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Abstract
While every instance of the Hospitals/Residents problem admits a stable matching, the problem
with lower quotas (HR-LQ) has instances with no stable matching. For such an instance, we ex-
pect the existence of an envy-free matching, which is a relaxation of a stable matching preserving
a kind of fairness property.

In this paper, we investigate the existence of an envy-free matching in several settings, in
which hospitals have lower quotas. We first provide an algorithm that decides whether a given
HR-LQ instance has an envy-free matching or not. Then, we consider envy-freeness in the
Classified Stable Matching model due to Huang (2010), i.e., each hospital has lower and upper
quotas on subsets of doctors. We show that, for this model, deciding the existence of an envy-free
matching is NP-hard in general, but solvable in polynomial time if quotas are paramodular.
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1 Introduction

Since the seminal work of Gale and Shapley [11], the Hospitals/Residents problem (HR, for
short), or the College Admission problem, has been studied extensively [14, 20, 27]. They
proposed an algorithm that finds a stable matching in linear time for every instance. In
this problem, each hospital has an upper quota for the number of doctors assigned to it. In
some applications, each hospital also has a lower quota for the number of doctors it receives.
That is, we want to consider the Hospitals/Residents problem with lower quotas (HR-LQ,
for short). Unfortunately, for HR-LQ, we cannot ensure the existence of a stable matching.
However, it is easy to decide whether there is a stable matching or not for a given HR-LQ
instance, because the number of doctors assigned to each hospital is identical for any stable
matching (according to the well-known Rural Hospitals Theorem [12, 24, 25, 26]).

When a given HR-LQ instance has no stable matching, one natural approach is to
weaken stability concept while preserving some kind of fairness. Envy-freeness [30] (also
called fairness in the school choice literature [8, 13]) of matchings is a relaxation of stability
obtained by giving up efficiency. Similarly to stability, envy-freeness forbids the existence of
a doctor who has justified envy toward some other doctor, but it tolerates the existence of a
doctor who claims a hospital’s vacant seat. The importance of envy-freeness and its variants
has recently been recognized in the context of constrained matching [8, 13, 18, 19, 4], and
structural properties of envy-free matchings were investigated in [30].
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67:2 Envy-free Matchings with Lower Quotas

Envy-free matchings naturally arise when we find a matching in the following ad hoc
manner. For an HR-LQ instance, suppose that we find a stable matching while disregarding
the lower quotas, and that the obtained matching does not meet the lower quotas. Let us
reduce the upper quotas of hospitals that receive many doctors, and again find a stable
matching while disregarding the lower quotas, and repeat. If we find a stable matching that
meets the lower quotas after repeating such adjustments, then the obtained matching is an
envy-free matching of the original instance (see Proposition 4).

Because an envy-free matching is a relaxation of a stable matching, it is more likely to
exist. Indeed, if all doctor-hospital pairs are acceptable and the sum of lower quotas of all
hospitals does not exceed the number of doctors, then we can ensure the existence of an
envy-free matching. (This follows from the results of Fragiadakis et al. [8]). However, if
not all pairs are acceptable, then even an envy-free matching may fail to exist. Moreover,
deciding the existence of an envy-free matching is not so simple because envy-free matchings
have different sizes unlike stable matchings.

Our Contribution

In this paper, we study envy-free matchings for the HR-LQ model and its generalizations. In
our models, not all doctor-hospital pairs are acceptable (i.e., preference lists are incomplete).

We first investigate envy-free matchings in the setting of HR-LQ. We provide the following
characterization of the existence of an envy-free matching. Let I be a given HR-LQ instance
and let I ′ be an HR instance obtained from I by removing lower quotas and replacing upper
quotas with the original lower quotas. We prove that I has an envy-free matching if and only
if every hospital is full in a stable matching of I ′ (Theorem 6). Combined with the rural
hospitals theorem, this characterization yields an efficient algorithm to decide the existence
of an envy-free matching for an HR-LQ instance. That is, we can decide it by finding a
stable matching for the HR instance whose upper quotas are the original lower quotas, and
checking whether all hospitals are full or not.

Next, we move to a generalized model, in which each hospital imposes an upper and a
lower quota on each subset of doctors. That is, we consider an envy-free matching version of
Huang’s Classified Stable Matching [17] (CSM, for short). (See “Related Works” below for
results on stable matchings of CSM and its generalizations.) In Huang’s original model, each
hospital has a family of sets of doctors, called classes, and each class has an upper and a
lower quota. We formulate this setting by letting each hospital have a pair of set functions
defined on the set of acceptable doctors. These two functions respectively represent upper
quotas and lower quotas. For this model, we show that it is NP-hard to decide the existence
of an envy-free matching, even if the number of non-trivial quotas is linear (Theorem 6).
The proof is by a reduction from the NP-complete problem (3,B2)-SAT [2].

