
Making Bidirected Graphs Strongly Connected

Tatsuya Matsuoka∗ Shun Sato†

September, 2017

Abstract

We consider problems to make a given bidirected graph strongly connected with
minimum cardinality of additional signs or additional arcs. For the former problem,
we show the minimum number of additional signs and give a linear-time algorithm for
finding an optimal solution. For the latter problem, we give a linear-time algorithm
for finding a feasible solution whose size is equal to the obvious lower bound or more
than that by one.

1 Introduction

Problems to make a given graph (strongly) connected are well-investigated. The minimum
number of additional edges to make a given undirected graph connected and that of
additional arcs to make a given directed graph strongly connected [6] are well-known.

+

−

+
+

− +

−
−−

+

+

−
−

+
−
−

−+

+ +

−

+

−

Figure 1: Bidirected Graph.

The concept of bidirected graphs (Figure 1; the precise definition will be given later
in Section 2) was introduced by Edmonds and Johnson [5]. It is a common generalization
of undirected graphs and directed graphs. For bidirected graphs, Ando, Fujishige and
Nemoto [3] defined the notion of strong connectivity and gave a linear-time algorithm for
the strongly connected component decomposition. However, problems to make a given
bidirected graph strongly connected have not been formulated.

In this paper, we consider problems to make a given bidirected graph strongly con-
nected with minimum cardinality of additional signs or additional arcs.

∗The University of Tokyo, Japan (tatsuya matsuoka@mist.i.u-tokyo.ac.jp).
†The University of Tokyo, Japan (shun sato@mist.i.u-tokyo.ac.jp).

1

ar
X

iv
:1

70
9.

00
82

4v
1 

 [
cs

.D
M

] 
 4

 S
ep

 2
01

7



1.1 Related Works

It is obvious that the minimum number of additional edges to make a given undirected
graph connected is fewer than the number of connected components of a given graph
by one. Eswaran and Tarjan [6] gave the minimum number of additional arcs to make
a given directed graph strongly connected and that of additional edges to make a given
undirected graph bridge-connected (2-edge-connected) or biconnected (2-vertex-connected).
Linear-time algorithms for finding an optimal solution of these problems are also given in
[6]. Note that they defined an operation called “condensation” which transforms a general
directed graph to an acyclic directed graph. We can focus on the acyclic case since for this
problem we can obtain a solution of the original problem by solving the problem on the
condensed graph. For a directed graph G = (V,A), v ∈ V is a source if δ(v) ≥ 1, ρ(v) = 0,
a sink if ρ(v) ≥ 1, δ(v) = 0 and an isolated vertex if ρ(v) = δ(v) = 0 (in directed graphs,
δ and ρ denote the out-degree and in-degree functions, respectively).

Theorem 1 (Eswaran–Tarjan [6]). Let G = (V,A) be an acyclic directed graph with the
set S ⊆ V of sources, the set T ⊆ V of sinks and the set Q ⊆ V of isolated vertices
(|S| + |T | + |Q| > 1). Then the minimum number of additional arcs to make the given
graph strongly connected is max{|S|, |T |}+ |Q|.

For an undirected graph G = (V,E), v ∈ V is called a pendant if δ(v) = 1 and V ′ ⊆ V
is called a pendant block if it is a 2-vertex-connected component and it contains exactly
one cutnode (for undirected graphs, δ denotes the degree function). Note that v ∈ V is a
cutnode if the original graph is connected and the graph induced by V \{v} is disconnected.
Similarly, V ′ ⊆ V is called an isolated block if it is a 2-vertex-connected component and
it contains no cutnode.

Theorem 2 (Eswaran–Tarjan [6]). Let G = (V,E) be an undirected graph with the set P ⊆
V of pendants and the set Q ⊆ V of isolated vertices (|P |+ |Q| > 1). Then the minimum
number of additional edges to make the given graph 2-edge-connected is d|P |/2e+ |Q|.

Theorem 3 (Eswaran–Tarjan [6]). Let G = (V,E) be an undirected graph with the set
P ⊆ 2V of pendant blocks and the set Q ⊆ 2V of isolated blocks (|P| + |Q| > 1). Then
the minimum number of additional edges to make the given graph 2-vertex-connected is
max {d− 1, d|P|/2e+ |Q|}. Here,

d := max{#(2-vertex-connected components containing v) | v ∈ V }
+ #(connected components)− 1.

On the other hand, problems on bidirected graphs also have been considered in the
literature. Ando, Fujishige and Nemoto [3] gave a linear-time algorithm for strongly
connected component decomposition of bidirected graphs. This algorithm is made use of
for the block triangularization of skew-symmetric matrices [11]. Bidirected graphs are also
used in the field of computational biology [13, 14, 16].

The strongly connected component decomposition of a bidirected graph [3] is obtained
by the ordinary strongly connected component decomposition of the associated directed
graph, skew-symmetric graph, which will be used in Section 3. As pointed out in [3], the
same graph is used by Zaslavsky [17] for the study of signed graphs [10]. The notion
of skew-symmetric graphs is defined first by Tutte [15] with the name “antisymmetrical
digraphs” independent from bidirected graphs. There are also various problems on skew-
symmetric graphs, and they have been intensively studied [7, 8, 9]. Study on bisubmodular
polyhedra also made use of this skew-symmetric graph [2] with the name “exchangeability
graph.”

