

5.1 Influence of lookahead in paging

In this section we demonstrate that bijective analysis can properly capture the effects of lookahead
in the context of the paging problem. We consider the setting in which the paging algorithm knows
at any given point while serving a request sequence, which subsequent ` pages will be requested.
Let LRU(`) be a modification of LRU defined for a lookahead of size ` as follows [1]. On a fault,
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LRU(`) evicts a page in the cache that is least recently used among the pages that are not in the
current lookahead. We will show that our model reflects the influence of lookahead in that LRU(`)
≺b LRU, i.e. LRU(`) is better than LRU according to bijective analysis.

Lemma 12. For any sequence σ, the cost of LRU(`) on σ is no more than the cost of LRU on σ,
that is, LRU(`) �b LRU.

Proof. Assume for the sake of contradiction that there is a sequence σ = p1 . . . pm on which LRU(`)
incurs strictly more faults than LRU. Let a be the smallest index so that pa is a hit for LRU and
a fault for LRU(`). Suppose that the most recent eviction of pa by LRU(`) is at time r on the
request pr. Therefore we have pi 6= pa for r ≤ i ≤ a and furthermore LRU does not evict pa at any
time t, where r ≤ t ≤ a. Let pr1 , pr2 , . . . , prk be the pages in LRU’s cache at time r so that pri is
less recently used than prj at time r if and only if i < j. Note that since a is the smallest index so
that pa is a hit for LRU and a fault for LRU(`), LRU incurs a fault on pr and evicts pr1 . Suppose
that prx = pa for some 1 < x ≤ k and let Lr denote the set of pages in the lookahead of size ` at
time r. We consider two cases:

Case 1: All pages pr1 , pr2 , . . . , prx−1 are in LRU(`)’s cache at time r. Since LRU(`) evicts
prx = pa at time r, we should have pri ∈ Lr for 1 ≤ i ≤ x− 1. Let y be the largest index such that
r ≤ y ≤ r+ `, py ∈ {pr1 , pr2 , . . . , prx−1}, and LRU incurs a fault at time y. Note that since pr1 ∈ Lr
and LRU evicts pr1 at time r, y exists. We claim that LRU should evict prx = pa at time y. Since
pa has not been requested between times r and y, the only pages that can be less recently used
than pa are pr1 , pr2 , . . . , prx−1 . Assume, by way of contradiction, that at time y, LRU evicts page
prz for some 1 ≤ z ≤ x− 1. Note that prz cannot be requested between times r and y; otherwise pa
would be less recently used than prz . We know that prz ∈ Lr and therefore prz will be requested at
least once between the times y + 1 and r + `. The first such request is a fault on a page (prz) that
is in {pr1 , pr2 , . . . , prx−1}; this contradicts the choice of y. Therefore pa is the least recently used
page for LRU at time y and LRU evicts it. This contradicts the fact that LRU does not evict pa
on a fault at any time r ≤ t ≤ a.

Case 2: There is a page p ∈ {pr1 , pr2 , . . . , prx−1} that is not in LRU(`)’s cache at time r. Let
r′ < r be the last time that LRU(`) has evicted p. Since p is in LRU’s cache but not in LRU(`)’s
cache at time r, we have pi 6= p for r′ ≤ i ≤ r − 1 and furthermore LRU does not evict p at any
time t, where r′ ≤ t ≤ r− 1. This reduces to the situation discussed at the beginning of this proof,
with a = r and r = r′. Since a is a finite number and we strictly decrease our time of interest, after
a finite number of applications of case 2 it will reduce to case 1.

We conclude that for every request on which LRU(`) incurs a fault so does LRU, and hence
LRU(`) does not incur more faults than LRU on any sequence.

Lemma 13. There exists a sequence in which LRU(`) outperforms LRU, therefore LRU 6�b LRU(`).

Proof. From Lemma 12, we know that LRU has the same or higher number of page faults as LRU(`)
on each sequence of length at least n0. So it suffices to show that on at least one sequence LRU(`)
strictly outperforms LRU. Consider a sequence σ of size n1 ≥ n0, with n0 as in Definition 1, which
contains several consecutive copies of the subsequence p1p2 . . . pkpk+1. LRU incurs a fault on all
pages of σ and therefore the cost of LRU on σ is n1. The cost of LRU(`) on the other hand is
n1/(`+ 1).

