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Abstract
Clique clustering is the problem of partitioning the vertices of a graph into disjoint
clusters, where each cluster forms a clique in the graph, while optimizing some objec-
tive function. In online clustering, the input graph is given one vertex at a time, and any
vertices that have previously been clustered together are not allowed to be separated.
The goal is to maintain a clustering with an objective value close to the optimal solu-
tion. For the variant where we want to maximize the number of edges in the clusters,
we propose an online algorithm based on the doubling technique. It has an asymptotic
competitive ratio at most 15.646 and a strict competitive ratio at most 22.641. We also
show that no deterministic algorithm can have an asymptotic competitive ratio bet-
ter than 6. For the variant where we want to minimize the number of edges between
clusters, we show that the deterministic competitive ratio of the problem is n − ω(1),
where n is the number of vertices in the graph.

Keywords Online algorithms · Graphs · Cliques · Competitive analysis · Clustering

M. Chrobak: Research supported by NSF Grants CCF-1536026, CCF-0729071 and CCF-1217314.

This paper builds on preliminary results that appeared in conference publications [7,13].

B Bengt J. Nilsson
bengt.nilsson.TS@mau.se

Marek Chrobak
marek@cs.ucr.edu

Christoph Dürr
christoph.durr@lip6.fr

Aleksander Fabijan
aleksander.fabijan@mau.se

1 Department of Computer Science and Engineering, University of California at Riverside,
Riverside, USA

2 Laboratoire d’informatique de Paris 6, LIP6, CNRS, Sorbonne Université, 75252 Paris, France

3 Department of Computer Science and Media Technology, Malmö University, 205 06 Malmö, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00625-1&domain=pdf
http://orcid.org/0000-0002-1342-8618


Algorithmica (2020) 82:938–965 939

1 Introduction

The correlation clustering problem and its different variants have been extensively
studied over the past decades; see e.g. [1,5,11]. The instance of correlation clustering
consists of a graph whose vertices represent some objects and edges represent their
similarity. The objective is to find a partitioning of the graph into disjoint subsets
called clusters that is optimal, or at least near-optimal, with respect to some objective
function. Several objective functions are used in the literature, e.g., maximizing the
number of edges within the clusters plus the number of non-edges between clusters
(maximizing agreements), or minimizing the number of non-edges inside the clusters
plus the number of edges outside them (minimizing disagreements). Unlike more con-
ventional approaches to clustering, typically involving some parameter that controls
the number or the size of clusters, correlation clustering is parameter-free—the struc-
ture of the computed clustering conforms naturally to the similarity function. Bansal et
al. [1] show that both the minimization of disagreement edges and the maximization
of agreement edges versions are NP-hard. However, from the point of view of approx-
imation the two versions differ. In the case of maximizing agreements, this problem
admits a PTAS, whereas in the case of minimizing disagreements it is APX-hard. Sev-
eral efficient constant factor approximation algorithms are proposed for minimizing
disagreements [1,5,11] and maximizing agreements [5].

Another approach to developing parameter-free clustering models is by imposing
restrictions on the structure of clusters. We study the variant, called clique clustering,
where the clusters are required to form disjoint cliques in the underlying graph G =
(V , E). Here, we can maximize the number of edges inside the clusters or minimize
the number of edges outside the clusters. These measures give rise to the maximum
andminimum clique clustering problems, respectively. The computational complexity
and approximability of these problems have attracted attention recently [12,15,18],
and they have several applications within the areas of gene expression profiling and
rDNA clone classification [2,14,18–20]. In the context of rDNA clone classification,
for example, a collection of unknown rDNA clones from some environment (bacteria
from gut or fungi from soil) are subjected to a sequence of hybridization experiments
with appropriately designed primers (short DNA sequences). The signals from these
experiments produce a fingerprint vector associated with each clone. Very similar
fingerprint vectors typically represent rDNA clones of closely related organisms, so
clustering of such fingerprint vectors allows one to estimate the level of diversity of
a bacterial or fungal community and help with their taxonomic classification. The
use of parameter-free clustering is necessitated by the lack of prior information about
the environments from which the samples are taken, and clustering into cliques—
rather than correlation clustering—reduces the likelihood of “false positives”, namely
classifying unrelated organisms into one category.

In this paper, we focus on the online variant of clique clustering, where the input
graph G is not known in advance. The vertices of G arrive one at a time. Let vt denote
the vertex that arrives at time t , for t = 1, 2, . . .. When vt arrives, its edges to all
preceding vertices v1, . . . , vt−1 are revealed as well. In other words, after step t , the
subgraph of G induced by v1, v2, . . . , vt is known, but no other information about
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G is available. In fact, we assume that even the number n of vertices is not known
upfront.

Our objective is to design an online algorithm, namely one that constructs a clus-
tering incrementally, step by step, based on the information acquired up to the current
step. Specifically, when vt arrives at step t , the algorithm first creates a singleton clique
{vt }. Then it is allowed to merge any number of cliques (possibly none) in its current
partitioning into larger cliques. No other modifications of the clustering are allowed.
The merge operation in this online setting is irreversible; once vertices are clustered
together, they will remain so, and hence, a bad decision may have significant impact
on the final solution. This online model was proposed by Charikar et al. [4].

With only limited information about the input sequence and the restrictions on
allowed operations, an online clique clustering algorithm cannot be guaranteed to
always compute an optimal solution. This is a common feature of most online prob-
lems, where information about the input appears gradually over time, and the online
algorithm is required to build its solution incrementally, at all timesmaintaining a valid
solution to the already revealed input sequence. As is common in the area of online
algorithms, we will measure the performance of an online algorithm by its compet-
itive ratio, which represents the ratio between the optimal solution and the solution
produced by the algorithm.We distinguish between the strict competitive ratio, which
is the worst-case such ratio over all possible inputs, and the asymptotic competitive
ratio, which is (roughly) the limit of such ratios when the optimum value grows to
infinity. We define these concepts formally in Sect. 2. We refer the reader to [3] for
more background on online problems and competitive analysis.

We emphasize thatwe place no limits on the computational power of our algorithms.
This approach allows us to focus specifically on the limits posed by the lack of complete
information about the input. Similar settings have been studied in previous work
on online computation, for example for online medians [8,9,16], minimum-latency
tours [6], and several other online optimization problems [10], where algorithms with
unlimited computational power were studied.

Our approach to online clustering is closely related to that of Mathieu et al. [17],
who studiy online correlation clustering. Also in their version, vertices arrive one
at a time and clusters need to be built incrementally. They prove that for minimizing
disagreements the optimal competitive ratio is�(n), and that it is achieved by a simple
greedy algorithm. For maximizing agreements they show that the greedy algorithm is
2-competitive, that a slightly smaller competitive ratio can be achieved with a more
sophisticated algorithm, but that no online algorithm can have ratio smaller than 1.199.
Interestingly, while the values of the ratios are significantly different, these results
parallel those for clique clustering presented in this paper, see below.

Our results. We investigate the online clique clustering problem and provide upper
and lower bounds for the competitive ratios for its maximization and minimization
versions, that we denote MaxCC and MinCC, respectively.

Section 3 is devoted to the study ofMaxCC. We first observe that the competitive
ratio of the natural greedy algorithm is linear in n. We then give a constant competitive
algorithm for MaxCC, with asymptotic competitive ratio at most 15.646 and strict
competitive ratio at most 22.641. The algorithm is based on the doubling technique
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often used in online algorithms. We show that the doubling approach cannot give a
competitive ratio smaller than 10.927. We also give a general lower bound, proving
that there is no online algorithm for MaxCC with competitive ratio smaller than 6.
Both these lower bounds apply also to asymptotic ratios.

In Sect. 4 we study online algorithms forMinCC.We prove that no online algorithm
can have a competitive ratio of n − ω(1). We then show that the competitive ratio of
the greedy algorithm is n − 2, matching this lower bound.

2 Preliminaries

We begin with some notation and basic definitions of the MaxCC and MinCC clus-
tering problems. They are defined on an input graph G = (V , E), with vertex set V
and edge set E . We wish to find a partitioning of the vertices in V into clusters so that
each cluster induces a clique in G. In addition, we want to optimize some objective
function associated with the clustering. In theMaxCC case this objective function is
to maximize the total number of edges inside the clusters, whereas in theMinCC case
we want to minimize the number of edges outside the clusters.