2



1.2 Our Contribution

In this paper, we formulate problems to make a given bidirected graph strongly connected
with minimum cardinality of additional signs or additional arcs. Since self-loops have influ-
ence on the strong connectivity on bidirected graphs, these two problems arise depending
on how to treat self-loops.

We first define the procedure called “condensation” on bidirected graphs. We can
reduce general cases to acyclic cases by this operation for the above two problem settings.
This can be done by using the strongly connected component decomposition algorithm for
bidirected graphs devised by Ando, Fujishige and Nemoto [3]. This is similar to the fact
that the condensation on directed graphs is done by using strongly connected component
decomposition of directed graphs [6, Lemma 1]. However, since there are signs on each arc
in bidirected graphs, we must define the appropriate signs for each arc on the condensed
bidirected graph.

We discuss the two versions of the problems on bidirected graphs. For the problem on
signs, the obvious lower bound can be obtained from the necessity for connectivity of the
underlying graph and a condition on signs around each vertex. We show that this lower
bound can be achieved for any acyclic bidirected graph and give a linear-time algorithm
for finding an optimal solution. For the problem on arcs, we give a linear-time algorithm
for finding a feasible solution whose size is equal to the obvious lower bound or more than
that by one.

1.3 Organization

The organization of the rest of this paper is as follows. We give definitions and notation
in Section 2. In Section 3, we give two problem settings dealt with in this paper and
devise the condensation operation on bidirected graphs, which reduces a general case to
an acyclic case. These two problems are discussed in Sections 4 and 5, respectively. Section
6 is devoted to concluding remarks involving other problem settings.

2 Preliminaries

In this section, we introduce definitions and notation used in this paper. Definitions in
this section mainly refer Ando and Fujishige [1] and Ando, Fujishige and Nemoto [3].

A bidirected graph is a triplet of a vertex set V , an arc set A and a boundary operator
∂ : A → 3V (:= {(X,Y ) | X,Y ⊆ V,X ∩ Y = ∅}) such that ∂a = (Xa, Ya) satisfies
1 ≤ |Xa| + |Ya| ≤ 2 for each a ∈ A. We use the notation |∂a| := |Xa| + |Ya|. Let
∂+ : A→ 2V and ∂− : A→ 2V denote the operators with ∂+a = Xa and ∂−a = Ya. This
can be regarded that the signs are put on endpoints of links or on self-loops by ∂+ and
∂− (here we call an arc a link if it connects two distinct vertices). In other words, ∂+a
and ∂−a are the sets of endpoints of a with the signs “+” and “−”, respectively. We call
an arc a with ∂a = ({v}, ∅) a plus-loop at v and a with ∂a = (∅, {v}) a minus-loop at v.

For simplicity, we define some other notation. Let ∂̄ : A → 2V denote the operator
with a 7→ ∂+a ∪ ∂−a for each a ∈ A. For a bidirected graph G = (V,A; ∂), let Ḡ = (V,A)
be the undirected graph omitting the signs of G (the underlying graph of G). We write
as a = (u, v) if ∂̄a = {u, v}. Let us define a sign operator π :

{
(a, u) | a ∈ A, u ∈ ∂̄a

}
→

{+,−} as π(a, u) = + if u ∈ ∂+a and π(a, u) = − if u ∈ ∂−a. Let “(u, v) with (π1, π2)”
(π1, π2 ∈ {+,−}) denote an arc a = (u, v) with π(a, u) = π1 and π(a, v) = π2.

3



An arc a ∈ A is said to be positively (resp. negatively) incident to v if v ∈ ∂+a
(resp. v ∈ ∂−a). Arcs a ∈ A and a′ ∈ A are said to be oppositely incident to v if a is
positively (resp. negatively) incident to v and a′ is negatively (resp. positively) incident
to v.

An alternating sequence of vertices and arcs (v0, a1, v1, a2, . . . , al, vl) (l ≥ 1) is called
a path if ai and ai+1 are oppositely incident to vi (i = 1, 2, . . . , l − 1), a1 is incident to v0
and al is incident to vl. This is called (π(a1, v0), π(al, vl))-path from v0 to vl. A path with
v0 = vl is called a cycle with a root v0(= vl). If al and a1 are oppositely incident to v0 and
it includes distinct vertices, we call it a proper cycle. A cycle which is not proper is called
an improper cycle. An improper cycle with π(a1, v0) = π(al, vl(= v0)) = + (resp.−) is
called a positive (resp. negative) improper cycle. If a graph does not contain a proper cycle,
we call it an acyclic graph (Note that this definition is different from that of “strongly
acyclic” or “weakly (node- or edge-) acyclic” in [4]).

For a bidirected graphG = (V,A; ∂), two vertices v, v′ ∈ V are called strongly connected
if G contains two paths (v, a11, v

1
1, a

1
2, . . . , a

1
l1
, v′) and (v, a21, v

2
1, a

2
2, . . . , a

2
l2
, v′) such that a11

and a21 are oppositely connected to v and that a1l1 and a2l2 are oppositely connected to v′.
Note that these two paths need not to be vertex-disjoint. A binary relation on V can be
defined by this strong connectivity: v ∼ v′ if v and v′ are strongly connected. By assuming
that v ∼ v for all v ∈ V , we obtain the equivalence relation ∼ on V . Each equivalence
class of V on ∼ is called strongly connected component and G is called strongly connected
if G has only one strongly connected component.

