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Abstract

In this paper we consider graphs whose edges are associated with a degree of
importance, which may depend on the type of connections they represent or on how
recently they appeared in the scene, in a streaming setting. The goal is to construct
layouts of these graphs in which the readability of an edge is proportional to its
importance, that is, more important edges have fewer crossings. We formalize this
problem and study the case in which there exist three different degrees of importance.
We give a polynomial-time testing algorithm when the graph induced by the two
most important sets of edges is biconnected. We also discuss interesting relationships
with other constrained-planarity problems.

1 Introduction

Describing a graph in terms of a stream of nodes and edges, arriving and leaving at
different time instants, is becoming a necessity for application domains where massive
amounts of data, too large to be stored, are produced at a very high rate. The problem
of visualizing graphs under this streaming model has been introduced only recently.

In particular, the first step in this direction was performed in [7], where the problem
of drawing trees whose edges arrive one-by-one and disappear after a certain amount of
steps has been studied, from the point of view of the area requirements of straight-line
planar drawings. Later on, it was proved [18] that polynomial area could be achieved
for trees, tree-maps, and outerplanar graphs if a small number of vertex movements are
allowed after each update. The problem has also been studied [13] for general planar
graphs, relaxing the requirement that edges have to be straight-line.

In this paper we introduce a problem motivated by this model, and in particular by
the fact that the importance of vertices and edges in the scene decades with time. In fact,
as soon as an edge appears, it is important to let the user clearly visualize it, possibly at
the cost of moving “older” edges in the more cluttered part of the layout, which may be
unavoidable if the graph is large or dense. The idea is that the user may not need to see
the connection between two vertices, as she remembers it from the previous steps.

Visually, one could associate the decreasing importance of an edge with its fading;
theoretically, one could associate it with the fact that it becomes more acceptable to let
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it participate in some crossings. As a general framework for this kind of problems, we
associate a weight w(e) to every edge e ∈ E and define a function f : E ×E → {YES, NO}
that, given a pair of edges e and e′, determines whether it is allowed to have a crossing
between e and e′ based on their weights. Of course, if no assumption is made on
function f(·), this model allows to encode instances of the NP-complete problem Weak
Realizability [21], in which the pairs of edges that are allowed to cross are explicitly
given as part of the input. On the other hand, already the “natural” assumption that, if
an edge e is allowed to cross an edge e′, then it is also allowed to cross any edge e′′ such
that w(e′′) ≤ w(e′), could potentially make the problem tractable.

As a first step towards a formalization of this general idea, we introduce problem
Hierarchical Partial Planarity, which takes as input a graph G = (V,E =
Ep ∪Es ∪Et) whose edges are partitioned into the primary edges in Ep, the secondary
edges in Es, and the tertiary edges in Et. The goal is to construct a drawing of G in
which the primary edges are crossing-free, the secondary edges can only cross tertiary
edges, while these latter edges can also cross one another. We say that any crossing that
involves a primary edge or two secondary ones is forbidden. We remark that this problem
can be easily modeled under the general framework we described above. Namely, we can
say that all edges in Ep, Es, and Et have weights 4, 2, and 1, respectively, and function
f(·) is such that f(e, e′) = YES if and only if w(e) + w(e′) ≤ 3.

We observe that our problem is a generalization of the recently introduced Partial
Planarity problem [1, 22], in which the edges of a certain subgraph of a given graph
must not be involved in any crossings. An instance of this problem is in fact an instance
of our problem only composed of edges in Ep and Et.

Our main contribution is an O(|V |3 · |Et|)-time algorithm for Hierarchical Par-
tial Planarity when the graph induced by the primary and the secondary edges is
biconnected (see Section 4). Our result builds upon a formulation of the problem in terms
of a constrained-planarity problem, which we believe to be interesting in its own. Our al-
gorithm for this constrained-planarity problem is based on the use of SPQR-trees [14, 15].
This formulation also allows us to uncover interesting relationships with other impor-
tant graph planarity problems, like Partially Embedded Planarity [4, 20] and
Simultaneous Embedding with Fixed Edges [8, 11] (see Section 3).

In Section 2 we give definitions, and in Section 5 we conclude with open problems.

2 Preliminaries

A graph G = (V,E) containing neither loops nor multiple edges is simple. We consider
simple graphs, if not otherwise specified. A drawing Γ of G maps each vertex of G to a
point in the plane and each edge of G to a Jordan curve between its two end-points.

A drawing is planar if no two edges cross except, possibly, at common endpoints. A
planar drawing partitions the plane into connected regions, called faces. The unbounded
one is called outer face. A graph is planar if it admits a planar drawing. A planar
embedding of a planar graph is an equivalence class of planar drawings that define the
same set of faces and outer face. Let H be a subgraph of a planar graph G, and let G be
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a planar embedding of G. We call restriction of G to H the planar embedding of H that
is obtained by removing the edges of G \H from G (and potential isolated vertices).

A graph is connected if for any pair of vertices there is a path connecting them.
A graph is k-connected if the removal of k − 1 vertices leaves it connected. A 2- or
3-connected graph is also referred to as biconnected or triconnected, respectively.

