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Abstract
In this article, q-regular sequences in the sense of Allouche and Shallit are analysed
asymptotically. It is shown that the summatory function of a regular sequence can
asymptotically be decomposed as a finite sum of periodic fluctuations multiplied by a
scaling factor. Each of these terms corresponds to an eigenvalue of the sum of matrices
of a linear representation of the sequence; only the eigenvalues of absolute value larger
than the joint spectral radius of the matrices contribute terms which grow faster than
the error term. The paper has a particular focus on the Fourier coefficients of the
periodic fluctuations: they are expressed as residues of the corresponding Dirichlet
generating function. This makes it possible to compute them in an efficient way. The
asymptotic analysis deals with Mellin–Perron summations and uses two arguments to
overcome convergence issues, namely Hölder regularity of the fluctuations together
with a pseudo-Tauberian argument. Apart from the very general result, three examples
are discussed in more detail:

• sequences defined as the sum of outputs written by a transducer when reading a
q-ary expansion of the input;

• the amount of esthetic numbers in the first N natural numbers; and
• the number of odd entries in the rows of Pascal’s rhombus.

For these examples, very precise asymptotic formulæ are presented. In the latter two
examples, prior to this analysis only rough estimates were known.
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Part I: Introduction

1 Synopsis: The Objects of Interest and the Result

In this paper, we study the asymptotic behaviour of the summatory function of a q-
regular sequence x(n). At this point, we give a short overview of the notion of q-regular
sequences1 and our main result.

One characterisation of a q-regular sequence is as follows: the sequence x(n) is
said to be q-regular if there are square matrices A0, . . . , Aq−1 and a vector-valued
sequence v(n) such that

v(qn + r) = Arv(n) for 0 ≤ r < q and n ≥ 0

and such that x(n) is the first component of v(n).
Regular sequences are intimately related to the q-ary expansion of their arguments.

They have been introduced by Allouche and Shallit [2]; see also [3, Chapter 16].
Many special cases have been investigated in the literature; this is also due to their
relation to divide-and-conquer algorithms. Moreover, every q-automatic sequence—
those sequences are defined by finite automata—is q-regular as well. Take also a look
at the book [3] for many examples.

Our main result is, roughly speaking, that the summatory function of a q-regular
sequence x(n) has the asymptotic form

∑

n<N

x(n) =
J∑

j=1

N logq λ j
(log N )k j

k j ! �k j ({logq N }) + O(N logq R) (1.1)

1 In the standard literature [2,3] these sequences are called k-regular sequences (instead of q-regular
sequences).
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as N → ∞ for a suitable positive integer J , suitable constants λ j ∈ C, suitable
non-negative integers k j , a suitable R and 1-periodic continuous functions �k j . The
λ j will turn out to be eigenvalues of C := A0 + · · · + Aq−1, the k j be related to the
multiplicities of these eigenvalues and the constant R will be a bound for the joint
spectral radius of the matrices A0, . . . , Aq−1.

While (1.1) gives the shape of the asymptotic form, gathering as much information
as possible on the periodic fluctuations �k j is required to have a full picture. To this
aim, we will give a description of the Fourier coefficients of the �k j which allows
to compute them algorithmically and therefore to describe these periodic fluctuations
with high precision. In particular, this allows to detect non-vanishing fluctuations.
Code2 is provided to compute the Fourier coefficients.

We close this introductory section by noting that the normalized sum 1
N

∑
n<N x(n)

enlightens us about the expectation of a random element of the sequence x(n) with
respect to uniform distribution on the non-negative integers smaller than a certain N .

2 How to Read This Paper

This is a long (and perhaps sometimes technical) paper and not all readers might find
the time to read it from the very beginning to the very end.We therefore outline reading
strategies for various interests.

For the readerwhowants to apply our results to a particular problem: Read Sect. 3.1
on the definition of q-regular sequences and Sect. 3.2 containing the main result in
a condensed version which should cover most applications. These two sections also
have a simple, illustrative and well-known running example. If it turns out that the
refined versions of the results are needed, follow the upcoming paragraph below.

For the reader who still wants to apply our results to a particular problem but finds
the condensed version insufficient, turn to the overview of the results (Sect. 4.1) and
then continue with Sect. 6 where the notations and results are stated in full generality.
Formulating them will need quite a number of definitions provided in Sect. 6.2. In
order to cut straight to the results themselves, we will refrain from motivations and
comments on these definitions and postpone those comments to Sect. 7.

For the reader who wants to determine the asympotics of a regular sequence instead
of determining the asymptotics of the summatory function of the regular sequence,
advice is given in Sect. 3.3.

For the reader who wants to read more about showcase applications of our method
yielding new asymptotic results, additionally to Sect. 3 read Sect. 5 where an overview
of the examples in this paper is given and then Part II where these examples are
discussed in detail. For many more examples to which the methods can be applied,
read the original papers [2,4] and the book by Allouche and Shallit [3] which contain
many examples of q-regular sequences.

2 The code accompanying this article can be found at https://gitlab.com/dakrenn/regular-sequence-
fluctuations . It is meant to be used with the open source mathematics software SageMath [38].
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For the reader who wants to compute the Fourier coefficients for a particular appli-
cation, use the provided code. Read Part IV for more details, in particular, see Sect. 19
for some comments on how to decide whether fluctuations are constant or even vanish.

Moreover, for the reader who is interested in the background on the algorithmic
aspects and details of the implementation of the actual computation, we also refer to
Part IV; this part will also be useful for the reader whowants to review the code written
for SageMath.

For the reader who is interested in the history of the problem, we refer to Sect. 4.4.
For the reader who wants to see a heuristic argument why everything works out,

there is Sect. 4.2 where it is shown that once one does not care about convergence
issues, the Mellin–Perron summation formula of order zero explains the result.

For the reader who wants to understand the idea of the proof, there is Sect. 4.3
with a high level overview of the proof how the above mentioned convergence issues
with the Mellin–Perron summation formula can be overcome by a pseudo-Tauberian
argument.

For the reader who wants to overcome convergence problems with the Mellin–
Perron summation formula in other contexts involving periodic fluctuations, we note
that the pseudo-Tauberian argument (Proposition 14.1) is completely independent of
our application to q-regular sequences; the only prerequisite is the knowledge on the
existence of the fluctuation and sufficient knowledge on analyticity and growth of the
Dirichlet generating function. As a consequence, Theorem E has been formulated as
an independent result and provisions have been made for several applications of the
pseudo-Tauberian argument.

Finally, for the reader who wants to fully understand the proof : We have no other
advice than reading the whole introduction, the whole Sect. 6 on results and the whole
Part III on the proofs starting with a very short Sect. 11 where a few notations used
throughout the proofs are fixed.

3 User-Friendly Main Result and a First Example Application

3.1 q-Regular Sequences

We start by giving a definition of q-regular sequences; see Allouche and Shallit [2].
Let q ≥ 2 be a fixed integer and x be a sequence on Z≥0.3 Then x is said to be
(C, q)-regular (briefly: q-regular or simply regular) if the C-vector space generated
by its q-kernel

{
x ◦ (n �→ q jn + r) : integers j ≥ 0, 0 ≤ r < q j}

has finite dimension. In other words, x is q-regular if there are an integer D and
sequences x1, . . . , xD such that for every j ≥ 0 and 0 ≤ r < q j there exist complex
numbers c1, . . . , cD with

x(q jn + r) = c1x1(n) + · · · + cDxD(n) for all n ≥ 0.

3 We use a functional notation for sequences, i.e., a sequence x on Z≥0 is seen as function x : Z≥0 → C.
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By Allouche and Shallit [2, Theorem 2.2], the sequence x is q-regular if and only
if there exists a vector-valued sequence v whose first component coincides with x and
there exist square matrices A0, . . . , Aq−1 ∈ C

d×d such that

v(qn + r) = Arv(n) for 0 ≤ r < q and n ≥ 0. (3.1)

This is called a q-linear representation of the sequence x .
The best-known example for a 2-regular function is the binary sum-of-digits func-

tion.

Example 3.1 For n ≥ 0, let x(n) = s(n) be the binary sum-of-digits of n. We clearly
have

x(2n) = x(n),

x(2n + 1) = x(n) + 1
(3.2)

for n ≥ 0. Indeed, we have

x(2 j n + r) = x(n) + x(r) · 1

for integers j ≥ 0, 0 ≤ r < 2 j and n ≥ 0; i.e., the complex vector space generated
by the 2-kernel is generated by x and the constant sequence n �→ 1.

Alternatively, we set v = (x, n �→ 1)	 and have

v(2n) =
(
x(n)

1

)
=

(
1 0
0 1

)
v(n),

v(2n + 1) =
(
x(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

for n ≥ 0. Thus (3.1) holds with

A0 =
(
1 0
0 1

)
, A1 =

(
1 1
0 1

)
.

At this point, we note that a linear representation (3.1) immediately leads to an
explicit expression for x(n) by induction.

Remark 3.2 Let r�−1 . . . r0 be the q-ary digit expansion4 of n. Then

x(n) = e1Ar0 · · · Ar�−1v(0)

where e1 = (
1 0 . . . 0

)
.

4 Whenever we write that r�−1 . . . r0 is the q-ary digit expansion of n, we mean that r j ∈ {0, . . . , q − 1}
for 0 ≤ j < �, r�−1 
= 0 and n = ∑

0≤ j<� r j q
j . In particular, the q-ary expansion of zero is the empty

word.
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3.2 CondensedMain Result

We are interested in the asymptotic behaviour of the summatory function X(N ) =∑
0≤n<N x(n).
At this point, we give a simplified version of our results.We choose any vector norm

‖·‖ on C
d and its induced matrix norm. We set C := ∑

0≤r<q Ar . We choose R > 0

such that ‖Ar1 · · · Ar�‖ = O(R�) holds for all � ≥ 0 and r1, . . . , r� ∈ {0, . . . , q − 1}.
In other words, R is an upper bound for the joint spectral radius of A0, . . . , Aq−1. The
spectrum of C , i.e., the set of eigenvalues of C , is denoted by σ(C). For λ ∈ C, let
m(λ) denote the size of the largest Jordan block of C associated with λ; in particular,
m(λ) = 0 if λ /∈ σ(C). Finally, we consider the scalar-valued Dirichlet series X and
the vector-valued Dirichlet series V defined by5

X (s) =
∑

n≥1

n−s x(n) and V(s) =
∑

n≥1

n−sv(n)

where v(n) is the vector-valued sequence defined in (3.1). Of course, X (s) is the first
component of V(s). The principal value of the complex logarithm is denoted by log.
The fractional part of a real number z is denoted by {z} := z − �z
.
Theorem A (User-friendly all-in-one theorem) With the notations above, we have

X(N ) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<m(λ)

(log N )k

k! �λk({logq N })

+ O
(
N logq R(log N )max{m(λ) : |λ|=R}) (3.3)

for suitable 1-periodic continuous functions�λk . If there are no eigenvalues λ ∈ σ(C)

with |λ| ≤ R, the O-term can be omitted.
For |λ| > R and 0 ≤ k < m(λ), the function �λk is Hölder continuous with any

exponent smaller than logq(|λ|/R).
The Dirichlet series V(s) converges absolutely and uniformly on compact subsets

of the half plane �s > logq R + 1 and can be continued to a meromorphic function
on the half plane �s > logq R. It satisfies the functional equation

(
I − q−sC

)
V(s) =

∑

1≤n<q

n−sv(n) + q−s
∑

0≤r<q

Ar

∑

k≥1

(−s

k

)( r
q

)k
V(s + k) (3.4)

for �s > logq R. The right-hand side of (3.4) converges absolutely and uniformly
on compact subsets of �s > logq R. In particular, V(s) can only have poles where
qs ∈ σ(C).

5 Note that the summatory function X(N ) contains the summand x(0) but the Dirichlet series cannot. This
is because the choice of including x(0) into X(N ) will lead to more consistent results.
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For λ ∈ σ(C) with |λ| > R, the Fourier series

�λk(u) =
∑

�∈Z
ϕλk� exp(2�π iu)

converges pointwise for u ∈ R where the Fourier coefficients ϕλk� are defined by the
singular expansion6

x(0) + X (s)

s
�

∑

λ∈σ(C)
|λ|>R

∑

�∈Z

∑

0≤k<m(λ)

ϕλk�
(
s − logq λ − 2�π i

log q

)k+1 (3.5)

for �s > logq R.

This theorem is proved in Sect. 15. We note:

• We write �λk({logq N }) to optically emphasise the 1-periodicity; technically, we
have �λk({logq N }) = �λk(logq N ).