Then, we provide a tractable special case of CSM. We show that if the pair of lower and
upper quota functions of each hospital is paramodular [9] (see Section 4 for the definition),
then we can decide the existence of an envy-free matching in polynomial time. This means
that the problem is tractable if the family of acceptable doctor sets forms a generalized
matroid for each hospital. A generalized matroid [28] (also called an M\-convex family [22]) is
a family of subsets satisfying a certain axiom called the exchange axiom. It is known that a
paramodular function pair defines a generalized matroid and vice versa. Because constraints
defined on a laminar (or hierarchical) family yield a generalized matroid, our tractable special
case includes a case in which each hospital defines quotas on a laminar family of doctors.
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Related Works

Recently, the study of matching models with lower quotas has developed substantially
[1, 7, 13, 15, 16, 17, 20, 21]. The Hospitals/Residents problem with lower quotas (HR-LQ)
was first studied by Hamada et al. [15, 16], who considered the minimization of the number
of blocking pairs subject to upper and lower quotas. They showed the NP-hardness of the
problem, gave an inapproximability result, and provided an exponential-time exact algorithm.
Motivated by the matching scheme used in Hungary’s higher education sector, Biró et al. [3]
considered a version of HR-LQ in which hospitals (i.e., colleges) are allowed to be closed, i.e.,
each hospital is assigned enough doctors or no doctor. They showed the NP-completeness to
decide the existence of a stable matching.

The Classified Stable Matching problem (CSM), proposed by Huang [17], is a general-
ization of HR-LQ without hospital closures. In this model, each hospital (or institute, in
Huang’s terminology) has a classification of doctors (i.e., applicants) based on their expertise
and gives an upper and lower quota for each class. Huang showed that it is NP-complete
in general to decide the existence of a stable matching, and proved that it is solvable in
polynomial time if classes form a laminar family. For this tractable special case, Fleiner
and Kamiyama [7] gave a concise explanation in terms of matroids, and their framework is
generalized by Yokoi [31] to a framework with generalized matroids.

To cope with the nonexistence of a stable matching in constrained matching models (not
only models with lower quotas but also with other types of constraints such as regional
constraints), several relaxations of stability have been proposed. See, e.g., Kamada and
Kojima [18, 19], Fragiadakis et al. [8], and Goto et al. [13]. Envy-freeness is one of them
that places emphasis on fairness rather than efficiency. Fragiadakis et al. [8] provided a
strategy-proof algorithm that always finds an envy-free matching (or fair matching, in their
terminology) of HR-LQ under the assumption that all doctor-hospital pairs are acceptable.
The outcome of their mechanism also fulfills a second-best efficiency (i.e., nonwastefulness)
property. Their framework is generalized in Goto et al. [13] so that regional quotas can be
handled.

Here we compare our models with the above models. Unlike the models of Goto et al.
[13] and Kamada and Kojima [18, 19], our models cannot handle regional quotas. Instead,
our CSM model (in Sections 3 and 4) allows each hospital to have quotas on classes of
doctors, which are not dealt with in their models. The setting of a tractable special case of
CSM described in Section 4 is equivalent to a many-to-one case of Yokoi’s model [31], which
studied stable matchings. Neither [31] nor the study in this paper relies on the results of the
other, while both of them utilize the matroid framework of Fleiner [5, 6].

The remainder of this paper is organized as follows. Section 2 investigates envy-free
matchings in the Hospitals/Residents problem with lower quotas (HR-LQ). In Section 3, we
define an envy-free matching in the classified stable matching (CSM) model, and show the
NP-hardness of its existence test. As its tractable special case, Section 4 presents results on
CSM with paramodular quota functions. Due to space constraints, we defer the proofs for
the theorems and corollary in Section 4 to the full version.

2 Envy-freeness in HR with lower quotas

In this section, we investigate envy-free matchings in the Hospitals/Residents problem with
lower quotas (HR-LQ).

There are two disjoint sets D and H, which represent doctors and hospitals, respectively.
A set of acceptable doctor-hospital pairs is denoted by E ⊆ D ×H.

ISAAC 2017



67:4 Envy-free Matchings with Lower Quotas

For each doctor d ∈ D, its acceptable hospital set is denoted by

A(d) := {h ∈ H | (d, h) ∈ E } ⊆ H,

and d has a preference list (strict order) �d on A(d). Similarly, for each hospital h ∈ H,

A(h) := { d ∈ D | (d, h) ∈ E } ⊆ D,

and h has a preference �h on A(h). Each hospital h has a lower quota lh ∈ Z and an upper
quota uh ∈ Z with 0 ≤ lh ≤ uh ≤ |A(h)|.