A vertex v ∈ V is called inconsistent if there exist improper cycles with root v
C1 = (v, a11, v

1
1, a

1
2, . . . , a

1
l1
, v) and C2 = (v, a21, v

2
1, a

2
2, . . . , a

2
l2
, v) such that a2l2 and a11 are

oppositely incident to v. It is stated in [3] that if u and v are strongly connected and u
is inconsistent, then v is also inconsistent. Thus, the notion of inconsistency can also be
naturally defined on strongly connected components.

3 Settings and the Condensation Operation

In this section, we introduce the problem settings we tackle in this paper and explain the
operation called condensation.

3.1 Problem Settings

We deal with the problems of the following type.

Problem 1. Let G = (V,A; ∂) be a bidirected graph. Find additional arcs A′ and a bound-
ary operator ∂′ : A∪A′ → 3V (∂′a = ∂a (∀a ∈ A)) minimizing F (A′, ∂′) :=

∑
a′∈A′ f(∂′a′)

(f : {(X,Y ) | X,Y ⊆ V,X∩Y = ∅, 1 ≤ |X|+ |Y | ≤ 2} → R) such that G′ := (V,A∪A′; ∂′)
is a strongly connected bidirected graph.

Note that Problem 1 is NP-hard in general. This can easily be shown by following the
argument in the proof of [6, Theorem 1] as follows: we show this by reducing the following
directed Hamiltonian cycle problem to Problem 1 with a certain function f .

Problem 2 (Directed Hamiltonian Cycle Problem). Let D = (V,A) be a directed graph.
Find a directed Hamiltonian cycle in D.

Set f(∂′a′) = 1 if a′ = (v1, v2) with (+,−) and there exists a = (v1, v2) in D and
set f(∂′a′) = 2 for any other possible arc a′. There exists a solution of Problem 1 with

4



respect to G = (V, ∅; ∂) satisfying F (A′, ∂′) = |V | if and only if there exists a solution of
Problem 2. Since Problem 2 is NP-complete [12], Problem 1 is NP-hard.

For the problem on undirected graphs or directed graphs similar to Problem 1, it
is natural to define F (A′, ∂′) := |A′|, i.e., minimization of the cardinality of additional
edge (or arc) set. For bidirected graphs, however, there are two reasonable candidates
of F (A′, ∂′), i.e.,

∑
a′∈A′ |∂′a′| and |A′|. In other words, f(∂′a′) := |∂′a′| in the former

setting and f(∂′a′) := 1 in the latter setting. The former means the minimization of
the number of the additional signs on arcs and the latter means that of arcs themselves.
In other words, the cost of a link is twice higher than that of a self-loop for the former
problem and is the same for the latter problem. These natural two problems arise because
self-loops have influence on strong connectivity in bidirected graphs (see, e.g., Figure 3).
Note that self-loops do not have any influence on the structure of (strong) connectivity
for undirected graphs or directed graphs.

3.2 Reduction to Acyclic Case

We present a technique for reducing general cases to acyclic cases for Problem 1 with
respect to F (A′, ∂′) =

∑
a′∈A′ |∂′a′| or F (A′, ∂′) = |A′|.

For directed graphs, Eswaran and Tarjan [6] first condense the given directed graph
to focus on acyclic cases. There, the condensed graph G̃ = (Ṽ , Ã) is obtained from the
strongly connected component decomposition C1, C2, . . . , Ck of the original graph G =
(V,A), where

Ṽ := {vC1 , vC2 , . . . , vCk
},

Ã :=
{

(vCj , vCk
) | ∃v ∈ V (Cj), ∃v′ ∈ V (Ck) s.t. (v, v′) ∈ A

}
.

For bidirected graphs, we can utilize the linear-time algorithm for strongly connected
component decomposition devised by Ando, Fujishige and Nemoto [3]. Precisely speaking,
in order to appropriately define signs in the condensed graph, we use the strongly connected
component decomposition of the associated skew-symmetric graph, which corresponds to
the strongly connected component decomposition of the original bidirected graph G =
(V,A; ∂) [3, Corollary 5.4].

In Algorithm CONDENSE(G) described below, Steps 1–3 based on the steps of the
strongly connected component decomposition algorithm of [3].

Algorithm CONDENSE(G)

Step 1 Construct the associated skew-symmetric graph G± = (V + ∪V −, A±), where V +

and V − are copies of V (v+ ∈ V + and v− ∈ V − denote the copy of v ∈ V ) and A±

are defined by

A± = {(vπ(a,v), w−π(a,w)) | a ∈ A, ∂̄a = {v, w}}.

Note that v can be equal to w. Here, −π is equal to − (resp. +) if π = + (resp. −).

Step 2 Decompose G± into strongly connected components G±j = (U±j , B
±
j ) (j ∈ J).

Step 3 For each j ∈ J , define

Uj = {v ∈ V | v+ ∈ U±j } ∪ {v ∈ V | v
− ∈ U±j }.