• The arguments in the proof could be used tomeromophically continue theDirichlet
series to the complex plane, but we do not need this result for our purposes. See
[1] for the corresponding argument for automatic sequences.

• Sometimes, it will be convenient to write (3.5) in the equivalent explicit formula-
tion

ϕλk� = Res

(
x(0)+X (s)

s

(
s− logq λ−2�π i

log q

)k
, s = logq λ+2�π i

log q

)
. (3.6)

In particular, this can be used to algorithmically compute the ϕλk�.
• Computing the Fourier coefficients ϕλk� via the explicit formulation (3.6) by
reliable numerical arithmetic (see Part IV for details) enables us to detect the
non-vanishing of a fluctuation; see also the example below and in Sect. 8 (on
sequences defined by transducers) for examples where the fluctuation of the lead-
ing term is in fact constant. There, additional arguments are required to actually
prove this fact; see Sect. 19 for more details.

We come back to the binary sum of digits.

Example 3.3 (Continuation of Example 3.1) We have C = A0 + A1 = (
2 1
0 2

)
. As A0

is the identity matrix, any product Ar1 · · · Ar� has the shape Ak
1 = (

1 k
0 1

)
where k is the

number of factors A1 in the product. This implies that R with ‖Ar1 · · · Ar�‖ = O(R�)

may be chosen to be any number greater than 1. As C is a Jordan block itself, we
simply read off that the only eigenvalue of C is λ = 2 with m(2) = 2.

Thus Theorem A yields

X(N ) = N (log N )�21({log2 N }) + N �20({log2 N })
6 We use the notion of singular expansion as defined by Flajolet, Gourdon and Dumas [17, Definition 2]:
it is the formal sum of the principal parts of a meromorphic function over all poles in the domain given.
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for suitable 1-periodic continuous functions �21 and �20.
In principle, we can now use the functional equation (3.4) to obtain the Dirichlet

series X . Due to the fact that one component of v is the constant sequence where
everything is known, it is more efficient to use an ad-hoc calculation forX by splitting
the sum according to the parity of the index and using the recurrence relation (3.2) for
x(n). We obtain

X (s) =
∑

n≥1

x(2n)

(2n)s
+

∑

n≥0

x(2n + 1)

(2n + 1)s

= 2−s
∑

n≥1

x(n)

ns
+

∑

n≥0

x(n)

(2n + 1)s
+

∑

n≥0

1

(2n + 1)s

= 2−sX (s) + x(0)

1s
+

∑

n≥1

x(n)

(2n)s
+

∑

n≥1

x(n)
( 1

(2n + 1)s
− 1

(2n)s

)

+ 2−s
∑

n≥0

1
(
n + 1

2

)s

= 21−sX (s) + 2−s ζ
(
s, 1

2

) +
∑

n≥1

x(n)
( 1

(2n + 1)s
− 1

(2n)s

)
,

where the Hurwitz zeta function ζ (s, α) := ∑
n+α>0(n+α)−s has been used. We get

(
1 − 21−s)X (s) = 2−s ζ

(
s, 1

2

) +
∑

n≥1

x(n)
( 1

(2n + 1)s
− 1

(2n)s

)
. (3.7)

As the sum of digits is bounded by the length of the expansion, we have x(n) =
O(log n). By combining this estimate with

(2n + 1)−s − (2n)−s =
∫ 2n+1

2n

( d

dt
t−s

)
dt =

∫ 2n+1

2n
(− s)t−s−1 dt = O

(|s|n−�s−1),

we see that the sum in (3.7) converges absolutely for �s > 0 and is therefore analytic
for �s > 0.

Therefore, the right-hand side of (3.7) is a meromorphic function for �s > 0
whose only pole is simple and at s = 1 which originates from ζ

(
s, 1

2

)
. Thus, X (s) is

a meromorphic function for �s > 0 with a double pole at s = 1 and simple poles at
1 + 2�π i

log 2 for � ∈ Z\{0}.
This gives us

�21(u) = ϕ210 = Res
(X (s)(s − 1)

s
, s = 1

)

= Res
(2−s(s − 1)

1 − 21−s
ζ
(
s, 1

2

)
, s = 1

)
= 1

2(log 2)

(3.8)

by (3.6) and (3.7).

123



438 Algorithmica (2020) 82:429–508

We conclude that

X(N ) = 1

2
N log2 N + N �20({log2 N }).

We will explain in Part IV how to compute rigorous numerical values for the Fourier
coefficients, in our case those of the fluctuation �20 which can be deduced from (3.7).
In this particular case of the binary sum-of-digits, simpler and even explicit expressions
for the Fourier coefficients have been stated and derived by other authors: they can be
obtained in our set-up by rewriting the residues of X (s) in terms of shifted residues
of

∑
n≥1 (x(n) − x(n − 1)) n−s and by computing the latter explicitly; see [31, Proof

of Corollary 2.5]. This yields the well-known result by Delange [9].
It will also turn out that (3.8) being a constant function is an immediate consequence

of the fact that
(
0 1

)
is a left eigenvector of both A0 and A1 associated with the

eigenvalue 1; see Theorem B.

3.3 Asymptotics of Regular Sequences

This article iswrittenwith a focus on the sequence of partial sumsof a regular sequence.
In this section, however, we explain how to use all material for the regular sequence
itself.

Let x(N ) be a q-regular sequence. We may rewrite it as a telescoping sum

x(N ) = x(0) +
∑

n<N

(
x(n + 1) − x(n)

)
. (3.9)

By [2, Theorems 2.5 and 2.6], the sequence of differences x(n + 1) − x(n) is again
q-regular. Conversely, it is also well-known that the summatory function of a q-regular
sequence is itself q-regular. (This is an immediate consequence of [2, Theorem 3.1].)

Therefore, we might also start to analyse a regular sequence by considering it to be
the summatory function of its sequence of differences as in (3.9). In this way, we can
apply all of the machinery developed in this article.

We end this short section with some remarks on why focusing on the sequence of
partial sums can be rewarding. When modelling a quantity by a regular sequences, its
asymptotic behaviour is often not smooth, but the asymptotic behaviour of its sum-
matory function is. Moreover, we will see throughout this work that from a technical
perspective, considering partial sums is appropriate. Therefore, we adopt this point of
view of summatory functions of q-regular sequences throughout this paper.

4 Overview of the Full Results and Proofs

4.1 Overview of the Results

We have already seen the main results collected in a user-friendly simplified version
as Theorem A which was written down in a self-contained way in Sect. 3.2.
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In Theorem B the assumptions are refined. In particular, this theorem uses the joint
spectral radius R of the matrices in a linear representation of the sequence (instead of
a suitable bound for this quantity in Theorem A). Theorem B states the contribution
of each eigenvalue of the sum C of matrices of the linear representation—split into
the three cases of smaller, equal and larger in absolute value than R, respectively. This
is formulated in terms of generalised eigenvectors. As a consequence of this precise
breakdown of contributions, Theorem C, which collects the different cases into one
result, provides a condition on when the error term vanishes.

TheoremD brings up the full formulation of the functional equation of the Dirichlet
series associated to our regular sequence. This is accompanied by a meromorphic
continuation as well as bounds on the growth of the Dirichlet series along vertical lines
(i.e., points with fixed real value). The analytic properties provided by TheoremDwill
be used to verify the assumptions of Theorem E.

Theorem E is in fact stated and proved very generally: it is not limited to Dirichlet
series coming from matrix products and regular sequences, but it works for general
Dirichlet series provided that periodicity and continuity properties of the result are
known a priori. This theorem handles the Mellin–Perron summation and the theo-
retical foundations for the computation of the Fourier coefficients of the appearing
fluctuations.

We want to point out that Theorem E can be viewed as a “successful” version of the
Mellin–Perron summation formula of order zero. In fact, the theorem states sufficient
conditions to provide the analytic justification for the zeroth order formula.

Note that there is another result shown in this article, namely a pseudo-Tauberian
theorem for summing up periodic functions. This is formulated as Proposition 14.1,
and all the details around this topic are collected in Sect. 14.1. This pseudo-Tauberian
argument is an essential step in proving Theorem E.

4.2 Heuristic Approach: Mellin–Perron Summation

The purpose of this section is to explain why the formula (3.5) for the Fourier coef-
ficients is expected. The approach here is heuristic and non-rigorous because we do
not have the required growth estimates. See also [10].

By the Mellin–Perron summation formula of order 0 (see, for example, [18, Theo-
rem 2.1]), we have

∑

1≤n<N

x(n) + x(N )

2
= 1

2π i

∫ max{logq R+2,1}+i∞

max{logq R+2,1}−i∞
X (s)

Ns ds

s
.

By Remark 3.2 and the definition of R, we have x(N ) = O(Rlogq N ) = O(N logq R).
Adding the summand x(0) to match our definition of X(N ) amounts to adding O(1).
Shifting the line of integration to the left—we have no analytic justification that this
is allowed—and using the location of the poles of X claimed in Theorem A yield
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X(N ) =
∑

λ∈σ(C)
|λ|>R

∑

�∈Z
Res

(X (s)Ns

s
, s = logq λ + 2�π i

log q

)

+ 1

2π i

∫ logq R+ε+i∞

logq R+ε−i∞
X (s)

Ns ds

s
+ O(N logq R + 1)

for some ε > 0. Expanding Ns as

Ns =
∑

k≥0

(log N )k

k! N logq λ+ 2�π i
log q

(
s − logq λ − 2�π i

log q

)k

and assuming that the remainder integral converges absolutely yield

X(N ) =
∑

λ∈σ(C)
|λ|>R

N logq λ
∑

0≤k<mλ�

(log N )k

k!
∑

�∈Z
ϕλk� exp

(
2�π i logq N

)

+ O(N logq R+ε + 1)

where mλ� denotes the order of the pole of X (s)/s at logq λ + 2�π i
log q and ϕλk� is as in

(3.5). (For λ = 1 and k = 0, the contribution of x(0)/s in (3.5) is absorbed by the
error term O(1) here.)

Summarising, this heuristic approach explains most of the formulæ in Theorem A.
Some details (exact error term and order of the poles) are not explained by this
approach. A result “repairing” the zeroth order Mellin–Perron formula is known as
Landau’s theorem; see [5, Sect. 9]. It is not applicable to our situation due to multi-
ple poles along vertical lines which then yield the periodic fluctuations. Instead, we
present Theorem E which provides the required justification (not by estimating the
relevant quantities, but by reducing the problem to higher order Mellin–Perron sum-
mation). The essential assumption is that the summatory function can be decomposed
into fluctuations multiplied by some growth factors such as in (3.3).

4.3 High Level Overview of the Proof

Aswewant to useMellin–Perron summation in some form, we derive properties of the
Dirichlet series associated to the regular sequence. In particular, we derive a functional
equation which allows to compute the Dirichlet series and its residues with arbitrary
precision (Theorem D).

We cannot directly use Mellin–Perron summation of order zero for computing the
Fourier coefficients of the fluctuations of interest. As demonstrated in Sect. 4.2, how-
ever, our theorems coincide with the results which Mellin–Perron summation of order
zero would give if the required growth estimates could be provided. Unfortunately, we
are unable to prove these required growth estimates. Therefore, we have to circum-
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vent the problem by applying a generalisation of the pseudo-Tauberian argument by
Flajolet, Grabner, Kirschenhofer, Prodinger and Tichy [18].

In order to use this argument, we have to know that the asymptotic formula has
the shape (3.3). Note that a successful application (not directly possible!) of Mellin–
Perron summation of order zerowould give this directly. Therefore, we first prove (3.3)
and the existence of the fluctuations (Theorems B, C). To do so, we decompose the
problem into contributions of the eigenspaces of the matrix C = A0 + · · · + Aq−1.
The regular sequence is then expressed as a matrix product. Next, we construct the
fluctuations by elementary means: We replace finite sums occurring in the summa-
tory functions by infinite sums involving digits using the factorisation as a matrix
product.

Then the pseudo-Tauberian argument states that the summatory function of the
fluctuation is again a fluctuation and there is a relation between the Fourier coeffi-
cients of these fluctuations. The Fourier coefficients of the summatory function of the
fluctuation, however, can be computed by Mellin–Perron summation of order one, so
the Fourier coefficients of the original fluctuation can be recovered; see Theorem E.

4.4 Relation to PreviousWork

The asymptotics of the summatory function of specific examples of regular sequences
has been studied in [14,23,24]. There, various methods have been used to show that the
fluctuations exist; then the original pseudo-Tauberian argument by Flajolet, Grabner,
Kirschenhofer, Prodinger and Tichy [18] is used to compute the Fourier coefficients
of the fluctuations.

