
Noname manuscript No.
(will be inserted by the editor)

A Faster Algorithm for Cuckoo Insertion and
Bipartite Matching in Large Graphs ?

Megha Khosla · Avishek Anand

Received: date / Accepted: date

Abstract Hash tables are ubiquitous in computer science for efficient access
to large datasets. However, there is always a need for approaches that offer
compact memory utilisation without substantial degradation of lookup per-
formance. Cuckoo hashing is an efficient technique of creating hash tables
with high space utilisation and offer a guaranteed constant access time. We
are given n locations and m items. Each item has to be placed in one of the
k ≥ 2 locations chosen by k random hash functions. By allowing more than
one choice for a single item, cuckoo hashing resembles multiple choice alloca-
tions schemes. In addition it supports dynamically changing the location of an
item among its possible locations. We propose and analyse an insertion algo-
rithm for cuckoo hashing that runs in linear time with high probability and
in expectation. Previous work on total allocation time has analysed breadth
first search, and it was shown to be linear only in expectation. Our algorithm
finds an assignment (with probability 1) whenever it exists. In contrast, the
other known insertion method, known as random walk insertion, may run in-
definitely even for a solvable instance. We also present experimental results
comparing the performance of our algorithm with the random walk method,
also for the case when each location can hold more than one item.

As a corollary we obtain a linear time algorithm (with high probability
and in expectation) for finding perfect matchings in a special class of sparse
random bipartite graphs. We support this by performing experiments on a real
world large dataset for finding maximum matchings in general large bipartite

? An extended abstract of this work appeared in the Proceedings of the 21st Annual
European Symposium on Algorithms(ESA ’13)[15].

Megha Khosla
L3S Research Center, Leibniz University, Hannover
E-mail: khosla@l3s.de

Avishek Anand
L3S Research Center, Leibniz University, Hannover
E-mail: anand@l3s.de

ar
X

iv
:1

61
1.

07
78

6v
2

 [
cs

.D
S]

 1
6

Ju
l 2

01
9

2 Megha Khosla, Avishek Anand

graphs. We report an order of magnitude improvement in the running time as
compared to the Hopkraft-Karp matching algorithm.

Keywords Cuckoo Hashing, Bipartite Matching, Load Balancing

1 Introduction

In computer science, a hash table [4] is a data structure that maps items (keys)
to locations (values) using a hash function. More precisely, given a universe U
of items and a hash table H of size n ∈ N, a hash function h : U → {1, 2, . . . , n}
maps the items from U to the n positions on the table. Ideally, the hash
function should assign to each possible item to a unique location, but this
objective is rarely achievable in practice. Two or more items could be mapped
to the same location resulting in a collision. In this work we deal with a
collision resolution technique known as cuckoo hashing. Cuckoo hashing was
first proposed by Pagh and Rodler in [19]. We are interested in a generalization
of the original idea (see [8]) where we are given a table with n locations, and
we assume each location can hold a single item. Each item chooses randomly
k ≥ 3 locations (using k random hash functions) and has to be placed in one
of them. Formally speaking we are given k ≥ 3 hash functions h1, ..., hk that
each maps an element x ∈ U to a position in the table H. Moreover we assume
that h1, ..., hk are truly independent and random hash functions. We refer the
reader to [18, 6] (and references therein) for justification of this idealized
assumption. Other variations of cuckoo hashing are considered in for example
[1, 16].

Cuckoo hashing resembles multiple choice allocations schemes in the sense
that it allows more than one choice for a single item. In addition it supports
dynamically changing the location of an item among its possible locations
during insertion. The insertion procedure in cuckoo hashing goes as follows.
Assume that p items have been inserted, each of them having made their k
random choices on the hash table, and we are about to insert the p+ 1st item.
This item selects its k random locations from the hash table and is assigned
to one of them. But this location might already be occupied by a previously
inserted item. In that case, the previous item is evicted or “kicked out” and
is assigned to one of the other k − 1 selected locations. In turn, this position
might be occupied by another item, which is kicked out and goes to one of the
remaining k − 1 chosen locations. This process may be repeated indefinitely
or until a free loction is found.

We model cuckoo hashing by a directed graph G = (V,E) such that the
set of vertices V = {v1, v2, . . . , vn} corresponds to locations on the hash table.
We say a vertex is occupied if there is an item assigned to the corresponding
location, otherwise it is free. Let I be the set of m items. We represent each
item x ∈ I as a tuple of its k chosen vertices (locations), for example, x =
(vx1

, vx2
, . . . , vxk). A directed edge e = (vi, vj) ∈ E if and only if there exists

an item y ∈ I so that the following two conditions hold, (i) vi, vj ∈ y, and
(ii) vi is occupied by y. Note that a vertex with outdegree 0 is a free vertex.

Title Suppressed Due to Excessive Length 3

We denote the set of free vertices by F and the distance of any vertex v from
some vertex in F by d(v, F). Since G represents an allocation we call G an
allocation graph.

Now assume that in the cuckoo insertion procedure, at some instance an
item z arrives such that all its k choices are occupied. Let vj ∈ z be the vertex
chosen to place item z. The following are the main observations.

1. The necessary condition for item z to be successfully inserted at vzj is the
existence of a path from vzj to F . This condition remains satisfied as long
as some allocation is possible.