The SPQR-tree T of a biconnected graph G is a labeled tree representing the
decomposition of G into its triconnected components [14, 15]. Every triconnected
component of G is associated with a node µ in T . The triconnected component itself is
referred to as the skeleton of µ, denoted by Gskel

µ , whose edges are called virtual edges. A

node µ ∈ T can be of one of four different types:(i) S-node, if Gskel
µ is a simple cycle of

length at least 3; (ii) P-node, if Gskel
µ is a bundle of at least three parallel edges; (iii) Q-

node, if Gskel
µ consists of two parallel edges; (iv) R-node, if Gskel

µ is a simple triconnected
graph. The set of leaves of T coincides with the set of Q-nodes, except for one arbitrary
Q-node ρ, which is selected as the root of T . Also, neither two S-nodes, nor two P -nodes
are adjacent in T . Each virtual edge in Gskel

µ corresponds to a node ν that is adjacent

to µ in T , more precisely, to another virtual edge in Gskel
ν . In particular, the skeleton

of each node µ (except the one of ρ) contains a virtual edge, called reference edge and
denoted by ref(µ), that has a counterpart in the skeleton of its parent. The endvertices
of ref(µ) are the poles of µ. The subtree Tµ of T rooted at µ induces a subgraph Gpert

µ of
G, called pertinent, which is described by Tµ in the decomposition. The SPQR-tree of G
is unique, up to the choice of the root, and can be computed in linear time [19].

3 Problem Formulation & Relationships to Other Problems

In this section we define a problem, called Facial-Constrained Core Planarity,
that will serve as a tool to solve Hierarchical Partial Planarity and to uncover
interesting relationships with other important graph planarity problems. This problem
takes as input a graph G = (V,E1 ∪E2) and a set W ⊆ V × V of pairs of vertices. Let
H be the subgraph of G induced by the edges in E1, which we call core of G. The goal
is to construct a planar embedding G of G whose restriction H to H is such that, for
each pair 〈u, v〉 ∈W , there exists a face of H that contains both u and v.

Theorem 1. Problems Facial-Constrained Core Planarity and Hierarchical
Partial Planarity are linear-time equivalent.

Proof. We show how to construct in linear time an instance 〈G′ = (V,E1 ∪ E2),W 〉 of
Facial-Constrained Core Planarity starting from an instance G = (V,Ep∪Es∪Et)
of Hierarchical Partial Planarity. Graph G′ has the same vertex-set V as G.
Also, we set E1 = Ep and E2 = Es. Finally, for each edge (u, v) ∈ Et, we add pair 〈u, v〉
to W . The reduction in the opposite direction is symmetric.

Suppose that 〈G′,W 〉 is a positive instance, and let G′ be a corresponding planar
embedding of G′. We show how to construct a drawing Γ of G not containing any
forbidden crossing. First, initialize Γ to a planar drawing of G′ whose embedding is G′.
Note that restricting Γ to the core H ′ of G′ yields a planar drawing Γ′ of H ′ in which,
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for each pair 〈u, v〉 ∈W , there exists a face fu,v of H′ that contains both u and v. This
implies that it is possible to draw edge (u, v) ∈ Et in Γ′ as a curve from u to v lying
completely in the interior of fu,v, and hence not crossing any primary edge. Repeating
this operation for every pair in W yields a drawing Γ with no forbidden crossings.

Suppose that G is a positive instance, and let Γ be the corresponding drawing of G.
We show how to construct an embedding G′ of G′ such that for every pair 〈u, v〉 ∈ W ,
vertices u and v lie in the same face of H′. First, note that the drawing Γp,s induced
by the edges in Ep and Es is planar, due to the definition of Hierarchical Partial
Planarity. Also, note that Γp,s is a planar drawing of G′, since E1 = Ep and E2 = Es.
Let G′ be the planar embedding of G′ corresponding to Γp,s. Let H′ be the restriction
of G′ to H ′. Consider a pair 〈u, v〉 ∈W and let e = (u, v) be the corresponding tertiary
edge of G. Since e can be drawn in Γp,s without crossing any primary edge, vertices u
and v are incident to the same face of H′. This concludes the proof.

In the following, we describe relationships between Hierarchical Partial Pla-
narity and other important graph planarity problems, as Partial Planarity [1, 22]
and Partially Embedded Planarity [4, 20], and Simultaneous Embedding with
Fixed Edges [8].

In Partial Planarity [1], given a non-planar graph G = (V,E) and a subset F ⊆ E
of its edges, the goal is to compute a drawing Γ of G, if any, in which the edges of F
are not crossed by any edge of G. Positive and negative results are given in [1] if the
graph induced by F is a connected spanning subgraph of G. In [22], the corresponding
decision problem is shown to be polynomial-time solvable. By setting Ep = F , Es = ∅,
and Et = E \ F , we can model any instance of Partial Planarity as an instance of
Hierarchical Partial Planarity. We thus have the following.

Theorem 2. Partial Planarity can be reduced in linear time to Hierarchical
Partial Planarity.

