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Abstract

Let P be a finite set of points in the plane and S a set of non-crossing line segments
with endpoints in P . The visibility graph of P with respect to S, denoted Vis(P, S), has
vertex set P and an edge for each pair of vertices u, v in P for which no line segment of S
properly intersects uv. We show that the constrained half-θ6-graph (which is identical to the
constrained Delaunay graph whose empty visible region is an equilateral triangle) is a plane
2-spanner of Vis(P, S). We then show how to construct a plane 6-spanner of Vis(P, S) with
maximum degree 6 + c, where c is the maximum number of segments of S incident to a vertex.

1 Introduction

A geometric graph G is a graph whose vertices are points in the plane and whose edges are line
segments between pairs of vertices. A graph G is called plane if no two edges intersect properly.
Every edge is weighted by the Euclidean distance between its endpoints. The distance between
two vertices u and v in G, denoted by dG(u, v) or simply d(u, v) when G is clear from the context,
is defined as the sum of the weights of the edges along the shortest path between u and v in
G. A subgraph H of G is a t-spanner of G (for t ≥ 1) if for each pair of vertices u and v,
dH(u, v) ≤ t · dG(u, v). The smallest value t for which H is a t-spanner is the spanning ratio
or stretch factor of H. The graph G is referred to as the underlying graph of H. The spanning
properties of various geometric graphs have been studied extensively in the literature (see [8, 13] for
a comprehensive overview of the topic). However, most of the research has focused on constructing
spanners where the underlying graph is the complete Euclidean geometric graph. We study this
problem in a more general setting with the introduction of line segment constraints.

Specifically, let P be a set of vertices in the plane and let S be a set of line segments with
endpoints in P , with no two line segments intersecting properly. The line segments of S are called
constraints. Two vertices u and v can see each other if and only if either the line segment uv does
not properly intersect any constraint or uv is itself a constraint. If two vertices u and v can see
each other, the line segment uv is a visibility edge. The visibility graph of P with respect to a set
of constraints S, denoted Vis(P, S), has P as vertex set and all visibility edges as edge set. In
other words, it is the complete graph on P minus all edges that properly intersect one or more
constraints in S.

This setting has been studied extensively within the context of motion planning amid obstacles.
Clarkson [10] was one of the first to study this problem and showed how to construct a linear-sized
(1+ ε)-spanner of Vis(P, S). Subsequently, Das [11] showed how to construct a spanner of Vis(P, S)
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with constant spanning ratio and constant degree. Bose and Keil [7] showed that the Constrained
Delaunay Triangulation is a 2.42-spanner of Vis(P, S). In this article, we show that the constrained
half-θ6-graph (which is identical to the constrained Delaunay graph whose empty visible region
is an equilateral triangle) is a plane 2-spanner of Vis(P, S) by generalizing the approach used by
Bose et al. [6]. This improves the upper bound on the spanning ratio of 36 implied by Bose et al. [4].
A key difficulty in proving this result stems from the fact that the constrained Delaunay graph
is not necessarily a triangulation (see Figure 1). We then generalize the elegant construction of
Bonichon et al. [2] to show how to construct a plane 6-spanner of Vis(P, S) with maximum degree
6 + c, where c = max{c(v)|v ∈ P} and c(v) is the number of constraints incident to a vertex v.

Figure 1: The constrained half-θ6-graph is not necessarily a triangulation. The thick line segment
represents a constraint

2 Preliminaries

We define a cone C to be the region in the plane between two rays originating from a vertex
referred to as the apex of the cone. We let six rays originate from each vertex, with angles to the
positive x-axis being multiples of π/3 (see Figure 2). Each pair of consecutive rays defines a cone.
For ease of exposition, we only consider point sets in general position: no two vertices define a
line parallel to one of the rays that define the cones and no three vertices are collinear. These
assumptions imply that we can consider the cones to be open. If a point set is not in general
position, one can easily find a suitable rotation of the point set to put it in general position.

C0

C1C2

C1

C0

C2

u

Figure 2: The cones having apex u
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Figure 3: The subcones having apex u. Con-
straints are shown as thick line segments

Let (C1, C0, C2, C1, C0, C2) be the sequence of cones in counterclockwise order starting from
the positive x-axis. The cones C0, C1, and C2 are called positive cones and C0, C1, and C2 are
called negative cones. By using addition and subtraction modulo 3 on the indices, positive cone Ci

2



has negative cone Ci+1 as clockwise next cone and negative cone Ci−1 as counterclockwise next
cone. A similar statement holds for negative cones. We use Cu

i and C
u

j to denote cones Ci and Cj

with apex u. Note that for any two vertices u and v, v ∈ Cu
i if and only if u ∈ Cv

i .
Let vertex u be an endpoint of a constraint c and let the other endpoint v lie in cone Cu

i . The
lines through all such constraints c split Cu

i into several parts. We call these parts subcones and
denote the j-th subcone of Cu

i by Cu
i,j , numbered in counterclockwise order (see Figure 3). When

a constraint c = (u, v) splits a cone of u into two subcones, we define v to lie in both of these
subcones. We call a subcone of a positive cone a positive subcone and a subcone of a negative
cone a negative subcone. We consider a cone that is not split to be a single subcone.

We now introduce the constrained half-θ6-graph, a generalized version of the half-θ6-graph as
described by Bonichon et al. [1]: for each positive subcone of each vertex u, add an edge from
u to the closest vertex in or on the boundary of that subcone that can see u, where distance is
measured along the bisector of the original cone (not the subcone) (see Figure 4). More formally,
we add an edge between two vertices u and v if v can see u, v ∈ Cu

i,j , and for all vertices w ∈ Cu
i,j

that can see u, |uv′| ≤ |uw′|, where v′ and w′ denote the projection of v and w on the bisector of
Cu

i and |xy| denotes the length of the line segment between two vertices x and y. Note that our
assumption of general position implies that each vertex adds at most one edge to the graph for
each of its positive subcones.

u

v
w

Figure 4: Three vertices are projected onto the
bisector of a cone of u. Vertex v is the closest
vertex in the left subcone and w is the closest
vertex in the right subcone

m

α

u

wa b

Figure 5: Canonical triangle Tuw

Given a vertex w in a positive cone Ci of vertex u, we define the canonical triangle Tuw to be
the triangle defined by the borders of Cu

i and the line through w perpendicular to the bisector of
Cu

i (see Figure 5). Note that for each pair of vertices there exists a unique canonical triangle. We
say that a region is empty if it does not contain any vertices.

3 Spanning Ratio of the Constrained Half-θ6-Graph

In this section we show that the constrained half-θ6-graph is a plane 2-spanner of the visibility
graph Vis(P, S). To do this, we first prove a property of visibility graphs. Recall that a region is
empty if it does not contain any vertices.