2. The procedure will stop in the minimum number of steps if for all vzi ∈ z
the distance d(vzj , F) ≤ d(vzi , F).

With respect to our first observation, a natural question to ponder would
be the following. We are given a set of m items and n locations such that each
item picks k ≥ 3 locations at random. Is it possible to place each of the items
into one of their chosen locations such that each location holds at most one
item? From [17, 9, 11] we know that there exists a critical size c∗kn such that
if m < c∗kn then such an allocation is possible with high probability, otherwise
this is not the case.

Theorem 1 For integers k ≥ 3 let ξ∗ be the unique solution of the equation

k =
ξ(1− e−ξ)

1− e−ξ − ξe−ξ
. (1)

Let c∗k = ξ∗

k(1−e−ξ∗)k−1 . Then

P (allocation of m = bcnc items to n locations is possible)
(n→∞)

=

{
0, if c > c∗k
1, if c < c∗k

.

(2)

The proof of the above theorem is non-constructive, i.e., it does not give
us an algorithm to find such an allocation. In this work we deal with the
algorithmic issues and propose an algorithm which takes linear time with high
probability and in expectation to find the optimal allocation.

Our second observation suggests that the insertion time in the cuckoo hash-
ing depends on the selection of the location, which we make for each assign-
ment, from among the k possible locations. One can in principle use breadth
first search to always make assignments over the shortest path (in the alloca-
tion graph). But this method is inefficient and expensive to perform for each
item. One can also select uniformly at random a location from the available
locations. This resembles a random walk on the locations of the table and is
called the random walk insertion. In [10, 12] the authors analyzed the random
walk insertion method and gave a polylogarithmic bound (with high proba-
bility) on the maximum insertion time, i.e., the maximum time it can take to
insert a single item.

4 Megha Khosla, Avishek Anand

1.1 More on Related Work

The allocation problem in cuckoo hashing can also be phrased in terms of
orientation of graphs or more generally orientations of k-uniform hypergraphs.
The n locations are represented as vertices and each of the m items form an
edge with its k-vertices representing the k random choices of the item. In fact,
this is a random (multi)hypergraph H∗n,m,k (or random (multi)graph G∗n,m for
k = 2) with n vertices and m edges where each edge is drawn uniformly at
random (with replacement) from the set of all k-multisubsets of the vertex
set. An `-orientation of a graph then amounts to a mapping of each edge to
one of its vertices such that no vertex receives more than ` edges. ` is also
called the maximum load capacity. In our algorithm, we focus on ` = 1. Here,
we give an overview of existing work for general ` for completeness.

For the case k = 2, several allocation algorithms and their analysis are
closely connected to the cores of the associated graph. The ` core of a graph
is the maximum vertex induced subgraph with minimum degree at least `. As
another application, the above described problem can also be seen as a load
balancing problem with locations representing the machines and the items
representing the jobs. To this extent Czumaj and Stemann [5] gave a linear time
algorithm achieving maximum load O(m/n) based on computation of all cores.
The main idea was to repeatedly choose a vertex v with minimum degree and
remove it from the graph, and assigning all its incident edges (items) to vertex
(location) v. Cain et al. [3] used a variation of the above approach and gave
a linear time algorithm for computing an optimal allocation (asymptotically
almost surely). Their algorithm first guesses the optimal load among the two
likely values values (dm/ne or dm/ne + 1). The procedure starts with a load
value say ` = dm/ne. Each time a vertex with degree at most ` and its incident
edges are assigned to v. The above rule, also called the mindegree rule, first
reduces the graph to its `+ 1 core. Next, some edge (u, v) is picked according
to some priority rule and assigned to one of its vertices. Again the mindegree
rule is applied with respect to some conditions. In case the algorithm fails it
is repeated after incrementing the load value.

Fernholz and Ramachandran [7] used a different approach in dealing with
the vertices with degree greater than the maximum load. Their algorithm,
called the excess degree reduction (EDR) approach, always chooses a vertex
with minimum degree, d. If d < ` then this vertex is assigned all its incident
edges and is removed from the graph. In case d > 2` the algorithm fails.
Otherwise, EDR replaces d − ` paths of the form (u, v, w) by bypass edges
(u,w) and then orients all remaining edges (≤ `) incident to v towards v.

Optimal allocations can also be computed in polynomial time using maximum
flow computations and with high probability achieve a maximum load of dm/ne
or dm/ne+ 1 [20].

Recently Aumüller et al. [2] analyzed our algorithm in their special frame-
work of an easily computable hash class.

Title Suppressed Due to Excessive Length 5

Notations. Throughout the paper we use the following notations. We denote
the set of integers {1, 2, . . . , n} by [n]. Let V = {v1, v2, . . . , vn} be the set of n
vertices representing the locations of the hash table. For an allocation graph
G = (V,E) and any two vertices vi, vj ∈ V , the shortest distance between vi
and vj is denoted by d(vi, vj). We denote the set of free vertices by F . We
denote the shortest distance of a vertex vi ∈ V to any set of vertices say S by
d(vi, S) which is defined as

d(vi, S) := min
vj∈S

d(vi, vj).

We use R to denote the set of vertices furthest from F , i.e.,

R := {vi ∈ V |d(vi, F) ≥ max
vj∈V

d(vj , F)}.

For some integer t ∈ [n] and the subset of vertex set V ′ ⊂ V let Nt(vi)
and Nt(V

′) denote the set of vertices at distance at most t from the vertex
vi ∈ V and the set V ′. Mathematically,

Nt(vi) := {vj ∈ V | d(vi, vj) ≤ t}

and
Nt(V

′) := {vj ∈ V | d(vi, V
′) ≤ t}.