In Partially-Embedded Planarity [4], given a planar graph G and a planar
embedding H of a subgraph H of G, the goal is to determine whether H can be extended
to a planar embedding of G, and to compute this embedding, if it exists. The problem
is linear-time solvable [4] and characterizable in terms of forbidden subgraphs [20]. We
prove that Hierarchical Partial Planarity can be used to encode instances of
Partially-Embedded Planarity in which H is biconnected. Note that this special
case is a central ingredient in the algorithm in [4] for the general case.

Theorem 3. Partially-Embedded Planarity with biconnected H can be reduced in
quadratic time to Hierarchical Partial Planarity.

Proof. Let 〈G′ = (V,E), H,H〉 be an instance of Partially-Embedded Planarity in
which H is biconnected. We construct an instance 〈G = (V,E1 ∪ E2),W 〉 of Facial-
Constrained Core Planarity on the same vertex set V as G′, as follows. Set E1

contains all the edges of E that are contained in H; set E2 contains the other ones, that
is, E2 = E \ E1. Finally, for every pair of non-adjacent vertices 〈u, v〉 that are on the
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same face of H, we add a pair 〈u, v〉 to W . This last step requires quadratic time and
guarantees that in the solution of Facial-Constrained Core Planarity, for each
face f of H, all the vertices of f are incident to the same face f ′ of the planar embedding
of the core of G. These vertices appear in the same order along f and f ′, since H is
biconnected and thus this order is unique. Hence, 〈G′, H,H〉 is a positive instance if and
only if 〈G,W 〉 is. The statement follows by Theorem 1.

A simultaneous embedding of two planar graphs G1 = (V,E1) and G2 = (V,E2)
embeds each graph in a planar way using the same vertex positions for both embeddings;
edges are allowed to cross only if they belong to different graphs (see [8] for a survey).
Our problem is related to a well-studied version of this problem, called Simultaneous
Embedding with Fixed Edges (Sefe) [3, 5, 9, 10, 11], in which edges that are common
to both graphs must be embedded in the same way (and hence, cannot be crossed by
other edges). So in our setting, these edges correspond to the primary ones. However,
to obtain a solution for Sefe, it does not suffice to assume that the exclusive edges of
G1 and G2 are the secondary and tertiary ones, respectively, as we could not guarantee
that the edges of G2 do not cross each other. So, in some sense, our problem seems
to be more related to nearly-planar simultaneous embeddings, where the input graphs
are allowed to cross, as long as they avoid some local crossing configurations, e.g., by
avoiding triples of mutually crossing edges [16]. Note that the Sefe problem has also
been studied in several settings [2, 6, 12, 17]. An interpretation of Partial Planarity,
which also extends to Hierarchical Partial Planarity, in terms of a special version
of Sefe, called Sunflower Sefe [8], was already observed in [1].

The algorithm we present in Section 4 is inspired by an algorithm to decide in linear
time whether a pair of graphs admits a Sefe if the common graph is biconnected [5].
The main part of that algorithm is to find an embedding of the common graph in which
every pair of vertices that are joined by an exclusive edge are incident to the same face;
so, these edges play the role of the pairs in W . In a second step, it checks for crossings
between exclusive edges of the same graph. Since the common graph is biconnected, the
existence of these crossings does not depend on the choice of the embedding.

Thus, for instances of our problem in which the core H of G is biconnected, we can
employ the main part of the algorithm in [5] to find a planar embedding of H in which
every two vertices that either are joined by an edge of E2 or form a pair of W are incident
to the same face of H; note that in this case it is not even needed to perform the second
check for the pairs in W . In this paper we extend this result to the case in which H is
not biconnected, but it becomes so when adding the edges of E2. The main difficulty
here is to “control” the faces of H by operating on the embeddings of the biconnected
graph G composed of H and of the edges of E2. In Section 4 we discuss the problems
arising from this fact and our proposed solution.
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4 Biconnected Facial-Constrained Core Planarity

In this section, we provide a polynomial-time algorithm for instances 〈G = (V,E1∪E2),W 〉
of Facial-Constrained Core Planarity in which G is biconnected. Recall that the
goal is to find a planar embedding G of G so that for each pair 〈x, y〉 ∈W vertices x and
y lie in the same face of the restriction H of G to the core H of G.

4.1 High-Level Description of the Algorithm

We first give a high-level description of our algorithm. We perform a bottom-up traversal
of the SPQR-tree T of G. At each step of the traversal, we consider a node µ ∈ T and
we search for an embedding Gpertµ of Gpert

µ satisfying the following requirements.

R.1 For every pair 〈x, y〉 ∈W such that x and y belong to Gpert
µ , vertices x and y lie in

the same face of the restriction Hpert
µ of Gpertµ to the part of the core H in Gpert

µ .

R.2 For every pair 〈x, y〉 ∈ W such that exactly one vertex, say x, belongs to Gpert
µ ,

vertex x lies in the outer face of Hpert
µ (note that y belongs to G \ Gpertµ ).

In general, there may exist several “candidate” embeddings of Gpert
µ satisfying R.1 and

R.2. If there exists none, the instance is negative. Otherwise, we would like to select one
of them and proceed with the traversal. However, while it would be sufficient to select any
embedding of Gpert

µ satisfying R.1, it is possible that some of the embeddings satisfying
R.2 are “good”, in the sense that they can be eventually extended to an embedding of
G satisfying both R.1 and R.2, while some others are not. Unfortunately, we cannot
determine which ones are good at this stage of the algorithm, as this may depend on
the structure of a subgraph that is considered later in the traversal. Thus, we have to
maintain succinct information to describe the properties of the embeddings of Gpert

µ that
satisfy R.1 and R.2, so to group these embeddings into equivalence classes.