The first version of the pseudo-Tauberian argument in Theorem E was provided in
[18]: there, no logarithmic factors were allowed, only values γ with �γ > 0 were
allowed and the result contained an error term of o(1) whereas we give a more precise
error estimate in order to allow repeated application.

Dumas [12,13] proved the first part of Theorem A using dilation equations. We
re-prove it here in a self-contained way because we need more explicit results than
obtained byDumas (e.g., we need explicit expressions for the fluctuations) to explicitly
get the precise structure depending on the eigenspaces (Theorem B). Notice that the
order of factors in Dumas’ paper is inconsistent between his versions of (3.1) and
Remark 3.2.

A functional equation for the Dirichlet series of an automatic sequence has been
proved by Allouche, Mendès France and Peyrière [1].

In Sect. 8 we study transducers. The sequences there are defined as the output
sum of transducer automata in the sense of [31]. They are a special case of regular
sequences and are a generalisation of many previously studied concepts. In that case,
much more is known (variance, limiting distribution, higher dimensional input); see
[31] for references and results. A more detailed comparison can be found in Sect. 8.
Divide and conquer recurrences (see [11,32]) can also be seen as special cases of
regular sequences.

The present article gives a unified approach which covers all cases of regular
sequences. As long as the conditions on the joint spectral radius are met, the main

123



442 Algorithmica (2020) 82:429–508

asymptotic terms are not absorbed by the error terms. Otherwise, the regular sequence
is so irregular that the summatory function is not smooth enough to allow a result of
this shape.

5 Overview of the Examples

We take a closer look at three particular examples. In this section, we provide an
overview of these examples; all details can be found in Part II.

At first gance it seems that these examples are straight-forward applications of the
results. However, we have to reformulate the relevant questions in terms of a q-regular
sequence and will then provide shortcuts for the computation of the Fourier series.
We put a special effort on the details which gives additional insights like dependen-
cies on certain residue classes; see Sect. 5.3. Moreover, the study of these examples
also encourages us to investigate symmetries in the eigenvalues; see Sect. 5.4 for an
overview and Sect. 6.6 for general considerations.

We start with transducer automata. Transducers have been chosen in order to com-
pare the results here with the previously available results [31]. In some sense, the
results complement each other: while the results in [31] also contain information on
the variance and the limiting distribution, our approach here yields more terms of the
asymptotic expansion of the mean, at least in the general case. Also, it is a class of
examples.

We then continue with esthetic numbers. These numbers are an example of an
automatic sequence, therefore can be treated by a transducer. However, it turns out
that the generic results (the results here and in [31]) degenerate: they are too weak
to give a meaningful main term. Therefore a different effort is needed for esthetic
numbers. No precise asymptotic results were known previously.

The example on Pascal’s Rhombus is a choice of a regular sequence where all
components of the vector sequence have some combinatorial meaning. Again, no
precise asymptotic results were known previously.

Section 5.6 contains further examples. Note that there are the two additional
Sects. 5.3 and 5.4 pointing out phenomena appearing in the analysis of our exam-
ples.

5.1 Transducers

The sum T (n) of the output labels of a complete deterministic finite transducer T
when reading the q-ary expansion of an integer n has been investigated in [31]. As
this can be seen as a q-regular sequence, we reconsider the problem in the light of our
general results in this article; see Sect. 8. For the summatory function, the main terms
corresponding to the eigenvalue q can be extracted by both results; if there are further
eigenvalues larger than the joint spectral radius, our Corollary F allows to describe
more asymptotic terms which are absorbed by the error term in [31]. Note, however,
that our approach here does not give any readily available information on the variance
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(this could somehow be repaired for specific examples because regular sequences are
known to form a ring) nor on the limiting distribution.

5.2 Esthetic Numbers

In this article, we also contribute a precise asymptotic analysis of q-esthetic numbers;
see De Koninck and Doyon [8]. These are numbers whose q-ary digit expansion
satisfies the condition that neighboring digits differ by exactly one. The sequence of
such numbers turns out to be q-automatic, thus are q-regular and can also be seen as an
output sum of a transducer; see the first author’s joint work with Kropf and Prodinger
[31] or Sect. 8. However, the asymptotics obtained by using the main result of [31] is
degenerated in the sense that the provided main term and second order term both equal
zero; only an error term remains. On the other hand, using a more direct approach via
our main theorem brings up the actual main term and the fluctuation in this main term.
We also explicitly compute the Fourier coefficients. The full theorem is formulated in
Sect. 9. Prior to this precise analysis, the authors of [8] only performed an analysis of
esthetic numbers by digit-length (and not by the number itself).

The approach used in the analysis of q-esthetic numbers can easily be adapted to
numbers defined by other conditions on the word of digits of their q-ary expansion.

5.3 Dependence on Residue Classes

The analysis of q-esthetic numbers also brings another aspect into the light of day,
namely a quite interesting dependence of the behaviour with respect to q on different
moduli:

• The dimensions in the matrix approach of [8] need to be increased for certain
residue classes of q modulo 4 in order to get a formulation as a q-automatic and
q-regular sequence, respectively.

• Themain result in [8] already depends on the parity of q (i.e., on q modulo 2). This
reflects our Corollary G by having 2-periodic fluctuations (in contrast to 1-periodic
fluctuations in the main Theorem A).

• Surprisingly, the error term in the resulting formula of Corollary G depends on the
residue class of q modulo 3. This can be seen in the spectrum of the matrix C =∑

0≤r<q Ar : there is an appearance of an eigenvalue 1 in certain cases.
• As an interesting side-note: In the spectrum of C , the algebraic multiplicity of the
eigenvalue 0 changes again only modulo 2.

5.4 Symmetrically Arranged Eigenvalues

Fluctuations with longer periods (like in the second of the four bullet points above)
come from a particular configuration in the spectrum of C . Whenever eigenvalues are
arranged as vertices of a regular polygon, then their influence can be collected; this
results in periodic fluctuations with larger period than 1.We elaborate on the influence
of such eigenvalues in Sect. 6.6. This is then used in the particular cases of esthetic
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numbers and in conjunction with the output sum of transducers. More specifically, in
the latter example this yields the second order term in Corollary F; see also [31].

5.5 Pascal’s Rhombus

Beside esthetic numbers, we perform an asymptotic analysis of the number of ones
in the rows of Pascal’s rhombus. The rhombus is in some sense a variant of Pascal’s
triangle—its recurrence is similar to that of Pascal’s triangle. It turns out that the
number of ones in the rows of Pascal’s rhombus can be modelled by a 2-regular
sequence.

The authors of [21] investigate this number of ones, but only for blocks whose
number of rows is a power of 2. In the precise analysis in Sect. 10 we not only obtain
the asymptotic formula, we also explicitly compute the Fourier coefficients.

5.6 Further Examples

There are many further examples of specific q-regular sequences which await pre-
cise asymptotic analysis, for example the Stern–Brocot sequence [39, A002487], the
denominators of Farey tree fractions [39, A007306], the number of unbordered factors
of length n of the Thue–Morse sequence (see [22]).

The Stern–Brocot sequence is a typical example: it is defined by x(0) = 0, x(1) = 1
and

x(2n) = x(n),

x(2n + 1) = x(n) + x(n + 1),
(5.1)

i.e., the right-hand sides are linear combinations of shifted versions of the original
sequence.

Note that recurrence relations like (5.1) are not proper linear representations of
regular sequences in the sense of (3.1). The good news, however, is that in general,
such a sequence is q-regular. The following remark formulates this more explicitly.

Remark 5.1 Let x(n) be a sequence such that there are fixed integers � ≤ 0 ≤ u and
constants crk for 0 ≤ r < q and � ≤ k ≤ u such that

x(qn + r) =
∑

�≤k≤u

crk x(n + k)

holds for 0 ≤ r < q and n ≥ 0. Then the sequence x(n) is q-regular with q-linear
representation for v(n) = (

x(n + �′), . . . , x(n), . . . , x(n + u′)
)	 where

�′ =
⌊

q�

q − 1

⌋
, u′ =

⌈
qu

q − 1

⌉
.

123



Algorithmica (2020) 82:429–508 445

Note that if �′ < 0, then a simple permutation of the components of v(n) brings x(n)

to its first component (so that the above is indeed a proper linear representation as
defined in Sect. 3.1).

By using this remark on (5.1), we set v(n) = (
x(n), x(n + 1), x(n + 2)

)	 and
obtain the 2-linear representation

v(2n) =
⎛

⎝
1 0 0
1 1 0
0 1 0

⎞

⎠ v(n), v(2n + 1) =
⎛

⎝
1 1 0
0 1 0
0 1 1

⎞

⎠ v(n)

for n ≥ 0 for the Stern–Brocot sequence.

6 Full Results

In this section, we fully formulate our results. As pointed out in Remark 3.2, regular
sequences can essentially be seen as matrix products. Therefore, we will study these
matrix products instead of regular sequences. Theorem A can then be proved as a
simple corollary of the results for matrix products; see Sect. 15.

6.1 Problem Statement

Let q ≥ 2, d ≥ 1 be fixed integers and A0, . . . , Aq−1 ∈ C
d×d . We investigate the

sequence f of d × d matrices such that

f (qn + r) = Ar f (n) for 0 ≤ r < q, 0 ≤ n with qn + r 
= 0 (6.1)

and f (0) = I .
Let n be an integer with q-ary expansion r�−1 . . . r0. Then it is easily seen that (6.1)

implies that

f (n) = Ar0 . . . Ar�−1 . (6.2)

We are interested in the asymptotic behaviour of F(N ) := ∑
0≤n<N f (n).

6.2 Definitions and Notations

In this section, we give all definitions and notations which are required in order to
state the results. For the sake of conciseness, we do not give any motivations for our
definitions here; those are deferred to Sect. 7.

The following notations are essential:

• Let ‖·‖ denote a fixed norm on C
d and its induced matrix norm on Cd×d .

• We set Br := ∑
0≤r ′<r Ar ′ for 0 ≤ r < q and C := ∑

0≤r<q Ar .
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• The joint spectral radius of A0, . . . , Aq−1 is denoted by

ρ := inf
�
sup

{‖Ar1 . . . Ar�‖1/� : r1, . . . , r� ∈ {0, . . . , q − 1}}.

If the set of matrices A0, . . . , Aq−1 has the finiteness property, i.e., there is an
� > 0 such that

ρ = sup
{‖Ar1 . . . Ar�‖1/� : r1, . . . , r� ∈ {0, . . . , q − 1}},

then we set R = ρ. Otherwise, we choose R > ρ in such a way that there is no
eigenvalue λ of C with ρ < |λ| ≤ R.

• The spectrum of C , i.e., the set of eigenvalues of C , is denoted by σ(C).
• For a positive integer n0, let Fn0 be the matrix-valued Dirichlet series defined by

Fn0(s) :=
∑

n≥n0

n−s f (n)

for a complex variable s.
• Set χk := 2π ik

log q for k ∈ Z.

In the formulation of Theorems B and C, the following constants are needed addi-
tionally:

• Choose a regular matrix T such that TCT−1 =: J is in Jordan form.
• Let D be the diagonal matrix whose j th diagonal element is 1 if the j th diagonal
element of J is not equal to 1; otherwise the j th diagonal element of D is 0.

• Set C ′ := T−1DJT .
• Set K := T−1DT (I − C ′)−1(I − A0).
• For a λ ∈ C, let m(λ) be the size of the largest Jordan block associated with λ. In
particular, m(λ) = 0 if λ /∈ σ(C).

• For m ≥ 0, set

ϑm := 1

m!T
−1(I − D)T (C − I )m−1(I − A0);

here, ϑ0 remains undefined if 1 ∈ σ(C).7

• Define ϑ := ϑm(1).

All implicit O-constants depend on q, d, the matrices A0, . . . , Aq−1 (and therefore
on ρ), as well as on R.

6.3 Decomposition into Periodic Fluctuations

Instead of considering F(N ), it is certainly enough to consider wF(N ) for all gener-
alised left eigenvectors w of C , e.g., the rows of T . The result for F(N ) then follows
by taking appropriate linear combinations.

7 If 1 ∈ σ(C), then the matrix C − I is singular. In that case, ϑ0 will never be used.
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Theorem B Let w be a generalised left eigenvector of rank m of C corresponding to
the eigenvalue λ.

1. If |λ| < R, then

wF(N ) = wK + (logq N )mwϑm + O(N logq R).

2. If |λ| = R, then

wF(N ) = wK + (logq N )mwϑm + O(N logq R(log N )m).