Then, define Wi (i ∈ I) be the distinct members of Uj (j ∈ J) and partition I into
I1 and I2 so that Wi appears twice (resp. once) in the family {Uj | j ∈ J} for each
i ∈ I1 (resp. I2).

5



Step 4 For each i ∈ I1, let U±j be one of two strongly connected components correspond-

ing to Wi. If U±j includes both an element in V + and an element in V −, then for

each v− ∈ V − ∩ U±j swap this for the counterpart.

Step 5 Make a skew-symmetric graph Ĝ± = (V̂ + ∪ V̂ −, Â) from G± as follows. Let v̂+i
(resp. v̂−i ) be a representative of Wi. Let V̂ + := {v̂+i | i ∈ I} and V̂ − := {v̂−i | i ∈ I}.
By using the map α : V + ∪ V − → V̂ + ∪ V̂ − defined by

α(vπ) = v̂πi (v ∈Wi, π ∈ {+,−}),

the arc set Â is defined by

Â = {(α(v), α(w)) | (v, w) ∈ A± (α(v) 6= α(w))}.

Step 6 Return the bidirected graph G̃ corresponding to the skew-symmetric graph Ĝ±.

Note that the strongly connected component Wi is inconsistent if and only if i ∈ I2 (see,
Corollary 5.4 of [3]).

From a feasible solution of the problem of minimization on signs or arcs for G̃, we can
obtain a feasible solution for G with the same value for the function F . Conversely, from
any feasible arc set for the original problem on G we can obtain a solution for the problem
on G̃ whose cost is less than or equal to the original cost. These hold since a condensed
graph of any strongly connected bidirected graph is strongly connected and each link in
the obtained solution graph corresponds with links in the original solution graph. Thus
validity of the above condensation holds.

4 Minimization on Signs

In this section, we deal with Problem 1 with F (A′, ∂′) =
∑

a′∈A′ |∂′a′|.
We first give some definitions on bidirected graphs. Let γ(= γ(G)) denote the number

of connected components in the underlying graph Ḡ of G. A vertex v ∈ V is called a
source (resp. a sink) if v is included in a connected component in Ḡ which has more than
one vertices and any a ∈ A connected to v in G is positively (resp. negatively) incident to
v. The set of sources is denoted by S(= S(G)) and that of sinks is denoted by T (= T (G)).
A vertex v ∈ V is called an isolated vertex if there exists no arc connected to v. The set
of isolated vertices is denoted by Q(= Q(G)). A vertex v ∈ V is called a pseudo-isolated
vertex if {v} is the connected component with only one vertex in Ḡ and there exists a
self-loop at v. The set of pseudo-isolated vertices is denoted by Q′(= Q′(G)).

When adding an arc a = (u, v) to a bidirected graph G, we write “with proper signs” if
signs on a are as follows: π(a, u) is equal to + if {a ∈ A | u ∈ ∂+a} is empty for the current
bidirected graph and π(a, u) is equal to − otherwise. The sign π(a, v) is determined in
the same way.

Now, let us consider Problem 1 with respect to the number of additional signs on an
acyclic bidirected graph G = (V,A; ∂). Since a bidirected graph is strongly connected
only if its underlying graph is connected, the value of the objective function for a feasible
solution must be greater than or equal to 2(γ− 1). On the other hand, a bidirected graph
with |V | > 1 is strongly connected only if there are no sources, sinks, isolated vertices and
pseudo-isolated vertices. Therefore, the number of additional signs to make a bidirected
graph strongly connected is greater than or equal to |S|+ |T |+ |Q′|+ 2|Q|. Summing up,
we obtain the lower bound max{2(γ − 1), |S| + |T | + |Q′| + 2|Q|}. Actually, this lower
bound can be achieved.

6



Theorem 4. Let G = (V,A; ∂) be an acyclic bidirected graph with |V | > 1. Then the
minimum number of

∑
a′∈A′ |∂′a′| such that G′ = (V,A ∪ A′; ∂′) is a strongly connected

bidirected graph is max{2(γ − 1), |S|+ |T |+ |Q′|+ 2|Q|}.

We now describe an algorithm for constructing an optimal solution (whose size is
equal to the lower bound). Let C1

1 , C
1
2 , . . . , C

1
k1
, C2

1 , C
2
2 , . . . , C

2
k2
, . . . , CK1 , C

K
2 , . . . , C

K
kK

be

the distinct vertex sets of connected components of Ḡ such that each Cji contains just j

elements of S ∪ T ∪Q′ ∪Q. Note that
∑K

i=1 ki = γ and
∑K

i=1 iki = |S|+ |T |+ |Q′|+ |Q|.

Algorithm ADDITIONAL SIGNS(G)

Step 1 Let A′ := ∅.

Step 2 Let u1, u2, . . . , uL1 (L1 := k1 − |Q|) be the elements of
(⋃k1

i=1C
1
i

)
∩ (S ∪ T ∪Q′).

If L1 = γ = 1, add a self-loop at u1 to A′ with a proper sign and go to Step 6. If
L1 = γ > 1, add {(u1, ui) | 2 ≤ i ≤ L1} to A′ with proper signs and go to Step 6.