We adapt the incremental model that was proposed by Charikar et al. [4] and
Mathieu et al. [17] for the online correlation clustering problem. Throughout the paper
we will implicitly assume that any graph G has its vertices ordered v1, v2, . . . , vn .
These vertices arrive one at a time; that is, at step t vertex vt and all edges between vt

and the previous vertices v1, v2, . . . , vt−1 are revealed. At each step the arriving vertex
is placed into a newsingleton cluster. The resulting clustering canbe thenupdated using
any number of merge operations, where merge(C, C ′) merges two existing clusters
C, C ′ into one, provided that the resulting cluster induces a clique in G. This means
that once two vertices are clustered together, they cannot be later separated.

For MaxCC, we define the profit of a clustering C = {C1, . . . , Ck} of a given
graph G = (V , E) to be the total number of edges in its cliques, that is

∑k
i=1

(|Ci |
2

) =
1
2

∑k
i=1 |Ci |(|Ci | − 1). Similarly, for MinCC, we define the cost of C to be the total

number of edges outside its cliques, that is |E |−∑k
i=1

(|Ci |
2

)
. For a graph G, we denote

the optimal profit or cost for MaxCC and MinCC, respectively, by profitOPT(G) and
costOPT(G).

As mentioned earlier, we will measure the performance of an online algorithm by
its competitive ratio. This ratio is defined as the worst case ratio between the profit/cost
of the online algorithm and the profit/cost of an offline optimal algorithm, one that
knows the complete input sequence in advance.More formally, for an online algorithm
S, we define profitS(G) to be the profit of S when the input graph is G = (V , E)

and, similarly, let costS(G)
def= |E | − profitS(G) be the cost of S on G.

We say that an online algorithmS is R-competitive forMaxCC if there is a constant
β such that, for any input graph G, we have

R · profitS(G) + β ≥ profitOPT(G). (1)

Similarly S is R-competitive for MinCC if there is a constant β such that, for any
input graph G, we have
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costS(G) ≤ R · costOPT(G) + β. (2)

The reason for defining the competitive ratio differently for maximization and min-
imization problems is to have all ratios being at least 1. The smallest R for which
an online algorithm S is R-competitive is called the (asymptotic) competitive ratio
of S. The smallest R for which S is R-competitive with β = 0 is called the strict
competitive ratio of S. (If it so happens that these minimum values do not exist, in
both cases the competitive ratio is actually defined by the corresponding infimum.)

Note that an online algorithm does not know when the last vertex arrives and, as a
consequence, in order to be R-competitive, it needs to ensure that the corresponding
bound, (1) or (2), is valid after each step. To be more precise, for any given step
t , inequalities (1) and (2) need to hold for the graph G = Gt induced by vertices
v1, v2, . . . , vt . We stress here that we place no restrictions on the optimal solution (in
particular, it does not need to be incremental); that is, for any such Gt , the values of
profitOPT(Gt ) and costOPT(Gt ) are simply offline optimal solutions computed for the
input graph G = Gt .

3 OnlineMaximum Clique Clustering

In this section, we study online MaxCC, the clique clustering problem where the
objective is to maximize the number of edges within the cliques. The main results
here are upper and lower bounds for the competitive ratio. For the upper bound, we
give an algorithm that uses a doubling technique to achieve a competitive ratio of at
most 15.646. For the lower bound, we show that no online algorithm has a competitive
ratio smaller than 6. Additional results include a competitive analysis of the greedy
algorithm and a lower bound for doubling based algorithms.

3.1 The Greedy Algorithm for OnlineMAXCC

Greedy, the greedy algorithm forMaxCC, merges each input vertex with the largest
current cluster that maintains the clique property. This maximizes the increase in profit
at this step. If no such merging is possible the vertex remains in its singleton cluster.
Greedy algorithms are commonly used as heuristics for a variety of online problems
and in some cases they produce near-optimal solutions. We show that forMaxCC the
solution of Greedy can be far from optimal.

We start with an observation that examines the ratio of Greedy for small values of
n; and we follow it with lower and upper bounds for arbitrary values of n.

Observation 1 For n = 1, 2, 3, Greedy always finds an optimal clustering.

This observation is straightforward; it follows by exhaustive verification of a small
number of cases, as shown in Fig. 1.

Theorem 1 For all n ≥ 2, Greedy has competitive ratio at least �n/2� for MaxCC.
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n=1

n=2

n=3

Fig. 1 Greedy finds optimal clusterings for n = 1, 2, 3. Vertices are released in order from left to right
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Fig. 2 Illustrating the proof of Theorem 1 for odd and even n

Proof We first give the proof for the strict ratio, and then extend it to the asymptotic
ratio. By Observation 1, for n = 2, 3, the ratio is 1 and the theorem holds. So we can
assume that n ≥ 4.

Consider an adversary that provides input to the algorithm to make it behave as
badly as possible. Our adversary creates an instance with n vertices, numbered from 1
to n. The odd vertices are connected to form a clique, and similarly the even ver-
tices are connected to form a clique. In addition each vertex of the form 2i , for
i = 1, . . . , �(n − 1)/2�, is connected to vertex 2i − 1; see Fig. 2.

Greedy clusters the vertices as odd/even pairs, leaving the vertex 2k − 1 as a
singleton if n = 2k − 1 is odd, and leaving both vertices 2k − 1 and 2k as singletons
if n = 2k is even. This generates a clustering of profit profitGDY(G) = k − 1. An
optimal algorithm clusters the odd vertices in one clique of size k and the even vertices
in another clique of size k − 1 or k, depending on whether n is odd or even. The profit
for the optimal solution is profitOPT(G) = (k − 1)2 if n is odd, and profitOPT(G) =
k(k − 1) if n is even. Hence, the ratio between the optimum and the greedy solution is
k − 1 = (n − 1)/2 = �n/2� if n is odd, and k = n/2 = �n/2� if n is even; therefore
the worst case strict competitive ratio of the greedy algorithm is at least �n/2�.

To obtain the same lower bound on the asymptotic ratio, it suffices to notice that,
if we follow the above adversary algorithm, then for any R < �n/2� and any constant
β > 0, we can find sufficiently large n for which inequality (1) will be false. ��
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Next, we look at the upper bound for the greedy algorithm.

Theorem 2 For all n ≥ 2, Greedy’s strict competitive ratio for MaxCC is at
most �n/2�.

Proof By Observation 1, for n = 2, 3, the ratio is 1 and the theorem holds. So in the
rest of the proof we can assume that n ≥ 4.

Fix an optimal clustering of G that we denote OPT(G). Assume this clustering
consists of p non-singleton clusters of sizes c1, . . . , cp . The profit of OPT(G) is
profitOPT(G) = 1

2

∑p
i=1 ci (ci − 1). Let k = maxi ci be the size of the maximum

cluster of OPT(G).

Case 1: k ≤ �n/2�. In this case, we can distribute the profit of each cluster ofGreedy
equally among the participating vertices; that is, if a vertex belongs to a Greedy
cluster of size c, it will be assigned a profit of 1

2 (c − 1). We refer to this quantity as
charged profit. We now note that at most one vertex in each cluster of OPT(G) can be
a singleton cluster inGreedy’s clustering, since otherwiseGreedywould cluster any
two such vertices together. This gives us that each vertex in a non-singleton cluster
of OPT(G), except possibly for one, has charged profit at least 1

2 . So the total profit
charged to the vertices of an OPT(G) cluster of size ci is at least 1

2 (ci − 1). Therefore
the profit ratio for this clique of OPT(G), namely the ratio between its optimal profit
and Greedy’s charged profit, is at most

1
2ci (ci − 1)
1
2 (ci − 1)

= ci .

From this bound and the case assumption, all cliques of OPT(G) have profit ratio at
most k ≤ �n/2�, so the competitive ratio is also at most �n/2�.
Case 2: k ≥ �n/2� + 1. In this case there is a unique cluster Q in OPT(G) of size k.
The optimum profit is maximized if the graph has one other clique of size n − k, so

profitOPT(G) ≤ 1
2k(k − 1) + 1

2 (n − k)(n − k − 1) = 1
2

(
n2 + 2k2 − 2nk − n

)
. (3)

We now consider two sub-cases.

Case 2.1: Greedy’s profit is at least k. In this case, using (3) and k ≥ �n/2� + 1 ≥
1
2 (n + 1), the competitive ratio is at most

1
2

(
n2 + 2k2 − 2nk − n

)

k
≤ 1

2 (n − 1) ≤ �n/2�,

where the first inequality holds because

(
n2 + 2k2 − 2nk − n

) − k(n − 1) = −2
(
k − 1

2 (n − 1)
)
(n − k) ≤ 0

for 1
2 (n + 1) ≤ k ≤ n.
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Case 2.2: Greedy’s profit is at most k − 1. We show that in this case the profit of
Greedy is in fact equal to k − 1, and that Greedy’s clustering has a special form.