We call a tuple I = (D,H,E,�DH , {(lh, uh)}h∈H) an HR-LQ instance, where �DH is
an abbreviated notation for the union of {�d}d∈D and {�h}h∈H . In particular, if lh = 0 for
all h ∈ H, we call it an HR instance. An arbitrary subset M of E is called an assignment.
For any assignment M , we denote M(d) = {h ∈ A(d) | (d, h) ∈M } for each d ∈ D and
M(h) = { d ∈ A(h) | (d, h) ∈M } for each h ∈ H. If |M(d)| = 1, the notation M(d) is also
used to refer its single element.

An assignment M is called a matching (or, said to be feasible) if |M(d)| ≤ 1 for each
d ∈ D and lh ≤ |M(h)| ≤ uh for each h ∈ H. In a matching M , a doctor d is unassigned
(resp., assigned) if M(d) = ∅ (resp., |M(d)| = 1), and h is undersubscribed (resp., full)
if |M(h)| < uh (resp., |M(h)| = uh).

I Definition 1. For a matching M , an unassigned pair (d, h) ∈ E \M is a blocking pair if
(i) d is unassigned or h �d M(d), and (ii) h is undersubscribed or there is d′ ∈M(h) with
d �h d

′. A matching M is stable if there is no blocking pair.

For an HR instance, it is known that the algorithm of Gale and Shapley [11] always finds a
stable matching. The set of stable matchings has the following property.

I Proposition 2 (“Rural Hospitals” Theorem [12, 24, 26]). For a given HR instance, any two
stable matchings M,M ′ satisfy |M(h)| = |M ′(h)| for every h ∈ H. Moreover M(h) = M ′(h)
if h is undersubscribed in M or M ′.

As mentioned in the Introduction, if hospitals have lower quotas, then we cannot guarantee
the existence of a stable matching anymore. By Proposition 2, however, we can easily check
the existence by finding a stable matching while disregarding lower quotas, and checking
whether the obtained matching meets lower quotas.

For an instance that has no stable matching, we want to obtain some matching that still
has a kind of fairness. As a relaxation of the concept of stability, envy-freeness (also called
fairness) of matchings has been proposed [8, 30].

I Definition 3. For a matchingM , a doctor d has justified envy toward d′ withM(d′) = h

if (i) d is unassigned or h �d M(d) and (ii) d �h d
′. A matching M is envy-free if no doctor

has justified envy.

Note that, if d has justified envy toward d′ with M(d) = h, then it means that (d, h) is a
blocking pair. Thus, stability implies envy-freeness. The envy-freeness of a matching is also
regarded as the stability with reduced upper quotas, as follows.

I Proposition 4. For I = (D,H,E,�DH , {(lh, uh)}h∈H), an assignment M is an envy-free
matching if and only if M is a stable matching of I ′ = (D,H,E,�DH , {(lh, u′h)}h∈H) for
some {u′h}h∈H with u′h ≤ uh (h ∈ H).
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Doctor’s preferences Hospitals’ preferences

d1 : h1 h1 : d2 d1 (lh1 = 1, uh1 = 2)

d2 : h1 h2 h2 : d2 (lh2 = 1, uh2 = 2)

Figure 1 An instance of HR-LQ with no envy-free matching.

Proof. The “if” part is clear because feasibility in I ′ implies that in I, and stability implies
envy-freeness. For the “only if” part, suppose that M is envy-free in I and set u′h := |M(h)|
for each h ∈ H. Then, M is feasible for I ′ and all hospitals are full, and hence there is no
doctor who claims a hospital’s vacant seat. Because M is envy-free, it is stable in I ′. J

By Proposition 4, to check whether we can obtain a stable matching by reducing upper
quotas, it suffices to check for the existence of an envy-free matching.

Under the assumption that all doctor-hospital pairs are acceptable and the sum of lower
quotas does not exceed the number of doctors, Fragiadakis et al. [8] provided a strategy-proof
mechanism that always finds an envy-free matching. As a corollary, we have the following.

I Proposition 5. For an instance I = (D,H,E,�DH , {(lh, uh)}h∈H) such that E = D ×H
and |D| ≥

∑
h∈H lh, there exists an envy-free matching.

However, if not all pairs are acceptable, then even an envy-free matching may not exist.
Figure 1 shows an instance with D = {d1, d2}, H = {h1, h2}, E = {(d1, h1), (d2, h1), (d2, h2)},
lh1 = lh2 = 1, and uh1 = uh2 = 2. For this instance, M = {(d1, h1), (d2, h2)} is the unique
feasible matching, but it is not envy-free because d2 has justified envy toward d1. Hence,
there is no envy-free matching.

Note that an envy-free matching does exist if there is no lower quota, because empty
matching is clearly envy-free. Therefore, the existence test of an envy-free matching is
non-trivial when incomplete lists and lower quotas are introduced simultaneously. Here we
provide a characterization.