Step 3 Let C =
{
C2
1 , C

2
2 , . . . , C

2
k2
, . . . , CK1 , C

K
2 , . . . , C

K
kK

}
. For each C ∈ C, pick up two

distinct elements of C ∩ (S ∪ T ) and label them as li, ri (i = 1, 2, . . . , |C|). Label the
rest of the elements of

⋃
C∈C C∩(S∪T ) as w1, w2, . . . , wL2 with L2 :=

∑K
i=3(i−2)ki.

Add {(ui, wi) | 1 ≤ i ≤ min{L1, L2}} to A′ with proper signs.

Step 4 Let q1, . . . , q|Q| be the elements of Q and define l|C|+i = r|C|+i = qi for i =
1, . . . , |Q|. Add {(ri, li+1) | 1 ≤ i < |C|+ |Q|} to A′ with proper signs.

Step 5 Compare L1 with L2.

Step 5-1 If L2 ≤ L1−2, add (uL2+1, l1) and
{

(ui, r|C|+|Q|) | L2 + 1 < i ≤ L1

}
to A′

with proper signs.

Step 5-2 If L2 = L1 − 1, add (uL1 , l1) and a self-loop at r|C|+|Q| to A′ with proper
signs.

Step 5-3 If L2 ≥ L1, add self-loops at l1, r|C|+|Q| and wi for i = L1+1, L1+2, . . . , L2

to A′ with proper signs.

Step 6 Return G′ = (V,A ∪A′; ∂′).

Steps 3 and 4 are like as in Figure 2.
The above algorithm returns an optimal solution in linear time. This is confirmed by

the following two lemmas.

Lemma 1. The output of the above algorithm is strongly connected.

This can be confirmed by the following claims when γ > L1. (It can be shown more
easily when γ = L1.)

Claim. The vertex set {li, ri | 1 ≤ i ≤ |C|} ∪Q is strongly connected.

Proof. For each C ∈ C, there exists a path between l and r (vertices chosen as li and ri).
This can be shown by the facts that l and r are connected in the underlying graph and
that every vertex in C has both plus and minus signs around it. Since l1 and r|C|+|Q| have
a self-loop or an improper cycle, the claim holds.

Claim. Each vertex in {li, ri | 1 ≤ i ≤ |C|} ∪Q is inconsistent.

7



l1
r1

C2
1

l2
r2

w1

C3
1

l3
r3w2

C3
2

l4

r4

l5

r5

u1

C1
1

u2

C1
2

Figure 2: Additional arcs in Steps 3 and 4 in the proposed algorithm: thin and bold
lines represent the additional arcs in Steps 3 and 4, respectively (Arcs in each connected
component are omitted).

Proof. Suppose there is a (+,+)-path between l1 and r|C|+|Q|. (The other case can be
treated in the similar way.) By the algorithm, there are a negative improper cycle rooted
at l1 and that rooted at r|C|+|Q|. Thus due to the above (+,+)-path, there is a positive
improper cycle rooted at l1. Therefore l1 is inconsistent and hence the claim holds.

Claim. For each vertex v ∈ V \ ({li, ri | 1 ≤ i ≤ |C|} ∪Q), there exist v∗1, v
∗
2 ∈ {li, ri | 1 ≤

i ≤ |C|} ∪Q (not necessarily distinct), a path P1 between v and v∗1 and a path P2 between
v and v∗2 such that end arcs of P1 and P2 connected to v are oppositely incident.

Proof. By the algorithm ADDITIONAL SIGNS, each vertex in the resultant graph has
both plus and minus signs around it. Fix a vertex v ∈ V \ ({li, ri | 1 ≤ i ≤ |C|} ∪ Q).
By the above two claims, there is an inconsistent strongly connected component including
{li, ri | 1 ≤ i ≤ |C|} ∪ Q. Since the underlying graph is connected and each vertex has
both signs around it, we can reach this component from v regardless of the initial sign.
Thus we can obtain v∗1, v

∗
2, P1 and P2.

Claim. If a vertex set V ′ contains inconsistent vertices v1 and v2, and for each v ∈
V ′ \ {v1, v2} there are (v, v1)-path and (v, v2)-path with the opposite starting sign around
v, then the whole V ′ is strongly connected.

Proof. It holds since there exists a proper cycle including the above paths which passes
v1 and v2 twice and v.

Next, we check the number of additional signs.

Lemma 2. The number of additional signs is equal to max{2(γ−1), |S|+|T |+|Q′|+2|Q|}.

Proof. If L1 = γ = 1, add only one self-loop thus 1 = max{0, 1}. If L1 = γ > 1, add γ− 1
links thus 2(γ − 1) = max{2(γ − 1), γ}.

Otherwise, we go to Step 3 and add min{L1, L2} links. Next, we add |C|+ |Q|−1 links
at Step 4.

8



At Step 5, we consider three cases. It should be noted that L2 ≤ L1 − 2 holds if and
only if 2(γ − 1) ≥ |S|+ |T |+ |Q′|+ 2|Q| holds due to the following relation:

L2 − (L1 − 2) =
K∑
i=2

(i− 2)ki − (k1 − |Q|) + 2

=
K∑
i=1

iki − 2γ + |Q|+ 2

= |S|+ |T |+ |Q′|+ 2|Q| − 2(γ − 1).