To prove this claim, consider those clusters of Greedy that intersect Q. For i ≥ 1
and j ≥ 0, let di j be the number of these clusters that have i vertices in Q and j
outside Q. Note that at most one cluster of Greedy can be wholly contained in Q, as
otherwise Greedy would merge such clusters. Denote by α the size of this cluster of
Greedy contained in Q (if it exists; if not, let α = 0). Let also β = d11 and

γ =
∑

i, j≥1
i+ j≥3

i · di j = k − α − β ≥ 0,

where k = ∑
i≥1, j≥0 i · di j counts the number of vertices in Q. The total profit of

Greedy is at least

1
2

∑

i≥1, j≥0

(i + j)(i + j − 1)di j = 1
2α(α − 1) + β + 1

2

∑

i, j≥1
i+ j≥3

(i + j)(i + j − 1)di j

≥ 1
2α(α − 1) + β + 3

2

∑

i, j≥1
i+ j≥3

i · di j

= 1
2α(α − 1) + β + 3

2γ

= k + 1
2α(α − 3) + 1

2γ

≥ k − 1 + 1
2γ.

The last inequality holds because, for integer values of α, the expression α(α − 3) is
minimized for α ∈ {1, 2}.

Combined with the case assumption that Greedy’s profit is at most k − 1, we can
now conclude that Greedy’s profit is indeed equal to k − 1 and, in addition, we have
that γ = 0 and α ∈ {1, 2}.

So, forα = 1,Greedy’s clustering consists of k−1disjoint edges, eachwith exactly
one endpoint in Q, plus a singleton vertex in Q. Thus n ≥ 2k − 1. As k ≥ �n/2� + 1,
this is possible only when n = 2k − 1. By (3), the optimal profit in this case is at most
(k − 1)2, so the ratio is at most k − 1 = �n/2�.

For α = 2, Greedy’s clustering consists of k − 1 edges, of which one is contained
in Q and the remaining ones have exactly one endpoint in Q. So n ≥ 2k − 2. If n is
odd, this and the bound k ≥ �n/2� + 1 would force n = 2k − 1, in which case the
argument from the paragraph above applies. On the other hand, if n is even, then these
bounds will force n = 2k − 2. Then, by (3), the optimal profit is k2 − 3k + 3, so the
competitive ratio is at most (k2−3k+3)/(k−1) = k−2+1/(k−1) ≤ k−1 = �n/2�,
for k ≥ 2, concluding the proof. ��
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3.2 A Constant Competitive Algorithm forMAXCC

In this section, we give our competitive online algorithmOCC. Roughly, the algorithm
works in phases. In each phase we consider the “batch” of nodes that have not yet
been clustered with other nodes, compute an optimal clustering for this batch, and add
these new clusters to the algorithm’s clustering. The phases are defined so that the
profit for consecutive phases increases exponentially.

The overall idea can be thought of as an application of the “doubling” algorithm
(see [10], for example), but in our case a subtle modification is required. Unlike other
doubling approaches, the phases are not completely independent in our algorithm: the
clustering computed in each phase, in addition to the new vertices, needs to include the
singleton vertices from earlier phases as well. This is needed, because in our objective
function singleton clusters do not bring any profit.

We remark that one could alternatively consider using profit value k2/2 for a clique
of size k, which is a very close approximation to our function if k is large. This would
lead to a simpler algorithm and much simpler analysis. However, this function is a
bad approximation when the clustering involves many small cliques. This is, in fact,
the most challenging scenario in the analysis of our algorithm, and instances with this
property are also used in the lower bound proof in Sect. 3.4.

3.2.1 AlgorithmOCC

We now describe our algorithm. Fix some constant parameter γ > 1. The algorithm
works in phases, starting with phase j = 0. At any moment the clustering maintained
by the algorithm contains a set U of singleton clusters. During phase j , each arriving
vertex is added into U . As soon as there is a clustering of U of profit at least γ j , the
algorithm clusters U according to this clustering and adds these new (non-singleton)
clusters to its current clustering. The vertices that still form singleton clusters remain
in U and then phase j + 1 starts.

Note that phase 0 ends as soon as one edge is revealed, since then it is possible for
OCC to create a clustering with γ 0 = 1 edge. The last phase may not be complete; as
a result all nodes released in this phase will be clustered as singletons. Observe also
that the algorithm never merges non-singleton cliques produced in different phases.

3.2.2 Asymptotic Analysis ofOCC

For the purpose of the analysis it is convenient to consider (without loss of generality)
only infinite ordered graphs H , whose vertices arrive one at a time in some order
v1, v2, . . ., and we consider the ratios between the optimum profit and OCC’s profit
after each step. Furthermore, to make certain that all phases are well-defined, we
will assume that the optimum profit for the whole graph H is unbounded. Any finite
instance can be converted into an infinite instance with this property by appending to
it an infinite sequence of disjoint edges, without decreasing the worst-case profit ratio.

For a given instance (infinite graph) H , define O j (H) to be the total profit of the
adversary at the end of phase j in the OCC’s computation on H . (More precisely, if
v1, v2, . . . , vt are the vertices released in the first j phases, thenO j (H) is the optimum
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offline profit of a clustering of the subgraph Ht of H induced by v1, v2, . . . , vt . See
also the last paragraph in Sect. 2.)

Similarly, S j (H) denotes the total profit of Algorithm OCC at the end of phase j
(including the incremental clustering produced in phase j). During phase 0 the graph is
empty, and at the end of phase 0 it consists of only one edge, so S0(H) = O0(H) = 1.
For any phase j > 0, the profit of OCC is equal to S j−1(H) throughout the phase,
except right after the very last step, when new non-singleton clusters are created. At
the same time, the optimum profit can only increase. Thus the maximum ratio in phase
j is at most O j (H)/S j−1(H). We can then conclude that, to estimate the competitive
ratio of our algorithm OCC, it is sufficient to establish an asymptotic upper bound on
numbers R j , for j = 1, 2, . . ., defined by

R j = max
H

O j (H)

S j−1(H)
, (4)

where the maximum is taken over all infinite ordered graphs H . (While not imme-
diately obvious, the maximum is well-defined. There are infinitely many prefixes of
H on which OCC will execute j phases, due to the presence of singleton clusters.
However, since these singletons induce an independent set after j phases, only finitely
many graphs H need to be considered in this maximum.)

Deriving a recurrence for R j ’s. Our objective now is to derive a recurrence relation
for the sequence R1, R2, . . .. The value of R1 is some constant whose exact value is
not important here since we are interested in the asymptotic ratio. (We will, however,
estimate R1 later, when we bound the strict competitive ratio in Sect. 3.2.3.)

So now, fix some j ≥ 2 and assume that ratios R1, R2, . . . , R j−1 are given. We want
to bound R j in terms of R1, R2, . . . , R j−1. To this end, let H∗ be some infinite graph
for which R j is realized, that is R j = O j (H∗)/S j−1(H∗). With H∗ fixed, to avoid
clutter, we will omit it in our notation, writing Oi = Oi (H∗), Si = Si (H∗), etc., for
i = 1, 2, . . . , j . In particular, from the choice of H∗, we have R j = O j/S j−1.

We claim that, without loss of generality, we can assume that in the computation
on H∗, the incremental clusterings of Algorithm OCC in each phase 1, 2, . . . , j − 1
do not contain any singleton clusters. (The clustering in phase j , however, is allowed
to contain singletons.) We will refer to this property as the No-Singletons Assumption.

To prove this claim, we modify the ordering of H∗ as follows: if there is a phase
i < j such that the incremental clustering of U in phase i clusters some vertex v

from U as a singleton, then delay the release of v to the beginning of phase i + 1.
Postponing a release of a vertex that was clustered as a singleton in some phase i < j to
the beginning of phase i +1 does not affect the computation and profit ofOCC, because
vertices from singleton clusters remain in U , and thus are available for clustering in
phase i + 1. In particular, the value of S j−1 will not change. This modification also
does not change the value of O j , because the subgraph of H∗ induced by the first j
phases is the same, only the ordering of the vertices has been changed. We can thus
repeat this process until the No-Singletons Assumption is eventually satisfied. This
proves the claim.
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After this modification of H∗ we still have O j/S j−1 = R j , and of course also
Oi/Si−1 ≤ Ri for i = 1, 2, . . . , j − 1, from the definition (4) of Ri ’s. (Note that for
i < j the inequality Oi/Si−1 ≤ Ri could be strict, since Ri could be realized by a
different graph.)