I Theorem 6. I = (D,H,E,�DH , {(lh, uh)}h∈H) has an envy-free matching if and only
if some stable matching M ′ of the HR instance I ′ = (D,H,E,�DH , {(0, lh)}h∈H) satisfies
|M ′(h)| = lh for all h ∈ H.

Proof. For the “if” part, let M ′ be a stable matching of I ′ satisfying |M ′(h)| = lh for all
h ∈ H. Then, M ′ is feasible for I ′ and no doctor has justified envy because M ′ has no
blocking pair. Thus, M ′ is an envy-free matching of I.

For the “only if” part, assume that I has an envy-free matching M . Suppose, to the
contrary, a stable matching M ′ of I ′ satisfies |M ′(h∗)| < lh∗ for some h∗ ∈ H. Let us denote
N = M \M ′ and N ′ = M ′ \M . For every h ∈ H, because |M ′(h)| ≤ lh ≤ |M(h)|, we have
|N ′(h)| ≤ |N(h)|. In particular, |N ′(h∗)| < |N(h∗)| follows from |M ′(h∗)| < lh∗ .

Consider a bipartite graph G = (D,H;N∪N ′), i.e., a graph between doctors and hospitals
with edge set N ∪N ′ = M4M ′. Let G∗ be a connected component of G including h∗, and
denote by D∗ and H∗ the sets of doctors and hospitals in G∗, respectively. Because there is no
edge connecting G∗ and the outside,

∑
d∈D∗ |N(h)| =

∑
h∈H∗ |N(h)| and

∑
d∈D∗ |N ′(h)| =∑

h∈H∗ |N ′(h)|. As |N ′(h∗)| < |N(h∗)| and |N ′(h)| ≤ |N(h)| for any h ∈ H∗, we obtain∑
d∈D∗ |N ′(h)| =

∑
h∈H∗ |N ′(h)| <

∑
h∈H∗ |N(h)| =

∑
d∈D∗ |N(h)|.

Then, there exists d∗ ∈ D∗ with |N ′(d∗)| < |N(d∗)|, which impliesN ′(d∗) = ∅ and |N(d∗)| = 1
because N ′ = M ′ \M and N = M \M ′ are subsets of matchings. As G∗ is a connected
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67:6 Envy-free Matchings with Lower Quotas

bipartite graph, there is a path d0 h0 d1 h1 . . . dk hk with d0 = d∗ and hk = h∗. Also, as
|N(di)| ≤ 1 and |N ′(di)| ≤ 1 for i = 0, 1, . . . k, this path alternately uses edges in N = M \M ′
and N ′ = M ′ \M . Because N ′(d∗) = ∅ and |N(d∗)| = 1, we have

M ′(d0) = ∅,
(di, hi) ∈M \M ′ (i = 0, 1, . . . , k),

(di+1, hi) ∈M ′ \M (i = 0, 1, . . . , k − 1).

The doctor d0 is unassigned in M ′ and finds h0 acceptable because (d0, h0) ∈ M . Hence,
the stability of M ′ implies that h0 prefers d1 ∈M ′(h0) to d0. Then, the envy-freeness of M
implies that d1 prefers h1 = M(d1) to h0. In this way, we obtain

di+1 �hi
di (i = 0, 1, . . . , k − 1),

hi+1 �di+1 hi (i = 0, 1, . . . , k − 1).

Thus, M(dk) = hk �dk
hk−1 = M ′(dk). Because hk = h∗ satisfies |M ′(hk)| < lhk

, then
(dk, hk) is a blocking pair in I ′, which contradicts the stability of M ′. J

Theorem 6 ensures that the following algorithm decides the existence of an envy-free matching
of an HR-LQ instance I = (D,H,E,�DH , {(lh, uh)}h∈H).

Algorithm EF-HR-LQ
Step1. Find a stable matching M ′ of I ′ = (D,H,E,�DH , {(0, lh)}h∈H).
Step2. returnM ′ if |M ′(h)| = lh for all h ∈ H, and otherwise “there is no envy-free matching.”

Since the Gale-Shapley algorithm finds a stable matching of an HR instance in O(|E|)
time, we obtain the following theorem.

I Theorem 7. For any HR-LQ instance I = (D,H,E,�DH , {(lh, uh)}h∈H), the algorithm
EF-HR-LQ decides whether I has an envy-free matching or not in O(|E|) time.

3 Envy-freeness in Classified Stable Matching

In this section, we consider the envy-freeness in a model in which each hospital has lower and
upper quotas on subsets of doctors. This can be regarded as an envy-free matching version
of the Classified Stable Matching, proposed by Huang [17]. Similarly to Section 2, we have
doctors D, hospitals H, acceptable pairs E ⊆ D ×H, and preferences �DH .