If L2 ≤ L1 − 2, we add L1 − L2 links, thus the number of additional signs is

2 min{L1, L2}+ 2(|C|+ |Q| − 1) + 2(L1 − L2)

= 2(|C|+ |Q|+ L1 − 1)

= 2(|C|+ k1 − 1)

= 2(γ − 1)

= max{2(γ − 1), |S|+ |T |+ |Q′|+ 2|Q|}.

If L2 = L1 − 1, we add a link and a self-loop, thus the number of additional signs is

2 min{L1, L2}+ 2(|C|+ |Q| − 1) + 3

= 2
K∑
i=2

(i− 2)ki + 2
K∑
i=2

ki + 2|Q|+ 1

=

K∑
i=2

(i− 2)ki +

K∑
i=1

ki +

K∑
i=2

ki + |Q|

=
K∑
i=1

iki + |Q|

= |S|+ |T |+ |Q′|+ 2|Q|
= max{2(γ − 1), |S|+ |T |+ |Q′|+ 2|Q|}.

Otherwise, the number of additional signs is

2 min{L1, L2}+ 2(|C|+ |Q| − 1) + (L2 − L1 + 2)

= 2(|C|+ |Q|) + L2 + L1

= 2
K∑
i=2

ki + 2|Q|+
K∑
i=2

(i− 2)ki + L1

=
K∑
i=1

iki + 2|Q| − k1 + L1

= |S|+ |T |+ |Q′|+ 2|Q|
= max{2(γ − 1), |S|+ |T |+ |Q′|+ 2|Q|}.

Therefore, the number of additional signs is equal to the obvious lower bound.

Both the above algorithm and the condensation algorithm run in linear time, thus one
can obtain an optimal solution in linear time for a general input bidirected graph.

Theorem 5. Problem 1 with F (A′, ∂′) =
∑

a′∈A′ |∂′a′| can be solved in linear time.

9



5 Minimization on Arcs

In this section, we deal with Problem 1 with F (A′, ∂′) = |A′|.
Let λ(G) be defined by λ(G) := max {γ − 1, d(|S|+ |T |+ |Q′|)/2e+ |Q|}. Clearly,

λ(G) is the lower bound of Problem 1 with F (A′, ∂′) = |A′| (which can be derived as well
as that for the problem on signs). Unfortunately, however, there is a small example which
cannot be made strongly connected by λ(G) additional arcs (see Figure 3), whereas we
can always achieve the lower bound when we deal with the number of additional signs as
shown in the previous section. For the original graph G in Figure 3 (a), we have

λ(G) = max

{⌈
1 + 1 + 0

2

⌉
+ 0

}
= max {1, 0} = 1.

Since there exist a source s and a sink t in G, we must add an arc a = (s, t) with proper
signs in order to extinguish both source and sink with one arc (see Figure 3 (b)). However,
it is not strongly connected. Actually, the minimum number of additional arcs to make G
strongly connected is two and one of the optimal solutions is shown in Figure 3 (c). On
the other hand, there is also an graph G which can be made strongly connected with λ(G)
additional arcs.

−

+ +

+

−
+

−
+

s

t

(a) Original graph.

−

+ +

+

−
+

−
+

− +s

t

(b) One arc added.

−

+ +

+

−
+

−
+

− +

−

s

t

(c) Optimal solution.

Figure 3: Example: the size of optimal solution is λ(G) + 1. Bold lines represent the
additional arcs in (b) and (c).

Now we aim at obtaining the upper bound of the size of optimal solutions. Actually,
we can show the next theorem.

Theorem 6. Let G = (V,A; ∂) be an acyclic bidirected graph. Then the minimum number
of |A′| such that G′ = (V,A ∪ A′; ∂′) is a strongly connected bidirected graph is λ(G) or
λ(G) + 1.

Note that if the output of ADDITIONAL SIGNS(G) contains at most one self-loop,
then it is also an optimal solution of the problem of minimizing the number of additional
arcs. If the output of ADDITIONAL SIGNS(G) contains more than 1 self-loops, however,
we cannot guarantee the optimality for the problem on arcs in general. We can construct
a feasible solution of size λ(G) or λ(G) + 1 by the following algorithm.

Algorithm ADDITIONAL ARCS(G)

Step 1 Let A′ := ∅.

Step 2 Let u1, u2, . . . , uL1 (L1 := k1 − |Q|) be the elements of
(⋃k1

i=1C
1
i

)
∩ (S ∪ T ∪Q′).

If L1 = γ = 1, add a self-loop at u1 to A′ with a proper sign and go to Step 14. If
L1 = γ > 1, add {(u1, ui) | 2 ≤ i ≤ L1} to A′ with proper signs and go to Step 14.

10



Step 3 Let C =
{
C2
1 , C

2
2 , . . . , C

2
k2
, . . . , CK1 , C

K
2 , . . . , C

K
kK

}
. For each C ∈ C, pick up two

distinct elements of C ∩ (S ∪ T ) and label them as li, ri (i = 1, 2, . . . , |C|). Label the
rest of the elements of

⋃
C∈C C∩(S∪T ) as w1, w2, . . . , wL2 with L2 :=

∑K
i=3(i−2)ki.