Lemma 1 Let u, v, and w be three arbitrary points in the plane such that uw and vw are visibility
edges and w is not the endpoint of a constraint intersecting the interior of triangle uvw. Then
there exists a convex chain of visibility edges from u to v in triangle uvw, such that the polygon
defined by uw, wv and the convex chain is empty and does not contain any constraints.

Proof. Let Q be the set of vertices of Vis(P, S) inside triangle uvw. If Q is empty, no constraint
can cross uv, since one of its endpoints would have to be inside uvw, so our convex chain is simply
uv. Otherwise, we build the convex hull of Q∪ {u, v}. Note that uv is part of the convex hull since
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Q lies inside uvw to one side of the line through uv. When we remove this edge, we get a convex
chain from u to v in triangle uvw. By the definition of a convex hull, the polygon defined by uw,
wv and the convex chain is empty.

u

v

w

u′

v′

x
y

Figure 6: A convex chain from u to v and intersections u′ and v′ of the triangle and the line
through x and y

Next, we show that two consecutive vertices x and y along the convex chain can see each other.
Let u′ be the intersection of uw and the line through x and y and let v′ be the intersection of vw
and the line through x and y (see Figure 6). Since w is not the endpoint of a constraint intersecting
the interior of triangle uvw and, by construction, both u′ and v′ can see w, any constraint crossing
xy would need to have an endpoint inside u′wv′. But the polygon defined by uw, wv and the
convex chain is empty, so this is not possible. Therefore x can see y.

Finally, since the polygon defined by uw, wv and the convex chain is empty and consists of
visibility edges, any constraint intersecting its interior needs to have w as an endpoint, which is
not allowed. Hence, the polygon does not contain any constraints. �

In the proof of Lemma 1, note that u, v, and w actually need not be part of the point set P .
The lemma holds for any three points in the plane satisfying the requirements, if one considers
the visibility edge as a line segment between any two points in the plane which is not intersected
by a constraint. Lemma 1 will sometimes be used with this interpretation in mind later in the
paper. Using this lemma, we proceed to improve the upper bound on the spanning ratio of the
constrained half-θ6-graph implied by Bose et al. [4].

Theorem 1 Let u and w be vertices, with w in a positive cone of u, such that uw is a visibility
edge. Let m be the midpoint of the side of Tuw opposing u, and let α be the unsigned angle between
the lines uw and um. There exists a path connecting u and w in the constrained half-θ6-graph of
length at most (

√
3 · cosα+ sinα) · |uw| that lies inside Tuw.

Proof. We assume without loss of generality that w ∈ Cu
0,j . We prove the theorem by induction

on the area of Tuw. Formally, we perform induction on the rank, when ordered by area, of the
triangles Txy for all pairs of vertices x and y that can see each other. Let δ(x, y) denote the length
of the shortest path from x to y in the constrained half-θ6-graph that lies inside Txy. Let a and
b be the upper left and right corner of Tuw, and let A and B be the triangles uaw and ubw (see
Figure 7). Our inductive hypothesis is the following:

• If A is empty, then δ(u,w) ≤ |ub|+ |bw|.

• If B is empty, then δ(u,w) ≤ |ua|+ |aw|.

• If neither A nor B is empty, then δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

We first note that this induction hypothesis implies the theorem: using the side of Tuw as the
unit of length, we have that δ(u,w) ≤ (

√
3 · cosα+ sinα) · |uw| (see Figure 8).

Base case: Triangle Tuw has minimal area. Since the triangle is a smallest canonical triangle,
w is the closest vertex to u in its positive subcone. Hence the edge uw is in the constrained
half-θ6-graph, and δ(u,w) = |uw|. From the triangle inequality, we have that |uw| ≤ min{|ua|+
|aw|, |ub|+ |bw|}, so the induction hypothesis holds.
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Figure 7: Triangles A and B

m

α

u

wa b

Figure 8: Canonical triangle
Tuw

u

v0

v1

v2

a0 b0

wa b

Figure 9: Convex chain from
v0 to w

Induction step: We assume that the induction hypothesis holds for all pairs of vertices that
can see each other and have a canonical triangle whose area is smaller than the area of Tuw. If uw
is an edge in the constrained half-θ6-graph, the induction hypothesis follows by the same argument
as in the base case. If there is no edge between u and w, let v0 be the visible vertex closest
to u in the positive subcone containing w, and let a0 and b0 be the upper left and right corner
of Tuv0

(see Figure 9). By definition, δ(u,w) ≤ |uv0| + δ(v0, w), and by the triangle inequality,
|uv0| ≤ min{|ua0|+ |a0v0|, |ub0|+ |b0v0|}. We assume without loss of generality that v0 lies to the
left of uw, which means that A is not empty.

Since uw and uv0 are visibility edges, by applying Lemma 1 to triangle v0uw, a convex chain
v0, ..., vk = w of visibility edges connecting v0 and w exists (see Figure 9). Note that, since v0 is
the closest visible vertex to u, every vertex along the convex chain lies above the horizontal line
through v0.

When looking at two consecutive vertices vi−1 and vi along the convex chain, there are three
types of configurations: (i) vi−1 ∈ Cvi

1 , (ii) vi ∈ C
vi−1

0 and vi lies to the right of or has the
same x-coordinate as vi−1, (iii) vi ∈ Cvi−1

0 and vi lies to the left of vi−1. Let Ai = vi−1aivi and
Bi = vi−1bivi, the vertices ai and bi will be defined for each case. By convexity, the direction of
−−−→vivi+1 is rotating counterclockwise for increasing i. Thus, these configurations occur in the order
Type (i), Type (ii), and Type (iii) along the convex chain from v0 to w. We bound δ(vi−1, vi) as
follows (see Figure 10):

Type (i): If vi−1 ∈ Cvi
1 , let ai and bi be the upper left and lower corner of Tvivi−1 . Triangle

Bi lies between the convex chain and uw, so it must be empty by Lemma 1. Since vi can see vi−1
and Tvivi−1

has smaller area than Tuw, the induction hypothesis gives that δ(vi−1, vi) is at most
|vi−1ai|+ |aivi|.

vi−1

vi biai

Ai Bi

vi−1

vi

bi

ai

(i) (ii)

Bi

Ai

vi−1

vi biai

Ai Bi

(iii)

Figure 10: Charging the three types of configurations

Type (ii): If vi ∈ Cvi−1

0 , let ai and bi be the left and right corner of Tvi−1vi . Since vi can see
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vi−1 and Tvi−1vi has smaller area than Tuw, the induction hypothesis applies. Whether Ai and
Bi are empty or not, δ(vi−1, vi) is at most max{|vi−1ai|+ |aivi|, |vi−1bi|+ |bivi|}. Since vi lies to
the right of or has the same x-coordinate as vi−1, we know |vi−1ai|+ |aivi| ≥ |vi−1bi|+ |bivi|, so
δ(vi−1, vi) is at most |vi−1ai|+ |aivi|.