With the No-Singletons Assumption, the set U is empty at the beginning of each
phase 0, 1, . . . , j . We can thus divide the vertices of H∗ released in phases 0, 1, . . . , j
into disjoint batches, where batch Bi contains the vertices released in phase i , for
i = 0, 1, . . . , j . (At the end of phase i , right before the clustering is updated, we will
have Bi = U .) For each such i , denote by �i the maximum profit of a clustering of
Bi . Then the total profit after i phases is Si = �0 + · · · + �i , and, by the definition
of OCC, we have �i ≥ γ i , which implies that Si ≥ (γ i+1 − 1)/(γ − 1).

For i = 0, 1, . . . , j , let B̄i = B0 ∪ · · · ∪ Bi be the set of all vertices of H∗ released
in phases 0, . . . , i . Consider the optimal clustering of B̄ j . In this clustering, every
cluster has some number a of nodes in B̄ j−1 and some number b of nodes in B j . For
any a, b ≥ 0, let ka,b be the number of clusters of this form in the optimal clustering
of B̄ j . Then we have the following bounds, where the sums range over all integers
a, b ≥ 0:

O j =
∑ (

a + b

2

)

ka,b (5)

O j−1 ≥
∑ (

a

2

)

ka,b (6)

� j ≥
∑ (

b

2

)

ka,b (7)

S j−1 ≥ 1
2

∑
aka,b (8)

Equality (5) is the definition of O j . Inequality (6) holds because the right hand side
represents the profit of the optimal clustering of B̄ j restricted to B̄ j−1, so it cannot
exceed the optimal profit O j−1 for B̄ j−1. Similarly, inequality (7) holds because the
right hand side is the profit of the optimal clustering of B̄ j restricted to B j , while� j is
the optimal profit of B j . The last bound (8) follows from the fact that (as a consequence
of the No-Singletons Assumption) our algorithm does not have any singleton clusters
in B̄ j−1. This means that in OCC’s clustering of B̄ j−1 (which has

∑
aka,b vertices)

each vertex has an edge included in some cluster, so the number of these edges must
be at least 1

2

∑
aka,b.

We can also bound the algorithm’s profit values �i and Si , for 0 ≤ i ≤ j , from
above. (Why we need upper bounds for the algorithm’s profit will be seen shortly.)
We have �0 = 1 and for each phase i ≥ 1,

�i ≤ γ i + 1
2

(√

8γ i + 1 + 1

)

< γ i + √
2γ j/2 + 2 − √

2. (9)

To show (9), suppose that phase i ends at step t (that is, right after vt is revealed).
Consider the optimal partitioning P of Bi , and let the cluster c containing vt in P
have size p + 1. If we remove vt from this partitioning, we obtain a partitioning P ′ of
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the batch after step t − 1, whose profit must be strictly smaller than γ i . So the profit
of P is smaller than γ i + p. In partitioning P ′, the cluster c − {vt } has size p. We
thus obtain that

(p
2

)
< γ i , because, in the worst case, P consists only of cluster c.

This gives us p < 1
2 (

√
8γ i + 1 + 1). The second inequality in (9) follows by routine

calculation.
From (9), by adding up all profits from phases 0, . . . , i , we obtain an upper bound

on the total profit of the algorithm:

Si <
γ i+1 − 1

γ − 1
+ √

2 · γ (i+1)/2 − γ 1/2

γ 1/2 − 1
+ (

2 − √
2
)
i + 1. (10)

Lemma 3.1 For any pair of non-negative integers a and b, the inequality

(
a + b

2

)

≤ (x + 1)

(
a

2

)

+ x + 1

x

(
b

2

)

+ a

holds for any 0 < x ≤ 1.

Proof Define the function

F(a, b, x) = 2x(x + 1)

(
a

2

)

+ 2(x + 1)

(
b

2

)

+ 2ax − 2x

(
a + b

2

)

= a2x2 − ax2 + 2ax + b2 − b − 2abx

= (b − ax)2 + ax(2 − x) − b,

i.e., 2x times the difference between the right hand side and the left hand side of the
inequality above. It is sufficient to show that F(a, b, x) is non-negative for integers
a, b ≥ 0 and 0 < x ≤ 1.

Consider first the caseswhena ∈ {0, 1}orb ∈ {0, 1}. F(0, b, x) = b(b−1) ≥ 0, for
any non-negative integer b and any x . F(a, 0, x) = ax(ax −x +2) ≥ ax(ax +1) > 0,
for any positive integer a and 0 < x ≤ 1. F(a, 1, x) = x2a(a − 1) ≥ 0, for
any positive integer a and any x . F(1, 2, x) = 2 − 2x ≥ 0, for 0 < x ≤ 1, and
F(1, b, x) = b2 −b +2x −2bx ≥ b2 −3b ≥ 0, for any integer b ≥ 3 and 0 < x ≤ 1.

Thus, it only remains to show that F(a, b, x) is non-negative when both a ≥ 2
and b ≥ 2. The function F(a, b, x) is quadratic in x and hence has one local minimum
at x0 = b−1

a−1 , as can be easily verified by differentiating F in x . Therefore, in the case
when a ≤ b, F(a, b, x) ≥ F(a, b, 1) = (b −a)2 − (b −a) ≥ 0, for 0 < x ≤ 1. In the
case when a > b, we have that F(a, b, x) ≥ F(a, b, b−1

a−1 ) = (a−b)(b−1)
a−1 > 0, which

completes the proof. ��
We now combine all estimates derived above to establish our recurrence. Fix some

parameter x , 0 < x < 1, whose value we will determine later. Using Lemma 3.1, the
bounds (5)–(8), and the definition of R j−1, we obtain

R jS j−1 = O j =
∑ (

a + b

2

)

ka,b
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≤ (x + 1)
∑ (

a

2

)

ka,b + x + 1

x

∑ (
b

2

)

ka,b +
∑

aka,b

≤ (x + 1)O j−1 + x + 1

x
� j + 2S j−1

≤ (x + 1)R j−1S j−2 + x + 1

x
� j + 2S j−1. (11)

(Recall that j ≥ 2.) Thus R j satisfies the inequality

R j ≤ x + 1

xS j−1

[

xS j−2R j−1 + � j

]

+ 2. (12)

From inequalities (9) and (10), we have

�i = γ i (1 + o(1)) and Si = γ i+1(1 + o(1))

γ − 1
.

for all i = 0, 1, . . . , j . Above, we use the notation o(1) to denote any function that
tends to 0 as the phase index i goes to infinity (with x and γ assumed to be some
fixed constants, still to be determined). Substituting into inequality (12), we obtain
our recurrence for the numbers R j :

R j ≤
( x + 1

γ
+ o(1)

)
· R j−1 + (x + 1)(γ − 1)

x
+ 2 + o(1). (13)

Solving recurrence. (13) Define

R = γ (γ x + x + γ − 1)

x(γ − x − 1)
. (14)

Lemma 3.2 If x + 1 < γ then R j = R + o(1).

Proof The proof is by routine calculus, so we only provide a sketch. For all j ≥ 1 let
ρ j = R j −R. Then, substituting this into (13) and simplifying, we obtain that the ρ j ’s
satisfy the recurrence

ρ j ≤
( x + 1

γ
+ o(1)

)
· ρ j−1 + o(1). (15)

Since x + 1 < γ , this implies that ρ j = o(1), and the lemma follows. ��
Lemma 3.2 gives us (essentially) a bound of R on the asymptotic competitive ratio

of Algorithm OCC, for fixed values of parameters γ (of the algorithm) and x (of the
analysis). We can now choose γ and x to make R as small as possible. R is minimized
for parameters x = 1

2 (5 − √
13) ≈ 0.697 and γ = 1

2 (3 + √
13) ≈ 3.303, yielding

R = 1
6 (47 + 13

√
13) ≈ 15.646.
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Using Lemma 3.2, for each infinite graph H and phase j , we have that O j (H) ≤
(R + o(1))S j−1(H). Since, in fact, R < 15.646, this implies that O j (H) ≤ 15.646 ·
S j−1(H), as long as j is large enough. Thus O j (H) ≤ 15.646 · S j−1(H) + O(1) for
all phases j . As we discussed earlier, boundingO j (H) in terms of S j−1(H) like this is
sufficient to establish a bound on the (asymptotic) competitive ratio of AlgorithmOCC.
Summarizing, we obtain the following theorem.

Theorem 3 The asymptotic competitive ratio of Algorithm OCC is at most 15.646.