3. If |λ| > R, then there are 1-periodic continuous functions �k : R → C
d , 0 ≤ k <

m, such that

wF(N ) = wK + (logq N )mwϑm + N logq λ
∑

0≤k<m

(logq N )k�k({logq N })

for N ≥ qm−1. The function �k is Hölder continuous with any exponent smaller
than logq |λ|/R.
If, additionally, the left eigenvector w(C − λI )m−1 of C happens to be a left
eigenvector to each matrix A0, . . . , Aq−1 associated with the eigenvalue 1, then

�m−1(u) = 1

qm−1(m − 1)!w(C − q I )m−1

is constant.

Here, wK = 0 for λ = 1 and wϑm = 0 for λ 
= 1.

This theorem is proved in Sect. 12. Note that in general, the three summands in the
theorem have different growths: a constant, a logarithmic term and a term whose
growth depends essentially on the joint spectral radius and the eigenvalues larger than
the joint spectral radius, respectively. The vector w is not directly visible in front of
the third summand; instead, the vectors of its Jordan chain are part of the function �k .

Expressing the identitymatrix as linear combinations of generalised left eigenvalues
and summing up the contributions of Theorem B essentially yields the following
corollary.

Theorem C With the notations above, we have

F(N ) =
∑

λ∈σ(C)
|λ|>ρ

N logq λ
∑

0≤k<m(λ)

(logq N )k�λk({logq N }) + (logq N )m(1)ϑ + K

+ O
(
N logq R(log N )max{m(λ) : |λ|=R})

for suitable 1-periodic continuous functions �λk . If 1 is not an eigenvalue of C, then
ϑ = 0. If there are no eigenvalues λ ∈ σ(C) with |λ| ≤ ρ, then the O-term can be
omitted.
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For |λ| > R, the function�λk is Hölder continuous with any exponent smaller than
logq(|λ|/R).

This theorem is proved in Sect. 12.4.

Remark 6.1 Wewant to point out that the condition |λ| > R is inherent in the problem:
Single summands f (n) might be as large as nlogq R and must therefore be absorbed
by the error term in any smooth asymptotic formula for the summatory function.

6.4 Dirichlet Series

This section gives the required result on the Dirichlet series Fn0 . For theoretical pur-
poses, it is enough to study F := F1; for numerical purposes, however, convergence
improves for larger values of n0. This is because for large n0 and large �s, the value
of Fn0(s) is roughly n−s

0 f (n0); see also Part IV.

Theorem D Let n0 be a positive integer. Then the Dirichlet series Fn0(s) converges
absolutely and uniformly on compact subsets of the half plane �s > logq ρ + 1, thus
is analytic there.

We have

(
I − q−sC

)
Fn0(s) = Gn0(s) (6.3)

for �s > logq ρ + 1 with

Gn0(s) =
∑

n0≤n<qn0

n−s f (n) + q−s
∑

0≤r<q

Ar

∑

k≥1

(−s

k

)( r
q

)k
Fn0(s + k). (6.4)

The series in (6.4) converge absolutely and uniformly on compact sets for�s > logq ρ.
Thus (6.3) gives a meromorphic continuation of Fn0(s) to the half plane �s > logq ρ

with possible poles at s = logq λ + χ� for each λ ∈ σ(C) with |λ| > ρ and � ∈ Z

whose pole order is at most m(λ).
Let δ > 0. For real z, we set

μδ(z) = max{1 − (z − logq ρ − δ), 0},

i.e., the linear function on the interval [logq ρ+δ, logq ρ+δ+1]withμδ(logq ρ+δ) =
1 and μδ(logq ρ + δ + 1) = 0. Then

Fn0(s) = O
(|�s|μδ(�s)) (6.5)

holds uniformly for logq ρ + δ ≤ �s and |qs − λ| ≥ δ for all eigenvalues λ ∈ σ(C).
Here, the implicit O-constant also depends on δ.

Note that by the introductory remark on Fn0(s), the infinite sum over k in (6.4) can
be well approximated by a finite sum. Detailed error bounds are discussed in Part IV.
Therefore the theorem allows to transfer the information onFn0(s) for large�s where
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convergence is unproblematical to values of s where the convergence of the Dirichlet
series Fn0 itself is bad.

Remark 6.2 By the identity theorem for analytic functions, the meromorphic continu-
ation of Fn0 is unique on the domain given in the theorem. Therefore, the bound (6.5)
does not depend on the particular expression for the meromorphic continuation given
in (6.3) and (6.4).

Theorem D is proved in Sect. 13. In the proof we translate the linear represen-
tation of f into a system of equations involving Fn0(s) and shifted versions like∑

n≥n0 f (n)(n + β)−s . We will have to bound the difference between the shifted and
unshifted versions of the Dirichlet series. These bounds are provided by the following
lemma. It will turn out to be useful to have it as a result listed in this section and not
buried in the proofs sections.

Lemma 6.3 LetD(s) = ∑
n≥n0 d(n)/ns be a Dirichlet series with coefficients d(n) =

O(nlogq R′
) for all R′ > ρ. Let β ∈ C with |β| < n0 and δ > 0. Set

�(s, β,D) :=
∑

n≥n0

d(n)

(n + β)s
− D(s).

Then

�(s, β,D) =
∑

k≥1

(−s

k

)
βkD(s + k),

where the series converges absolutely and uniformly on compact sets for�s > logq ρ,
thus �(s, β,D) is analytic there. Moreover, with μδ as in Theorem D,

�(s, β,D) = O
(|�s|μδ(�s))

as |�s| → ∞ holds uniformly for logq ρ + δ ≤ �s ≤ logq ρ + δ + 1.

6.5 Fourier Coefficients

As discussed in Sect. 4.2, we would like to apply the zeroth order Mellin–Perron
summation formula but need analytic justification. In the following theorem we prove
that whenever it is known that the result is a periodic fluctuation, the use of zeroth
order Mellin–Perron summation can be justified. In contrast to the remaining parts of
the paper, this theorem does not assume that f (n) is a matrix product.

Theorem E Let f be a sequence on Z>0, let γ0 ∈ R\Z≤0 and γ ∈ C with �γ > γ0,
δ > 0, q > 1 be real numbers with δ ≤ π/(log q) and δ < �γ − γ0, and let m
be a positive integer. Moreover, let � j be Hölder continuous (with exponent α with
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�γ − γ0 < α ≤ 1) 1-periodic functions for 0 ≤ j < m such that

F(N ) :=
∑

1≤n<N

f (n) =
∑

j+k=m−1
0≤ j<m

N γ (log N )k

k! � j ({logq N }) + O(N γ0) (6.6)

for integers N → ∞.
For the Dirichlet series F(s) := ∑

n≥1 n
−s f (n) assume that

• there is some real number σabs ≥ �γ such that F(s) converges absolutely for
�s > σabs;

• the function F(s)/s can be continued to a meromorphic function for �s > γ0 − δ

such that poles can only occur at γ + χ� for � ∈ Z and such that these poles have
order at most m and a possible pole at 0; the local expansions are written as

F(s)

s
= 1

(s − γ − χ�)m

∑

j≥0

ϕ j�(s − γ − χ�)
j (6.7)

with suitable constants ϕ j� for j , � ∈ Z;
• there is some real number η > 0 such that for γ0 ≤ �s ≤ σabs and |s−γ −χ�| ≥ δ

for all � ∈ Z, we have

F(s) = O
(|�s|η) (6.8)

for |�s| → ∞.

All implicit O-constants may depend on f , q, m, γ , γ0, α, δ, σabs and η.
Then

� j (u) =
∑

�∈Z
ϕ j� exp(2�π iu) (6.9)

for u ∈ R, � ∈ Z and 0 ≤ j < m.
If γ0 < 0 and γ /∈ 2π i

log qZ, then F(0) = 0.

This theorem is proved in Sect. 14. The theorem is more general than necessary for
q-regular sequences because Theorem D shows that we could use some 0 < η < 1.
However, it might be applicable in other cases, so we prefer to state it in this more
general form.

6.6 Fluctuations of Symmetrically Arranged Eigenvalues

In our main results, the occurring fluctuations are always 1-periodic functions. How-
ever, if eigenvalues of the sum of matrices of the linear representation are arranged in
a symmetric way, then we can combine summands and get fluctuations with longer
periods. This is in particular true if all vertices of a regular polygon (with center 0)
are eigenvalues.
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Proposition 6.4 Let λ ∈ C, and let k ≥ 0 and p > 0 be integers. Denote by Up the
set of pth roots of unity. Suppose for each ζ ∈ Up we have a continuous 1-periodic
function

�(ζλ)(u) =
∑

�∈Z
ϕ(ζλ)� exp(2�π iu)

whose Fourier coefficients are

ϕ(ζλ)� = Res

(
D(s)

(
s − logq(ζλ) − 2�π i

log q

)k
, s = logq(ζλ) + 2�π i

log q

)

for a suitable function D.
Then

∑

ζ∈Up

N logq (ζλ)(logq N )k�(ζλ)({logq N }) = N logq λ(logq N )k�(p{logq p N })

(6.10)

with a continuous p-periodic function

�(u) =
∑

�∈Z
ϕ� exp

(2�π i
p

u
)

whose Fourier coefficients are

ϕ� = Res

(
D(s)

(
s − logq λ − 2�π i

p log q

)k
, s = logq λ + 2�π i

p log q

)
.

Note that we again write �(p{logq p N }) to optically emphasise the p-periodicity.
Moreover, the factor (logq N )k in (6.10) could be cancelled, however it is there to
optically highlight the similarities to the main results (e.g. Theorem A). The proof of
Proposition 6.4 can be found in Sect. 16.

The above proposition will be used for proving Corollary F which deals with trans-
ducer automata; there, the second order term exhibits a fluctuationwith possible period
larger than 1. We will also use the proposition for the analysis of esthetic numbers in
Sect. 9.

Remark 6.5 We can view Proposition 6.4 from a different perspective: A q-regular
sequence is q p-regular as well (by [2, Theorem 2.9]). Then, all eigenvalues ζλ of the
original sequence become eigenvalues λp whose algebraic multiplicity is the sum of
the individual multiplicities but the sizes of the corresponding Jordan blocks do not
change. Moreover, the joint spectral radius is also taken to the pth power. We apply,
for example, Theorem A in our q p-world and get again 1-period fluctuations. Note
that for actually computing the Fourier coefficients, the approach presented in the
proposition seems to be more suitable.
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7 Remarks on the Definitions

In this section, we give some motivation for and comments on the definitions listed in
Sect. 6.2.

7.1 q-Regular Sequences Versus Matrix Products

Wenote one significant difference between the study of q-regular sequences as in (3.1)
and the study of matrix products (6.2). The recurrence (3.1) is supposed to hold for
qn + r = 0, too; i.e. v(0) = A0v(0). This implies that v(0) is either the zero vector
(which is not interesting at all) or that v(0) is a right eigenvector of A0 associated with
the eigenvalue 1.

We do not want to impose this condition in the study of the matrix product (6.2).
Therefore, we exclude the case qn + r = 0 in (6.1). This comes at the price of the
terms K , ϑm , ϑ in Theorem B which vanish if multiplied by a right eigenvector to
the eigenvalue 1 of A0 from the right. This is the reason why Theorem A has simpler
expressions than those encountered in Theorem B.

7.2 Joint Spectral Radius

Let

ρ� := sup
{‖Ar1 . . . Ar�‖1/� : r1, . . . , r� ∈ {0, . . . , q − 1}}.

Then the submultiplicativity of the norm and Fekete’s subadditivity lemma [15] imply
that lim�→∞ ρ� = inf�>0 ρ� = ρ; cf. [37]. In view of equivalence of norms, this shows
that the joint spectral radius does not depend on the chosen norm. For our purposes,
the important point is that the choice of R ensures that there is an �0 > 0 such that
ρ�0 ≤ R, i.e., ‖Ar1 . . . Ar�0

‖ ≤ R�0 for all r j ∈ {0, . . . , q − 1}. For any � > 0, we
use long division to write � = s�0 + r , and by submultiplicativity of the norm, we get
‖Ar1 . . . Ar�‖ ≤ Rs�0ρr

r and thus

‖Ar1 . . . Ar�‖ = O(R�) (7.1)

for all r j ∈ {0, . . . , q−1} and � → ∞.Wewill only use (7.1) and no further properties
of the joint spectral radius. Note that (6.2) and (7.1) imply that

f (n) = O(Rlogq n) = O(nlogq R)

for n → ∞.
As mentioned, we say that the set of matrices A0, . . . , Aq−1, has the finiteness

property if there is an � > 0 with ρ� = ρ; see [34,35].
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7.3 Constants for Theorem B

In contrast to usual conventions, we write matrix representations of endomorphisms
as multiplications x �→ xM where x is a (row) vector in C

d and M is a matrix. Note
that we usually denote this endomorphism by the corresponding calligraphic letter,
for example, the endomorphism represented by the matrix M is denoted by M.