Lemmas 12 and 13 imply the following theorem.
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Theorem 14. LRU(`) ≺b LRU.

5.2 The List Update Problem

As with the paging problem, list update is another fundamental problem in the context of on-line
computation. In its standard form, the problem consists of maintaining an unsorted list of l items.
More precisely, in the (related) list access problem the input is a sequence of n requests that must
be served in an online manner. Let A be an arbitrary online list update algorithm. To serve a
request to an item x, A linearly searches the list until it finds x. If x is the ith item in the list, A
incurs a cost i to access x. Immediately after this access, A can move x to any position closer to
the front of the list at no extra cost. This is called a free exchange. In addition, A can exchange
any two consecutive items at a cost of 1. These are called paid exchanges. An efficient algorithm
can thus use free and paid exchanges so as to minimize the overall cost of serving a sequence.
The above cost formulation describes the standard cost model, as proposed in the seminal work of
Sleator and Tarjan [7]. In the more general list update problem, a request may refer to either the
insertion of an element or its deletion from the list, however the important operation is the access
operation, hence we only focus on request sequences that consist exclusively of access operations.

The performance of list update algorithms has been an intensive topic of study under compet-
itive analysis. Among the well-known deterministic on-line algorithms are Move-To-Front (MTF),
Transpose, and Timestamp (TS). MTF always moves the requested item to the front of the list
whereas Transpose exchanges the requested item with the item that immediately precedes it. Al-
gorithm TS rearranges the list items in order of their second-to-last access. Sleator and Tarjan
showed that MTF is 2-competitive, while Transpose does not have a constant competitive ratio
[51]. Albers proved that TS is 2-competitive [2]. Since then, several other deterministic and ran-
domized on-line algorithms have been studied using competitive analysis. (See [36, 2, 6, 34, 8]
for some representative results, as well as the recent survey [38] on algorithms and models for list
update).

Notwithstanding the extensive study of list update under the standard model, the validity of the
latter has been debated. More precisely, Mart́ınez and Roura [43] and Munro [45], independently
drew attention to certain drawbacks of the standard cost model, which can better be demonstrated
using a few examples. Let (a1, a2, . . . , al) be the list currently maintained by an algorithm A.
Mart́ınez and Roura argued that in a realistic setting a complete rearrangement of all items in the
list which precede item ai would in practice require time proportional to i, while this operation has
cost proportional to i2 in the standard cost model. In a similar vein, Munro provided the example
of accessing the last item of the list and then reversing the entire list. The real cost of this operation
in an array or a linear link list should be O(l); in contrast it costs about l2/2 in the standard cost
model.

As a consequence, one may informally observe that the standard model prevents online algo-
rithms from using their true power. Mart́ınez and Roura proposed a new model in which the cost
of accessing the i-th item of the list plus the cost of reorganizing the first i items is linear in i.
We will refer to this model as the modified cost model. Surprisingly, it turns out that the offline
optimum benefits substantially more from this realistic adjustment than the online algorithms do.
Indeed, under the modified model, every online algorithm has amortized cost of Θ(l) per access
for some arbitrary long sequences, whereas an optimal offline algorithm incurs a cost of Θ(log l)
on every sequence and hence all online list update algorithm have a constant competitive ratio of
Ω(l/ log l) [45]. One may be tempted to argue that this is proof that the modified model makes the
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offline optimum too powerful and hence this power should be removed, however this is not correct as
in real life online algorithms can rearrange items at the cost prescribed by the model. Observe that
the ineffectiveness of this power for improving the worst case competitive ratio does not preclude
the possibility that under certain realistic input distributions (or other similar assumptions on the
input) this power might be of use. Mart́ınez and Roura observed this and posed the question of
“whether there exist alternative ways to define competitiveness such that MTF and other good
online algorithms for the list update problem would be competitive, even for the [modified] cost
model”.