Type (iii): If vi ∈ Cvi−1

0 and vi lies to the left of vi−1, let ai and bi be the left and right
corner of Tvi−1vi . Since vi can see vi−1 and Tvi−1vi has smaller area than Tuw, we can apply the
induction hypothesis. Thus, if Bi is empty, δ(vi−1, vi) is at most |vi−1ai|+ |aivi| and if Bi is not
empty, δ(vi−1, vi) is at most |vi−1bi|+ |bivi|.

Recall that a and b are the upper left and right corner of Tuw and that B is the triangle ubw
(see Figure 7). To complete the proof, we consider three cases: (a) ∠awu ≤ π/2, (b) ∠awu > π/2
and B is empty, (c) ∠awu > π/2 and B is not empty.

Case (a): If ∠awu ≤ π/2, the convex chain cannot contain any Type (iii) configurations: for
Type (iii) configurations to occur, vi needs to lie to the left of vi−1. However, by construction, vi
lies to the right of the line through vi−1 and w. Hence, since ∠awvi−1 < ∠awu ≤ π/2, vi lies to
the right of vi−1. We can now bound δ(u,w) as follows using the bounds on Type (i) and Type (ii)
configurations outlined above (see Figure 11):

δ(u,w) ≤ |uv0|+
k∑

i=1

δ(vi−1, vi)

≤ |ua0|+ |a0v0|+
k∑

i=1

(|vi−1ai|+ |aivi|)

= |ua|+ |aw|

We see that the latter is equal to |ua|+ |aw| as required.

u

w

vi

u

w

vi
ai

u

wa

Figure 11: Visualization of the paths (thick lines) in the inequalities of case (a)

Case (b): If ∠awu > π/2 and B is empty, the convex chain can contain Type (iii) configurations.
However, since B is empty and the area between the convex chain and uw is empty (by Lemma 1),
all triangles Bi are also empty. Hence using the induction hypothesis, δ(vi−1, vi) is at most
|vi−1ai|+ |aivi| for all i. Using these bounds on the lengths of the paths between the vertices along
the convex chain, we can bound δ(u,w) as in the previous case. Therefore, δ(u,w) ≤ |ua|+ |aw|
as required.

Case (c): If ∠awu > π/2 and B is not empty, the convex chain can contain Type (iii)
configurations. Since B is not empty, the triangles Bi need not be empty. Recall that v0
lies in A, hence neither A nor B are empty. Therefore, it suffices to prove that δ(u,w) ≤
max{|ua|+ |aw|, |ub|+ |bw|} = |ub|+ |bw|. Let Tvjvj+1 be the first Type (iii) configuration along
the convex chain (if it has any), let a′ and b′ be the upper left and right corner of Tuvj , and let b′′

be the upper right corner of Tvjw (see Figure 12). Note that since ∠awu > π/2 and vj lies to the
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left of uw, |a′vj | is smaller than |b′vj |.

δ(u,w) ≤ |uv0|+
k∑

i=1

δ(vi−1, vi)

≤ |ua0|+ |a0v0|+
j∑

i=1

(|vi−1ai|+ |aivi|) +

k∑
i=j+1

(|vi−1bi|+ |bivi|)

= |ua′|+ |a′vj |+ |vjb′′|+ |b′′w|
≤ |ub′|+ |b′vj |+ |vjb′′|+ |b′′w|
= |ub|+ |bw|

u

w

u

w

vj

u

w

vj

b′′

a′

u

w

vj

b′′

b′

u

w b

Figure 12: Visualization of the paths (thick lines) in the inequalities of case (c) �

Since the expression
√

3 · cosα + sinα is increasing for α ∈ [0, π/6], the maximum value is
attained by inserting the extreme value π/6. This leads to the following corollary.

Corollary 2 The constrained half-θ6-graph is a 2-spanner of the visibility graph.

Next, we prove that the constrained half-θ6-graph is plane.

Lemma 2 Let u, v, x, and y be four distinct vertices such that the two canonical triangles Tuv
and Txy intersect. Then at least one of the corners of one canonical triangle is contained in the
other canonical triangle.

Proof. If one triangle contains the other triangle, it contains all of its corners. Therefore we focus
on the case where neither triangle contains the other.

By definition, the upper boundaries of Tuv and Txy are parallel, the left boundaries of Tuv and
Txy are parallel, and the right boundaries of Tuv and Txy are parallel. Because we assume that
no two vertices define a line parallel to one of the rays that define the cones, we assume, without
loss of generality, that the upper boundary of Tuv lies below the upper boundary of Txy. The
upper boundary of Tuv must lie above the lower corner of Txy, since otherwise the triangles do not
intersect. If the upper left (right) corner of Tuv lies to the right (left) of the right (left) boundary
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of Txy, the triangles cannot intersect. Hence, either one of the upper corners of Tuv is contained in
Txy or the upper boundary of Tuv intersects both the left and right boundary of Txy. In the latter
case, the fact that the left boundaries of Tuv and Txy are parallel and the right boundaries of Tuv
and Txy are parallel, implies that the lower corner of Txy is contained in Tuv. �

Lemma 3 The constrained half-θ6-graph is plane.

Proof. We prove the lemma by contradiction. Assume that two edges uv and xy cross at a point p.
Since the two edges are contained in their canonical triangles, these triangles must intersect. By
Lemma 2 we know that at least one of the corners of one triangle lies inside the other. We focus on
the case where the upper right corner of Txy lies inside Tuv. The other cases are analogous. Since
uv and xy cross, this also means that either x or y must lie in Tuv. In the remainder, we assume
that y ∈ Tuv. The arguments used for the case where x ∈ Tuv are analogous.

u

v

x

y

p

Figure 13: Edges uv and xy intersect at point p

Assume without loss of generality that v ∈ Cu
0,j (see Figure 13). If y ∈ Cu

0,j , we look at triangle
upy. Since both u and y can see p, we get by Lemma 1 that either u can see y or upy contains a
vertex. In both cases, u can see a vertex in this subcone that is closer than v, contradicting the
existence of the edge uv.