Consider the endomorphism C which maps a row vector x ∈ C
d to xC and its

generalised eigenspaces Wλ for λ ∈ C. (These are the generalised left eigenspaces of
C . If λ /∈ σ(C), thenWλ = {0}.) Then it is well-known that C|Wλ is an endomorphism
ofWλ and that Cd = ⊕

λ∈σ(C) Wλ. Let T be the basis formed by the rows of T . Then
the matrix representation of C with respect to T is J .

Let nowD be the endomorphism ofCd which acts as identity onWλ for λ 
= 1 and
as zero on W1. Its matrix representation with respect to the basis T is D; its matrix
representation with respect to the standard basis is T−1DT .

Finally, let C′ be the endomorphism C′ = C ◦ D. As C and D decompose along
C
d = ⊕

λ∈σ(C) Wλ and D commutes with every other endomorphism on Wλ for all
λ, we clearly also have C′ = D ◦ C. Thus the matrix representation of C′ with respect
to T is DJ = J D; its matrix representation with respect to the standard basis is
T−1DJT = C ′.

Now consider a generalised left eigenvector w of C . If it is associated to the eigen-
value 1, then wT−1DT = D(w) = 0, wK = 0 and wC ′ = C′(w) = 0. Otherwise,
that is, ifw is associated to an eigenvalue not equal to 1, we havewT−1DT = D(w) =
w, wC ′ = C′(w) = C(w) = wC , wC ′ j = C′ j (w) = C j (w) = wC j for j ≥ 0 and
wϑm = 0. Also note that 1 is not an eigenvalue of C ′, thus I − C ′ is indeed regular.
If 1 is not an eigenvalue of C , then everything is simpler: D is the identity matrix,
C ′ = C , K = (I − C)−1(I − A0) and ϑ = 0.

Part II: Examples

In this part we investigate three examples in-depth. For an overview, we refer to Sect. 5
where some of the appearing phenomena are discussed as well. Further examples are
also mentioned there.

8 Sequences Defined by Transducer Automata

We discuss the asymptotic analysis related to transducers; see also Sect. 5.1 for an
overview.

8.1 Transducer and Automata

Let us start with two paragraphs recalling some notions around transducer automata.
A transducer automaton has a finite set of states together with transitions (directed
edges) between these states. Each transition has an input label and an output label
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out of the input alphabet and the output alphabet, respectively. A transducer is said to
be deterministic and complete if for every state and every letter of the input alphabet,
there is exactly one transition starting in this state with this input label.

A deterministic and complete transducer processes a word (over the input alphabet)
in the following way:

• It starts at its unique initial state.
• Then the transducer reads the word letter by letter and for each letter

– takes the transition with matching input label,
– the output label is written, and
– we proceed to the next state (according to the end of the transition).

• Each state has a final output label that is written when we halt in this final state;
we call a transducer with this property a subsequential transducer.

We refer to [6, Chapter 1] for amore detailed introduction to transducers and automata.
Now we are ready to start with the set-up for our example.

8.2 Sums of Output Labels

Let q ≥ 2 be a positive integer. We consider a complete deterministic subsequential
transducer T with input alphabet {0, . . . , q − 1} and output alphabet C; see [31].
For a non-negative integer n, let T (n) be the sum of the output labels (including the
final output label) encountered when the transducer reads the q-ary expansion of n.
Therefore, letters of the input alphabet will from now on be called digits.

This concept has been thoroughly studied in [31]: there, T (n) is considered as
a random variable defined on the probability space {0, . . . , N − 1} equipped with
uniform distribution. The expectation in this model corresponds (up to a factor of N )
to our summatory function

∑
0≤n<N T (n). We remark that in [31], the variance and

limiting distribution of the random variable T (n) have also been investigated. Most
of the results there are also valid for higher dimensional input.

The purpose of this section is to show that T (n) is a q-regular sequence and to see
that the corresponding results in [31] also follow from our more general framework
here. We note that the binary sum of digits considered in Example 3.1 is the special
case of q = 2 and the transducer consisting of a single state which implements the
identity map. For additional special cases of this concept; see [31]. Note that our result
here for the summatory function contains (fluctuating) terms for all eigenvalues λ of
the adjacency matrix of the underlying digraph with |λ| > 1 whereas in [31] only
contributions of those eigenvalues λ with |λ| = q are available, all other contributions
are absorbed by the error term there.

8.3 Some Perron–Frobenius Theory

Wewill need the following consequence of Perron–Frobenius theory. By a component
of a digraph we always mean a strongly connected component. We call a component
final if there are no arcs leaving the component. The period of a component is the
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greatest common divisor of its cycle lengths. The final period of a digraph is the least
common multiple of the periods of its final components.

Lemma 8.1 Let D be a directed graph where each vertex has outdegree q. Let M be
its adjacency matrix and p be its final period. Then M has spectral radius q, q is
an eigenvalue of M and for all eigenvalues λ of M of modulus q, the algebraic and
geometric multiplicities coincide and λ = qζ for some pth root of unity ζ .

This lemma follows from setting t = 0 in [31, Lemma 2.3]. As [31, Lemma 2.3]
proves more than we need here and depends on the notions of that article, we extract
the relevant parts of [31] to provide a self-contained (apart from Perron–Frobenius
theorem) proof of Lemma 8.1.

Proof As usual, the condensation of D is the graph resulting from contracting each
component of the original digraph to a single new vertex. By construction, the con-
densation is acyclic.

We choose a refinement of the partial order of the components given by the successor
relation in the condensation to a linear order in such a way that the final components
come last. Note that this implies that if there is an arc from one component to another,
the former component comes before the latter component in our linear order. We then
denote the components by C1, . . . , Ck , Ck+1, . . . , Ck+� where the first k components
are non-final and the last � are final. Without loss of generality, we assume that the
vertices of the original digraph D are labeled such that vertices within a component get
successive labels and such that the linear order of the components established above
is respected.

Therefore, the adjacency matrix M is an upper block triagonal matrix of the shape

M =

⎛

⎜⎜⎜⎜⎜⎜⎝

M1 � � � � �

0 . . . � � � �

0 0 Mk � � �

0 0 0 Mk+1 0 0
0 0 0 0 . . . 0
0 0 0 0 0 Mk+�

⎞

⎟⎟⎟⎟⎟⎟⎠

where Mj is the adjacency matrix of the component C j .
Each row of the non-negative square matrix M has sum q by construction. Thus

‖M‖∞ = q and therefore the spectral radius of M is bounded from above by q. As the
all ones vector is obviously a right eigenvector associated with the eigenvalue q of M ,
the spectral radius of M equals q. The same argument applies to Mk+1, . . . , Mk+�.

By construction, the matrices Mk+1, . . . , Mk+� are irreducible. For 1 ≤ j ≤ � all
eigenvalues λ of Mk+ j of modulus q have algebraic and geometric multiplicities 1 by
Perron–Frobenius theory and λ = qζ for some pk+ j th root of unity ζ where pk+ j is
the period of Ck+ j .

By construction, the vertices of the components C j for 1 ≤ j ≤ k have out-degree at
most q. We add loops to these vertices to increase their out-degree to q, resulting in C̃ j .

The corresponding adjacencymatrices are denoted by M̃ j . By the above argument, M̃ j

has spectral radius q for 1 ≤ j ≤ k. As Mj ≤ M̃ j (component-wise) and Mj 
= M̃ j

by construction, the spectral radius ofMj is strictly less than q by [20, Theorem 8.8.1].
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A left eigenvector v j of Mk+ j for 1 ≤ j ≤ � can easily be extended to a left
eigenvector (0, . . . , 0, v j , 0, . . . , 0) of M . This observation shows that the geometric
multiplicity of any eigenvalue of M of modulus q is at least its algebraic multiplicity.
This concludes the proof. ��

8.4 Analysis of Output Sums of Transducers

We consider the states of T to be numbered by {1, . . . , d} for some positive integer
d ≥ 1 such that the initial state is state 1. We set T j (n) to be the sum of the output
labels (including the final output label) encountered when the transducer reads the
q-ary expansion of n when starting in state j . By construction, we have T (n) = T1(n)

and T j (0) is the final output label of state j . We set y(n) = (
T1(n), . . . , Td(n)

)
. For

0 ≤ r < q, we define the d × d-dimensional {0, 1}-matrix Pr in such a way that there
is a one in row j , column k if and only if there is a transition from state j to state k with
input label r . The vector or is defined by setting its j th coordinate to be the output
label of the transition from state j with input label r .

For n0 ≥ 1, we set

X (s) =
∑

n≥1

n−sT (n), Yn0(s) =
∑

n≥n0

n−s y(n), ζn0(s, α) =
∑

n≥n0

(n + α)−s .

The last Dirichlet series is a truncated version of the Hurwitz zeta function.

Corollary F Let T be a transducer as described at the beginning of this section. Let
M be the adjacency matrix and p be the final period of the underlying digraph. For
λ ∈ C let m(λ) be the size of the largest Jordan block associated with the eigenvalue
λ of M.

Then the sequence n �→ T (n) is a q-regular sequence and

∑

0≤n<N

T (n) = eT N logq N + N�(logq N )

+
∑

λ∈σ(M)
1<|λ|<q

N logq λ
∑

0≤k<m(λ)

(logq N )k�λk(logq N )

+ O
(
(log N )max{m(λ) : |λ|=1})

(8.1)

for some continuous p-periodic function�, some continuous 1-periodic functions�λk

for λ ∈ σ(M) with 1 < |λ| < q and 0 ≤ k < m(λ) and some constant eT .
Furthermore,

�(u) =
∑

�∈Z
ϕ� exp

(2�π i
p

u
)

with

ϕ� = Res
(X (s)

s
, s = 1 + 2�π i

p log q

)
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for � ∈ Z. The Fourier series expansion of �λk for λ ∈ σ(M) with 1 < |λ| < q is
given in Theorem A.

The Dirichlet series Yn0 satisfies the functional equation

(
I − q−sM

)
Yn0(s) =

∑

n0≤n<qn0

n−s y(n) + q−s
∑

0≤r<q

ζn0
(
s, r

q

)
or

+ q−s
∑

0≤r<q

Pr
∑

k≥1

(−s

k

)( r
q

)k
Yn0(s + k).

(8.2)

Note that the functional equation (8.2) is preferrable over the functional equation
given in Theorem D for the generic case of a regular sequence: the generic functional
equation suggests a double pole at s = 1+χ� for all � ∈ Z whereas the occurrence of
the Hurwitz zeta function in (8.2) shows that there is a double pole s = 1 but single
poles at s = 1+χ� for all � ∈ Z\{0}. Numerically, the same occurrence of the Hurwitz
zeta function is also advantageous because it allows to decouple the problem.

8.5 Proof of Corollary F

Proof of Corollary F The proof is split into several steps.
Recursive Description. We set v(n) = (

T1(n), . . . , Td(n), 1
)	. For 1 ≤ j ≤ d and

0 ≤ r < q, we define t( j, r) and o( j, r) to be the target state and output label of the
unique transition from state j with input label r , respectively. Therefore,

T j (qn + r) = Tt( j,r)(n) + o( j, r) (8.3)

for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q with qn + r > 0.
For 0 ≤ r < q, define Ar = (ar jk)1≤ j, k≤d+1 by

ar jk =
⎧
⎨

⎩

[t( j, r) = k] if j, k ≤ d,

o( j, r) if j ≤ d, k = d + 1,
[k = d + 1] if j = d + 1.

Then (8.3) is equivalent to
v(qn + r) = Arv(n)

for n ≥ 0, 0 ≤ r < q with qn + r > 0. Defining f (n) as in (6.1) for these Ar , we see
that v(n) = f (n)v(0).

q-Regular Sequence. If we insist on a proper formulation as a regular sequence, we
rewrite (8.3) to

T j (qn+r) = Tt( j,r)(n)+o( j, r)+[r = 0][n = 0](T j (0)−Tt( j,0)(0)−o( j, 0)
)
(8.4)
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for 1 ≤ j ≤ d, n ≥ 0, 0 ≤ r < q. Setting ṽ(n) = (
T1(n), . . . , Td(n), 1, [n = 0]) and

Ãr = (̃ar jk)1≤ j, k≤d+2 with

ãr jk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[t( j, r) = k] if j, k ≤ d,

o( j, r) if j ≤ d, k = d + 1,
[r = 0](T j (0) − Tt( j,0)(0) − o( j, 0)

)
if j ≤ d, k = d + 2,

[k = d + 1] if j = d + 1,
[k = d + 2][r = 0] if j = d + 2,

the system (8.4) is equivalent to

ṽ(qn + r) = Ãr ṽ(n)

for n ≥ 0, 0 ≤ r < q.