We denote by x1, . . . , xk the vertices belonging to pairs 〈xi, yi〉 ∈ W such that
xi ∈ Gpert

µ and yi /∈ Gpert
µ . In other words, vertices x1, . . . , xk are those that must lie on

the outer face of Hpert
µ due to R.2. To describe the information to maintain, we need the

following definition. We say that µ is non-traversable if there is a cycle Cµ composed
of edges of E1 that contains both poles u and v of µ, at least one edge of Gpert

µ , and at
least one of G \Gpert

µ ; see Fig. 1a. Otherwise, µ is traversable, i.e., either in Gpert
µ or in

G \Gpert
µ every path between u and v contains edges of E2; see Fig. 1b.

Intuitively, when µ is non-traversable, cycle Cµ splits the outer face of Hpert
µ into two

faces f lµ and f rµ of H in any planar embedding of G. Hence, R.2 must be refined to take

into account the possible partitions of x1, . . . , xk with respect to their incidence to f lµ
and f rµ. For a single vertex xi ∈ {x1, . . . , xk} this is not an issue, as a flip of Gpert

µ can
transform an embedding of G in which xi is incident to one of these faces into another
one in which it is incident to the other face. However, there may exist dependencies
among different vertices of {x1, . . . , xk}, given by the structure of Gpert

µ , which enforce
the relative positions of these vertices with respect to f lµ and f rµ. More precisely, let

〈x, y〉, 〈x′, y′〉 ∈W be two pairs such that x, x′ ∈ Gpert
µ and y, y′ /∈ Gpert

µ . Then, vertices
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Figure 1: (a–b) Graph Gpert
µ when µ is (a) non-traversable and (b) traversable. (c–d) The bags of

the nodes in (a) and in (b), respectively. A segment between u and v separates faces f lµ and frµ;

each bag Biµ is represented by a circle across the segment, with its pockets Siµ and T iµ on the two
sides; the vertices in the special bag Bµ lie along the segment, as they are incident to both faces.

x and x′ may be enforced to be incident to the same face, either f lµ or f rµ (see x1 and
x3 in Fig. 1a), they may be enforced to be incident to different faces (see x2 and x3 in
Fig. 1a), or they may be independent in this respect (see x1 and x6 in Fig. 1a).

We encode this information by associating a set of bags with µ, which contain vertices
x1, . . . , xk. Each bag is composed of two pockets; all the vertices in a pocket must be
incident to the same face of H in any candidate embedding of Gpert

µ , while all the vertices
in the other pocket must be incident to the other face. Vertices of different bags are
independent of each other. For the vertices of {x1, . . . , xk} that are incident to both f lµ
and f rµ in any embedding (see x4 in Fig. 1a), we add a special bag, composed of a single
set containing all such vertices; note that if a vertex of {x1, . . . , xk} is a pole of µ, then
it belongs to the special bag. See Fig. 1c for the bags of the node in Fig. 1a.

When µ is traversable, instead, the outer face of Hpert
µ corresponds to a single face of

H in any planar embedding G of G. Thus, we do not need to maintain any information
about the relative positions of x1, . . . , xk, and we can place all of them in the special bag.
An illustration of the bags of the node represented in Fig. 1b is given in Fig. 1d.

If the visit of the root ρ of T at the end of the bottom-up traversal is completed
without declaring 〈G,W 〉 as negative, we have that Gpert

ρ = G admits a planar embedding
satisfying R.1 and thus 〈G,W 〉 is a positive instance.

As anticipated in Section 3, we discuss two main problems arising when extending
the algorithm in [5] for SEFE to solve our problem when H is not biconnected.

First, when H is biconnected it is always possible to decide the flip of every child
component for every node that is either an R- or a P-node, but not when it is an S-node.
On the other hand, the fact that no two S-nodes can be adjacent to each other in the
SPQR-tree ensures that this choice is always fixed in the next step of the algorithm (refer
to visible nodes in [5]). When H is not biconnected, even the flips of the children of R-
and P-nodes (and of S-nodes) may be not uniquely determined. So, there is no guarantee
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that a choice for these flips can be done in the next step; in fact, it is sometimes necessary
to defer this choice till the end of the algorithm. This comes with another difficulty. In
the course of the algorithm, it could be required to make “partial” choices for these flips,
in the sense that constraints imposed by the structure of the graph could enforce two or
more components to be flipped in the same way (without enforcing, however, a specific
flip for them). To encode the possible flips of the components that are enforced by the
constraints considered till a certain point of the algorithm, we introduced the bags, which
represent the main technical contribution of this work.

Second, the order of the vertices along the faces of H is not unique if H is not
biconnected. For Facial-Constrained Core Planarity, this is not an issue, as it is
enough that the vertices belonging to the pairs in W share a face, but we do not impose
any requirement on their order along these faces. On the other hand, if we were able to
also control these orders, we could provide an algorithm for instances of Sefe in which
one of the two graphs is biconnected, which would be a significant step ahead in the
state of the art for this problem. We recall that an efficient algorithm for this case (even
with the additional restriction that the common graph is connected) would imply an
efficient algorithm for all the instances in which the common graph is connected (and no
restriction on the two input graphs), as observed in [3].