If y /∈ Cu
0,j , there exists a constraint uz such that v lies to one side of the line through uz and y

lies on the other side. Since this constraint cannot cross yp, z lies inside upy and is therefore closer
to u than v. Since by definition z can see u, this also contradicts the existence of uv. �

4 Bounding the Maximum Degree

In this section, we show how to construct a bounded degree subgraph G9 of the constrained
half-θ6-graph that is a 6-spanner of the visibility graph. Given a vertex u and one of its negative
subcones, we define the canonical sequence of this subcone as the vertices in this subcone that are
neighbors of u in the constrained half-θ6-graph, in counterclockwise order (see Figure 14). These
vertices all have u as their closest visible vertex in a positive subcone. The canonical path is defined
by connecting consecutive vertices in the canonical sequence. This definition differs slightly from
the one used by Bonichon et al. [2].

To construct G9, we start with a graph with vertex set P and no edges. Then for each negative
subcone of each vertex u ∈ P , we add the canonical path and an edge between u and the closest
vertex along this path, where distance is measured using the projections of the vertices onto the
bisector of the cone containing the subcone. A given edge may be added by several vertices, but
it appears only once in G9. This construction is similar to the construction of the unconstrained
degree-9 half-θ6-graph described by Bonichon et al. [2]. We proceed to prove that G9 is a spanning
subgraph of the constrained half-θ6-graph with spanning ratio 3.
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u

v1
v2
v3v4

Figure 14: The edges that are added to G9 for a negative subcone of a vertex u with canonical
sequence v1, v2, v3 and v4

Lemma 4 G9 is a subgraph of the constrained half-θ6-graph.

Proof. Given a vertex u, we look at one of its negative subcones, say C
u

0,j . The edges added to G9

for this subcone can be divided into two types: edges of the canonical path, and the edge between
u and the closest vertex along the canonical path. Since every vertex along the canonical path is
by definition connected to u in the constrained half-θ6-graph, it remains to show that the edges of
the canonical path are part of the constrained half-θ6-graph.

Let v and w be two consecutive vertices in the canonical path of C
u

0,j , with v before w in
counterclockwise order. By applying Lemma 1 on the visibility edges vu and wu, we get a convex
chain v = x0, x1, . . . , xk−1, xk = w of k ≥ 1 visibility edges, which together with vu and wu form a
polygon Q empty of vertices and constraints.

Since Q is empty, v is not the endpoint of a constraint lying between vu and vx1. Hence, x1
cannot be in cone Cv

0 , otherwise x1 would be closer to v than u in the subcone of v that contains
u. Similarly, xk−1 cannot lie in cone Cw

0 . By convexity of the chain, this implies that no vertex on
the chain can lie in cone C0 of another vertex on the chain. Hence, since Q is empty, all vertices xi
can see u.

We first show that k = 1, i.e. that the chain is just the line vw. We prove this by contradiction,
so assume that k > 1. Hence, there is at least one vertex xi with 0 < i < k. As such a vertex is not
part of the canonical path in C

u

0,j , it must see a closest vertex y different from u in the subcone of
Cxi

0 that contains u. As vertices on the chain cannot lie in C0 of each other, y cannot be a vertex
on the chain. As Q is empty, y must therefore lie strictly outside of Q, and yxi must properly
intersect either vu or wu. But this contradicts the planarity of the constrained half-θ6-graph, as
yxi, vu, and wu would all be edges of this graph. Hence, k = 1 and the chain is a single visibility
edge vw.

It remains to show that vw is an edge of the constrained half-θ6-graph. Assume without loss of
generality that w lies in Cv

2 (the case that v lies in Cw
1 is similar). We need to show that w is the

closest visible vertex in subcone Cv
2,j . We prove this by contradiction, so assume another vertex

x in Cv
2,j is the closest. Vertex x lies in Tvw, which is partitioned into a part inside Q, a part to

the right of wu, and a part below vw (see Figure 15). If x lies to the right of wu, we would have
intersecting edges vx and wu, contradicting planarity of the constrained half-θ6-graph. As Q is
empty, x must lie below vw (see Figure 15).

Applying Lemma 1 on the visibility edges vx and vw, we get a convex chain x = x0, x1, . . . , xk−1,
xk = w of visibility edges and an empty polygon R. Vertex x1 cannot lie in Cx

0 , as this would
contradict that x is the closest visible vertex to v in Cv

2,j . Hence, since Q and R are empty, x can

see u. Since v and w are two consecutive vertices in the canonical sequence of C
u

0,j , x is not part of
this canonical sequence. So it must see a closest vertex y different from u in the subcone of Cx

0 that
contains u. Neither v nor the convex chain from x to w lie in Cx

0 . As Q and R are empty, xy must
properly intersect either vu or wu, contradicting the planarity of the constrained half-θ6-graph. �

For future reference, we note that during the proof of Lemma 4 the following two properties
were shown.
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u

w

v

x

Figure 15: Tvw is partitioned into a part inside Q (light gray), a part to the right of wu (white),
and a part below vw (dark gray)

Corollary 3 Let u, v, and w be three vertices such that v and w are neighbors along a canonical
path of u in C

u

i . Vertex w cannot lie in Cv
i or C

v

i .

Corollary 4 Let u, v, and w be three vertices such that v and w are neighbors along a canonical
path of u in C

u

i . Triangle uvw is empty and does not contain any constraints.

Theorem 5 G9 is a 3-spanner of the constrained half-θ6-graph.

Proof. We prove the theorem by showing that for every edge uw in the constrained half-θ6-graph,
where w lies in a negative cone of u, G9 contains a spanning path between u and w of length
at most 3 · |uw|. This path will consist of a part of the canonical path in the subcone of u that
contains w plus the edge between u and the closest canonical vertex in that subcone.

b

m0

u

w

v0

v1

a

m1

m2

m3 m4

v2
v3

Figure 16: Bounding the length of the canonical path

We assume without loss of generality that w ∈ Cu

0 . Let v0 be the vertex closest to u on the
canonical path in the subcone C

u

0,j that contains w and let v0, v1, ..., vk = w be the vertices along
the canonical path from v0 to w (see Figure 16). Let lj and rj denote the rays defining the left
and right boundaries of C

vj
0 for 0 ≤ j ≤ k and let r denote the ray defining the right boundary

of C
u

0 (as seen from u). Let mj be the intersection of lj and rj−1, for 1 ≤ j ≤ k, and let m0 be
the intersection of l0 and r. Let a be the intersection of r and the horizontal line through w and
let b be the intersection of lk and r. The length of the path between u and w in G9 can now be
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bounded as follows:

dG9
(u,w) ≤ |uv0|+

k∑
j=1

|vj−1vj |

≤ |um0|+ |m0v0|+
k∑

j=1

|mjvj |+
k∑

j=1

|vj−1mj |

= |um0|+
k∑

j=0

|mjvj |+
k∑

j=1

|vj−1mj |

Since u lies in C0 of each of the vertices along the canonical path, all mjvj project onto wb and

all vj−1mj project onto m0b, when projecting along lines parallel to the boundaries of C
u