In this section we address this open problem by showing that under locality of reference as-
sumptions, MTF is an optimal algorithm for list update. First, we show that under the modified
cost model all list update algorithms are equivalent. This result parallels the equivalence of all lazy
paging algorithms under bijective analysis as shown in Subsection 4.1, and in particular Theorem 4.
We term a list update algorithm economical if it does not use paid exchanges.

Theorem 15. Let A and B be two arbitrary economical online list update algorithms. Under the
modified cost model, we have A ≡b B.

Proof. We prove that for every n ≥ 1 there is a bijection bn : In ↔ In so that A(σ) ≤ B(bn(σ))
for each σ ∈ In. We show this by induction on n, the length of the input sequence. Since A and B
start with the same initial list, they incur the same cost on each sequence of length one. Therefore
the statement trivially holds for n = 1. Assume that it is true for n = k. Thus there is a bijection
bk : Ik ↔ Ik so that A(σ) ≤ B(bk(σ)) for each σ ∈ Ik. Let σ be an arbitrary sequence of length k
and σ′ = bk(σ). Denote by Ik+1(σ) the set of sequences in Ik+1 which have σ as their prefix. We
map Ik+1(σ) to Ik+1(σ

′) as follows. Let L(A, σ) = (a1, a2, . . . , al) be the list maintained by A after
serving σ and L(B, σ′) = (b1, b2, . . . , bl) be the list maintained by B after serving σ′. Consider an
arbitrary sequence σ1 ∈ Ik+1(σ) and let its last element be a request to item ai. We map σ1 to the
sequence σ2 ∈ Ik+1(σ

′) that has bi as its last request. Since A(σ) ≤ B(σ′) and A’s cost on the last
request of σ1 is the same as B’s cost on the last request of σ2, we have A(σ1) ≤ B(σ2). Therefore
we get the desired mapping from Ik+1(σ) to Ik+1(σ

′). We obtain a bijection bk+1 : Ik+1 ↔ Ik+1

by considering the above mapping for each sequence σ ∈ Ik. Thus our induction statement is true
and we have A �b B. Using a similar argument, we can show B �b A. Therefore we obtain that
A ≡b B.

Since an economical list update algorithm does not incur any cost for reorganizing the list we
can prove the following statement using an argument analogous to the proof of Theorem 15.

Corollary 16. All economical online list update algorithms are equivalent according to bijective
analysis under the standard cost model.

The results above suggest that so long as we consider the space of all possible request sequences,
all on-line list update algorithms are equivalent in a strong sense. In the following section we
address the issue of locality of reference in typical list-update sequences, and its effect in the
relative performance of online algorithms.

5.2.1 List Update with Locality of Reference

Unlike the paging problem, the prevalence of locality of reference in list update is less self-evident. In
practice, input sequences of list update algorithms indeed exhibit locality of reference [35, 49, 16]
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and efficient on-line list update algorithms try to take advantage of this property [35, 48]. In
particular, locality is prevalent in applications of list update algorithms in data compression (see
e.g. [13]).

This lack of formal models led Hester and Hirschberg [35] to pose the question of providing
a satisfactory formal definition of locality of reference for list update as an open problem. In a
preliminary version of this work [10] we addressed the problem of list update under locality of
reference. To the best of our knowledge, this was the first formal study of locality of reference for
list update. Subsequently to the conference versions of this paper, Albers and Lauer [4] proposed
another model for list update with locality of reference that is based on the concept of runs; here
a run is a subsequence of requests to the same list item. For this model [4] confirmed that MTF
exhibits the best performance, and that its refined competitive ratio tends to 1, as locality increases.
It should be noted that it has been commonly assumed, based on intuition and experimental
evidence, that MTF is indeed an excellent algorithm on sequences with high locality of reference.
For instance, Hester and Hirschberg [35] claim: “move-to-front performs best when the list has a
high degree of locality” (see also [5], page 327). The results of Albers and Lauer [4] confirm, in
a theoretical manner, that MTF has excellent performance at high locality. Later studies of the
impact of locality of reference in list update can be found in [33, 31].