The only difference from HR-LQ is that, in the current model, each hospital h ∈ H has
a pair of functions ph, qh : 2A(h) → Z, instead of a pair of numbers lh, uh. These functions
define a lower and an upper quota for each subset of acceptable doctors. Throughout this
paper, we assume that for any hospital h, the functions ph and qh satisfy

0 ≤ ph(B) ≤ qh(B) ≤ |B| (B ⊆ A(h)).

We call such a tuple (D,H,E,�DH , {(ph, qh)}h∈H) a CSM instance. For each h ∈ H, the
family of acceptable subsets of doctors is denoted by

F(ph, qh) := {X ⊆ A(h) | ∀B ⊆ A(h) : ph(B) ≤ |X ∩B| ≤ qh(B) } .

For any h ∈ H, we say that B ⊆ A(h) has a non-trivial lower (resp., upper) constraint
if ph(B) > 0 (resp., qh(B) < |B|). We denote the family of constrained subsets by

C(ph, qh) := {B ⊆ A(h) | ph(B) > 0 or qh(B) < |B| } .
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Then, we see that F(ph, qh) is represented as

F(ph, qh) = {X ⊆ A(h) | ∀B ⊆ C(ph, qh) : ph(B) ≤ |X ∩B| ≤ qh(B) } .

For a CSM instance I = (D,H,E,�DH , {(ph, qh)}h∈H), M ⊆ E is called a matching
(or, said to be feasible) if |M(d)| ≤ 1 for each d ∈ D and M(h) ∈ F(ph, qh) for each h ∈ H.

I Definition 8. For a matching M , an unassigned pair (d, h) ∈ E \M is a blocking pair if
(i) d is unassigned or h �d M(d), and (ii) M(h) + d ∈ F(ph, qh) or M(h) + d− d′ ∈ F(ph, qh)
for some d′ ∈M(h) with d �h d

′. A matching M is stable if there is no blocking pair.

In Definition 8, the condition M(h) + d ∈ F(ph, qh) means that h can add d to the current
assignment without violating any upper quota, and M(h) + d− d′ ∈ F(ph, qh) means that
h can replace d′ with d without violating any upper or lower quota. The Classified Stable
Matching, introduced by Huang [17], is the problem to decide the existence of a stable
matching for a given CSM instance1. Because this is a generalization of HR-LQ, there are
instances that have no stable matching. Let us consider envy-freeness for a CSM instance.

I Definition 9. For a matchingM , a doctor d has justified envy toward d′ withM(d′) = h

if (i) d is unassigned or h �d M(d) and (ii) M(h) + d − d′ ∈ F(ph, qh) and d �h d′. A
matching M is envy-free if no doctor has justified envy.

As in the case of HR-LQ, an envy-free matching can be regarded as a stable matching
with reduced upper quotas as follows. For any h ∈ H and k ∈ Z with 0 ≤ k ≤ q(A(h)), a
function q′h : 2A(h) → Z is called a k-truncation of qh if q′(A(h)) = k and q′(B) = q(B) for
every B ( A(h). Also, we simply say that q′h is a truncation of qh if there is such k ∈ Z.

I Proposition 10. For I = (D,H,E,�DH , {(ph, qh)}h∈H), an assignment M is an envy-free
matching if and only if M is a stable matching of I ′ = (D,H,E,�DH , {(ph, q

′
h)}h∈H) such

that each q′h is some truncation of qh.

Proof. To show the “only if” part, let M be an envy-free matching of I. For each h ∈ H,
let q′h be the |M(h)|-truncation of qh. Then M(h) ∈ F(ph, q

′
h) and M(h) + d 6∈ F(ph, q

′
h)

for every d ∈ A(h) \M(h). That is, M is feasible for I ′ and there is no doctor who claims
a hospital’s vacant seat. Therefore, if there is a blocking pair (d, h) ∈ E \M for I ′, it
follows that d has a justified envy toward some d′ with M(d′) = h, which contradicts the
envy-freeness of M . Thus, M is a stable matching of I ′.

For the “if” part, let M be a stable matching of I ′. Clearly, M is feasible for I. Suppose,
to the contrary, some doctor d has justified envy toward d′ with M(d′) = h with respect to I.
Then d is unassigned or h �d M(d). Also, we have d �h d

′ and M(h) + d− d′ ∈ F(ph, qh).
Then, M(h) + d− d′ ∈ F(ph, q

′
h) follows because |M(h) + d− d′| = |M(h)|. Hence, (d, h) is

a blocking pair in I ′, a contradiction. J

We provide a hardness result for deciding the existence of an envy-free matching. Here,
we assume that evaluation oracles of set functions ph and qh are available for each hospital h.

I Theorem 11. It is NP-hard to decide whether a CSM instance I = (D,H,E,�DH

, {(ph, qh)}h∈H) has an envy-free matching or not. The problem is NP-complete even if the
size of C(ph, qh) is at most 4 for each h ∈ H.