Add {(ui, wi) | 1 ≤ i ≤ min{L1, L2}} to A′ with proper signs.

Step 4 Let q1, . . . , q|Q| be the elements of Q and define l|C|+i = r|C|+i = qi for i =
1, 2, . . . , |Q|.

Step 5 If L2 ≤ L1−2, add
{

(ui, r|C|+|Q|) | L2 + 1 < i ≤ L1

}
, {(ri, li+1) | 1 ≤ i < |C|+ |Q|}

and (uL2+1, l1) to A′ with proper signs and go to Step 14.

Step 6 If L2 = L1 − 1, add {(ri, li+1) | 1 ≤ i < |C| + |Q|}, (uL1 , l1) and a self-loop at
r|C|+|Q| with proper signs and go to Step 14.

Step 7 If |Q| = 1, add a new vertex q2 to V and add (q1, q2) with (+,−) to A′. Otherwise,
add (qi, qi+1) to A′ with (+,−) for i = 1, 2, . . . , |Q| − 1.

Step 8 Define a new bidirected graph Ĝ = (V̂ , Â; ∂̂) from the bidirected graph G′ =
(V,A ∪A′; ∂′) as follows:

V̂ := {li, ri | 1 ≤ i ≤ |C|} ∪ {wj | L1 < j ≤ L2} ∪ {q1, qmax{2,|Q|}},

Â :=
{
a = (u, v) with (πu, πv) | ∃(πu, πv)-path from u to v in G′, {u, v} ⊆ V̂

}
.

Step 9 Construct a maximal matching M = {m1,m2, . . . ,m|M |} (mi = (vli, v
r
i )) in the

underlying graph of Ĝ. Add B := {(vri , vli+1) | 1 ≤ i ≤ |M | (vl|M |+1 := vl1)} to A′

with proper signs.

Step 10 Let p1, p2, . . . , pl be the vertices in V̂ which are not the endpoints of any element
of M . Add P := {(p2i−1, p2i) | 1 ≤ i ≤ bl/2c} with proper signs to A′. If l is odd,
add a self-loop at pl to A′ with a proper sign.

Step 11 Let G̃ be the output and α be the map in Step 5 of CONDENSE(G = (V,A ∪
A′; ∂′)).

Step 12 Let ṽ be the only one element of S(G̃)∪T (G̃)∪Q′(G̃)∪Q(G̃). If ṽ ∈ S(G̃) (resp.
ṽ ∈ T (G̃)), add a minus-loop (resp. a plus-loop) at an arbitrary element in α−1(ṽ).

Step 13 If |Q| = 1 holds for the original input graph G, then remove the arc (q1, q2) from
A′.

Step 14 Return G′ = (V,A ∪A′; ∂′).

Note that the above algorithm finds a feasible solution of size λ(G) or λ(G) + 1 in linear
time (Table 1).

Since the algorithm is the same as ADDITIONAL SIGNS(G) when L2 ≤ L1 − 1, let
us give a brief explanation on the case of L2 ≥ L1 − 1. It is sufficient to show that
|S(Ĝ) ∪ T (Ĝ) ∪ Q′(Ĝ) ∪ Q(Ĝ)| = 1 holds after Step 11 is executed. By Step 10 of the
algorithm, there is a proper cycle C consisting of alternating sequence of M and P in
Ĝ. The other elements in S(Ĝ) ∪ T (Ĝ) ∪ Q′(Ĝ) ∪ Q(Ĝ) are included in some improper
cycle the root of which is included in C. Therefore, there exists only one element of
S(Ĝ)∪ T (Ĝ)∪Q′(Ĝ)∪Q(Ĝ) after Step 11. If the graph is not strongly connected, the all
vertices have become strongly connected by adding a self-loop with the proper sign.

11



Table 1: The relation between the output of the algorithm and the optimal solution.
Optimum\Output λ λ+ 1

λ optimal approximate

λ+ 1 6 ∃ optimal

The cardinality of the solution is λ(G) + 1 only if ṽ ∈ S(G̃) ∪ T (G̃). The above
algorithm runs in linear time, thus the total algorithm runs in linear time for a general
input bidirected graph.

Theorem 7. For Problem 1 with F (A′, ∂′) = |A′|, a feasible solution with |A′| = λ(G) or
λ(G) + 1 can be found in linear time.

Actually, there exists an example such that our algorithm returns the approximate
solution (Figure 4). The original graph has five vertices and six (+,+)-arcs (Figure 4 (a)).
If one applies our algorithm to this graph, a solution of four arcs is obtained (Figure 4
(b)). However, there exists a solution of three arcs (Figure 4 (c)).

(a) Original graph. (b) Output. (c) Optimal solution.

Figure 4: Example for which the algorithm returns an approximate solution. Signs on arcs
are omitted. (a) All arcs are (+,+)-arcs. (b) Four bold arcs are additional ones. Links
are (−,−)-arcs and self-loops are with the minus sign. (c) Three bold arcs are additional
(−,−)-arcs.

6 Concluding Remarks

In this paper, we propose two types of problems to make a given bidirected graph strongly
connected. The first one aims at minimizing the number of additional signs on arcs and
the second one aims at minimizing the number of additional arcs. We give a linear-time
algorithm to find an optimal solution for the former problem and a linear-time algorithm
to find a feasible solution which can have one more arc than an optimal solution for the
latter problem.