4.2 Detailed Description of the Algorithm

We give the details of the algorithm. Let T be the SPQR-tree of G, rooted at a Q-node ρ.
First, we compute for each node µ ∈ T , whether µ is traversable or not, that is, whether
there exist two paths composed of edges of H between the poles of µ, one in Gpert

µ and
one in G \ Gpert

µ . A näıve approach would be to perform a BFS-visit restricted to the
edges of H in each of the two graphs in linear time per node, and thus in total quadratic
time. For a linear-time algorithm, we proceed as follows; see also [4]. We traverse T
bottom-up to compute for each node µ whether there exists the desired path in Gpert

µ ,
using the same information computed for its children. Then, with a top-down traversal,
we search for the path in G \Gpert

µ , using the information computed in the first traversal.
The main part of our algorithm consists of a bottom-up traversal of T . For a node

µ ∈ T , let 〈x1, y1〉, . . . , 〈xk, yk〉 be all pairs of W such that xi ∈ Gpert
µ and yi /∈ Gpert

µ . We
denote by B1

µ, . . . , B
q
µ the bags of µ and by Bµ its special bag; these bags determine a

partition of the vertices x1, . . . , xk that are required to be on the outer face of Hpert
µ due

to R.2. The vertices of each bag Bi
µ = 〈Siµ, T iµ〉 are partitioned into its two pockets Siµ

and T iµ; all vertices of Siµ must lie in the same face of H, either f lµ or f rµ, while all vertices
of T iµ must lie on the other face.

We first describe an operation, called merge-bags, to modify the bags of a node
µ in order to satisfy the constraints that may be imposed by R.1 when there exists a
pair 〈x, y〉 ∈ W such that x, y ∈ Gpert

µ . Refer to Figs. 2a– 2b. In particular, if at least
one of x and y belongs to the special bag Bµ (see 〈x4, x6〉 in the figure), or if x and y
belong to the same pocket of a bag Bi

µ, with 1 ≤ i ≤ q, then we do not modify any bag.
If x ∈ Siµ and y ∈ T iµ, for some 1 ≤ i ≤ q, or vice versa, then we declare the instance
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x2 x3

x4

x6x8

x5

x7

x9

f lµ frµ

u

v

(a)

x1x2

x3

x4

x6x8

x5

x7

x9

f lµ frµ

u

v

(b)

f lµ frµ

u

v

x3

x2

x4

x7

x1

x5

x6

(c)

f lµ frµ

u

v

x3

x2

x1

x4

x5

x7x6

(d)

Figure 2: (a) The bags of a node µ and two pairs 〈x2, x5〉, 〈x4, x6〉 ∈W (orange curves). (b) The
bags of µ after operation merge-bags. Pair 〈x2, x5〉 merged two bags, while 〈x4, x6〉 did not
modify any bag, since x4 ∈ Bµ. (c) Initialization of the bags of an S-node µ. (d) The bags of µ
after merge-bags. The instance is negative, as pair 〈x1, x5〉 is such that x1 ∈ S1

µ and x5 ∈ T 1
µ .

negative. Otherwise, we have x ∈ Bi
µ and y ∈ Bj

µ, for some 1 ≤ i 6= j ≤ q, and we merge

Bi
µ and Bj

µ into a single bag Bµ = 〈Sµ, Tµ〉, i.e., we merge into Sµ the pockets of Bi
µ and

Bj
µ containing x and y, respectively, and we merge into Tµ the other two pockets of Bi

µ

and Bj
µ; see 〈x2, x5〉 in the figure. We finally remove 〈x, y〉 from W and, if there is no

other pair in W containing x (resp., y), we remove it from the bag it belongs to.
At each step of the traversal of T , we consider a node µ, with poles u and v, and

children ν1, . . . , νh in T . We denote by ei, for i = 1, . . . , h, the virtual edge of Gskel
µ

corresponding to νi.

Suppose that µ is a Q-node. If any of the two poles of µ belongs to {x1, . . . , xk},
then we add it to Bµ, independently of whether µ is traversable or not.

Suppose that µ is an S-node. We initialize special bag Bµ to the union of the special
bags of ν1, . . . , νh. Note that if µ is traversable, then all of its children are traversable.
So, in this case, we already have that all vertices x1, . . . , xk are in Bµ. Further, if µ is
non-traversable, we add to the set of bags of µ all the non-special bags of its children; see
Fig. 2c. Finally, as long as there exists a pair 〈x, y〉 ∈W such that both x and y belong
to Gpert

µ , we apply operation merge-bags to 〈x, y〉. This may result in uncovering a
negative instance, but only when µ is non-traversable. See Fig. 2d.