Following the model of concave analysis for the paging problem of Albers et al. [17], we say that
a request sequence σ for list update is consistent with f if the maximum number of distinct items
in a window of w consecutive items in σ is at most f(w). In Section 5.2.2 we provide experimental
results that demonstrate that for applications of list update related data compression, the function
f has indeed an overall concave shape. Hence, the experimental evidence suggests that concave
analysis can be applied not only to the paging problem but also in the context of list update.

Perhaps not surprisingly, this measure seems to parallel MTF’s behaviour as the latter has been
tailored to benefit from locality of reference. This should not be construed as a drawback of the
measure, but rather as evidence of the fact that the design of the MTF algorithm incorporates the
presence of this type of locality of reference into its choices. Our theoretical proof of the optimality
of MTF in this context is then perhaps not surprising, yet this fact had eluded proof until now.

As with the paging problem, we can apply bijective and/or average analysis by restricting the
set of request sequences to those consistent with f . For the remainder of the section we will thus
make use of the notation and terminology introduced in Subsection 4.2.

Lemma 17. For every online list update algorithm A, MTF dominates A.

Proof. Let f be an arbitrary concave? function and m be a positive integer. For any 1 ≤ i ≤ m,
let Fi,m(A) be the total cost A incurs on the ith request of all sequences in Ifm. We will first show
that Fi,m(MTF ) ≤ Fi,m(A) for any 1 ≤ i ≤ m. For i = 1, we have F1,m(MTF ) ≤ F1,m(A),
as all algorithms start with the same list. Now suppose that i > 1. Let σ be an arbitrary
sequence of length i − 1, Tσ denote the set of all sequences in Ifm that have σ as their prefix,
and Fi,m(A |σ) be the total cost A incurs on the ith request of all sequences in Tσ. Denote by
L(MTF, σ) = (a1, a2, . . . , al) and L(A, σ) = (b1, b2, . . . , bl) the lists maintained by MTF and A
after serving σ, respectively. Suppose that cj (resp., dj) sequences in Tσ have aj (resp., bj) as
their ith request, for 1 ≤ j ≤ l. Note that

∑
1≤j≤l cj =

∑
1≤j≤l dj = |Tσ| and (d1, d2, . . . , dl) is a

permutation of (c1, c2, . . . , cl).
We first show that cj+1 ≤ cj for 1 ≤ j < l. Let Cj and Cj+1 denote the set of sequences in

Tσ that have aj and aj+1 as their ith request. We provide a one-to-one mapping from Cj+1 to
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Cj which proves that |Cj+1| ≤ |Cj |. We map every sequence τ in Cj+1 to a sequence τ ′ in Cj by
replacing every aj with aj+1 and every aj+1 by aj , starting from position i. Since aj occurs before
aj+1 in MTF’s list after serving σ, we know that the last request to aj occurs after the last request
to aj+1 in σ. Therefore if τ is consistent with f , so is τ ′. Thus every sequence in Cj+1 is mapped
to a unique sequence in Cj and we have cj+1 = |Cj+1| ≤ |Cj | = cj .

Therefore (c1, c2, . . . , cl) is a permutation of (d1, d2, . . . , dl) in non-increasing order, and thus
Fi,m(MTF |σ) =

∑
1≤j≤l j × cj ≤

∑
1≤j≤l j × dj = Fi,m(A |σ) . Now since

Fi,m(MTF ) =
∑

σ∈Ii−1

Fi,m(MTF |σ) and Fi,m(A) =
∑

σ∈Ii−1

Fi,m(A |σ),

we obtain Fi,m(MTF ) ≤ Fi,m(A). We have∑
σ∈Ifm

MTF (σ) =
∑

1≤i≤m
Fi,m(MTF ) ≤

∑
1≤i≤m

Fi,m(A) =
∑
σ∈Ifm

A(σ).

Thus MTF (m, f)-dominates A for every concave? function f , and every integer m ≥ 1. Hence
MTF dominates A.

Corollary 18. For any concave? function f and any online list update algorithm A,

MTF �fa A.

We can further prove separation with respect to bijective analysis between MTF and specific
algorithms, e.g., Transpose, for a much larger family of concave? functions.