3.2.3 Strict Competitive Ratio

In fact, for γ = 1
2 (3 + √

13), Algorithm OCC has a low strict competitive ratio as
well. We show that this ratio is at most 22.641. The argument uses the same value of
parameter x = 1

2 (5 − √
13), but requires a more refined analysis.

When phase 0 ends, the competitive ratio is 1. For j ≥ 1, let O′
j be the optimal

profit right before phase j ends, that is before the last vertex of phase j is released.
(Earlier we used O j to upper bound this value, but this is a loose bound because it
also includes the profit for the last step of phase j .) It remains to show that for phases
j ≥ 1 we have R′

j ≤ 22.641, where R′
j = O′

j/S j−1.
The outline of the argument is as follows. By exhaustively analyzing the behavior of

Algorithm OCC in phase 1, taking into account that γ ≈ 3.303 > 3, we can establish
that R′

1 = 10. We will then bound the remaining ratios using a refined version of
recurrence (12).

We start by establishing the maximum value of R′
1 = O′

1/S0 = O′
1. Let t be the

last step of phase 1. By the construction of the algorithm, since γ ≈ 3.303, after step
t − 1 the profit of the vertices released in phase 1 is at most 3. We can assume that
phase 0 has only two vertices v1, v2 connected by an edge. Let Ht be the subgraph
of H induced by v1, . . . , vt−1 and H ′

t be its subgraph induced by v3, . . . , vt−1. Thus
R′
1 is equal to the maximum value (over all choices of H ) of the optimal profit of Ht

under the assumption that the optimal profit of H ′
t is at most 3. We now proceed to

bound this value.
Denote byKi the cliquewith i vertices. The optimal clustering of H ′

t cannot include
a K4, and either

1. H ′
t has no K3, and it has at most three K2’s, or

2. H ′
t has a K3, with each edge of H ′

t having at least one endpoint in this K3.

In Case 1, Ht cannot contain a K5. If a clustering of Ht includes a K4 then this K4
contains v1, v2, and two vertices from phase 1. So, in addition to this K4 it can at
best include two K2’s, for a total profit of at most 8. In Case 2, if a clustering of Ht

includes a K5, then it cannot include any cluster except this K5, so its profit is 10. If
a clustering of Ht includes a K4, then this K4 must contain at least one of v1 and v2,
and it may include at most one other clique of type K2. This will give a total profit of
at most 7. Summarizing, in each case the profit of Ht is at most 10 giving us R′

1 ≤ 10,
as claimed.
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Table 1 Some initial bounds for S j and the strict competitive ratio

j 0 1 2 3 4 5 6 7 8

min S j 1 5 16 53 172 566 1864 6152 20311

max S j 1 7 23 68 202 623 1972 6352 20679

R′
j 1.00 10.00 13.18 18.63 21.88 22.64 21.51 19.92 18.50

Maximum bound value is highlighted in bold

For phases j ≥ 2, we can tabulate upper bounds for R′
j by explicitly computing the

ratios R′
j = O′

j/S j−1 using the following modification of recurrence (12),

R′
j ≤ x + 1

xS j−1

[

xS j−2R′
j−1 + � j

]

+ 2, (16)

where we use the more exact bounds

�γ i� ≤ �i ≤ �γ i + 1
2 (

√

8γ i + 1 + 1)�,

obtained by rounding the bounds �i ≥ γ i and (9), which we can do because �i is

integral. From the definition of Si
def= 1+∑i

i ′=1 �i ′ , we compute the first few estimates
as shown in Table 1.

To bound the sequence {R′
j } j≥9 we rewrite recurrence (16) as

R′
j ≤ (x + 1)S j−2

S j−1
· R′

j−1 + (x + 1)� j

xS j−1
+ 2 = α jR′

j−1 + β j ,

and bound α j and β j using (9) and (10). With routine calculations, we can establish
the bounds α j < 3

5 and β j < 8, for j ≥ 8.

Therefore R′
j ≤ R̂ j , where R̂ j is

R̂ j = 3
5 R̂ j−1 + 8 ≤ 20 − a

( 3
5

) j
,

for j ≥ 8 and some positive constant a. The sequence {R̂ j } j≥9, is thus bounded above
by a monotonically growing function of j having limit 20 and hence R̂ j ≤ 20 for
every j ≥ 9.

Combining this with the bounds estimated in Table 1, we see that the largest bound
on R′

j is 22.641 given for j = 5. We can thus conclude that the strict competitive ratio
of OCC is at most 22.641.

We can improve on the strict competitive ratio by choosing different values for γ

and x that allow the asymptotic competitive ratio to increase slightly. The optimal
values can be found empirically (using mathematical software) to be γ = 4.02323428
and x = 0.823889, giving asymptotic competitive ratio 15.902 and strict competitive
ratio 20.017.
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3.3 A Lower Bound for AlgorithmOCC

In this section we will show that, for any choice of γ , the worst-case ratio of Algo-
rithm OCC is at least 10.927.

Denote by B j the j-th batch, that is the vertices released in phase j . We will use
notation S j for the profit of OCC and O j for the optimal profit on the sub-instance
consisting of the first j batches. To avoid clutter we will omit lower order terms in our
calculations. In particular, we focus on j being large enough, treating γ j as integer,
and all estimates for S j and O j given below are meant to hold within a factor of
1± o(1). (The asymptotic notation is with respect to the phase index j tending to ∞.)

We start with a simpler construction that shows a lower bound of 9; then we will
explain how to improve it to 10.927. In the instance we construct, all batches will be
disjoint, with the j th batch B j having 2γ j vertices connected by γ j disjoint edges
(that is, a perfect matching). We will refer to these edges as batch edges. The edges
between any two batches Bi and B j , for i < j , form a complete bipartite graph. These
edges will be called cross edges; see Fig. 3.

At the end of each phase j , the algorithm will collect all γ j edges inside B j .
Therefore, by summing up the geometric sequence, right before the end of phase j
(before the algorithm adds the new edges from B j to its clustering), the algorithm’s
profit is

S j−1 =
j−1∑

i=0

γ i ≤ γ j

γ − 1
.

After the first j phases, the adversary’s clustering consists of cliques C p, p =
0, 1, . . . , γ j − 1, where C p contains the p-th edge (that is, its both endpoints) from
each batch Bi for i = p, p + 1, . . . , j ; see Fig. 3. We claim that the adversary gain
after j phases satisfies

Bj

. . . . . .

OCC

. . .

adversary

cross edges

B

batch edges

i

Fig. 3 The lower bound example for Algorithm OCC. The figure shows two batches Bi and B j , for i < j .
Batch edges, drawn with solid lines, are collected by Algorithm OCC. Dashed lines show cross edges that
are in the adversary’s clustering. Shaded regions illustrate the cliques in the adversary’s clustering
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O j ≥ O j−1 + γ j + 4
j−1∑

i=0

γ i = O j−1 + (γ + 3)γ j

γ − 1
. (17)

[Recall that all equalities and inequalities in this section are assumed to hold only
within a factor of 1± o(1).] We now justify this bound. The second term γ j is simply
the number of batch edges in B j . To see where each term 4γ i comes from, consider
the p-th batch edge from Bi , for i < j . When we add B j after phase j , the adversary
can add the 4 cross edges connecting this edge’s endpoints to the endpoints of the pth
batch edge in B j to C p. Overall, this will add 4γ i cross edges between Bi and B j to
the existing adversary’s cliques.

From recurrence (17), by simple summation, we get

O j ≥ (γ + 3)γ j+1

(γ − 1)2
.

Dividing it by OCC’s profit of at most γ j/(γ − 1), we obtain that the ratio is at least
γ (γ+3)

γ−1 , which, by routine calculus, is at least 9.
We now outline an argument showing how to improve this lower bound to 10.927.

The new construction is almost identical to the previous one, except that we change
the very last batch B j . As before, each batch Bi , for i < j , has γ i disjoint edges.
Batch B j will also have γ j edges, but they will be grouped into q = 1

3γ
j disjoint

triangles. (So B j has γ j vertices.) For p = 0, 1, . . . , q − 1, we add the p-th triangle
to clique C p. (If q > γ j−1, the last q − γ j−1 triangles will form new cliques.)

This modification will preserve the number of edges in B j and thus it will not
affect the algorithm’s profit. But now, for each i = 0, 1, . . . , j − 1 and each p =
0, 1, . . . ,min(q, γ i )− 1, we can connect the two vertices in Bi ∩ C p to three vertices
in B j , instead of two. This creates two new cross edges that will be called extra edges.
It should be intuitively clear that the number of these extra edges is 	(γ j ), which
means that this new construction gives a ratio strictly larger than 9.