Suppose that µ is an R-node. See Fig. 3a. Let Hskel
µ be the graph composed of the

vertices of Gskel
µ and of the virtual edges corresponding to non-traversable children of

µ, plus ref(µ) if µ is non-traversable; see Fig. 3b. Let Hskel
µ be the restriction of the

unique planar embedding of the triconnected graph Gskel
µ to Hskel

µ . Note that, for each

traversable child νi of µ, virtual edge ei is contained in one face fνi of Hskel
µ ; in Fig. 3b,
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Figure 3: (a) Graph Gpert
µ when µ is a non-traversable R-node. (b) Graph Hskel

µ (solid) and the
traversable children (dashed) of µ. Children corresponding to virtual edges (v, w6) and (w2, w3)
are 2-sided. (c) Association of pockets with faces. Blue (green) pockets are associated with frµ
(f lµ, resp.). Red pockets are not associated. Gray pockets belong to 2-sided children, but they are

associated with frµ and f lµ. (d) The bags of µ.

(w4, w6) is contained in face {w3, w4, w5, w6}. For a non-traversable child νi, denote by
f1νi and f2νi the two faces of Hskel

µ virtual edge ei is incident to. For a vertex x ∈ V that

does not belong to Gskel
µ , we denote by eµ(x) either the virtual edge ei, if x ∈ Gpert

νi , or

the virtual edge ref(µ) representing the parent of µ, if x ∈ G \Gpert
µ .

Suppose that µ is non-traversable; see Fig. 3c. Recall that in this case ref(µ) ∈ Hskel
µ ;

let f lµ and f rµ be the two faces of Hskel
µ incident to ref(µ). Any other virtual edge ei of

Hskel
µ such that {f1νi , f

2
νi} = {f lµ, f rµ} is called 2-sided ; see (w2, w3), (v, w6) in Fig. 3c.

We consider each pair 〈x, y〉 ∈W such that x ∈ Gpert
νi , with 1 ≤ i ≤ h, and y /∈ Gpert

νi .
Let ex = eµ(x) and ey = eµ(y). A necessary condition for R.1 and R.2 is that ey is either
contained in or incident to face fνi (if νi is traversable) or one of f1νi and f2νi (if νi is
non-traversable). If this is not the case, we declare the instance negative.

Another constraint imposed by this pair is the following. Suppose that x belongs to
a pocket, say Sνi , of a bag Bνi of νi (this can only happen if νi is non-traversable). If ex

and ey share exactly one face, say f1νi , then all pairs 〈x′, y′〉 ∈W with x′ ∈ Sνi must be
such that eµ(y′) is either contained in or incident to fν1 ; also, all the pairs 〈x′′, y′′〉 ∈W
with x′′ ∈ Tνi must be such that eµ(y′′) is either contained in or incident to fν2 . This is
due to the fact all the vertices in the same pocket must be incident to the same face of
Hskel
µ . So, if this is not the case, we declare the instance negative. Otherwise, we associate

Sνi with f1νi and Tνi with f2νi . If ex and ey share both faces f1νi and f2νi , instead, we have
to postpone the association of Sνi and Tνi , as at this point we cannot make a unique
choice. Note that an association for these pockets may be performed later, due to another
pair of W . Suppose now that x belongs to the special bag Bνi of νi. Then, we associate
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Bνi to either fνi , if νi is traversable, or to both f1νi and f2νi , if it is non-traversable. This
completes the process of pair 〈x, y〉.

Once all children ν1, . . . , νh of µ have been considered, there may still exist pockets
that are not associated. Let Sνi be one of such pockets, and consider each pair 〈x, y〉 ∈W
such that x ∈ Sνi . Note that eµ(x) shares both faces f1νi and f2νi with eµ(y). If y belongs
to a pocket, say Tνj , that is associated with one of f1νi and f2νi , say f1νi , then we associate
Sνi with f1νi and Tνi with f2νi . In fact, the association of Tνj with f1νi implies that y will
be incident to f1νi in any embedding of G that is a solution for 〈G,W 〉. If two pairs
determine different associations for Sνi and Tνi , we declare the instance negative.

We repeat the above process as long as there exist pockets that can be associated
by means of this procedure. Note that this does not necessarily result in an association
for all pockets; however, we can say that all the mandatory choices for Gpert

µ have been
performed. Consider any of the remaining pockets Sνi . If νi is not 2-sided, then we
associate Sνi with f1νi and Tνi with f2νi . This association can be done arbitrarily since its

effect is limited to Gpert
µ and not to G \Gpert

µ , as νi is not 2-sided. Then, we propagate
this association to other pockets by performing the procedure described above. We repeat
this process until the only pockets that are not associated, if any, belong to bags of
2-sided children of µ. Note that the previous arbitrary association cannot be propagated
to pockets of 2-sided children, since their virtual edges are only incident to f lµ and f rµ.

Based on the association of ν1, . . . , νh with the faces of Hskel
µ , we determine the bags

of µ; see Fig. 3d. The special bag Bµ of µ contains the poles of µ, if they belong to
{x1, . . . , xk}, and the union of the special bags of the 2-sided children of µ. Next, we
create a bag Bµ = 〈Sµ, Tµ〉, such that Sµ and Tµ contain all the vertices of the pockets
associated with f lµ and f rµ, respectively. Finally, we add to the set of bags of µ the
non-special bags of the 2-sided children of µ whose pockets have not been associated with
any face of Hskel

µ (this allows us to postpone their association). Then, we apply operation

merge-bags to all pairs 〈x, y〉 ∈W such that both x and y belong to Gpert
µ in order to

merge the bags of different 2-sided children of µ (again this may result in uncovering a
negative instance). This completes the case in which µ is non-traversable.