1.2 Our Contribution

Our aim here is to minimize the total insertion time in cuckoo hashing, thereby
minimizing the total time required to construct the hash table. We propose
a deterministic strategy of how to select a vertex for placing an item when
all its choices are occupied. We assign to each vertex vi ∈ V an integer label,
L(vi). Initially all vertices have 0 as their labels. Note that at this stage, for all
j ∈ [n], L(vj) = d(vj , F), i.e., the labels of all vertices represent their shortest
distances from F . When an item x appears, it chooses the vertex with the
least label from among its k choices. If the vertex is free, the item is placed
on it. Otherwise, the previous item is kicked out. The label of the location is
then updated and set to one more than the minimum label of the remaining
k − 1 choices of the item x. The kicked out item chooses the location with
minimum label from its k choices and the above procedure is repeated till
an empty location is found. Note that to maintain the labels of the vertices
as their shortest distances from F we would require to update labels of the
neighbors of the affected vertex and the labels of their neighbors and so on.
This corresponds to performing a breadth first search (bfs) starting from the
affected vertex. We avoid the bfs and perform only local updates. Therefore,
we also call our method as local search allocation.

Previous work [8] on total allocation time has analysed breadth first search,
and it was shown to be linear only in expectation. The local search allocation
method requires linear time with probability 1 − o(1) and in expectation to
find an allocation. We now state our main result.

6 Megha Khosla, Avishek Anand

Theorem 2 Let k ≥ 3. For any fixed ε > 0, set m = (1 − ε)c∗kn. Assume
that each of the m items chooses k random locations (using k random hash
functions) from a table with n locations. With probability 1 − O(n−1) , LSA
finds an allocation of these items (such that no location holds more than one
item) in time O(n). Moreover the expected running time of LSA is always
O(n), regardless whether there exists an allocation or not.

We prove the above theorem in two steps. First we show that the algorithm
is correct and finds an allocation in polynomial time. To this end we prove
that, at any instance, label of a vertex is at most its distance from the set
of free vertices. Therefore, no vertex can have a label greater than n. This
would imply that the algorithm could not run indefinitely and would stop after
making at most n changes at each location. We then show that the local search
insertion method will find an allocation in a time proportional to the sum of
distances of the n vertices from F (in the resulting allocation graph). We then
complete the proof by showing that (i) if for some ε > 0, m = (1− ε)c∗k items
are placed in n locations using k random hash functions for each item then
the corresponding allocation graph has two special structural properties with
probability 1− o(1), and (ii) if the allocation graph has these two properties,
then the sum of distances of its vertices from F is linear in n. In the next
section we give a formal description of our algorithm and its analysis.

2 Local Search Insertion and its Analysis

Assume that we are given items in an online fashion, i.e., each item chooses
its k random locations whenever it appears. Moreover, items appear in an
arbitrary order. The insertion using local search method goes as follows. For
each vertex v ∈ V we maintain a label. Initially each vertex is assigned a label
0. To assign an item x at time t we select one of its chosen vertices v such that
its label is minimum and assign x to v. We assign a new label to v which is one
more than the minimum label of the remaining k− 1 choices of x. However, v
might have already been occupied by a previously assigned item i′. In that case
we kick out y and repeat the above procedure. Let L = {L(v1), . . . , L(vn)} and
T = {T (v1), . . . , T (vn)} where L(vi) denotes the label of vertex vi and T (vi)
denotes the item assigned to vertex vi. We initialize L with all 0s , i.e., all
vertices are free. We then use Algorithm 1 to assign an arbitrary item when it
appears. In the next subsection we first prove the correctness of the algorithm,
i.e, it finds an allocation in a finite number of steps whenever an allocation
exists. We show that the algorithm takes a maximum of O(n2) time before it
obtains a mapping for each item. We then proceed to give a stronger bound
on the running time.

Title Suppressed Due to Excessive Length 7

Algorithm 1 AssignItem (x,L,T)

1: Choose a vertex v among the k choices of x with minimum label L(v).
2: if (L(v) >= n− 1) then
3: EXIT BAllocation does not exist
4: else
5: L(v)← 1 + min (L(u)|u 6= v and u ∈ x)
6: if (T (v) 6= ∅) then
7: y ← T (v) BMove that replaces an item
8: T (v)← x
9: CALL AssignItem(y,L,T)

10: else
11: T (v)← x BMove that places an item

2.1 Labels and the Shortest Distances

We need some additional notation. In what follows a move denotes either
placing an item in a free vertex or replacing a previously allocated item. Let
M be the total number of moves performed by the algorithm. For p ∈ [M]
we use Lp(v) to denote the label of vertex v at the end of the pth move.
Similarly we use Fp to denote the set of free vertices at the end of pth move.
The corresponding allocation graph is denoted as Gp = (V,Ep). We need the
following proposition.

Proposition 1 For all p ∈ [M] and all v ∈ V , the shortest distance of v to
Fp is at least the label of v, i.e., d(v, Fp) ≥ Lp(v).

Proof We first note that the label of a free vertex always remain 0, i.e.,

∀p ∈ [M],∀w ∈ Fp, Lp(w) = 0. (3)

We will now show that throughout the algorithm the label of a vertex is at
most one more than the label of any of its immediate neighbors (neighbors at
distance 1). More precisely,

∀p ∈ [M],∀(u, v) ∈ Ep, Lp(u) ≤ Lp(v) + 1. (4)

We prove (4) by induction on the number of moves performed by the algorithm.
Initially when no item has appeared all vertices have 0 as their labels. When
the first item is assigned, i.e., there is a single vertex say u such that L1(u) = 1.
Clearly, (4) holds after the first move. Assume that (4) holds after p moves.