Eigenvalue 1. By construction, the matrices Ar have the shape

Ar =
(
Pr or
0 1

)
.

It is clear that (0, . . . , 0, 1) is a left eigenvector of Ar associated with the eigenvalue 1.

Joint Spectral Radius. We claim that A0, . . . , Aq−1 have joint spectral radius 1. Let
‖·‖∞ denote the maximum norm of complex vectors as well as the induced matrix
norm, i.e., the maximum row sum norm. Let j1, . . . , j� ∈ {0, . . . , q − 1}. It is easily
shown by induction on � that

A j1 · · · A j� =
(
P bP
0 1

)

for some P ∈ C
d×d and bP ∈ C

d with ‖P‖∞ ≤ 1 and ‖bP‖∞ ≤ �max0≤r<q‖or‖∞.
Thus, we obtain

‖A j1 · · · A j�‖∞ ≤ 1 + � max
0≤r<q

‖or‖∞.

As 1 is an eigenvalue of each matrix Ar for 0 ≤ r < q, the joint spectral radius
equals 1, which proves the claim.

Eigenvectors and Asymptotics. We now consider C = ∑
0≤r<q Ar . It has the shape

C =
(
M bM
0 q

)

where bM is some complex vector.
Let w1, . . . , w� be a linearly independent system of left eigenvectors of M asso-

ciated with the eigenvector q. If w j bM = 0 for 1 ≤ j ≤ �, then (w1, 0), . . . ,
(w�, 0), (0, 1) is a linearly independent system of left eigenvectors of C associated
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with the eigenvalue q. In that case and because of Lemma 8.1, algebraic and geometric
multiplicities of q as an eigenvalue of C are both equal to � + 1.

Otherwise, assume without loss of generality that w1bM = 1. Then

(
w2 − (w2bM )w1, 0

)
, . . . ,

(
w� − (w�bM )w1, 0

)
,
(
0, 1

)

is a linearly independent systemof left eigenvectors ofC associatedwith the eigenvalue
q. Additionally, (w1, 0) is a generalised left eigenvector of rank 2 ofC associated with
the eigenvalue q with (w1, 0)(C − q I ) = (0, 1). As noted above, the vector (0, 1) is
a left eigenvector to each matrix A0, . . . , Aq−1.

Similarly, it is easily seen that any left eigenvector of M associated with some
eigenvalue λ 
= q can be extended uniquely to a left eigenvector of C associated
with the same eigenvalue. The same is true for chains of generalised left eigenvectors
associated with λ 
= q.

Therefore, in both of the above cases, Theorem B yields

∑

0≤n<N

T (N ) = eT N logq N +
∑

ζ∈Up

N logq (qζ )�(qζ )({logq N })

+
∑

λ∈σ(M)
1<|λ|<q

N logq λ
∑

0≤k<m(λ)

(logq N )k�λk(logq N )

+ O
(
(log N )max{m(λ) : |λ|=1})

for some constant eT (which vanishes in the first case) and some 1-periodic continuous
functions�(qζ ) and�λk where ζ runs through the pth roots of unityUp and λ through
the eigenvalues of M with 1 < |λ| < q and 0 ≤ k < m(λ).

Proposition 6.4 leads to (8.1).

Fourier Coefficients. By Theorem A, we have

�(qζ )(u) =
∑

�∈Z
ϕ(qζ )� exp(2�π iu)

with

ϕ(qζ )� = Res
(T (0) + X (s)

s
, s = 1 + logq ζ + 2�π i

log q

)

for a pth root of unity ζ ∈ Up and � ∈ Z. Therefore and by noting that T (0) does
not contribute to the residue, Proposition 6.4 leads to the Fourier series given in the
corollary.

Functional Equation. By (8.3), we have

Yn0(s) =
∑

n0≤n<qn0

n−s y(n) +
∑

n≥n0

∑

0≤r<q

(qn + r)−s y(qn + r)

=
∑

n0≤n<qn0

n−s y(n) +
∑

n≥n0

∑

0≤r<q

(qn + r)−s(Pr y(n) + or
)
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Fig. 1 Automaton A recognizing esthetic numbers

=
∑

n0≤n<qn0

n−s y(n) + q−s
∑

0≤r<q

Pr
∑

n≥n0

(
n + r

q

)−s
y(n)

+ q−s
∑

0≤r<q

ζn0
(
s, r

q

)
or .

Using Lemma 6.3 yields the result. ��

9 Esthetic Numbers

We discuss the asymptotic analysis of esthetic numbers; see also Sect. 5.2 for an
overview.

Let again be q ≥ 2 a fixed integer. We call a non-negative integer n a q-esthetic
number (or simply an esthetic number) if its q-ary digit expansion r�−1 . . . r0 satisfies
|r j − r j−1| = 1 for all j ∈ {1, . . . , � − 1}; see De Koninck and Doyon [8].

In [8] the authors count q-esthetic numbers with a given length of their q-ary digit
expansion. They provide an explicit (in form of a sum of q summands) as well as an
asymptotic formula for these counts. We aim for a more precise analysis and head
for an asymptotic description of the amount of q-esthetic numbers up the an arbitrary
value N (in contrast to only powers of q in [8]).

9.1 A q-Linear Representation

The language consisting of the q-ary digit expansions (seen as words of digits) which
are q-esthetic is a regular language, because it is recognized by the automaton A in
Fig. 1. Therefore, the indicator sequence of this language, i.e., the nth entry is 1 if n
is q-esthetic and 0 otherwise, is a q-automatic sequence and therefore also q-regular.
Let us name this sequence x(n).
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Let A0, . . . , Aq−1 be the transition matrices of the automaton A, i.e., Ar is the
adjacency matrix of the directed graph induced by a transition with digit r . To make
this more explicit, we have the following (q + 1)-dimensional square matrices: Each
row and column corresponds to the states 0, 1, . . . , q − 1, I. In matrix Ar , the only
non-zero entries are in column r ∈ {0, 1, . . . , q − 1}, namely 1 in the rows r − 1 and
r + 1 (if available) and in row I as there are transitions from these states to state r in
the automaton A.

Let us make this more concrete by considering q = 4. We obtain the matrices

A0 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, A1 =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞

⎟⎟⎟⎟⎠
,

A2 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0

⎞

⎟⎟⎟⎟⎠
, A3 =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0

⎞

⎟⎟⎟⎟⎠
.

We are almost at a q-linear representation of our sequence; we still need vectors on
both sides of the matrix products. We have

x(n) = eq+1 Ar0 · · · Ar�−1v(0)

for r�−1 . . . r0 being the q-ary expansion of n and vectors eq+1 = (
0 . . . 0 1

)
and

v(0) = (
0 1 . . . 1

)	. As A0v(0) = 0 
= v(0), this is not a linear representation
of a regular sequence. Thus we cannot use Theorem A, but need to use Theorem B.
However, the difference is slight: we simply cannot omit the contributions of the
constant vector Kv(0). However, it will turn out that the joint spectral radius is 1, so
the contribution will be absorbed by the error term anyway.

To see that the above holds, we have two different interpretations: the first is that
the row vector

w(n) = eq+1 Ar0 · · · Ar�−1

is the unit vector corresponding to the most significant digit of the q-ary expansion
of n or, in view of the automaton A, corresponding to the final state. Note that we
read the digit expansion from the least significant digit to the most significant one
(although it would be possible the other way round as well). We have w(0) = eq+1
which corresponds to the empty word and being in the initial state I in the automaton.
The vector v(0) corresponds to the fact that all states of A except 0 are accepting.

The other interpretation is: the r th component of the column vector

v(n) = Ar0 · · · Ar�−1v(0)

has the following two meanings:
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• In the automatonA, we start in state r and then read the digit expansion of n. The
r th component is then the indicator function whether we remain esthetic, i.e., end
in an accepting state.

• To a word ending with r we append the digit expansion of n. The r th component
is then the indicator function whether the result is an esthetic word.

At first glance, our problem here seems to be a special case of the transducers
studied in Sect. 8. However, the automatonA is not complete. Adding a sink to have a
formally complete automaton, however, adds an eigenvalue q and thus a much larger
dominant asymptotic term, whichwould then bemultiplied by 0. Therefore, the results
of [31] do not apply to this case here.

9.2 Full Asymptotics

We now formulate our main result for the amount of esthetic numbers smaller than a
given integer N . We abbreviate this amount by

X(N ) =
∑

0≤n<N

x(n)

and have the following corollary.

Corollary G Fix an integer q ≥ 2. Then the number X(N ) of q-esthetic numbers
smaller than N is

X(N ) =
∑

j∈{1,2,...,� q−2
3 �}

N logq (2 cos( jπ/(q+1)))� j (2{logq2 N })

+ O
(
(log N )[q≡−1(mod 3)]) (9.1)

with 2-periodic continuous functions � j . Moreover, we can effectively compute the
Fourier coefficients of each� j (as explained in Part IV). If q is even, then the functions
� j are actually 1-periodic. If q is odd, then the functions � j for even j vanish.

If q = 2, then the corollary results in X(N ) = O(log N ). However, for each length,
the only word of digits satisfying the esthetic number condition has alternating digits
0 and 1, starting with 1 at its most significant digit. The corresponding numbers n
form the so-called Lichtenberg sequence [39, A000975].

Back to a general q: For the asymptotics, the main quantities influencing the growth
are the eigenvalues of thematrixC = A0+· · ·+Aq−1. Continuing our example q = 4
above, this matrix is

C = A0 + A1 + A2 + A3 =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 0
1 1 1 1 0

⎞

⎟⎟⎟⎟⎠
,
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4.75

5.00

9 10 11 12

Fig. 2 Fluctuation in themain term of the asymptotic expansion of X(N ) for q = 4. The figure shows�1(u)

(red) approximated by its trigonometric polynomial of degree 1999 as well as X(4u)/Nu(log4(
√
5+1)− 1

2 )

(blue) (Color figure online)

Table 1 Fourier coefficients
of �1 for q = 4 (Corollary G)

� ϕ1�

0 4.886821584515

1 0.036565359077 − 0.012421753685i

2 0.0131103199420 − 0.017152133508i

3 − 0.0023895069366 − 0.0506880727105i

4 − 0.017328669452 + 0.025036392542i

5 0.011186380630 − 0.0066357472861i

6 0.0086354015002 + 0.018593736873i

7 − 0.014899262928 + 0.0297436287202i

8 − 0.003867454968 + 0.0064534688733i

9 0.0033747695643 + 0.006159612843i

10 − 0.002149675882 + 0.006474570022i

All stated digits are correct; see also Part IV

and its eigenvalues are ± 2 cos(π
5 ) = ± 1

2

(√
5 + 1

) = ±1.618 . . ., ± 2 cos( 2π5 ) =
± 1

2

(√
5 − 1

) = ±0.618 . . . and 0, all with algebraic and geometric multiplicity 1.

Therefore it turns out that the growth of the main term is N log4(
√
5+1)− 1

2 = N 0.347...,
see Fig. 2. The first few Fourier coefficients are shown in Table 1.

9.3 Eigenvectors

Before proving Corollary G, we collect information on the eigenvalues of C .
The matrix C = A0 + · · · + Aq−1 has a block decomposition into

C =
(
M 0
1 0

)

for vectors 0 (vector of zeros) and 1 (vector of ones) of suitable dimension. Therefore,
one eigenvalue of C is 0 and the others are the eigenvalues of M .
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In contrast to [8, Sects. 4 and 5], we use the Chebyshev polynomials8,9 Un of the
second kind defined by

U0(X) = 1, U1(X) = 2X , Un+1(X) = 2X Un(X) −Un−1(X)

for n ≥ 1. It is well-known that

Un(cosϕ) = sin((n + 1)ϕ)

sin(ϕ)
(9.2)

and, as a consequence, the roots of Un are given by

cos
( kπ

n + 1

)
, 1 ≤ k ≤ n,

for n ≥ 1.
The following lemma is similar to [8, Proposition 3].

Lemma 9.1 Let v 
= 0 be a vector and λ ∈ C.
Then v is an eigenvector to the eigenvalue λ of M if and only if λ = 2 cos( kπ

q+1 ) for
some 1 ≤ k ≤ q and

v =
(
Uj

(λ

2

))

0≤ j<q

(up to a scalar factor).
In particular, 0 is an eigenvalue of M if and only if q is odd.