It remains to consider the simpler case in which µ is traversable. In this case virtual
edge ref(µ) does not belong to Hskel

µ ; hence faces f lµ and f rµ do not exist, and none of
the children of µ is 2-sided. This implies that performing all the operations described
above results in an association of each pocket and of each special bag of the children of µ
with some face of Hskel

µ . Recall that, since µ is traversable, µ has only its special bag
Bµ. We add to Bµ all the vertices of the pockets and of the special bags that have been
associated with the outer face of Hskel

µ . This concludes the R-node case.

Suppose that µ is a P-node. Refer to Fig. 4. We distinguish three cases, based on
whether µ has(i) zero, (ii) one, or (iii) more than one non-traversable child.

In Case (i), we have that µ is traversable. So, it has only its special bag Bµ, in which
we add all the vertices of the special bags of its children. Note that all virtual edges in
Gskel
µ are incident to the same face of Hpert

µ and hence R.1 and R.2 are trivially satisfied.
Next, we consider Case (ii), in which µ has exactly one non-traversable child, say ν1;

see Fig. 4a. In this case, µ is non-traversable, since the path of G \Gpert
ν1 composed of
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Figure 4: Illustration for the case in which µ is a P-node with: (a-b) one, and (c-e) more than
one non-traversable children. The color-scheme of this figure follows the one of Fig. 3

edges of H also belongs to G \Gpert
µ . We initialize the set of bags of µ to the set of bags

of ν1. For each traversable child νi, with i = 2, . . . , h, we add to µ a new bag Bi
µ, where

Siµ contains all the vertices in the special bag Bνi of νi, while T iµ is empty; see Fig. 4b.

This represents the fact that all the vertices in Gpert
νi must lie on the same side of the

cycle passing through Gpert
ν1 and G \ Gpert

µ to satisfy R.2. Finally, we apply operation
merge-bags to all pairs 〈x, y〉 ∈W such that both x and y belong to Gpert

µ .
Finally, we consider Case (iii), in which µ has more than one non-traversable child;

see Figs. 4c-4e. We construct an auxiliary graph Gaux with a vertex vi for each child νi
of µ, which is colored black if νi is non-traversable and white otherwise. Graph Gaux

also has a vertex v corresponding to ref(µ), which is colored black if µ is non-traversable
and white otherwise. Then, we consider every pair 〈x, y〉 ∈ W such that x ∈ Gpert

νi , for
some child νi of µ. If y ∈ Gpert

νj , for some j 6= i, then we add edge (vi, vj) to Gaux, while

if y ∈ G \Gpert
µ , then we add edge (vi, v) to Gaux. If Gaux has multiple copies of an edge,

we keep only one of them. We assume w.l.o.g. that no two white vertices are adjacent in
Gaux, as otherwise we could contract them to a new white vertex. In fact, the virtual
edges representing traversable children of µ corresponding to adjacent white vertices
must be contained in the same face of Hpert

µ , due to R.1.
Consider each white vertex w of Gaux. If w has more than two black neighbors, we

declare the instance negative, as the virtual edge of the traversable child of µ corresponding
to w should share a face in Hpert

µ with more than two virtual edges representing non-
traversable children of µ, which is not possible. If w has at most one black neighbor,
we remove w from Gaux. Finally, if w has exactly two black neighbors b and b′, then we
remove w from Gaux and we add edge (b, b′) to Gaux (if it is not present). Once we have
considered all white vertices, the resulting graph Gaux has only black vertices.

We check whether Gaux is either a cycle through all its vertices or a set of paths
(some of which may consist of single vertices). The necessity of this condition can be
proved similar to [5]. The only difference is in the edges between black vertices that
are introduced due to degree-2 white vertices. Let (b, b′) be one of such edges and let
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w be the white vertex that was adjacent to b and b′. Also, let eb, eb′ , and ew be the
virtual edges representing the children of µ (or virtual edge ref(µ), if µ is non-traversable)
corresponding to b, b′, and w, respectively. Then, eb and eb′ must share a face in Hpert

µ ,
and this face must contain ew, due to R.1 and R.2. If the above condition on Gaux is not
satisfied, then we declare the instance negative; otherwise, we fix an order of the black
vertices of Gaux based either on the cycle or on an arbitrary order of the paths.

We now construct graph Hskel
µ in the same way as for the R-node. Note that, also

in this case, the embedding Hskel
µ of Hskel

µ is fixed, since the order of the black vertices

of Gaux induces an order of the virtual edges of Hskel
µ . We will again use Hskel

µ to either
determine whether the instance is negative or to construct the bags of µ.

The case in which µ is traversable is identical to the R-node case. When µ is non-
traversable, we have ref(µ) ∈ Hskel

µ , and thus there exist the two faces f lµ and f rµ incident
to ref(µ). However, since µ has at least two non-traversable children, every two virtual
edges of Hskel

µ share at most one face in Hskel
µ , and thus µ has no 2-sided children.