Specifically, to estimate the ratio, we will distinguish three cases, depending on the
value of γ . Suppose first that γ ≥ 3. Then q ≥ γ j−1, so the number of extra edges
is 2

∑ j−1
i=0 γ i = 2γ j/(γ − 1), because each vertex in B0 ∪ B1 ∪ · · · ∪ B j−1 is now

connected to three vertices in B j , not two. Thus the new optimal profit is

O′
j = O j + 2γ j

γ − 1
= (γ 2 + 5γ − 2)γ j

(γ − 1)2
.

Dividing by OCC’s profit, the ratio is at least γ 2+5γ−2
γ−1 , which is at least 11 for γ ≥ 3.

The second case is when
√
3 ≤ γ ≤ 3. Then γ j−2 ≤ q ≤ γ j−1. In this case all

vertices in B0 ∪ B1 ∪ · · · ∪ B j−2 and 2
3γ

j vertices in B j−1 get an extra edge, so the
number of extra edges is 2γ j−1/(γ − 1)+ 2

3γ
j . Therefore the new adversary profit is

O′
j = O j + 2

γ j−1

γ − 1
+ 2

3γ
j = (5γ 3 + 5γ 2 + 8γ − 6)γ j−1

3(γ − 1)2
.
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We thus have that the ratio is at least 5γ 3+5γ 2+8γ−6
3γ (γ−1) . Minimizing this quantity, we

obtain that the ratio is at least 10.927.
The last case is when 1 < γ ≤ √

3. In this case, even using the earlier construction
(without any extra edges), we have that the ratio O j/S j−1 = γ (γ+3)

γ−1 is at least 3 +
6
√
3 ≈ 11.2 (it is minimized for γ = √

3).

3.4 A Lower Bound of 6 forMAXCC

We now prove that any deterministic online algorithm S for the clique clustering prob-
lem has competitive ratio at least 6. We present the proof for the strict competitive
ratio and explain later how to extend it to the asymptotic ratio. The lower bound is
established by showing, for any constant R < 6, an adversary algorithm for construct-
ing an input graph G on which profitOPT(G) ≥ R · profitS(G), that is the optimal
profit is at least R times the profit of S.
Skeleton trees. Fix some non-negative integer D. (Later we will make the value of
D depend on R.) It is convenient to describe the graph constructed by the adversary
in terms of its underlying skeleton tree T , which is a rooted binary tree. The root of
T will be denoted by r . For a node v ∈ T , define the depth of v to be the number
of edges on the simple path from v to r . The adversary will only use skeleton trees
of the following special form: each non-leaf node at depths 0, 1, . . . , D − 1 has two
children, and each non-leaf node at levels at least D has one child. Such a tree T can
be thought of as consisting of its core subtree, which is the subtree of T induced by
the nodes of depth up to D, with paths attached to its leaves at level D. The nodes of
T at depth D are the leaves of the core subtree. If v is a leaf of the core subtree of T
then the path extending from v down to a leaf of T is called a tentacle—see Fig. 4.
(Thus v belongs both to the core subtree and to the tentacle attached to v.) The length
of a tentacle is the number of its edges. The nodes in the tentacles are all considered
to be left children of their parents.

Skeleton-tree graphs. The graph represented by a skeleton tree T will be denoted by
G. We differentiate between the nodes of T and the vertices of G. The relation between
T and G is illustrated in Fig. 4. The graph G is obtained from the tree T as follows:

r L r R

uL uR

uD

r

tentacle

core subtree

u

Fig. 4 On the left, an example of a skeleton tree T . The core subtree of T has depth 2 and two tentacles,
one of length 2 and one of length 1. On the right, the corresponding graph G
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Fig. 5 Adversary moves. Upward edges from new vertices are not shown, to avoid clutter. Dashed lines
represent cross edges that are not collected by S, while thick lines represent those that are already collected
by S

• For each node u ∈ T we create two vertices uL and uR in G, with an edge between
them. This edge (uL, uR) is called the cross edge corresponding to u.

• Suppose that u, v ∈ T . If u is in the left subtree of v then (uL, vL) and (uR, vL) are
edges of G. If u is in the right subtree of v then (uL, vR) and (uR, vR) are edges of
G. These edges are called upward edges.

• If u ∈ T is a node in a tentacle of T and is not a leaf of T , then G has a vertex uD

with edge (uD, uR). This edge is called a whisker.

The adversary algorithm. The adversary constructs T and G gradually, in response
to algorithm S’s choices. Initially, T is a single node r , and thus G is a single edge
(r L, r R). At this time, profitS(T ) = 0 and profitOPT(T ) = 1, so S is forced to collect
this edge (that is, it creates a 2-clique {r L, r R}), since otherwise the adversary can
immediately stop with unbounded strict competitive ratio.

In general, the invariant of the construction is that, at each step, the only non-
singleton cliques that S can add to its clustering are cross edges that correspond to
the current leaves of T . Suppose that, at some step, S collects a cross edge (uL, uR),
corresponding to node u of T . (S may collect more cross edges in one step; if so, the
adversary applies its algorithm to each such edge independently.) If u is at depth less
than D, the adversary extends T by adding two children of u. If u is at depth at least D,
the adversary only adds the left child of u, thus extending the tentacle ending at u. In
terms of G, the first move appends two triangles to uL and uR, with all corresponding
upward edges. The second move appends a triangle to uL and a whisker to uR (see
Fig. 5). In the case when S decides not to collect any cross edges at some step, the
adversary stops the process.

Thus, the adversary will be building the core binary skeleton tree down to depth
D, and from then on, if the game still continues, it will extend the tree with tentacles.
Our objective is to prove that, in each step, right after the adversary extends the graph
but before S updates its clustering, we have

profitOPT(T ) ≥ (6 − εD) · profitS(T ), (18)

where εD → 0 when D → ∞. This is enough to prove the lower bound of 6 − εD

on the strict ratio. The reason is this: If S does not collect any edges at some step, the
game stops, the ratio is 6 − εD , and we are done. Otherwise, the adversary will stop
the game after 2D+1 + M steps, where M is some large integer. Then the profit of S
is bounded by 2D+1 + M (the number of steps) plus the number of remaining cross
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edges, and there are at most 2D of those, so S’s profit is at most 2D+2 + M . At that
time, T will have at least M nodes in tentacles and at most 2D tentacles, so there is at
least one tentacle of length M/2D , and this tentacle contributes 	((M/2D)2) edges
to the optimum. Thus for M large enough, the ratio between the optimal profit and the
profit of S will be larger than 6 (or any constant, in fact).

Once we establish (18), the lower bound of 6 will follow, because for any fixed
R < 6 we can take D to be large enough to achieve a lower bound of 6 − εD ≥ R.
Computing the adversary’s profit. We now explain how to estimate the adversary’s
profit for G. To this end, we provide a specific recipe for computing a clique clustering
of G. We do not claim that this particular clustering is actually optimal, but it is a lower
bound on the optimum profit, and thus it is sufficient for our purpose.

For any node v ∈ T that is not a leaf, denote by PL(v) the longest path from v to
a leaf of T that goes through the left child of v. If v is a non-leaf in the core tree, and
thus has a right child, then PR(v) is the longest path from v to a leaf of T that goes
through this right child. In both cases, ties are broken arbitrarily but consistently, for
example in favor of the leftmost leaves. If v is in a tentacle (so it does not have the
right child), then we let PR(v) = {v}.

Let PL(v) = (v = v1, v2, . . . , vm), where vm is a leaf of T . Since v is not a
leaf, the definition of T implies that m ≥ 2. We now define the clique CL(v) in G that
corresponds toPL(v). Intuitively, for each vi we add toCL(v) one of the corresponding
vertices, vL

i or vR
i , depending on whether vi+1 is the left or the right child of vi . The

following formal definition describes the construction of CL(v) in a top-down fashion:

• vL
1 ∈ CL(v).

• Suppose that 1 ≤ i ≤ m − 1 and that vσ
i ∈ CL(v), for σ ∈ {L,R}. Then

– if i = m − 1, add vL
m and vR

m to CL(v);
– otherwise, if vi+2 is the left child of vi+1, add vL

i+1 to CL(v), and if vi+2 is the
right child of vi+1, add vR

i+1 to CL(v).

We define CR(v) analogously to CL(v), but with two differences. First, we use PR(v)

instead ofPL(v) and second, if v is in a tentacle then we let CR(v) = {vR, vD}. In other
words, the whiskers form 2-cliques.