1 In his original model, each hospital h has a classification Ch ⊆ 2A(h) and sets a lower and an upper
quota for each member of Ch. That is, we are provided C(ph, qh) and the values of ph, qh on it, rather
than set functions ph, qh. Our formulation uses set functions to simplify the arguments in the next
section.
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67:8 Envy-free Matchings with Lower Quotas

Proof. We use reduction from the NP-complete problem (3, B2)-SAT [2], which is a restriction
of SAT such that each clause contains exactly three literals and each variable occurs exactly
twice as a positive literal and exactly twice as a negative literal. Let ϕ = c1 ∧ c2 ∧ · · · ∧ cm

be an instance of (3, B2)-SAT with Boolean variables v1, v2, . . . , vn. Then, each clause cj

is a disjunction of three literals, (e.g., cj = v1 ∨ ¬v2 ∨ ¬v3) and each of literals vi and ¬vi

appears in exactly two clauses. For each variable vi, denote by j∗(i, 1), j∗(i, 2) the indices
of two clauses that contain vi. Similarly, denote by j∗(i,−1), j∗(i,−2) the indices of two
clauses that contain ¬vi.

We now define a CSM instance corresponding to ϕ. We have a variable-hospital hi for
each variable vi, and a clause-hospital hj for each clause cj . For each variable vi, we have
four doctors { di,t | t ∈ {1, 2,−1,−2} }. For each doctor di,t, we have

A(di,t) = {hi, hj∗(i,t)}, hi �di,t hj∗(i,t).

The set E is defined as the set of all pairs (di,t, h) such that h ∈ A(di,t). Then, for each
variable-hospital hi and clause-hospital hj , we have

A(hi) = { di,t | t ∈ {1, 2,−1,−2} } ,
A(hj) = { di,t | j∗(i, t) = j } .

Note that di,t ∈ A(hj) implies vi ∈ cj or ¬vi ∈ cj . Also, each of vi ∈ cj and ¬vi ∈ cj

implies di,t ∈ A(hj) for some unique t ∈ {1, 2,−1,−2}. Therefore, |A(hj)| = 3 for each
clause-hospital hj . For each variable-hospital hi, define phi

and qhi
so that

C(phi
, qhi

) =
⋃
{ {di,t, di,t′} | t ∈ {1, 2}, t′ ∈ {−1,−2} } ,

phi
({di,t, di,t′}) = qhi

({di,t, di,t′}) = 1 (t ∈ {1, 2}, t′ ∈ {−1,−2}).

Then, we see that F(phi
, qhi

) = {D+
i , D

−
i }, whereD

+
i := {di,1, di,2} andD−i := {di,−1, di,−2}.

For each clause-hospital hj , define phi
and qhi

so that

C(phj
, qhj

) = {A(hj)}, phj
(A(hj)) = 1, qhj

(A(hj)) = |A(hj)| = 3.

We define preference lists of hospitals arbitrarily. Note that |C(ph, qh)| ≤ 4 for every hospital.
We show that this CSM instance has an envy-free matching if and only if ϕ = c1∧c2∧· · ·∧cm

is satisfiable.
The “only if” part: Suppose that there is an envy-free matching M . Then, for every

variable-hospital hi,M(hi) is D+
i or D−i . For each hi, set variable vi to FALSE ifM(hi) = D+

i ,
and to TRUE ifM(hi) = D−i . This Boolean assignment satisfies every clause cj of ϕ as follows.
Because M(hj) ∈ F(phj

, qhj
), we have |M(hj)| ≥ 1. Hence, some di,t with j∗(i, t) = j is

assigned to hj . Then, di,t 6∈M(hi). There are two cases: (i) t ∈ {1, 2}, (ii) t ∈ {−1,−2}. In
the case (i), di,t 6∈M(hi) implies M(hi) 6= D+

i , and hence vi is set to TRUE. Also, t ∈ {1, 2}
and j∗(i, t) = j imply vi ∈ cj . Hence, clause cj is satisfied. Similarly, in the case (ii), we see
that vi is set to FALSE and we have ¬vj ∈ cj . Hence, clause cj is satisfied.

The “if” part: Suppose that there is a Boolean assignment satisfying ϕ. Define an
assignment M so that

M(hi) = D−i if vi is TRUE, and M(hi) = D+
i if vi is FALSE, and

M(hj) = { di,t∈A(hj) | di,t∈D+
i , vi is TRUE } ∪ { di,t∈A(hj) | di,t∈D−i , vi is FALSE }.