For the (p + 1)th move let w ∈ V be some vertex which is assigned an
item x. Consider an edge (u, v) ∈ Ep such that u 6= w and v 6= w. Note that
the labels of all vertices v ∈ V \ w remain unchanged in the (p + 1)th move.
Therefore by induction hypothesis, (4) is true for all edges which does not
contain w. By Step 2 of Algorithm 1 the new label of w is one more than the
minimum of the labels of its k − 1 neighbors, i.e,

Lp+1(w) = min
w′∈x\w

Lp+1(w′) + 1.

8 Megha Khosla, Avishek Anand

Therefore (4) holds for all edges originating from w. Now consider a vertex
u ∈ V such that (u,w) ∈ Ep. Now by induction hypothesis we have Lp+1(u) =
Lp(u) ≤ Lp(w) + 1. Note that the vertex w was chosen because it had the
minimum label among the k possible choices for the item x, i.e.,

Lp(w) ≤ min
w′∈x

Lp(w
′) = min

w′∈x\w
Lp+1(w′) < Lp+1(w).

We therefore obtain Lp+1(u) ≤ Lp(w) + 1 < Lp+1(w) + 1, thereby completing
the induction step. We can now combine (3) and (4) to obtain the desired
result. To see this, consider a vertex v at distance s < n to a free vertex
f ∈ Fp such that s is also the shortest distance from v to Fp. By iteratively
applying (4) we obtain Lp(v) ≤ s + Lp(f) = d(v, Fp), which completes the
proof.

We know that whenever the algorithm visits a vertex, it increases its label
by at least 1. Trivially the maximum distance of a vertex from a free vertex
is n − 1 (if an allocation exists), and so is the maximum label. Therefore the
algorithm will stop in at most n(n − 1) steps, i.e., after visiting each vertex
at most n− 1 times, which implies that the algorithm is correct and finds an
allocation in O(n2) time. In the following we show that the total running time
is proportional to the sum of labels of the n vertices.

Lemma 1 Let L∗ be the array of labels of the vertices after all items have been
allocated using Algorithm 1. Then the total time required to find an allocation
is O(

∑
v∈V L

∗(v)).

Proof Now each invocation of Algorithm 1 increases the label of the chosen
vertex by at least 1. Therefore, if a vertex has a label ` at the end of the
algorithm then it has been selected (for any move during the allocation process)
at most ` times. Now the given number of items can be allocated in a time
proportional to the number of steps required to obtain the array L∗ (when the
initial set consisted of all zeros) and hence is O(

∑
v∈V L

∗(v)).

For notational convenience let F := FM and G := GM denote the set of free
vertices and the allocation graph (respectively) at the end of the algorithm.
By Proposition 1 we know that for each v ∈ V , L∗(v) ≤ d(v, F). Moreover, by
Step 2 of Algorithm 1 the maximum value of a label is n. Thus the total sum
of labels of all vertices is bounded as follows.

∑
vi∈V

L∗(vi)) ≤ min

(∑
vi∈V

d(v, F), n2

)
.

So our aim now is to bound the shortest distances such that the sum of these
is linear in the size of G. We accomplish this in the following section.

Title Suppressed Due to Excessive Length 9

2.2 Bounding the Distances

To compute the desired sum, i.e.,
∑
vi∈V d(v, F), we study the structure of

the allocation graph. We use the following lemma from [10] (see Corollary 2.3
in [10]) which states that, with probability 1− o(1), a fraction of the vertices
in the allocation graph are at a constant distance to the set of free vertices,
F . This would imply that the contribution for the above sum made by these
vertices is O(n).

Lemma 2 For any fixed ε > 0, let m = (1 − ε)c∗kn items are assigned to n
locations using k random choices for each locations. Then the corresponding
allocation graph G = (V,E) satisfies the following with probability 1−O(1/n):
for every α > 0 there exist C = C(α, ε) > 0 and a set S ⊆ V of size at least
(1− α)n such that every vertex v ∈ S satisfies d(v, F) ≤ C.

With respect to an allocation graph recall that we denote the set of vertices
furthest from F by R. Also for an integer s, Ns(R) denotes the set of vertices
at distance at most s from R. The next lemma states that the neighborhood
of R expands suitably with high probability. We remark that the estimate,
for expansion factor, presented here is not the best possible but nevertheless
suffices for our analysis.

Lemma 3 For any fixed ε > 0, let m = (1 − ε)c∗kn items are assigned to
n locations using k random choices for each item and G = (V,E) be the

corresponding allocation graph. Let . Then for α < (ek(k−2))
−1
k−2 (k−1)−1 and

0 < γ < k − 2 and every integer s such that n1/2 < |Ns(R)| ≤ αn, G satisfies

the following with probability 1−e−O(n0.5). For the case log n < |Ns(R)| ≤ n1/2,
the following holds with probability 1− n−ζ for some ζ > 0.

|Ns(R)| > (1 + γ) |Ns−1(R)|.

As already mentioned we can model the allocation problem in cuckoo hash-
ing as a hypergraph. Each location can be viewed as a vertex and each item
as an edge. The k vertices of each edge represent its k-random choices. In
fact, this is a random hypergraph with n vertices and m edges where each
edge is drawn uniformly at random (with replacement) from the set of all
k-multisubsets of the vertex set. Therefore, a proper allocation of items is pos-
sible if and only if the corresponding hypergraph is 1-orientable, i.e., if there
is an assignment of each edge e ∈ E to one of its vertices v ∈ e such that each
vertex is assigned at most one edge. We denote a random (multi)hypergraph
with n vertices and m edges by Hn,m,k. We will show that Lemma 3 follows
directly from the following expansion properties of Hn,m,k.