0 instead
of using orthogonal projections. By Corollary 3 no edge on the canonical path can lie in C0 of
one of its endpoints, hence the projections of mjvj onto wb do not overlap. For the same reason,

the projections of vj−1mj onto m0b do not overlap. Hence, we have that
∑k

j=0 |mjvj | = |wb| and∑k
j=1 |vj−1mj | = |m0b|.

dG9
(u,w) = |um0|+

k∑
j=0

|mjvj |+
k∑

j=1

|vj−1mj |

= |um0|+ |wb|+ |m0b|
≤ |ua|+ 2 · |wa|

Let α be ∠auw. Using some basic trigonometry, we get |ua| = |uw| · cosα + |uw| · sinα/
√

3
and |wa| = 2 · |uw| · sinα/

√
3. Thus the spanning ratio can be expressed as:

dG9
(u,w)

|uw|
≤ cosα+ 5 · sinα√

3

Since this is a non-decreasing function in α for 0 < α ≤ π/3, its maximum value is obtained
when α = π/3, where the spanning ratio is 3. �

It follows from Theorems 1 and 5 that G9 is a 6-spanner of the visibility graph.

Corollary 6 G9 is a 6-spanner of the visibility graph.

To bound the degrees of the vertices, we use a charging scheme that charges the edges of a
vertex to its cones. Summing the charge for all cones of a vertex then bounds its degree.

Recalling that the edges of G9 are generated by canonical paths, consider a canonical path in
C

u

i,j , created by a vertex u. We use v to indicate an arbitrary vertex along the canonical path, and
we let v′ be the closest vertex to u along the canonical path. The edges of G9 generated by this
canonical path are charged to cones as follows:

• The edge uv′ is charged to C
u

i and to Cv′

i .

• An edge of the canonical path that lies in C
v

i+1 is charged to Cv
i .

• An edge of the canonical path that lies in C
v

i−1 is charged to Cv
i .

• An edge of the canonical path that lies in Cv
i+1 is charged to C

v

i−1.

• An edge of the canonical path that lies in Cv
i−1 is charged to C

v

i+1.

11



u

v

Figure 17: Two edges of a canonical path and the associated charges

Essentially, the edge between u and v′ is charged to the cones that contain it and edges along the
canonical path are charged to the adjacent cone that is closer to the cone of v that contains u. In
other words, all charges are shifted one cone towards the positive cone containing u (see Figure 17).

By Corollary 3, no edge on the canonical path can lie in Cv
i or C

v

i , so the charging scheme
above is exhaustive. Note that each edge is charged to both of its endpoints and therefore the
charge on a vertex is an upper bound on its degree (only an upper bound, since an edge can be
generated and charged by several canonical paths).

Lemma 5 Let v be a vertex that is incident to at least two constraints in the same positive cone
Cv

i . Let Cv
i,j be a subcone between two constraints and let u be the closest visible vertex in this

subcone. Let C
u

i,k be the subcone of u that contains v and (when uv is a constraint) intersects Cv
i,j .

Then v is the only vertex on the canonical path of C
u

i,k.

Proof. Let vw1 and vw2 be the two constraints between which subcone Cv
i,j lies. By applying

Lemma 1 on these visibility edges, we get a convex chain w1 = x0, x1, . . . , xk = w2 which together
with vw1 and vw2 form a polygon Q ⊂ Cv

i,j empty of vertices and constraints. Since u is the closest
vertex visible to v inside Cv

i,j , u must be the vertex on this chain closest to v. In particular, it is at
least as close to v as w1 and w2. Since vw1 and vw2 are constraints and Q is empty, there can be
no vertex other than v in C

u

i,k from which u is visible. Hence, v is the only vertex on the canonical

path of C
u

i,k. �

Lemma 6 Each positive cone Ci of a vertex v has a charge of at most max{2, ci(v) + 1}, where
ci(v) is the number of incident constraints in Cv

i .

Proof. Let u be a vertex such that v is part of the canonical path of u. We first show that if this
canonical path charges Cv

i , then u must lie in Cv
i . Assume u lies in Cv

j , j 6= i. Since all charges of

this canonical path are shifted one cone towards Cv
j , a charge to Cv

i would have to come from C
v

j .

However, by Corollary 3, no edge on the canonical path of a vertex in Cv
j can lie in C

v

j .
Next, we observe that there can be only one such vertex u for each subcone of Cv

i . This follows
because v is only part of canonical paths of vertices u of which uv is an edge in the constrained
half-θ6-graph, and there is at most one edge for each positive subcone.

If Cv
i is a single subcone and v is not the closest vertex to u on its canonical path, Cv

i is charged
for at most two edges along a single canonical path. Hence, its charge is at most 2. If v is the
closest vertex to u, the negative cones adjacent to this positive cone cannot contain any vertices
of the canonical path. If they did, these vertices would be closer to u than v is, as distance is
measured using the projection onto the bisector of the cone of u. Hence, if v is the closest vertex
to u, the positive cone containing u is charged 1. Thus, when the positive cone is a single subcone,
the cone is charged 2 if it has an edge of the canonical path in each adjacent negative cone, and at
most 1 otherwise.

Next, we look at the case where Cv
i is not a single subcone. For each subcone, except the first

and last, the canonical path of the vertex u from that subcone consists only of v, by Lemma 5.
Hence, we get a charge of 1 per subcone and a charge of at most ci(v)− 1 in total for all subcones
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except the first and last subcone. We complete the proof by showing that the vertices u of the first
and the last subcone can add a charge of at most 1 each.

Consider the first subcone Cv
i,0. The argument for the last subcone is symmetric. If v is the

closest vertex to u on its canonical path, the negative cones adjacent to this positive cone cannot
contain any vertices of the canonical path, since these would be closer to u than v is. Hence, the
vertex u of this subcone adds a charge of 1. If v is not the closest vertex to u, we argue that v is
the end of the canonical path of the vertex u of the subcone, implying that u can add a charge
of at most 1: Let x be the other endpoint of the constraint that defines the subcone. Since u
is the closest visible vertex in this subcone of v, it cannot lie further from v than x. If u is x,
constraint uv splits C

u

i and only one of these two parts intersects the first subcone of v. Hence
v is the end of the canonical path of u. If u is not x, u lies closer to v than x. Any vertex y
before v (in counterclockwise order) on the canonical path would have to lie in Cv

i+1 or C
v

i−1, since

by Corollary 3, y cannot lie in Cv
i or C

v

i . Since y must also lie in C
u

i to be on this canonical path,
vertex u is not visible from y due to the constraint xv. Hence, no such vertex y can exist on the
canonical path, implying that v is the end of the canonical path.