We can observe that |M(d)| = 1 for every doctor d, and M(hi) ∈ F(phi
, qhi

) for every
variable-hospital hi. Also, because all clauses are satisfied, the above definition implies
M(hj) ∈ F(phj

, qhj
) for every clause-hospital hj . Then, M is feasible. We now show the
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envy-freeness of M . Suppose, to the contrary, di,t has justified envy toward d′. Because
we have |M(di,t)| = 1, A(di,t) = {hi, hj∗(i,t)}, and hi �di,t

hj∗(i,t), this justified envy
implies conditions d′ ∈ M(hi), di,t 6∈ M(hi) and M(hi) + di,t − d′ ∈ F(phi

, qhi
). As

M(hi) ∈ F(phi , qhi) = {D+
i , D

−
i }, then we have {M(hi) + di,t − d′,M(hi)} = {D+

i , D
−
i },

which contradicts |D+
i \D

−
i | = |D

−
i \D

+
i | = 2. J

4 Envy-freeness in CSM with Paramodular Quotas

In Section 3, we showed that it is NP-hard in general to decide whether a CSM instance has
an envy-free matching or not. This section shows that the problem is solvable in polynomial
time if the pair of quota functions is paramodular for each hospital. The proofs of the
theorems and corollary in this section can be found in the full version. We first introduce
the notion of paramodularity [9].

Let A be a finite set and let p, q : 2A → Z. The pair (p, q) is paramodular (or, called a
strong pair [10]) if

p is supermodular, i.e., p(B) + p(B′) ≤ p(B ∪B′) + p(B ∩B′) for every B,B′ ⊆ A,
q is submodular, i.e., q(B) + q(B′) ≥ q(B ∪B′) + q(B ∩B′) for every B,B′ ⊆ A, and
the cross-inequality q(B)− p(B′) ≥ q(B \B′)− p(B′ \B) holds for every B,B′ ⊆ A.

Here we provide examples of constraints that can be represented by paramodular pairs.
(See Yokoi [31, Appendices A and B].)

I Example 12 (Laminar Constraints). Let L ⊆ 2A be a laminar (or hierarchical) classification
(i.e., any X,Y ⊆ L satisfy X ⊆ Y or X ⊇ Y or X ∩ Y 6= ∅). Let p̂, q̂ : L → Z be functions
that define a lower and an upper quota for each class. Denote the acceptable set family by
J (L, p̂, q̂) := {B ⊆ A | ∀X ∈ L : p̂(X) ≤ |B ∩X| ≤ q̂(X) }. If J (L, p̂, q̂) is nonempty, then
J (L, p̂, q̂) = F(p, q) for some paramodular pair (p, q).

I Example 13 (Staffing Constraints). For a finite set S (e.g., a set of sections of a hospital),
let Γ : S → 2A and l̂, û : S → Z be functions such that Γ(s) ⊆ A represents members
acceptable to s ∈ S and l̂(s), û(s) ∈ Z represent a lower and an upper quota of each s ∈ S.
Let J (S,Γ, l̂, û) ⊆ 2A be a family of subsets B ⊆ A such that there exists a function
π : B → S satisfying ∀d ∈ B : d ∈ Γ(π(d)) and ∀s ∈ S : l̂(s) ≤ | { d ∈ B | π(d) = s } | ≤ û(s).
If J (S,Γ, l̂, û) is nonempty, then J (S,Γ, l̂, û) = F(p, q) for some paramodular pair (p, q).

For a set function p : 2A → Z, its complement p : 2A → Z is defined by

p(B) = p(A)− p(A \B) (B ⊆ A).

Recall that a CSM instance is represented as a tuple (D,H,E,�DH , {(ph, qh)}h∈H),
where it is assumed that 0 ≤ ph(B) ≤ qh(B) ≤ |B| for every h ∈ H and B ⊆ A(h). Here is
the main theorem of this section. We denote by 0 a set function that is identically zero.

I Theorem 14. For a CSM instance I = (D,H,E,�DH , {(ph, qh)}h∈H), suppose that
(ph, qh) is paramodular for each h ∈ H. Then, an instance I ′ = (D,H,E,�DH , {(0, ph)}h∈H)
has at least one stable matching and the following three conditions are equivalent.
(a) I has an envy-free matching.
(b) Some stable matching M ′ of I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.
(c) Every stable matching M ′ of I ′ satisfies |M ′(h)| = ph(A(h)) for all h ∈ H.
Also, if (b) holds, then M ′ is an envy-free matching of I.

ISAAC 2017
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Algorithm 1: EF-Paramodular-CSM
Input: I = (D,H,E,�DH , {(ph, qh)}h∈H) such that each (ph, qh) is paramodular
Output: return an envy-free matching M ′, or “there is no envy-free matching.”