Lemma 4 Let m < c∗kn and α < (ek(k− 2))
−1
k−2 (k− 1)−1 and 0 < γ < k− 2.

Then for every integer s such that n1/2 ≤ s ≤ αn, the number of vertices
spanned by any set of edges of size s in Hn,m,k is greater than (1 + γ) s with

probability 1− e−O(n0.5). For log n ≤ s < n1/2, the above holds with probability
1− n−ζ for some ζ > 0.

10 Megha Khosla, Avishek Anand

Proof Recall that each edge in Hn,m,k is a multiset of size k. Therefore, the
probability that an edge of Hn,m,k is contained completely in a subset of size

t of the vertex set is given by tk

nk
. Thus the expected number of sets of edges

of size s that span at most t vertices is at most
(
m
s

)(
n
t

) (
tk

nk

)s
. Define

δs :=
log((k − 1)ek)

log 1
α(k−1)

(5)

and set t = (k − 1− δs)s. Using m < c∗kn we obtain

(
m

s

)(
n

t

)(
t

n

)ks
<

(
nc∗ke

s

)s (ne
t

)t
·
(
t

n

)ks
<

(
nc∗ke

s

)s (ne
t

)t
·
(
t

n

)ks
=

(
nc∗k
s

)s (n
t

)t−ks
et+s =

(
nc∗ke

k−δs

s

)s(
n

(k − 1− δs)s

)−(1+δs)s
<

(
nc∗k
s

)s(
n

(k − 1)s

)−(1+δs)s
eks

=

((
n

(k − 1)s

)−δs
· (k − 1)ekc∗k

)s
. (6)

Moreover from [9] we know that c∗k < 1. Let β be such that (1 + β)c∗k = 1.
Substituting s

n ≤ α in (6) and rewriting the terms in exponential form we
obtain (

e−δs(log
1

α(k−1)
)+log((k−1)ek)c∗k

)s
= (1 + β)−s.

Therefore, for δs as defined in (5) and α < 1/(k − 1), the probability that
there exists a set of edges of size s, where n1/2 ≤ s ≤ αn, spanning at most

(k − 1− δs)s vertices is O((1 + β)−n
1/2

) = e−O(n1/2).
For log n ≤ s < n1/2, the corresponding probability is O((1 + β)− logn) =

o(1). Now for α < (ek(k−1))
−1

k−2−γ

k−1 we obtain δ < k − 2− γ as

δ <
log((k − 1)ek)

log((k − 1)ek)
1

k−2−γ
= k − 2− γ,

which completes the proof.

Proof (Proof of Lemma 3) Recall that in the allocation graph G, R is the set
of vertices furthest from the set of free vertices. The set of vertices at distance
at most s from R is denoted by Ns(R). Note that each occupied vertex in G
holds one item. By construction of the allocation graph Ns(R) is the set of
vertices representing the choices of items placed on vertices in Ns−1(R). In
the hypergraph setting where each item corresponds to an edge, |Ns(R)| is
the number of vertices spanned by the set of edges of size |Ns−1(R)|. We now
obtain the desired result by applying Lemma 4.

Title Suppressed Due to Excessive Length 11

The following corollary follows from the above two lemmas.

Corollary 1 With high probability, the maximum label of any vertex in the
allocation graph is O(log n).

Proof Let s be such that Ns(R) ≤ log n and Ns+1(R) > log n. Clearly the
distance of vertices in Ns(R) from R is atmost log n. Let d be the shortest
distance of vertices in Ns+1(R) to any set S′ ⊂ V such that |Nd+logn(R)| ≤ αn
and |Nd+logn+1(R)| > αn . Then by Lemma 3, we have with probability

|Nd+logn(R)| > (1 + γ)d|Ns+1(R)|,

which implies that d < log1+γ
αn
logn with high probability.

Note that the shortest distance of vertices in V \ S′ to F is a constant
C(α, δ) for δ defined in Lemma 2. Moreover, by Proposition 1 the label of any
vertex is upper bounded by its distance to the set of free vertices, which by
above arguments is atmost d+ log n+ 1 +C(α, δ). Therefore, the label of any
vertex v is such that L(v) = O(log n).

We now prove our main theorem.

Proof (Proof of Theorem 2) Set α as in Lemma 4. Then by Lemma 2, with
probability 1 − O(1/n), there exists a C = C(α, ε) and a set S such that
|S| ≥ (1− α)n and every vertex v ∈ S satisfies d(v, F) ≤ C. Let T + 1 be the
maximum of the distances of vertices in R to S, i.e.,

T = max
v∈R

d(v, S)− 1.

Clearly the number of vertices at distance at most T from R is at most αn, i.e.,
|NT (R)| ≤ αn. Moreover for all t < T , |Nt(R)| < |NT (R)|. The total distance
of all vertices from F is then given by

D =
∑

v∈NT (R)

d(v, F) +
∑
v∈S

d(v, F).