Observe that except cliques CR(v) corresponding to the whiskers (that is, when v

is in a tentacle), all cliques Cσ (v) have cardinality at least 3.
We now define a clique partitioning C∗ of G, as follows: First we include cliques

CL(r) and CR(r) in C∗. We then proceed recursively: choose any node v such that
exactly one of vL, vR is already covered by some clique of C∗. If vL is covered but vR

is not, then include CR(v) in C∗. Similarly, if vR is covered but vL is not, then include
CL(v) in C∗.

Analysis. Denote by Tv the subtree of T rooted at v. By Gv we denote the subgraph
of G induced by the vertices that correspond to the nodes in Tv . Each clique in C∗ that
intersects Gv induces a clique in Gv , and the partitioning C∗ induces a partitioning C∗

v

of Gv into cliques. We will use notation Ov for the profit of partitioning C∗
v . Note that

C∗
v can be obtained with the same top-down process as C∗, but starting from v as the

root instead of r (Fig. 6).
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qR

Fig. 6 On the left, an example of a path PL(r) = (r , x, y, p, q) in T . In this example, D = 3. The
corresponding clique CL(r) is shown on the right (darker shape). The figure on the right also shows the
adversary clique partitioning of G. To avoid clutter, upward edges are not shown

We denote algorithm S’s profit (the number of cross edges) within Gv by Sv . In
particular, we have profitS(G) = Sr and profitOPT(G) ≥ Or . Thus, to show (18), it is
sufficient to prove that

Or ≥ (6 − εD) · Sr , (19)

where εD → 0 when D → ∞.
We will in fact prove an analogue of inequality (19) for all subtrees Tv . To this end,

we distinguish between two types of subtrees Tv . If Tv ends at depth D of T or less
(in other words, if Tv is inside the core of T ), we call Tv shallow. If Tv ends at depth
D + 1 or more, we call it deep. So deep subtrees are those that contain some tentacles
of T .

Lemma 3.3 If Tv is shallow, then

Ov ≥ 6 · Sv.

Proof This can be shown by induction on the depth of Tv . If this depth is 0, that is
Tv = {v}, then Ov = 1 and Sv = 0, so the ratio is actually infinite. To jump-start the
induction we also need to analyze the case when the depth of Tv is 1. This means that
S collected only edge (vL, vR) from Tv . When this happened, the adversary generated
vertices corresponding to the two children of v in T and its clustering consists of two
triangles. So now Ov = 6 and Sv = 1, and the lemma holds.

Inductively, suppose that the depth of Tv is at least two, let y, z be the left and right
children of v in T , and assume that the lemma holds for Ty and Tz . Naturally, we
have Sv = Sy + Sz + 1. Regarding the adversary profit, since the depth of Tv is at
least two, cluster CL(v) contains exactly one of yL, yR; say it contains yL. Thus CL(v)

is obtained from CL(y) by adding vL. By the definition of clustering C∗, the depth
of Ty is at least 1, which means that adding vL will add at least three new edges. By
a similar argument, we will also add at least three edges from vR. This implies that
Ov ≥ Oy + Oz + 6 ≥ 6 · Sy + 6 · Sz + 6 ≥ 6 · Sv , completing the inductive step. ��

FromLemma (3.3)weobtain that, in particular, ifT itself is shallow thenOr ≥ 6·Sr ,
which is even stronger than inequality (19) that we are in the process of justifying.
Thus, for the rest of the proof, we can restrict our attention to skeleton trees T that are
deep.

123



Algorithmica (2020) 82:938–965 959

Fig. 7 Illustration of the proof of Lemma 3.4, the base case. Subtree Tv on the left, the corresponding
subgraph Gv on the right

So next we consider deep subtrees of T . The core depth of a deep subtree Tv is
defined as the depth of the part of Tv within the core subtree of T . (In other words, the
core depth of Tv is equal to D minus the depth of v in T .) If h and s are, respectively,
the core depth of Tv and its maximum tentacle length, then 0 ≤ h ≤ D and s ≥ 1.
The sum h + s is then simply the depth of T .

Lemma 3.4 Let Tv be a deep subtree of core depth h ≥ 0 and maximum tentacle length
s ≥ 1, then

Ov + 2(h + s) ≥ 6 · Sv.

Before proving the lemma, let us argue first that this lemma is sufficient to establish
our lower bound. Indeed, since we are now considering the case when T is a deep
subtree itself, the lemma implies that Or +2(D + s) ≥ 6 ·Sr , where s is the maximum
tentacle length of T . But Or is at least quadratic in D + s. So for large D the ratio
Or/Sr approaches 6.

Proof To prove Lemma 3.4, we use induction on h, the core depth of Tv . Consider first
the base case, for h = 0 (when Tv is just a tentacle). In his clustering C∗

v , the adversary
has one clique of s + 2 vertices, namely all xL vertices in the tentacle (there are s + 1
of these), plus one zR vertex for the leaf z. He also has s whiskers, so his profit for Tv

is
(s+2

2

) + s = 1
2 (s

2 + 5s + 2). S collects only s edges, namely all cross edges in Tv

except the last. (See Fig. 7.) Solving the quadratic inequality and using the integrality
of s, we get Ov + 2s ≥ 6s = 6 · Sv . Note that this inequality is in fact tight for s = 1
and 2.

In the inductive step, consider a deep subtree Tv . Let y and z be the left and right
children of v. Without loss of generality, we can assume that Ty is a deep tree with
core depth h − 1 and the same maximum tentacle length s as Tv , while Tz is either
shallow (that is, it has no tentacles), or it is a deep tree with maximum tentacle length
at most s (Fig. 8).

By the inductive assumption, we have Oy + 2(h − 1+ s) ≥ 6 · Sy . Regarding z, if
Tz is shallow then from Lemma 3.3 we get Oz ≥ 6 · Sz , and if Tz is deep (necessarily
of core depth h − 1) then Oz + 2(h − 1 + s′) ≥ 6 · Sz , where s′ is Tz’s maximum
tentacle length, such that 1 ≤ s′ ≤ s.
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Fig. 8 Illustration of the proof of Lemma 3.4, the inductive step. Subtrees Tv,Ty ,Tz on the left, the
corresponding subgraphs on the right

Consider first the case when Tz is shallow. Note that

Sv = Sy + Sz + 1 and

Ov ≥ Oy + Oz + h + s + 4

The first equation is trivial, because the profit of S in Gv consists of all cross edges in
Gy and Gz , plus one more cross edge (vL, vR). The second inequality holds because the
adversary clustering C∗

v is obtained by adding vL to Gy’s cluster with (h −1)+ s +2 =
h + s + 1 vertices, and vR can be added to Gz’s cluster that with at least 3 vertices. We
get

Ov + 2(h + s) ≥ [Oy + Oz + h + s + 4] + 2(h + s)

≥ [Oy + 2(h − 1 + s)] + Oz + 6

≥ 6 · Sy + 6 · Sz + 6

= 6 · Sv.

The second case is when Tz is a deep tree (of the same core depth h − 1 as Ty) with
maximum tentacle length s′, where 1 ≤ s′ ≤ s. As before, we have Sv = Sy + Sz + 1.
The optimum profit satisfies (by a similar argument as before, applied to both Ty and
Tz)

Ov ≥ Oy + Oz + 2h + s + s′ + 2.

We obtain (using s ≥ s′)

Ov + 2(h + s) ≥ [Oy + Oz + 2h + s + s′ + 2] + 2(h + s)

≥ [Oy + 2(h − 1 + s)] + [Oz + 2(h − 1 + s′)] + 6

≥ 6 · Sy + 6 · Sz + 6

= 6 · Sv.
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This completes the proof of Lemma 3.4. ��
The asymptotic ratio. Lemma3.4 implies (as explained right after the lemma) that there
is no deterministic algorithm for the clique clustering problem with strict competitive
ratio smaller than 6. We still need to explain how to extend our proof so that it also
applies to the asymptotic competitive ratio. This is quite simple: Choose some large
constant K . The adversarywill create K instances of the above game, playing each one
independently. Our construction above uses the fact that at each step the algorithm
is forced to collect one of the pending cross edges, otherwise its competitive ratio
exceeds ratio R (where R is arbitrarily close to 6). Now, for K sufficiently large, the
algorithm is forced to collect cross edges in all except for some finite number of copies
of the game,where this number depends on the additive constant in the competitiveness
bound.

Summarizing this section, we have just proved the following lower bound.

Theorem 4 There is no online deterministic algorithm for MaxCC clustering with
competitive ratio smaller than 6.