Proof See the statement and the proof of [8, Proposition 3]. ��
Lemma 9.2 Let 1 ≤ k ≤ q, λ = 2 cos(kπ/(q + 1)) and v be an eigenvector of M to
λ. Then 〈1, v〉 = 0 holds if and only if k is even.

Proof We write ϕ := kπ/(q + 1). By Lemma 9.1 and (9.2) and a summation similar
to the Dirichlet kernel, we have

〈1, v〉 =
∑

0≤ j<q

U j (cosϕ)

= 1

sin ϕ

∑

0≤ j<q

sin(( j + 1)ϕ)

= 1

sin ϕ
�

∑

0≤ j<q

exp(iϕ) j+1

= 1

sin ϕ
�
(
exp(iϕ)

1 − exp(iqϕ)

1 − exp(iϕ)

)

= 1

sin ϕ
�
(
exp

( i(q + 1)ϕ

2

)exp
(− iqϕ

2

) − exp
( iqϕ

2

)

exp
(− iϕ

2

) − exp
( iϕ
2

)
)

8 Chebyshev polynomials are frequently occurring phenomena in lattice path analysis, see for instance [7,
16]. We have such a lattice path here, so their appearance is not surprising.
9 Up to replacing 2X by X , the polynomials Un used here correspond to the polynomials pn used in [8].
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= sin
( qϕ

2

)

sin ϕ sin
(

ϕ
2

)� exp
( i(q + 1)ϕ

2

)

= sin
( qϕ

2

)
sin

( (q+1)ϕ
2

)

sin ϕ sin
(

ϕ
2

) .

Inserting the value of ϕ leads to

〈1, v〉 = sin
( qkπ
2(q+1)

)
sin

( kπ
2

)

sin
( kπ
q+1

)
sin

( kπ
2(q+1)

) .

For 1 ≤ k ≤ q, it is clear that 0 < kπ/(q + 1) < π and 0 < kπ/(2(q + 1)) < π ,
so the denominator of this fraction is non-zero. We also claim that sin

( qkπ
2(q+1)

) 
= 0:
Otherwise, we have 2(q + 1) | qk, hence q + 1 | qk, which implies that q + 1 | k
because gcd(q, q + 1) = 1. However, it cannot be that q + 1 | k because 1 ≤ k ≤ q.

As a consequence, 〈1, v〉 = 0 if and only if k/2 is an integer. ��
Lemma 9.3 The characteristic polynomial of C is

X
∏

1≤k≤q

(
X − 2 cos

( kπ

q + 1

))
.

In particular, all eigenvalues of M apart from 0 are eigenvalues of C with algebraic
multiplicity 1. If q is even, then 0 has algebraic multiplicity 1 as an eigenvalue of C;
if q is odd, then 0 has algebraic multiplicity 2 as an eigenvalue of C.

Proof ThematrixC is a block lower triangularmatrix, so the characteristic polynomial
is the product of the characteristic polynomials of the matrices M and 0.

The statement on the algebraic multiplicities follows from Lemma 9.1. ��
Wecan summarise our findings on the eigenvectors and eigenvalues ofC as follows.

Proposition 9.4 Let v ∈ C
q , w ∈ C, not both 0, and let λ ∈ C.

Then
(

v
w

) 
= 0 is an eigenvector of C to the eigenvalue λ if and only if one of the
following conditions hold:

1. 0 
= λ = 2 cos
( kπ
q+1

)
for some 1 ≤ k ≤ q and k 
= q+1

2 , v is an eigenvector of M
to λ, and w = 0 if k is even and λw = 〈1, v〉 
= 0 if k is odd;

2. λ = 0, v = 0, w 
= 0;
3. λ = 0, q ≡ 3 (mod 4), v is an eigenvector of M and w = 0.

In particular, the eigenvalue λ = 0 of C has

• algebraic and geometric multiplicity 2 if q ≡ 3 (mod 4),
• algebraic multiplicity 2 and geometric multiplicity 1 if q ≡ 1 (mod 4), and
• algebraic and geometric multiplicity 1 for even q.
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Proof The vector
(

v
w

)
is an eigenvector if and only if

Mv = λv,

〈1, v〉 = λw.

First assume that λ 
= 0. Then v = 0 leads to w = 0, contradiction. Therefore, v is
an eigenvector of M to the eigenvalue λ and λ = 2 cos

( kπ
q+1

)
for some 1 ≤ k ≤ q by

Lemma 9.1. Then w = 0 if and only if k is even by Lemma 9.2.
Now assume that λ = 0 and q is even. Then 0 is not an eigenvalue of M by

Lemma 9.1. Thus v = 0 and w 
= 0.

Now, assume that λ = 0 and q ≡ 3 (mod 4). Then λ = 2 cos
(

π
2

) = 2 cos
( q+1

2 π

q+1

)
.

By Lemma 9.2, the eigenvector v of M leads to an eigenvector
(

v
0
)
of C ; and there is

an additional eigenvector
(
0
w

) 
= 0.
Finally, assume thatλ = 0 andq ≡ 1 (mod 4). In this case, byLemma9.2, it cannot

be that v 
= 0 is an eigenvector of M because this would lead to 0 
= 〈1, v〉 = λw = 0,
a contradiction. Thus the only eigenvector is

(
0
w

) 
= 0. ��

9.4 Proof of the Asymptotic Result

Proof of Corollary G Wework out the conditions and parameters for using Theorem A.

Joint Spectral Radius. As all the square matrices A0, . . . , Aq−1 have a maximum
absolute row sumnorm equal to 1, the joint spectral radius of thesematrices is bounded
by 1.

Let r ∈ {1, . . . , q−1}. Then any product with alternating factors Ar−1 and Ar , i.e.,
a finite product Ar−1Ar Ar−1 · · · , has absolute row sum norm at least 1 as the word
(r − 1)r(r − 1) . . . is q-esthetic. Therefore the joint spectral radius of Ar−1 and Ar is
at least 1. Consequently, the joint spectral radius of A0, . . . , Aq−1 equals 1.

Asymptotics.We apply our Theorem A. We have λ j = −λq+1− j , so we combine our
approach with Proposition 6.4. Moreover, we have λ j > 1 iff j

q+1 < 1
3 iff j ≤ � q−2

3 �.
This results in (9.1).

We now assume that q is even. In this case, we still have to show that the functions
� j are actually 1-periodic. We now need to use Theorem B. Let w1, w2, . . . , wq−1,
wq be the rows of T where the order is chosen in such a way that

J = diag
(
2 cos

( π

q + 1

)
, . . . , 2 cos

( qπ

q + 1

)
, 0

)
.

We write eq+1 = ∑q
k=1 ckwk for suitable ck ∈ R. Setting c := (

c1 c2 · · · cq
)
,

this means that eq+1 = cT , or equivalently, c = eq+1T−1. The columns of T−1 are the
right eigenvectors of C described in Proposition 9.4. Then Proposition 9.4 (1) implies
that ck = 0 for even k with 1 ≤ k ≤ q. This means that all fluctuations corresponding
to eigenvalues 2 cos(kπ/(q + 1)) for even k with 1 ≤ k ≤ q are multiplied by 0 and
do not contribute to the result. As |cos( q+1−k

q+1 π)| = |cos( k
q+1π)|, but q + 1− k and k
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Fig. 3 Pascal’s rhombus modulo 2

have different parities, there is no need to use Proposition 6.4 and all fluctuations are
1-periodic.

The same argument can be used for the case of odd q, but in this case, q+1−k and
k have the same parity. So Proposition 6.4 is used for odd k, and fluctuations to both
eigenvalues 2 cos(kπ/(q + 1)) and 2 cos((q + 1 − k)π/(q + 1)) vanish for even k.

Fourier Coefficients.We can compute the Fourier coefficients according to TheoremA
and Proposition 6.4; see also Part IV. ��

10 Pascal’s Rhombus

Wediscuss the asymptotic analysis of odd entries inPascal’s rhombus; see alsoSect. 5.5
for an overview.

We consider Pascal’s rhombusR which is, for integers i ≥ 0 and j , the array with
entries ri, j , where

• r0, j = 0 all j ,
• r1,0 = 1 and r1, j = 0 for all j 
= 0,
• and

ri, j = ri−1, j−1 + ri−1, j + ri−1, j+1 + ri−2, j

for i ≥ 1.

We are interested in the number of odd entries in the first N rows of this rhombus.
In [21] the authors investigate this quantity for N being a power of 2. We again aim
for a more precise analysis and asymptotic description.

So, letX be equal toR but with entries taken modulo 2; see also Fig. 3.We partition
X into the four sub-arrays
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• E consisting only of the rows and columns of X with even indices, i.e., the
entries r2i,2 j ,

• Y consisting only of the rows with odd indices and columns with even indices,
i.e., the entries r2i−1,2 j ,

• Z consisting only of the rows with even indices and columns with odd indices, i.e.,
the entries r2i,2 j−1, and

• N consisting only of the rows and columns with odd indices, i.e., the entries
r2i−1,2 j−1.

Note that E = X and N = 0; see [21].

10.1 Recurrence Relations and 2-Regular Sequences

Let X(N ), Y (N ) and Z(N ) be the number of ones in the first N rows (starting with
row index 1) of X,Y and Z, respectively.

Goldwasser, Klostermeyer, Mays and Trapp [21, (12)–(14)] get the recurrence rela-
tions

X(N ) = X(� N
2 
) + Y (� N

2 �) + Z(� N
2 
),

Y (N ) = X(� N
2 �) + X(� N

2 
 − 1) + Z(� N
2 
) + Z(� N

2 � − 1),

Z(N ) = 2X(� N
2 
) + 2Y (� N

2 �)
for N ≥ 2, and X(0) = Y (0) = Z(0) = 0, X(1) = 1, Y (1) = 1 and Z(1) = 2
(cf. [21, Figs. 2 and 3]). Distinguishing between even and odd indices gives

X(2N ) = X(N ) + Y (N ) + Z(N ),

X(2N + 1) = X(N ) + Y (N + 1) + Z(N ),

Y (2N ) = X(N ) + X(N − 1) + Z(N ) + Z(N − 1),

Y (2N + 1) = X(N + 1) + X(N − 1) + 2Z(N ),

Z(2N ) = 2X(N ) + 2Y (N ),

Z(2N + 1) = 2X(N ) + 2Y (N + 1)

for all N ≥ 1. Now we build the backward differences x(n) = X(n) − X(n − 1),
y(n) = Y (n) − Y (n − 1) and z(n) = Z(n) − Z(n − 1). These x(n), y(n) and z(n)

are the number of ones in the nth row of X,Y and Z, respectively, and clearly

X(N ) =
∑

1≤n≤N

x(n), Y (N ) =
∑

1≤n≤N

y(n), Z(N ) =
∑

1≤n≤N

z(n)

holds. We obtain

x(2n) = x(n) + z(n), x(2n + 1) = y(n + 1), (10.1a)

y(2n) = x(n − 1) + z(n), y(2n + 1) = x(n + 1) + z(n), (10.1b)

z(2n) = 2x(n), z(2n + 1) = 2y(n + 1) (10.1c)

for n ≥ 1, and x(0) = y(0) = z(0) = 0, x(1) = 1, y(1) = 1 and z(1) = 2.

123



Algorithmica (2020) 82:429–508 469

Let us write our coefficients as the vector

v(n) = (
x(n), x(n + 1), y(n + 1), z(n), z(n + 1)

)	
. (10.2)

It turns out that the components included into v(n) are sufficient for a self-contained
linear representation of v(n). In particular, it is not necessary to include y(n). By using
the recurrences (10.1), we find that

v(2n) = A0v(n) and v(2n + 1) = A1v(n)

for all10 n ≥ 0 with the matrices

A0 =

⎛

⎜⎜⎜⎜⎝

1 0 0 1 0
0 0 1 0 0
0 1 0 1 0
2 0 0 0 0
0 0 2 0 0

⎞

⎟⎟⎟⎟⎠
and A1 =

⎛

⎜⎜⎜⎜⎝

0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 2 0 0
0 2 0 0 0

⎞

⎟⎟⎟⎟⎠
,

and with v(0) = (0, 1, 1, 0, 2)	. Therefore, the sequences x(n), y(n) and z(n) are
2-regular.

10.2 Full Asymptotics

Corollary H We have

X(N ) =
∑

1≤n≤N

x(n) = N κ �({log2 N }) + O(N log2 N ) (10.3)

with κ = log2
(
3 + √

17
) − 1 = 1.83250638358045 . . . and a 1-periodic function �

which is Hölder continuous with any exponent smaller than κ − 1.
Moreover, we can effectively compute the Fourier coefficients of � (as explained in

Part IV).