Summing up all charges, each positive cone is charged at most ci(v) + 1 if ci(v) ≥ 1, and at
most 2 otherwise. Hence, a positive cone is charged at most max{2, ci(v) + 1}. �

Corollary 7 If the i-th positive cone of a vertex v has a charge of ci(v) + 2, then ci(v) = 0, i.e. it
does not contain any constraints having v as an endpoint in Ci and is charged for two edges in the
adjacent negative cones.

Lemma 7 Each negative cone Ci of a vertex v has a charge of at most ci(v) + 1, where ci(v) is

the number of incident constraints in C
v

i .

Proof. A negative cone of a vertex v is charged by the edge to the closest vertex in each of its
subcones and it is charged by the two adjacent positive cones if edges of canonical paths lie in
those cones (see Figure 18). We first show that vertices that do not lie in the positive subcones
directly adjacent to C

v

i cannot have an edge involving v along their canonical paths. Let u be a
vertex that does not lie in a positive subcone directly adjacent to C

v

i and let vx be the constraint
closest to C

v

i that defines the boundary of the subcone of v that contains u. For u to have an
edge along its canonical path that is charged to C

v

i , it needs to lie further from u than x, since
otherwise no vertex creating such an edge is visible to u. However, this implies that v would not
connect to u, thus it would not part of the canonical path of u.

u

w

v

Figure 18: If vw is present, the negative cone does not contain edges having v as endpoint

As v can only be part of the canonical path of a single vertex in each of its positive subcones,
we need to consider only the charges to C

v

i from the canonical path created by the closest visible
vertices in the two positive subcones directly adjacent to C

v

i . Let these vertices be u and w.
Next, we show that every negative cone can be charged by at most one edge in total from its

adjacent positive cones. Suppose that w lies in a positive cone of v and vw is part of the canonical
path of u. Then w lies in a negative cone of u, which means that u lies in a positive cone of w and
cannot be part of a canonical path for w. It remains to show that this negative cone of v cannot be
charged by an edge vu′ from a canonical path of a different vertex w′. Since uvw forms a triangle
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in constrained half-θ6-graph and this graph is planar, no edge of u′vw′ can cross any of the edges
of uvw. This implies that either u′ and w′ lie inside uvw or u and w lie inside u′vw′. However, by
Corollary 4, triangles xyz formed by a vertex x and two vertices y and z that are neighbors along
the canonical path of x are empty. Therefore, u′ and w′ cannot lie inside uvw and u and w cannot
lie inside u′vw′. Thus every negative cone charged by at most one edge in total from its adjacent
positive cones.

Finally, we show that if one of uv or vw is present, the negative cone does not have an edge to
the closest vertex in that cone and it contains no constraint that has v as an endpoint. We first
show that if one of uv or vw is present, the negative cone does not have an edge to the closest vertex
in that cone. We assume without loss of generality that vw is present, u ∈ Cv

i ∩ Cw
i , and w ∈ Cv

i−1.
Since v and w are neighbors on the canonical path of u, we know that the triangle uvw is part of
the constrained half-θ6-graph and, by Corollary 4, this triangle is empty. Furthermore, since uw is
an edge of the constrained half-θ6-graph and, by Lemma 3, the constrained half-θ6-graph is plane,
v cannot have an edge to the closest vertex beyond uw. Hence the negative cone does not have an
edge to the closest vertex in that cone. By the same argument, the negative cone cannot contain a
constraint that has v as an endpoint.

It follows that if this negative cone contains no constraint that has v as an endpoint, it is
charged at most 1, by one of uv, vw, or the edge to the closest. Also, if this negative cone
does contain constraints that have v as an endpoint, it is not charged by edges in the adjacent
positive cones and hence its charge is at most ci(v)+1, one for the closest in each of its subcones. �

Theorem 8 Every vertex v in G9 has degree at most c(v) + 9.

Proof. From Lemmas 6 and 7, each positive cone has charge at most ci(v) + 2 and each negative
cone has charge at most ci(v) + 1, where ci(v) and ci(v) are the number of constraints in the
i-th positive and negative cone. Since a vertex has three positive and three negative cones and
the ci(v) and ci(v) sum up to c(v), this implies that the total degree of a vertex is at most c(v)+9. �

5 Bounding the Maximum Degree Further

In this section, we show how to reduce the maximum degree further, resulting in a plane 6-spannerG6

of the visibility graph in which the degree of any node v is bounded by c(v) + 6.
By Lemmas 6 and 7 we see that if we can avoid the case where a positive cone gets a charge of

ci(v) + 2, then every cone is charged at most ci(v) + 1, for a total charge of c(v) + 6. By Corollary 7,
this case only happens when a positive cone has ci(v) = 0 and is charged for two edges in the
adjacent negative cones. This situation is depicted in Figure 19, where x, v, and y are all on the
canonical path of u. We construct G6 by performing a transformation on G9 for all positive cones
in this situation.

We now describe the transformation. We assume without loss of generality that the positive
cone in question is Cv

0 . We call a vertex v the closest canonical vertex in a negative subcone of u
when, among the vertices of the canonical path of u in that subcone, v is closest to u.

We first note that if x is the closest canonical vertex in one of the at most two subcones of C
v

2

that contain it, the edge vx is charged to Cv
0 , since vx is an edge of the canonical path induced by

u, and it is also charged to cone C
v

2, since it is the closest canonical vertex in one of its subcones.
Since we need to charge it only once to account for the degree of v, we can remove the charge to
Cv

0 , reducing its charge by 1 as desired. Similarly, if y is the closest canonical vertex in one of the
at most two subcones of C

v

1 that contain it, it is charged to both Cv
0 and C

v

1, so we can reduce the
charge to Cv

0 by 1. Therefore, we only perform a transformation if neither x nor y is the closest
canonical vertex in the subcones of v that contain them.

In that case, the transformation proceeds as follows. First, we add an edge between x and
y. Next, we look at the sequence of vertices between v and the closest canonical vertex on the
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Figure 19: A positive cone having
charge 2

v

u

x
y

w
v

u

x
y

w

(a) (b)

Figure 20: Transforming G9 (a) into G6 (b)

canonical path induced by u. If this sequence includes x, we remove vy. Otherwise we remove vx.
Note that by Corollary 4, triangles uxv and uvy are empty and do not contain any constraints and
therefore the edge xy does not intersect any constraints.