As every vertex in S is at a constant distance from F , we obtain
∑
v∈S d(v, F) =

O(n) with probability 1−O(1/n). Note that for every i > 0, |Ni(R)|−|Ni−1(R)|
is the number of vertices at distance i from R. Therefore,

∑
v∈NT (R)

d(v, F) = (T + C)|N0(R)|+
T∑
i=1

(T + C − i)(|Ni(R)| − |Ni−1(R)|)

= (T + C)|N0(R)|+
T∑
i=1

(T − i)(|Ni(R)| − |Ni−1(R)|) + C

T∑
i=1

(|Ni(R)| − |Ni−1(R)|)

= (T + C)|N0(R)|+
T∑
i=1

(T − i)(|Ni(R)| − |Ni−1(R)|) + C(|NT (R)| − |N0(R)|)

=

T∑
i=1

(
(T − i)(|Ni(R)| − |Ni−1(R)|) + |N0(R)|

)
+ C · |NT (R)| =

T−1∑
i=0

|Ni(R)|+O(n).

12 Megha Khosla, Avishek Anand

To bound the above sum we we observe that for i such that |Ni(R))| < n1/2

combining with the fact that for any i, |Ni(R)| < |Ni−1(R)| the following holds

∑
i

|Ni(R)| <
n1/2∑
j=1

j = n1/2 · (n1/2 + 1)

2
= O(n)

with probability 1. For all other i such that n1/2 ≤ |Ni(R)| ≤ |NT (R)| by

Lemma 3 , following holds with probability 1− e−O(n0.5),

|Ni(R)| < |Ni+1(R)|
(1 + γ)

.

Therefore for such i, we obtain∑
i

|Ni(R))| < |NT (R)|
∑
j

1

(1 + γ)j
= O(n),

with probability 1 − e−O(n0.5). We can therefore conclude that D (which is
an upper bound for the run time of LSA) is upper bounded by O(n) with
probability 1−O(n−1), thereby completing the first part of the proof.

To bound the expected run time, first note that

E

(∑
v∈S

d(v, F)

)
= n(1−O(1/n) + n2 · (1−O(1/n) = O(n),

as in the worst case the sum of all the labels can be atmost n2 (see discussion
after Lemma 1). We now bound the expected sum of vertex labels of vertices
in V \ S. Note that for i such that |Ni(R))| ≤ n1/2 we bounded the sum by n
with probability 1.

For all other i the sum is bounded by O(n) with probability at least 1 −
e−O(n0.5). This implies that for such i

E

(∑
i

|Ni(R)|

)
< n(1− o(1)) + n2e−O(n0.5) = O(n).

We note that the above bound on expected run time of LSA holds in all cases
whether an allocation exists or not.

We obtain the following corollary about maximum matchings in left regular
random bipartite graphs. Recall that a bipartite graph G = (L∪R;E) is k-left
regular if each vertex v ∈ L has exactly k neighbors in R.

Corollary 2 For k ≥ 3 and c∗k as defined in Theorem 1, let G = (L ∪ R;E)
be a random k-left regular bipartite graph such that |L|/|R| < c∗k. The local
search allocation method obtains a maximum cardinality matching in G in
time O(|R|) with probability 1− o(1).

Proof We assign label 0 to each of the vertices in R initially. Each vertex in L
can be considered as an item and let R be the set of locations. The k random
choices for v ∈ L (item) are the k random neighbors of v. We can now find a
matching for each v ∈ L by using Algorithm 1.

Title Suppressed Due to Excessive Length 13

3 Experiments

In this section we discuss the performance of our proposed LSA algorithm
on randomly generated instances with density less than the threshold and
then on real-world large datasets with arbitrary densities. The rationale of our
evaluation is two-fold. First, we establish the effectiveness of LSA for randomly
generated instances with densities close to the threshold in terms of abstract
cost measures and compare it with the state of the art method employed for
Cuckoo Hashing for a large number of randomly generated instances. Second,
we would want to validate the performance of LSA in terms of wall-clock times
on large real-world bipartite graphs with arbitrary densities and structure (
i.e. these are not necessarily left regular bipartite graphs).

3.1 Performance on Random Graphs

We present some simulations to compare the performance of local search al-
location with the random walk method which (to the best of our knowledge)
is currently the state-of-art method and so far considered to be the fastest
algorithm for the case k ≥ 3. We recall that in the random walk method we
choose a location at random from among the k possible locations to place the
item. If the location is not free, the previous item is moved out. The moved
out item again chooses a random location from among its choices and the pro-
cedure goes on till an empty location is found. In our experiments we consider
n ∈ [105, 5×106] locations and bcnc items. The k random locations are chosen
when the item appears. All random numbers in our simulations are generated
by MT19937 generator of GNU Scientific Library [13].

Recall that a move is either placing an item at a free location or replacing it
with other item. In Figure 1 we give a comparison of the total number of moves
(averaged over 100 random instances) performed by local search and random
walk methods for k = 3 and k = 4. Figure 2 compares the maximum number
of moves (averaged over 100 random instances) for a single insertion performed
by local search and random walk methods. Figure 3 shows a comparison when
the number of items are fixed and density (ratio of number of items to that
of locations) approaches the threshold density. Note that the time required
to obtain an allocation by random walk or local search methods is directly
proportional to the number of moves performed.

We also consider the case when each location can hold more than one
item. To adapt LSA for this setting we make a small change, i.e., the label
of a vertex (location) stays 0 until it is fully filled. Algorithm 2 gives the
modified procedure for the general location capacities. Here Items(v) gives the
number of items already placed in v. Let the location capacity or maximum
load allowed be s. Figure 4 suggests that the total number of moves are linear
in the number of locations for the cases k = 3, 4 where the maximum location
capacity is greater than 1.