We now consider each traversable child νi of µ. Contrary to the R-node case, the
face of Hskel

µ in which νi is contained is not necessarily defined in this case by the rigid

structure underneath, as the embedding of Gskel
µ is not unique. Recall that νi corresponds

to a white vertex vi of Gaux. If vi has exactly two black neighbors, then they must be
connected by an edge in Gaux after the removal of vi. So, they are consecutive in the
order of the black vertices that we used to construct Hskel

µ . Thus, the two virtual edges of

Hskel
µ corresponding to them share a face in Hskel

µ . We say in this case that ei is contained
in this particular face. If vi has exactly one black neighbor in Gaux, then ei may be
contained in any of the two faces of Hskel

µ incident to the virtual edge e corresponding to
this black vertex. However, we cannot make a choice at this stage, as this may depend on
other pairs whose vertices belong to the subgraph of G represented by e (that is, Gpert

νj , if

e = ej , for some 1 ≤ j ≤ h, and G \Gpert
µ , if e = ref(µ)). If e = ej , then we add a new

bag Bνj to the child νj of µ, so that Sνj contains all the vertices of the special bag of νi,
while Tνj is empty. The association of Sνj with one of the two faces incident to ej , to be
performed later, will determine the face in which ei is contained. In the case in which
e = ref(µ), virtual edge ei should be contained either in f lµ or in f rµ, but again we cannot
determine which of the two. Furthermore, we cannot even delegate this choice to the
association of the pockets, since ref(µ) does not correspond to a child of µ. Thus, we do
not associate it to any face, but we will use it to create the bags of µ. Finally, when vi
has no black neighbors, its special bag is empty.

Once all traversable children have been considered, we associate the special bags and
the pockets of the non-special bags with the faces of Hskel

µ , as in the R-node case. Then,
we construct the bags of µ. We add the poles of µ to its special bag, if they belong to
{x1, . . . , xk}. As in the R-node case, we add to µ a bag Bµ, whose pockets Sµ and Tµ
have all the vertices of the special bags and of the pockets associated with f lµ and f rµ,
respectively. Finally, for each traversable child νi of µ that has not been associated, we
add a new bag Bi

µ so that Siµ contains all the vertices of the special bag of νi, while T iµ is
empty. Finally, we apply operation merge-bags to all pairs 〈x, y〉 ∈W such that both x
and y belong to Gpert

µ . Hence, R.1 and R.2 are satisfied by any embedding Gpertµ of Gpert
µ
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that is described by the bags of µ. This concludes the P-node case.
At the end of the traversal, if root ρ has been visited without declaring the instance

negative, the fact that Gpert
ρ = G admits a planar embedding satisfying R.1 implies that

〈G,W 〉 is a positive instance. The proof of the following theorem is in the appendix.

Theorem 4. Let G = (V,Ep ∪ Es ∪ Et) be an instance of Hierarchical Partial
Planarity such that the graph induced by the edges in Ep ∪ Es is biconnected. We can
test in O(|V |3 · |Et|) time whether G has a drawing with no forbidden crossing.

Proof. By Theorem 1, it suffices to prove that the algorithm described in Section 4.2 de-
cides in O(|V |3 ·|W |) whether an instance 〈G = (V,E1∪E2),W 〉 of Facial-Constrained
Core Planarity in which the graph H induced by the edges of E1 is biconnected is
positive.

The correctness of the algorithm follows from the fact that, as already discussed
during the description of the algorithm, for each node µ ∈ T , requirements R.1 and R.2
are satisfied by any embedding Gpertµ of Gpert

µ that is described by the bags of µ (if any).
In particular, this holds also for the root ρ of T .

Regarding the time complexity, we observe that the construction of the SPQR-tree T
and of the auxiliary graphs Gaux and Hskel

µ can be done in O(|V |+ |W |) time. Operation
merge-bags needs constant time, adopting elementary data structures to maintain the
references between vertices and bags or pockets. Thus, the complexity of our algorithm
is dominated by the association of the bags and of the pockets to the faces of Hskel

µ , in
the R- and P-node cases. In this phase of the algorithm, every bag of a child of a node µ
could be considered a number of times that is linear in the total number of bags, which
is O(|V |). Also, every time one of these bags is considered, we perform O(|W |) checks.
Since the number of bags over all the children of µ is O(|V |), we have a total O(|V |2 · |W |)
processing time for µ, which hence results in a total O(|V |3 · |W |) time for G, and the
statement follows.

5 Conclusions

In this paper we studied the problem Hierarchical Partial Planarity, in which
a graph whose edges are of three types (primary, secondary, and tertiary) is given and
the goal is to construct a drawing in which crossings are allowed only if they involve a
tertiary edge. For this problem, we gave an efficient algorithm when the graph induced
by the primary and secondary edges is biconnected.

The main open problem raised by our work is to determine the complexity in the
general case, where the biconnectivity restriction is relaxed. It is also of interest to
broaden the study towards the case in which there exist more than three levels of
importance for the edges. As a first step, one could consider the case in which there are
four levels and the first two form a biconnected graph. Finally, the relationship with
Sefe should be further investigated to understand whether the techniques used in this
paper can be applied to solve some of its open cases.
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