We assume without loss of generality that vy is removed. By removing vy and adding xy, we
reduce the degree of v at the cost of increasing the degree of x. Hence, we need to find a way to
balance the degree of x. Since x lies in C

v

2 and the edge xv is part of the constrained half-θ6-graph,
x lies on a canonical path of v in C

v

2 and, since x is not the closest canonical vertex to v on this
canonical path, x has a neighbor w along this canonical path. We claim that x is the last vertex
along the canonical path of v in C

v

2 and thus w is uniquely defined. This follows because for any
vertex z later than x along that canonical path, either z must lie in triangle uvx, contradicting its
emptiness by Corollary 4, or the edges zv and xu of the constrained half-θ6-graph must intersect,
contradicting its planarity by Lemma 3. To balance the degree of x, we remove edge xw, if w lies
in C

x

0 and w is not the closest canonical vertex in a subcone of C
x

0 that contains it. Otherwise
xw is not removed. The situation before the transformation is shown in Figure 20 (a) and the
situation after the transformation is shown in Figure 20 (b). A curved line segment denotes a part
of a canonical path plus the edge from its closest canonical vertex.

To construct G6, we apply this transformation on each positive cone matching the situation
above. Note that since edge uv is part of the constrained half-θ6-graph, which is plane, and G9 is a
subgraph of the constrained half-θ6-graph, the edges added by this transformation cannot be part
of G9 as they cross uv. Hence, since only edges of G9 are removed, there are no conflicts among
the transformations of different cones, i.e. no cone will add an edge that was removed by another
cone and vice versa. Before we prove that this construction yields a graph of maximum degree
6 + c, we first show that the resulting graph is still a 3-spanner of the constrained half-θ6-graph.

Lemma 8 Let vx be an edge of G9 and let x lie in a negative cone Ci of v. If x is not the closest
canonical vertex in either of the at most two subcones of C

v

i that contain it, then the edge vx is
used by at most one canonical path.

Proof. We prove the lemma by contraposition. Assume that edge vx is part of two canonical paths
of two vertices u and w. For v and x to be neighbors on a canonical path of u and w, these vertices
need to lie in Cv

i+1 ∩ Cx
i+1 or Cv

i−1 ∩ Cx
i−1, by Corollary 3. By Corollary 4 and planarity of the

constrained half-θ6-graph, u and w cannot lie in the same region, hence one lies in Cv
i+1 ∩ Cx

i+1

and one lies in Cv
i−1 ∩ Cx

i−1. We assume without loss of generality that u ∈ Cv
i+1 ∩ Cx

i+1 and
w ∈ Cv

i−1 ∩Cx
i−1 (see Figure 21). Thus uvx and wvx form two disjoint triangles in the constrained

half-θ6-graph and, by Corollary 4, both triangles are empty. Furthermore, since the constrained
half-θ6-graph is plane, no edge from v can cross ux or wx, making vx the only edge of v in Ci.
Therefore, x is the closest canonical vertex in any subcone of C

v

i that contains it.
�
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v

u x w

Figure 21: If edge vx is part of two canonical paths, x is the only neighbor of v in the negative
cone of v

Lemma 9 For every edge uw in the constrained half-θ6-graph, there exists a path in G6 of length
at most 3 · |uw|.

Proof. In the proof of Theorem 5 we showed that for every edge uw in the constrained half-θ6-graph,
where w lies in a negative cone of u, G9 contains a spanning path between u and w of length at
most 3 · |uw|, consisting of a part of the canonical path in the subcone of u that contains w plus
the edge between u and the closest canonical vertex in that subcone. We now show that G6 also
contains a spanning path between u and w of length at most 3 · |uw|.

Note that in the construction, we never remove an edge vx with x being the closest canonical
vertex in a negative subcone of v. This means two things: 1) For any spanning path in G9, its last
edge still exists in G6. 2) By Lemma 8, any removed edge is part of a single canonical path, so we
need to argue only about this single canonical path and the spanning paths using it.

During the construction of G6, two types of edges are removed: Type 1, represented by vy in
Figure 20, and Type 2, represented by xw in Figure 20. We first show that no edge removal of
either of these types removes edge vx in Figure 20. A Type 1 removal that has v as the middle
vertex in the configuration, as shown in Figure 20, is called centered at v. A Type 1 removal of vy
affects the single canonical path containing xv and vy (see Figure 20). We note that no Type 1
removal involving v can be centered at x or y, since v lies in a positive cone of both x and y and a
Type 1 removal requires both neighbors of the center vertex to lie in negative cones. This implies
that Type 1 removals are non-overlapping (i.e. their configurations do not share edges) and, in
particular, it implies that edge vx is not removed by this type of removal.

A Type 2 removal of xw affects the canonical path that contains w and x (see Figure 20). As
argued during the construction of G6, x is the last vertex along a canonical path of v and the
edge xw is removed if w lies in a negative cone of x and w is not a closest canonical vertex to x.
We now show that edge vx cannot be removed by a Type 2 removal: For it to be removed, we
need that either x lies in a negative cone of v and v is the last vertex along this canonical path, or
v lies in a negative cone of x and x is the last vertex along this canonical path. However, since v is
not the last vertex along the canonical path that contains v and x (it is followed by y) and v does
not lie in a negative cone of x, neither condition is satisfied.

Now that we know that for every Type 1 removal, edge vx is still present in the final G6, we
look at the spanning paths in G6. Every spanning path present in G9 can be affected by several
non-overlapping Type 1 removals, as well as by a Type 2 removal at either end. By applying the
triangle inequality to Figure 20, it follows that |xy| ≤ |xv|+ |vy|. Combined with the fact that
for every Type 1 removal, vx is present in G6, it follows that there still exists a spanning path
between u and any vertex w along its canonical path, except possibly the last vertex x on either
end, as the edge connecting x to its neighbor along the canonical path could be removed by a
Type 2 removal. However, we perform a Type 2 removal only when u and x are part of a Type 1
configuration centered at u and ux is the edge of this configuration that was not removed (see
Figure 20, where v acts as the node called u in the Type 2 argument above). Furthermore, we
showed that in this case ux is still present in G6. Hence, there exists a spanning path of length at
most 3 · |uw| between u and any vertex w along its canonical path.

Thus, we have proven that for every edge uw in the constrained half-θ6-graph, where w lies in
a negative cone of u, also G6 contains a spanning path between u and w of length at most 3·|uw|. �
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Lemma 10 Every vertex v in G6 has degree at most c(v) + 6.

Proof. To bound the degree, we look at the charges of the vertices. We prove that after the
transformation each positive cone has charge at most ci(v) + 1 and each negative cone has charge
at most ci(v) + 1. This implies that the total degree of a vertex is at most c(v) + 6. Since the
charge of the negative cones is already at most ci(v) + 1, we focus on positive cones having charge
ci(v) + 2. By Corollary 7, this means that these cones have charge 2 and ci(v) = 0.