14 Megha Khosla, Avishek Anand

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 1e+06 2e+06 3e+06 4e+06 5e+06

T
o

ta
l

n
u

m
b

e
r
 o

f
m

o
v

e
s

Number of bins

LSA

RW

(a) k = 3, c = 0.90 (c∗3 ≈ 0.917)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 1e+06 2e+06 3e+06 4e+06 5e+06

T
o

ta
l

n
u

m
b

e
r
 o

f
m

o
v

e
s

Number of bins

LSA

RW

(b) k = 4, c = 0.97 (c∗4 ≈ 0.976)

Fig. 1 Comparison of total number of moves performed by local search and random walk
methods.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1e+06 2e+06 3e+06 4e+06 5e+06

M
a

x
im

u
m

 n
u

m
b

e
r
 o

f
m

o
v

e
s

Number of bins

LSA

RW

(a) k = 3, c = 0.90 (c∗3 ≈ 0.917).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1e+06 2e+06 3e+06 4e+06 5e+06

M
a

x
im

u
m

 n
u

m
b

e
r
 o

f
m

o
v

e
s

Number of bins

LSA

RW

(b) k = 4, c = 0.97 (c∗4 ≈ 0.976).

Fig. 2 Comparison of maximum number of moves performed by local search and random
walk methods

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
o

ta
l

A
ll

o
c

a
ti

o
n

 T
im

e

c

LSA

RW

(a) k = 3, c ≤ 0.915 (c∗3 ≈ 0.917)

 0.1

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a

x
im

u
m

 n
u

m
b

e
r
 o

f
m

o
v

e
s

c

LSA

RW

(b) k = 3, c ≤ 0.915 (c∗3 ≈ 0.917)

Fig. 3 Comparison of total number of moves and maximum number of moves (for fixed
number of locations, n = 105) performed by local search and random walk methods when
density c approaches c∗k.

We remark that local search allocation has some additional cost, i.e., the
extra space required to store the labels. Though this space is O(n), local

Title Suppressed Due to Excessive Length 15

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 1e+06 2e+06 3e+06 4e+06 5e+06

T
o

ta
l

n
u

m
b

e
r

o
f

m
o

v
e

s

Number of bins

k=3, s=3

k=3, s=2

k=4, s=2

Fig. 4 Total number of moves for the case where bin capacities (maximum load, s) is greater
than 1.

Algorithm 2 AssignItem (x,L,T)

1: Choose an item v among the k choices of x with minimum label L(v).
2: if (L(v) >= n− 1) then
3: EXIT BAllocation does not exist
4: else
5: if (Items(v) > s− 1) then
6: L(v)← 1 + min (L(u)|u 6= v and u ∈ x)
7: if (Items(v) == s) then
8: Choose an item (call it b) randomly from the s items in v
9: y ← b BMove that replaces an item

10: Place x in v
11: CALL AssignItem(y,L,T)
12: else
13: Place x in v BMove that places an item

search allocation is still useful for the applications where the size of objects
(representing the items) to be allocated is much larger than the labels which
are integers. Moreover, with high probability, the maximum label of any vertex
is O(log n). Many integer compression methods [21] have been proposed for
compressing small integers and can be potentially useful in our setting for
further optimizations. Also in most of the load balancing problems, the speed of
finding an assignment is a much desired and the most important requirement.

16 Megha Khosla, Avishek Anand

Maximum Number of Moves Wall-clock times Result Size

LSA 1 12 1,029,449
2 12 1,080,006
4 12 1,082,199
5 16 1,082,214
10 15 1,082,214
50 15 1,082,214
100 15 1,082,214
1000 15 1,082,214
10,000 27 1,082,214
100,000 136 1,082,214
n 1,887 1,082,214

Hopcroft-Karp 12,605 1,082,214

Table 1 Performance of LSA on Delicious dataset. Time is measured in seconds.

3.2 Performance on Real-world graphs

Next, we compare our runtime performance to the optimal algorithm proposed
by Hopcroft et al. [14]. In this experiment we want to study the effect of number
of allowable moves on (a) the actual wall-clock times , (b) the result quality
in terms of the size, or number of edges, of the final matching produced (refer
Figure 1). We selected the following representative realworld dataset for our
experiments:

– Delicious dataset : The Delicious dataset spans nine years from 2003 to 2011
and contain about 340 mio. bookmarks, 119 mio. unique URLs, 15 mio.
tags and 2 mio. users [22]. Each bookmarked URL is time stamped and
tagged with word descriptors. The nodes in one of the sets are URLs and
in the other are its corresponding bookmarks.

We first observe that the optimal result in the Delicious dataset, i.e. 1,082,214,
is already obtained when the limit on the allowable moves is only 5. We are
of course sure about the optimality of the procedure when the maximum al-
lowable moves is set to n and that already is 10x improvement over the time
taken by Hopcroft-Karp algorithm. For lower allowable limits of 5 and 10 the
performance improvements are almost 1000x. Interestingly, as we increase the
limit on the allowable moves to place any item (match any edge), the runtime
does not change showing that only a small of defections are sufficient to arrive
at an optimal result. However, at higher limits, indeed other permutations are
explored (in this case unsuccesfully) resulting in increased runtimes. The stop-
ping creteria unlinke in case of perfect matchings cannot be predetermined in
general. In future we plan to devise methodology to stop the algorithm when
the maximum matching is retrieved. In any case when the limit is set to n,
that would guarantee optimality, we still perform an order of magnitude faster
than the optimal algorithm of Hopcroft-Karp.