Note: Our construction is very tight, in the following sense. Suppose that S main-
tains T as balanced as possible. Then the ratio is exactly 6 when the depth of T is 1 or
2. Furthermore, suppose that D is very large and the algorithm constructs T to have
depth D or more, that is, it starts growing tentacles (but still maintaining T balanced.)
Then the ratio is 6 − o(1) for tentacle lengths s = 1 and s = 2. The intuition is that
when the adversary plays optimally, he will only allow the online algorithm to collect
isolated edges (cliques of size 2). For this reason, we conjecture that 6 is the optimal
competitive ratio.

4 OnlineMINCC Clustering

In this section, we study the clique clustering problem with a different measure of
optimality thatwecallMinCC. ForMinCC,wedefine the cost of a clusteringC to be the
total number of non-cluster edges. Specifically, if the cliques in C are C1, C2, . . . , Ck

then the cost of C is |E | − ∑k
i=1

(|Ci |
2

)
. The objective is to construct a clustering that

minimizes this cost.

4.1 A Lower Bound for OnlineMINCC Clustering

In this section, we present a lower bound for deterministicMinCC clustering.

Theorem 5 (a) There is no online deterministic algorithm for MinCC clustering with
competitive ratio n − ω(1), where n is the number of vertices.

(b) There is no online deterministic algorithm for MinCC clustering with strict com-
petitive ratio smaller than n − 2.

Proof (a) Consider an algorithm S with competitive ratio Rn = n − ω(1). Thus,
according to the definition (2) of the competitive ratio, there is a constant β that
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Fig. 9 Illustrating the lower
bound proof of Theorem 5. The
figure shows the optimal
clustering for the graph

2 j−1v

v2

v1

2 jv 2β+2v

2β+1v

satisfies costS(G) ≤ Rn · costOPT(G) + β, where n = |G|. We can assume that β is
a positive integer.

The adversary first produces a graph of 2β +2 vertices connected by β +1 disjoint
edges (v2i−1, v2i ), for i = 1, 2, . . . , β + 1. At this point, S must have added at least
one pair

{
v2 j−1, v2 j

}
to its clustering, because otherwise, since costOPT(G) = 0,

inequality (2) would be violated. The adversary then chooses some large n and adds
n − 2β − 2 new vertices v2β+3, . . . , vn that together with v2 j form a clique of size
n − 2β − 1; see Fig. 9. All edges from v2 j to these new vertices are non-cluster edges
for S and the optimum solution has only one non-cluster edge (v2 j−1, v2 j ). Thus

costS(G) − β ≥ (n − 2β − 2) − β = n − 3β − 2

= (n − 3β − 2) · costOPT(G) > Rn · costOPT(G),

giving us a contradiction for sufficiently large n.
(b) The proof of this part is a straightforward modification of the proof for (a): the

adversary starts by releasing just one edge (v1, v2), and the online algorithm is forced
to cluster v1 and v2 together, because now β = 0. Then the adversary adds n − 2
vertices that together with v2 form a clique. This clique will be its only cluster, so
costOPT(G) = 1. For the online algorithm all edges between v2 and the other vertices
in this clique will be outside its clusters, so costS(G) ≥ n − 2, proving part (b). ��

4.2 The Greedy Algorithm for OnlineMINCC Clustering

We continue the study of online MinCC clustering, and we prove that Greedy, the
greedy algorithm presented in Sect. 3.1, yields a competitive ratio matching the lower
bound from the previous section.

Lemma 4.1 Let (u, v) be a non-cluster edge of Greedy. Then OPT (the optimal clus-
tering) has at least one non-cluster edge adjacent to u or v (which might also be (u, v)

itself).

Proof The key observation for this proof is that, for any triplet of vertices x , y, and z,
if the graph contains the two edges (x, y) and (x, z) but y and z are not connected by
an edge, then in any clustering at least one of the edges (x, y) or (x, z) is a non-cluster
edge.
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Fig. 10 Illustration of the proof of Lemma 4.1

Without loss of generality suppose vertex v arrives after vertex u. Let A be the
cluster of Greedy containing vertex u right after the step when vertex v arrives. We
have that v /∈ A by the assumption of the lemma.

We have two possibilities. First, if A contains some vertex u′ not connected to
v, then the earlier key observation shows that one of the edges (u′, u), (u, v) is a
non-cluster edge for OPT (see Fig. 10 on the left).

Second, assume that v is connected to all vertices of A. Greedy had an option of
adding v to A but it didn’t, so it placed v in some clique B (of size at least 2) that is
not merge-able with A, that is, there are vertices u′ ∈ A and v′ ∈ B which are not
connected by an edge (see Fig. 10 on the right). Now the earlier key observation shows
that one of the edges (u′, v), (v, v′) is a non-cluster edge of OPT. This completes the
proof of the lemma. ��
Theorem 6 The strict competitive ratio of Greedy is n − 2.

Proof To estimate the number of non-cluster edges of Greedy, we use a charging
scheme. Let (u, v) be a non-cluster edge of Greedy. We charge it to non-cluster
edges of OPT as follows.

Self charge: If (u, v) is a non-cluster edge of OPT, we charge 1 to (u, v) itself.
Proximate charge: If (u, v) is a cluster edge in OPT, we split the charge of 1 from
(u, v) evenly among all non-cluster edges of OPT incident to u or v.

From Lemma 4.1, the charging scheme is well-defined, that is, all non-cluster edges of
Greedy have been charged fully to non-cluster edges of OPT. It remains to estimate
the total charge that any non-cluster edge of OPT may have received. Since the strict
competitive ratio is the ratio between the number of non-cluster edges ofGreedy and
the number of non-cluster edges of OPT, the maximum charge to any non-cluster edge
of OPT is an upper bound for the strict competitive ratio.

Consider a non-cluster edge (x, y) of OPT. Edge (x, y) can receive charges only
from itself (self charge) and other edges incident to x or y (proximate charges). Let P
be the set of vertices adjacent to both x and y, and let Q be the set of vertices that are
adjacent to only one of them, but excluding x and y:

P = N (x) ∩ N (y) and Q = N (x) ∪ N (y) − P − {x, y}.

(N (z) denotes the neighborhood of a vertex z, the set of vertices adjacent to z.) We
have |P| + |Q| ≤ n − 2.

Edges connecting x or y to Q will be called Q-edges. Trivially, the total charge
from Q-edges to (x, y) is at most |Q|.
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Edges connecting x or y to P will be called P-edges. Consider some z ∈ P . Since
x and y are in different clusters of OPT, at least one of P-edges (x, z) or (y, z) must
also be a non-cluster edge for OPT. By symmetry, assume that (x, z) is a non-cluster
edge for OPT. If (x, z) is a non-cluster edge of Greedy then (x, z) will absorb its self
charge. So (x, z) will not contribute to the charge of (x, y). If (y, z) is a non-cluster
edge of Greedy then either it will be self charged (if it’s also a non-cluster edge of
OPT) or its proximate charge will be split between at least two edges, namely (x, y)

and (x, z). Thus the charge from (y, z) to (x, y) will be at most 1
2 . Therefore the total

charge from P-edges to (x, y) is at most 1
2 |P|. We now have some cases.

Case 1: (x, y) is a cluster edge of Greedy. Then (x, y) does not generate a self
charge, so the total charge received by (x, y) is at most 1

2 |P|+ |Q| ≤ |P|+ |Q| ≤
n − 2.
Case 2: (x, y) is a non-cluster edge of Greedy. Then (x, y) contributes a self
charge to itself.

Case 2.1: |P| ≥ 2. Then 1
2 |P| ≤ |P|−1, so the total charge received by (x, y)

is at most 1
2 |P| + |Q| + 1 ≤ (|P| − 1) + |Q| = |P| + |Q| ≤ n − 2.

Case 2.2: At least one Q-edge is a cluster edge of Greedy. Then the total
proximate charge from Q-edges is at most |Q|−1, so the total charge received
by (x, y) is at most 1

2 |P| + (|Q| − 1) + 1 ≤ |P| + |Q| ≤ n − 2.
Case 2.3: |P| ∈ {0, 1} and all Q-edges are non-cluster edges of Greedy. We
claim that this case cannot actually occur. Indeed, if |P| = 0 then Greedy
would cluster x and y together. Similarly, if P = {z}, then Greedy would
cluster x , y and z together. In both cases, we get a contradiction with the
assumption of Case 2.

Summarizing, we have shown that each non-cluster edge of OPT receives a total
charge of at most n − 2, and the theorem follows. ��

The proof of Theorem 6 applies in fact to a more general class of algorithms, giving
an upper bound of n − 2 on the strict competitive ratio of all “non-procrastinating”
algorithms, which never leave merge-able clusters in their clusterings (that is clusters
C , C ′ such that C ∪ C ′ forms a clique).
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