Let v be a vertex such that one of its positive cones Cv
i has charge 2, let u be the vertex whose

canonical path charged 2 to Cv
i , and let x ∈ Cv

i−1 and y ∈ Cv

i+1 be the neighbors of v on this

canonical path (see Figure 19). If x or y is the closest canonical vertex in a subcone of C
v

i−1 or

C
v

i+1, this edge has been charged to both that negative cone and Cv
i . Hence we can remove the

charge to Cv
i while maintaining that the charge is an upper bound on the degree of v.

If neither x nor y is the closest canonical vertex in a subcone of C
v

i−1 or C
v

i+1, edge xy is added.
We assume without loss of generality that edge vy is removed. Thus vy need not be charged,
decreasing the charge of Cv

i to 1. Since vy was charged to C
y

i−1 and this charge is removed, we

charge edge xy to C
y

i−1. Thus the charge of y does not change.
It remains to show that we can charge xy to x. Recall that x lies on the canonical path of v

in C
v

i−1, is the last vertex on this canonical path, and has w as neighbor on this canonical path
(see Figure 20). Since vertices uvx and vwx each form a triangle of neighboring vertices on a
canonical path in the constrained half-θ6-graph, by Corollary 4 they are empty and do not contain
any constraints. This implies that x is not the endpoint of any constraint in Cx

i−1. Hence, since
x is the last vertex along the canonical path of v, Cx

i−1 has charge at most 1 by Lemma 6 and
Corollary 7. Now, consider the neighbor w of x. Vertex w can be in one of two cones with respect
to x: Cx

i+1 and C
x

i . If w ∈ Cx
i+1, xw is charged to C

x

i . Thus the charge of Cx
i−1 is 0 and we can

charge xy to it.
If w ∈ Cx

i and w is the closest canonical vertex to x in a subcone of C
x

i , xw has been charged
to both Cx

i−1 and C
x

i . We can remove that charge from Cx
i−1 and instead charge xy to it, while

keeping the charge of Cx
i−1 at 1. If w ∈ Cx

i and w is not the closest canonical vertex to x in a

subcone of C
x

i that contains it, xw was removed during the transformation. Since this edge was
charged to Cx

i−1, we can now charge xy to Cx
i−1, while keeping the charge of Cx

i−1 at 1. �

Lemma 11 G6 is a plane subgraph of the visibility graph.

Proof. Since G9 is a plane subgraph of the visibility graph by Lemmas 3 and 4, only the edges added
in the transformation from G9 to G6 can violate the lemma. An added edge xy can potentially
intersect edges of G6 that are in the constrained half-θ6-graph, other edges that were added (recall
that added edges are not in the constrained half-θ6-graph, so these two cases are disjoint), and
constraints.

First, we consider intersections of xy with edges of G6 that are in the constrained half-θ6-graph.
Since xy was added in the transformation, x, y, and v are part of a canonical path of some vertex u
(see Figure 20). Thus, in the constrained half-θ6-graph uvx and uvy form two triangles, each
containing a pair of neighboring vertices along the canonical path, which are empty by Corollary 4.
Since the constrained half-θ6-graph is plane and xy lies inside uxvy, the only edge of the constrained
half-θ6-graph that can intersect xy is uv. We now argue that uv is not in G6. By construction, uv
can only be part of G9 if v is the closest vertex to u on this canonical path, or if uv are neighboring
vertices along another canonical path of some vertex t. The former cannot be the case, by the
conditions for adding xy in the transformation (see Figure 20). Assume the latter is the case. If
u ∈ Cv

i , then either t ∈ Cu
i+1 ∩ Cv

i+1 or t ∈ Cu
i−1 ∩ Cv

i−1, by Corollary 3. If t ∈ Cu
i−1 ∩ Cv

i−1, the

triangle uvt contains all of C
u

i ∩ C
v

i+1, which contains y, as shown in Figure 22.
As uvt is empty by Corollary 4, this is a contradiction. If t ∈ Cu

i+1∩Cv
i+1, a similar contradiction

based on x arises. This shows that uv is not in G9, and hence not in G6 either, as edges added in
the transformation from G9 to G6 are not in the constrained half-θ6-graph.
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Figure 22: If t ∈ Cu
i−1 ∩ Cv

i−1, the triangle uvt contains all of C
u

i ∩ C
v

i+1, which contains y

Next, we consider intersections of xy with other added edges. By Corollary 4 the quadrilateral
uxvy does not contain any vertices. Its sides ux, xv, vy, and yu are edges of the constrained
half-θ6-graph, which we showed above cannot be intersected by added edges. Hence, the only
possibility for an added edge to intersect xy is the edge uv. However, uv cannot be an added edge,
as we argued above. Thus, xy cannot intersect an added edge.

Finally, we consider intersection of xy with constraints. By Corollary 4, triangles uxv and uvy
are empty and do not contain any constraints. Hence, since edge xy is contained in uxvy, it does
not intersect any constraints. �

6 Conclusion

We showed that the constrained half-θ6-graph is a plane 2-spanner of Vis(P, S). We then generalized
the construction of Bonichon et al. [2] to show how to construct a plane 6-spanner of Vis(P, S)
with maximum degree 6 + c, where c = max{c(v)|v ∈ P} and c(v) is the number of constraints
incident to a vertex v.

A number of open problems still remain. For example, since constrained θ-graphs with at least
6 cones were recently shown to be spanners [9], a logical next question is to see if the method
shown in this paper can be generalized to work for any constrained θ-graph. It would also be
interesting to see if the degree can be reduced further still, while remaining a spanner of Vis(P, S).

Furthermore, it would be interesting to see if it is possible to reduce the maximum degree of
the vertices further. This was recently shown to be possible in the unconstrained setting [3, 12],
which raises the question whether the approaches used in the unconstrained setting work in the
constrained setting as well. Since these two approaches use different graphs as a starting point and
thus require different edge removal rules and shortcutting techniques, it could very well be the case
that only one of them results in a plane graph that respects the constraints.
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[6] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal local
routing on Delaunay triangulations defined by empty equilateral triangles. SIAM Journal on
Computing, 44(6):1626–1649, 2015.

[7] Prosenjit Bose and J. Mark Keil. On the stretch factor of the constrained Delaunay triangula-
tion. In Proceedings of the 3rd International Symposium onVoronoi Diagrams in Science and
Engineering (ISVD 2006), pages 25–31, 2006.

[8] Prosenjit Bose and Michiel Smid. On plane geometric spanners: A survey and open problems.
Computational Geometry: Theory and Applications, 46(7):818–830, 2013.
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