As future works, the following problem on minimization on arcs can be considered.

Problem 3. Let G = (V,A; ∂) be a bidirected graph. Decide whether the minimum number
of additional arcs to make G strongly connected is λ(G) or λ(G) + 1.

Connectivity augmentation problems on bidirected graphs can also be considered, e.g.,
arc-connectivity augmentation. Let G be k-arc-connected if G′ = (V,A \ A◦; ∂|(A \ A◦))
is strongly connected for all A◦ ⊆ A with |A◦| = k − 1.

12



Problem 4. Let G = (V,A; ∂) be a bidirected graph and k be a positive integer. Find
additional arcs A′ and a boundary operator ∂′ : A ∪ A′ → 3V (∂′a = ∂a (∀a ∈ A))
minimizing F (A′, ∂′) such that G is k-arc-connected.

In a similar way, the definition of k-vertex-connectivity and the connectivity augmen-
tation problem on it can be introduced.

Also, the generalization of the problem to make a given undirected graph connected
or that to make a given directed graph strongly connected can be considered. Although
bidirected graphs can be seen as the common generalization of undirected graphs and
directed graphs, the problems in this paper are not the generalization of these classical
problems because there is no restriction on additional arcs. For the case of directed graphs,
the problem can be formulated as follows:

Problem 5. Let G = (V,A; ∂) be a bidirected graph. Find additional arcs A′ and a
boundary operator ∂′ : A ∪ A′ → 3V (∂′a = ∂a (∀a ∈ A)) minimizing |A′| such that
G′ := (V,A ∪ A′; ∂′) is a strongly connected bidirected graph and |∂′+a′| = |∂′−a′| = 1 for
all a′ ∈ A′.

Acknowledgments

Both authors are supported by JSPS Research Fellowship for Young Scientists. The re-
search of the first author was supported by Grant-in-Aid for JSPS Research Fellow Grant
Number 16J06879.

References

[1] K. Ando, S. Fujishige: t,u-closed families and signed posets. Discussion Paper Series,
567, Institute of Socio-Economic Planning, University of Tsukuba, 1994.

[2] K. Ando, S. Fujishige: On structures of bisubmodular polyhedra. Mathematical Pro-
gramming 74:293–317, 1996.

[3] K. Ando, S. Fujishige, T. Nemoto: Decomposition of a bidirected graph into strongly
connected components and its signed poset structure. Discrete Applied Mathematics,
68:237–248, 1996.

[4] M. A. Babenko: Acyclic bidirected and skew-symmetric graphs: algorithms and struc-
ture. Computer Science - Theory and Applications, Proceedings of the First Interna-
tional Computer Science Symposium in Russia (LNCS 3967), 23–34, 2006.

[5] J. Edmonds, E. L. Johnson: Matching: a well-solved class of linear programs. In: R.
Guy, H. Hanani, N. Sauer, J. Schönheim (Eds.): Combinatorial Structures and Their
Applications, 88–92, 1970.

[6] K. P. Eswaran, R. E. Tarjan: Augmentation problems. SIAM Journal on Computing,
5:653–665, 1976.

[7] A. V. Goldberg, A. V. Karzanov: Maximum skew-symmetric flows. Proceedings of
the Third Annual European Symposium on Algorithms, 155–170, 1995.

[8] A. V. Goldberg, A. V. Karzanov: Path problems in skew-symmetric graphs. Combi-
natorica, 16:353–382, 1996.

13



[9] A. V. Goldberg, A. V. Karzanov: Maximum skew-symmetric flows and matchings.
Mathematical Programming, 100:537–568, 2004.

[10] F. Harary: On the notion of balance of a signed graph. Michigan Mathematical Jour-
nal, 2:143–146, 1953–1954.

[11] S. Iwata: Block triangularization of skew-symmetric matrices. Linear Algebra and its
Applications, 273:215–226, 1998.

[12] R. M. Karp: Reducibility among combinatorial problems. In: R. E. Miller, J. W.
Thatcher (Eds.): Complexity of Computer Computations, 85–103, 1972.

[13] P. Medvedev, M. Brudno: Maximum likelihood genome assembly. Journal of Com-
putational Biology, 16:1101–1116, 2009.

[14] P. Medvedev, K. Georgiou, G. Myers, M. Brudno: Computability of models for se-
quence assembly. Algorithms in Bioinformatics, 289–301, 2007.

[15] W. T. Tutte: Antisymmetrical digraphs. Canadian Journal of Mathematics, 19:1101–
1117, 1967.

[16] T. Yasuda: Inferring chromosome structures with bidirected graphs constructed from
genomic structural variations. Ph.D. Thesis, The University of Tokyo, 2015.

[17] T. Zaslavsky: Orientation of signed graphs. European Journal of Combinatorics,
12:361–375, 1991.

14


	1 Introduction
	1.1 Related Works
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	3 Settings and the Condensation Operation
	3.1 Problem Settings
	3.2 Reduction to Acyclic Case

	4 Minimization on Signs
	5 Minimization on Arcs
	6 Concluding Remarks