Set ND ← E, NH ← ∅, and let M ′ be undefined;
while M ′ is undefined do

RD ←
⋃

d∈D { (d, h) | h ∈ ND(d), h 6= max�d
ND(d) };

RH ←
⋃

h∈H { (d, h) | d ∈ NH(h), p(A(h) \NH(h)�hd) = p(A(h) \NH(h)�hd) };
if (ND, NH) = (E \RH , E \RD) then

let M ′ ← ND ∩NH and break;
else

update (ND, NH)← (E \RH , E \RD);
end

end
if |M ′(h)| = ph(A(h)) for all h ∈ H then

return M ′;
else

return “there is no envy-free matching”;
end

Here we sketch the proof of Theorem 14. See the full version for the detailed proof. The
existence of a stable matching of I ′ and the equivalence between (b) and (c) can be shown
by using Fleiner’s results on the matroid framework [5, 6]. The most difficult part is showing
the equivalence between conditions (a) and (b). To show that (a) implies (b), we construct a
stable matching M ′ of I ′ from an envy-free matching M of I. This construction is achieved
by using the fixed-point method of Fleiner [6]. The paramodularity of each (ph, qh) (or
a generalized matroid structure of each F(ph, qh)) is essential to show the existence of a
fixed-point satisfying a required condition.

Theorem 14 implies that, when quota function pairs are paramodular, we can decide the
existence of an envy-free matching of I = (D,H,E,�DH , {(ph, qh)}h∈H) by the following
algorithm.
Step1. Find a stable matching M ′ of I ′ = (D,H,E,�DH , {(0, ph)}h∈H).
Step2. If |M ′(h)| = ph(A(h)) for every h ∈ H, then return M ′. Otherwise, return “there is

no envy-free matching.”

Step 1 (i.e., finding a stable matching of I ′) can be done by the generalized Gale-Shapley
algorithm studied in [5, 6] (for the details see the full version). Then, the detailed description
of the algorithm is given as follows. Here, for each h ∈ H, N ⊆ E, and d ∈ N(h), we use nota-
tions N(h)�hd := { d′ ∈ N(h) | d′ �h d } and N(h)�hd := { d′ ∈ N(h) | d′ �h d or d′ = d }.

In the full version, we show that the assignment M ′ obtained in the above algorithm is
indeed a stable matching of I ′. Also, it is shown that ND is monotone decreasing and NH is
monotone increasing in the algorithm, and hence the “while loop” is iterated at most 2|E|
times. Thus, we obtain the following theorem.

I Theorem 15. For a CSM instance I = (D,H,E,�DH , {(ph, qh)}h∈H) such that each
(ph, qh) is paramodular, the algorithm EF-Paramodular-CSM decides whether I has an envy-
free matching or not in O(|E|2) time, provided that evaluation oracles of {ph}h∈H are
available.
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As is shown in Examples 12 and 13, if the acceptable family of each hospital h is defined by
a laminar constraint Jh := J (Lh, p̂h, q̂h) or by a staffing constraint Jh := J (Sh,Γh, l̂h, ûh),
there is a paramodular pair (ph, qh) such that Jh = F(ph, qh). The following corollary
states that, in such a case, we can decide the existence of an envy-free matching of I =
(D,H,E,�DH , {(ph, qh)}h∈H) even if evaluation oracles of {ph}h∈H are not provided.

I Corollary 16. Suppose that, for each h ∈ H, the family of acceptable doctor sets is defined
in the form Jh := J (Lh, p̂h, q̂h) 6= ∅ (resp., Jh := J (Sh,Γh, l̂h, ûh) 6= ∅). Let (ph, qh) be a
paramodular pair such that Jh = F(ph, qh). Then, given Lh, p̂h, q̂h (resp., Sh,Γh, l̂h, ûh) for
each h ∈ H, one can decide whether I = (D,H,E,�DH , {(ph, qh)}h∈H) has an envy-free
matching or not in time polynomial in |E| (resp., in |E| and maxh∈H |Sh|).

Proof. As we have Theorem 15, it completes the proof to show that we can simulate an
evaluation oracle of each ph in time polynomial in |E| (resp., in |E| and |Sh|). For a
paramodular pair (ph, qh) with Jh = F(ph, qh), it is known that, for any B ⊆ A(h), we have
ph(B) = min{ |X ∩B| | X ∈ Jh} (see, e.g., [9, Theorem 14.2.8]). Consider a weight function
wB on A(h) such that wB(d) = 1 for every d ∈ B and wB(d) = 0 for every d ∈ A(h) \ B.
Then, ph(B) = min {wB(X) | X ∈ Jh }, which is a weight minimization problem on Jh. As
shown in [31, Appendix C], if Jh is defined in the form in the statement, this problem can be
reduced to the minimum cost circulation problem, which can be solved in strongly polynomial
time [29, 23]. (See [31] for the details of the reduction.) Thus, the proof is completed. J

Acknowledgments. I wish to thank the anonymous reviewers whose comments have be-
nefited the paper greatly.
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