Title Suppressed Due to Excessive Length 17

4 Conclusions and Outlook

In this article, we proposed and analysed an insertion algorithm, the Local
Search Allocation algorithm, for cuckoo hashing that runs in linear time with
high probability and in expectation. Our algorithm, unlike existing random
walk based insertion methods, always terminates and finds an assignment
(with probability 1) whenever it exists. We also obtained a linear time al-
gorithm for finding perfect matchings in general large bipartite graphs.

We conducted extensive experiments to validate our theoretical findings
and report an order of magnitude improvement in the number of moves re-
quired for allocations as compared to the random walk based insertion ap-
proach. Secondly, we considered a real world social bookmarking graph dataset
to evaluate the performance of our bipartite graph matching algorithm. We
observe an order of magnitude improvement when the maximum allowable
number of moves is set to n, but more interestingly we observe that the opti-
mal solution is already reached at a small allowable limit of 5 with a substantial
performance improvement of almost three orders of magnitude over Hopcroft-
Karp algorithm.

It should be noted that although the space complexity for label mainte-
nance is O(n), the number of bits required to encode each label is logarithmic
in the maximum allowable moves. This allows compact representations of these
labels in memory even without using integer encoding schemes that might fur-
ther improve memory footprints while storing small integer ranges.

In the future we would like to consider other generalized variants of graph
matching problems using such a label propagtion scheme. Also interesting to
investigate is the impact of graph properties like diameter, clustering coeffi-
cients etc. on the only parameter in our algorithm, i.e., maximum allowable
moves. This would go a long way in automatic parameterization of LSA.

References

1. Y. Arbitman, M. Naor, and G. Segev. De-amortized cuckoo hashing: Prov-
able worst-case performance and experimental results. In Proceedings of
the 36th International Colloquium on Automata, Languages and Program-
ming: Part I, ICALP ’09, pages 107–118, 2009.

2. M. Aumüller, M. Dietzfelbinger, and P. Woelfel. A Simple Hash Class
with Strong Randomness Properties in Graphs and Hypergraphs. ArXiv
e-prints, October 2016.

3. J. A. Cain, P. Sanders, and N. Wormald. The random graph threshold for
k-orientiability and a fast algorithm for optimal multiple-choice allocation.
In Proceedings of the 18th annual ACM-SIAM symposium on Discrete
algorithms (SODA 2007), pages 469–476, 2007.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009. ISBN 0262033844,
9780262033848.

18 Megha Khosla, Avishek Anand

5. A. Czumaj and V. Stemann. Randomized allocation processes. Random
Structures & Algorithms, 18(4):297–331, 2001.

6. M. Dietzfelbinger and U. Schellbach. On risks of using cuckoo hashing
with simple universal hash classes. In Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 795–
804, 2009.

7. D. Fernholz and V. Ramachandran. The k-orientability thresholds for
Gn,p. In Proceedings of the 18th annual ACM-SIAM symposium on Dis-
crete algorithms (SODA 2007), pages 459–468, 2007.

8. D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash
tables with worst case constant access time. In STACS ’03, volume 2607
of Lecture Notes in Computer Science, pages 271–282. 2003.

9. N. Fountoulakis and K. Panagiotou. Sharp load thresholds for cuckoo
hashing. Random Structures & Algorithms, 41(3):306–333, 2012.

10. Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. On
the insertion time of cuckoo hashing. SIAM Journal on Computing, 42(6):
2156–2181, 2013.

11. A. Frieze and P. Melsted. Maximum matchings in random bipartite graphs
and the space utilization of cuckoo hash tables. Random Structures &
Algorithms, 41(3):334–364, 2012.

12. A. Frieze, P. Melsted, and M. Mitzenmacher. An analysis of random-walk
cuckoo hashing. SIAM Journal on Computing, 40(2):291–308, 2011.

13. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and
F. Rossi. Gnu scientific library reference manual. URL:http://www. gnu.
org/software/gsl, 2003.

14. John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on computing, 2(4):225–231,
1973.

15. M. Khosla. Balls into bins made faster. In Algorithms–ESA 2013, volume
8125 of Lecture Notes in Computer Science, pages 601–612. 2013.

16. A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo
hashing with a stash. SIAM J. Comput., 39(4):1543–1561, December 2009.

17. M. Lelarge. A new approach to the orientation of random hypergraphs.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’12, pages 251–264, 2012.

18. M. Mitzenmacher and S. Vadhan. Why simple hash functions work: ex-
ploiting the entropy in a data stream. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, SODA ’08, pages
746–755, 2008.

19. R. Pagh and F. F. Rodler. Cuckoo hashing. In ESA ’01, pages 121–133,
2001. ISBN 3-540-42493-8.

20. P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks.
In Proceedings of the 11th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1999), pages 849–858, 1999.

21. B. Schlegel, R. Gemulla, and W. Lehner. Fast integer compression using
simd instructions. In Workshop on Data Management on New Hardware

Title Suppressed Due to Excessive Length 19

(DaMoN 2010), pages 34–40, 2010.
22. Arkaitz Zubiaga, Victor Fresno, Raquel Martinez, and Alberto Perez

Garcia-Plaza. Harnessing folksonomies to produce a social classification
of resources. IEEE transactions on knowledge and data engineering, 25
(8):1801–1813, 2013.

	1 Introduction
	2 Local Search Insertion and its Analysis
	3 Experiments
	4 Conclusions and Outlook