Theorem 19. For all concave? functions f such that f(l) < l (l is the size of list),

Transpose 6�fb MTF.

Proof. Let L0 = (a1, a2, . . . , al) be the initial list. Assume by way of contradiction that Transpose �fb
MTF . Therefore there is an integer n0 ≥ 1 so that for each n ≥ n0, there is a bijection b : Ifn ↔ Ifn
satisfying Transpose(σ) ≤ MTF (b(σ)) for each σ ∈ Ifn . Let σ denote a sequence of of length
m ≥ n0 obtained by considering the prefix of size m of the infinite sequence alal−1alal−1 . . .. Note
that transpose incurs a cost of l on each request and we have Transpose(σ) = m × l. Note also

that σ is consistent with f , since it has two distinct items.4 Thus σ ∈ Ifm and from the assump-
tion there should exist some sequence σ′ ∈ Ifm such that m × l = Transpose(σ) ≤ MTF (σ′).
Therefore MTF incurs a cost of l on each request of σ′. Hence σ′ is a prefix of the sequence
alal−1al−2 . . . a1alal−1al−2 . . . a1 . . .. Note, however, that any window of size l in σ′ has l distinct
items. Since we started with f(l) < l, σ′ is not consistent with f and this contradicts the assumption

that σ′ ∈ Ifm.

5.2.2 Experimental Results and Analysis

In this section we test the validity of the concave-function model of locality of reference, as described
in Section 5.2.1, against experimental data. In our experiments, we considered the fourteen files of

4We can assume that f(2) = 2 since otherwise we are restricted to sequences that contain only one item.
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Figure 2: Maximum number of distinct characters in windows of size up to 3500 for the files in
Calgary Compression Corpus (part 1).

the Calgary Compression Corpus [53] which are frequently used as the standard benchmark for file
compression. Recall that list update algorithms can be used in a very direct way in file compression.
For each file, we computed the maximum number of characters in windows of all possible sizes,
up to the size of the whole file. Figures 2 and 3 show the resulting graphs. We note that in our
experiments we observed that the maximum number of distinct items does not change significantly
as the window size exceeds the value of 3500, and for this reason we only show the results for
windows of size up to 3500.

As can be observed from these graphs, the curves have an overall concave shape. We should note
that for some of the input files, the function we obtained is not concave for some intervals. However,
this is not a major concern, since we can bound the said function by any concave function f which
is such that f(i) is an upper bound on the maximum number of distinct items in windows of size i.
For instance, we can take the upper convex hull of the data points. It should be emphasized that
Albers et al. [3] observed that similar non-concavity (mostly localized within small intervals) was
present in their experimental results concerning locality of reference in typical request sequences
for the paging problem. Albers et al. put forth this argument to justify the fact that local small
deviations from concavity do not impose a serious problem.

Albers and Mitzenmacher [5] compared the efficiency of MTF and TS algorithms for compressing
the files of the Calgary Compression Corpus. After accessing an item a, TS inserts a in front of
the first item b that appears before a in the list and was requested at most once since the last
request for a. If there is no such item b, or if this is the first access to a, TS does not reorganize the
list. They compared MTF and TS in two settings: with or without Burrows-Wheeler transform
(BWT). Informally, BWT transforms a string to one of its permutations that has more locality
of reference, which is hence more readily compressible [27, 39]. Their results show that although
TS outperforms MTF on compression without BWT, MTF usually has better performance when
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Figure 3: Maximum number of distinct characters in windows of size up to 3500 for the files in
Calgary Compression Corpus (part 2).

we use BWT. This is consistent with our results as BWT is a transform designed with the goal
of increasing the locality of reference in the representation of the string. We emphasize that our
experimental results did not use BWT.

6 Conclusion

In this paper we introduced bijective analysis and average analysis as two new techniques for
comparing the performance of online algorithms. These measures compare online algorithms over
all sequences of the same length, rather than solely on the worst-case sequences. We demonstrated
how the measure can be applied to two well-studied online problems, namely paging and list update.

For the paging problem, we showed that the new comparison techniques overcome some of the
shortcomings of competitive analysis, namely they reflect the influence of lookahead and are able to
separate the performance of LRU and FWF. We also proved that all lazy algorithms are equivalent
according to bijective analysis. This result provides an intuitive explanation of why it is difficult,
or even impossible, for several known measures to distinguish between the performance of known
algorithms. Although a negative result at first sight, the result suggests that unless one considers
typical request sequences for the problem, it is not likely that a meaningful measure can separate
any two algorithms.

In view of this result, we turned our attention to the definitive property of typical request
sequences for the paging problem, namely locality of reference. We relied on a natural model of
locality of reference, due to Albers et al. [3], namely concave analysis. We then showed that
when combining average and concave analysis, LRU emerges as the unique optimal on-line paging
algorithm. Since, in practice, input sequences are known to exhibit locality of reference, this
justifies theoretically why LRU is believed to have the best practical performance among on-line
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paging algorithms.
We then turned our attention to the list update problem, and in particular we focused in the

cost formulation of Mart́ınez and Roura, and Munro. We showed that under this cost model, all
economical algorithms for list update are equivalent according to bijective analysis, a result that
draws parallels with the equivalence of all lazy paging algorithms. Next, we investigated the issue of
the locality of reference in list update, which, unlike the paging problem, has received considerably
less attention in the literature. Here, we applied average analysis over request sequences exhibiting
locality of reference, as defined by concave analysis, and proved that Move-to-Front is an optimal
algorithm. We also provided experimental evidence that the model of Albers et al. can be adapted
to applications of list update that emerge from text compression.

One may observe that in practice, and more specifically when considering disk accesses in
databases and web servers, page replacement strategies that are modifications of LRU often out-
perform LRU. Examples of such strategies are the LRU-k algorithm [46], in which the k-th least
recently accessed page is evicted upon a page fault, and the Adaptive Replacement Cache (ARC)
algorithm [44], which, informally takes into account not only the “recency” of a request, but also its
“frequency”. This should not be seen as a deficiency of bijective and average analysis, but rather
points to the direction of establishing much better theoretical models that capture the essential
characteristics of typical request sequences. For instance, database applications often access data
structures such as B-trees: in these cases, the locality model as provided by concave analysis is
clearly inadequate, since it was not meant to model such accesses in the first place. An important
open problem would be to confirm under the new measures the theoretical superiority of policies
such as LRU-k and ARC, after providing, first, a model of typical request sequences. A first step
towards this directions was done by Boyar et al. [18], which gave a theoretical separation of LRU-k
from all other algorithms using relative worst-order analysis.

There are several other directions for future work involving the techniques we introduced in this
paper. First and foremost, we would like to apply bijective and average analysis to other important
online problems, e.g., the k-server and file caching problems. To this end, we believe that it is
important to study relaxed versions of bijective analysis, namely by requiring that A(σ) ≤ cB(π(σ)),
for some (small) c, when comparing algorithms A and B. This relaxation, which was recently
introduced in [11] guarantees that bijective analysis can be applied to any optimization problem,
and can always reveal the pair-wise relative performance of two online algorithms. Since the
conference versions of this paper appeared, further applications of these techniques emerged. More
specifically, Angelopoulos and Schweitzer [12] extended the optimality of LRU and MTF to bijective
analysis. In addition, Boyar, Irani and Larsen [23] showed that the greedy algorithm is optimal
according to bijective analysis for the 2-server problem on three co-linear points. A natural question
is whether the result extends in more complicated variants of the problem, e.g., for the 2-server
problem on the line.

We believe that our techniques will prove their true potential if they further succeed to separate
algorithms based on their intuitive, empirical, or even anticipated performance. For instance, can
we separate the greedy and the naive algorithms in several natural variants of the Steiner tree
problem (see [9] for the discussion of the deficiencies of competitive analysis when applied to these
problems)? In a different vein, is it possible to extend bijective analysis to the context of randomized
algorithms? Last, it would be interesting to explore the complexity of finding optimal algorithms
(if possible) according to bijective analysis, along the lines of work by Burley and Irani [26] who
studied this problem in the context of competitive analysis.
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