We get analogous results for the sequences Y (N ) and Z(N ) (each with its own
periodic function�, but the same exponent κ). The fluctuation� of X(N ) is visualized
in Fig. 4 and its first few Fourier coefficients are shown in Table 2.

10.3 Proof of the Asymptotic Result

At this point, we only prove (10.3) of CorollaryH.Wedealwith the Fourier coefficients
in Sect. 10.5. As in the introductory example of the binary sum-of-digits functions
(Example 3.1), we could get Fourier coefficients by Theorem A and the 2-linear
representation of Sect. 10.1 directly. However, the information in the vector v(n) [see
(10.2)] is redundant with respect to the asymptotic main term as it contains x(n) and

10 Note that v(0) = A0v(0) and v(1) = A1v(0) are indeed true.
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0.675

0.700

9 10 11 12 13

Fig. 4 Fluctuation in the main term of the asymptotic expansion of X(N ). The figure shows �(u) (red)
approximated by its trigonometric polynomial of degree 1999 as well as X(2u)/2uκ (blue) (Color figure
online)

Table 2 Fourier coefficients of � (Corollary H)

� ϕ�

0 0.6911615112341912755021246

1 −0.01079216311240407872950510 − 0.0023421761940286789685827i

2 0.00279378637350495172116712 − 0.00066736128659728911347756i

3 −0.00020078258323645842522640 − 0.0031973663977645462669373i

4 0.00024944678921746747281338 − 0.0005912995467076061497650i

5 −0.0003886698612765803447578 + 0.00006723866319930148568431i

6 −0.0006223575988893574655258 + 0.00043217220614939859781542i

7 0.00023034317364181383130476 − 0.00058663168772856091427688i

8 0.0005339060804798716172593 − 0.0002119380802590974909465i

9 0.0000678898389770175928529 − 0.00038307823285486235280185i

10 −0.00019981745997355255061991 − 0.00031394569060142799808175i

All stated digits are correct; see also Part IV

z(n) as well as x(n + 1) and z(n + 1); both pairs are asymptotically equal in the
sense of (10.3). Therefore, we head for an only 3-dimensional functional system of
equations for our Dirichlet series of x(n), y(n) and z(n) (instead of a 5-dimensional
system).

Proof of (10.3) We use Theorem A.

Joint Spectral Radius. First we compute the joint spectral radius ρ of A0 and A1. Both
matrices have a maximum absolute row sum equal to 2, thus ρ ≤ 2, and both matrices
have 2 as an eigenvalue. Therefore we obtain ρ = 2. Moreover, the finiteness property
of the linear representation is satisfied by considering only products with exactly one
matrix factor A0 or A1.

Thus, we have R = ρ = 2.

Eigenvalues. Next, we compute the spectrum σ(C) of C = A0 + A1. The matrix C
has the eigenvalues λ1 = (

3 + √
17

)
/2 = 3.5615528128088 . . ., λ2 = 2, λ3 = −2,
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λ4 = −1 and λ5 = (
3 − √

17
)
/2 = −0.5615528128088 . . . (each with multiplicity

one). Note that λ1 and λ5 are the zeros of the polynomial U 2 − 3U − 2.

Asymptotics. By using Theorem A, we obtain an asymptotic formula for X(N − 1).
Shifting from N − 1 to N does not change this asymptotic formula, as this shift is
absorbed by the error term O(N log2 N ). ��

10.4 Dirichlet Series andMeromorphic Continuation

In the lemma below, we provide the functional equation (10.4) as a system of three
equations. This is in contrast to the generic functional equation provided byTheoremD
which is a system of five equations.

Let n0 ≥ 2 be an integer and define

Xn0(s) =
∑

n≥n0

x(n)

ns
, Yn0(s) =

∑

n≥n0

y(n)

ns
, Zn0(s) =

∑

n≥n0

z(n)

ns
.

Lemma 10.1 Set

M = I −
⎛

⎝
2−s 2−s 2−s

21−s 0 21−s

21−s 21−s 0

⎞

⎠ .

Then

M

⎛

⎝
Xn0(s)
Yn0(s)
Zn0(s)

⎞

⎠ =
⎛

⎝
Jn0(s)
Kn0(s)
Ln0(s)

⎞

⎠, (10.4)

where

Jn0(s) = 2−s �(s,− 1
2 ,Yn0) + IJn0

(s),

IJn0
(s) = − y(n0)

(2n0 − 1)s
+

∑

n0≤n<2n0

x(n)

ns
,

Kn0(s) = 2−s �(s, 1,Xn0) + 2−s �(s,− 1
2 ,Xn0) + 2−s �(s, 1

2 ,Zn0) + IKn0
(s),

IKn0
(s) = x(n0 − 1)

(2n0)s
− x(n0)

(2n0 − 1)s
+

∑

n0≤n<2n0

y(n)

ns
,

Ln0(s) = 21−s �(s,− 1
2 ,Yn0) + ILn0

(s),

ILn0
(s) = − 2y(n0)

(2n0 − 1)s
+

∑

n0≤n<2n0

z(n)

ns
,

with the notion of � as in Lemma 6.3, provides meromorphic continuations of the
Dirichlet series Xn0(s), Yn0(s), and Zn0(s) for �s > κ0 = 1 with the only possible
poles at κ + χ� for � ∈ Z, all of which are simple poles.
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Proof We split the proof into several steps.

Functional Equation. From (10.1b) we obtain

Yn0(s) =
∑

n0≤n<2n0

y(n)

ns
+

∑

n≥n0

x(n − 1)

(2n)s
+

∑

n≥n0

z(n)

(2n)s

+
∑

n≥n0

x(n + 1)

(2n + 1)s
+

∑

n≥n0

z(n)

(2n + 1)s

=
∑

n0≤n<2n0

y(n)

ns
+ 2−s

∑

n≥n0

x(n)

(n + 1)s
+ x(n0 − 1)

(2n0)s
+ 2−s

∑

n≥n0

z(n)

ns

+ 2−s
∑

n≥n0

x(n)

(n − 1
2 )

s
− x(n0)

(2n0 − 1)s
+ 2−s

∑

n≥n0

z(n)

(n + 1
2 )

s

=
∑

n0≤n<2n0

y(n)

ns
+ 2−s(Xn0(s) + �(s, 1,Xn0)) + x(n0 − 1)

(2n0)s
+ 2−sZn0(s)

+ 2−s(Xn0(s) + �(s,− 1
2 ,Xn0)

) − x(n0)

(2n0 − 1)s

+ 2−s(Zn0(s) + �(s, 1
2 ,Zn0)

)
.

(10.5)
The second row of (10.4) follows. Similarly, (10.1a) and (10.1c) yield the first and
third rows of (10.4), respectively.

Determinant and Zeros. The determinant of M is

�(s) = det M = 2−3s(22s − 3 · 2s − 2
)(
2s + 2

)
.

It is an entire function.
All zeros of � are simple zeros. In particular, solving �(s) = 0 gives 2s =

3/2 ± √
17/2 (the two zeros of U 2 − 3U − U ) and 2s = −2. A solution �(s0) = 0

implies that s0 + 2π i�/ log 2 with � ∈ Z satisfies the same equation as well.
Moreover, set κ = log2

(
3 + √

17
) − 1 = 1.8325063835804 . . .. Then the only

zeros with �s > κ0 = 1 are at κ + χ� with χ� = 2π i�/ log 2 for � ∈ Z.
It is no surprise that the κ of this lemma and the κ in the proof of Corollary H which

comes from the 2-linear representation of Sect. 10.1 coincide.

Meromorphic Continuation. Let Dn0 ∈ {Xn0 ,Yn0 ,Zn0}. The Dirichlet series Dn0(s)
is analytic for �s > 2 = log2 ρ + 1 with ρ = 2 being the joint spectral radius by
Theorem D. We use the functional equation (10.4) which provides the continuation,
as we writeDn0(s) in terms of Jn0(s),Kn0(s) and Ln0(s). By Lemma 6.3, these three
functions are analytic for �s > 1.

The zeros (all are simple zeros) of the denominator �(s) are the only possibilities
for the poles of Dn0(s) for �s > 1. ��
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10.5 Fourier Coefficients

We are now ready to prove the rest of Corollary H.

Proof of Corollary H We verify that we can apply Theorem E.
The steps of this proof in Sect. 10.2 provided us already with an asymptotic expan-

sion (10.3). Lemma 10.1 gives us the meromorphic function for �s > κ0 = 1 which
comes from the Dirichlet series

(
Xn0(s),Yn0(s),Zn0(s)

)	. It can only have poles (all
simple) at s = κ + χ� for � ∈ Z and satisfies the assumptions in Theorem E by
Theorem D and Remark 6.2.

Therefore a computation of the Fourier coefficients via computing residues [see
(3.6)] is possible by Theorem E, and this residue may be computed from (10.4) via
Cramer’s rule. ��

We refer to Part IV for details on the actual computation of the Fourier coefficients.

Part III: Proofs

Before reading this part on the collected proofs, it is recommended to recall the def-
initions and notations of Sect. 6.2. Some additional notations which are only used in
the proofs are introduced in the following section.

11 Additional Notations

We use Iverson’s convention [expr] = 1 if expr is true and 0 otherwise, which was
popularised by Graham, Knuth and Patashnik [26]. We use the notation z� := z(z −
1) · · · (z − � + 1) for falling factorials. We use

( n
k1,...c,kr

)
for multinomial coefficients.

We sometimes write a binomial coefficient
(n
a

)
as

( n
a,b

)
with a + b = n when we want

to emphasise the symmetry and analogy to a multinomial coefficient.

12 Decomposition into Periodic Fluctuations: Proof of Theorem B

We first give an overview over the proof.

Overview of the Proof of Theorem B The first step will be to express the summatory
function F in terms of the matrices C , Br and Ar . Essentially, this corresponds to
the fact that the summatory function of a q-regular function is again q-regular. This
expression of F will consist of two terms: the first is a sum over 0 ≤ j < logq N
involving a j th power of C and matrices Br and Ar depending on the � − j most
significant digits of N . The second term is again a sum, but does not depend on the
digits of N ; it only encodes the fact that f (0) = A0 f (0) may not hold. The fact that
we are interested in wF(N ) for the generalised left eigenvector w corresponding to
the eigenvalue λ allows to express wC j in terms of wλ j (plus some other terms if w

is not an eigenvector).
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The second term can be disposed of by elementary observations using a geometric
series. We reverse the order of summation in the first summand and extend it to an
infinite sum. The infinite sum is written in terms of periodic fluctuations; the difference
between the infinite sum and the finite sum is absorbed by the error term. In order not
to have to deal with ambiguities due to non-unique q-ary expansions of real numbers,
we define the fluctuations on an infinite product space instead of the unit interval. ��

12.1 Upper Bound for Eigenvalues of C

We start with an upper bound for the eigenvalues of C in terms of the joint spectral
radius.

Lemma 12.1 Let λ ∈ σ(C). Then |λ| ≤ qρ.

Proof For � → ∞, we have

|λ|� ≤ max{|λ| : λ ∈ σ(C)}� = O
(‖C�‖)

and

‖C�‖ ≤
∑

0≤r1,...,r�<q

‖Ar1 · · · Ar�‖ = O(q�R�)

by (7.1). Taking �th roots and the limit � → ∞ yields |λ| ≤ qR. This last inequality
does not depend on our particular (cf. Sect. 6.2) choice of R > ρ, so the inequality is
valid for all R > ρ, and we get the result. ��

12.2 Explicit Expression for the Summatory Function

In this section, we give an explicit formula for F(N ) = ∑
0≤n<N f (n) in terms of the

matrices Ar , Br and C .

Lemma 12.2 Let N be an integer with q-ary expansion r�−1 . . . r0. Then

F(N ) =
∑

0≤ j<�

C j Br j Ar j+1 · · · Ar�−1 +
∑

0≤ j<�

C j (I − A0).

Proof We claim that

F(qN + r) = CF(N ) + Br f (N ) + (I − A0)[qN + r > 0] (12.1)

holds for non-negative integers N and r with 0 ≤ r < q.
We now prove (12.1): Using (6.1) and f (0) = I yields

F(qN + r) = f (0) [qN + r > 0] +
∑

0<qn+r ′<qN+r
0≤n

0≤r ′<q

f (qn + r ′)
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= f (0) [qN + r > 0] +
∑

0<qn+r ′<qN+r
0≤n

0≤r ′<q

Ar ′ f (n)

= (
f (0) − A0 f (0)

)[qN + r > 0] +
∑

0≤qn+r ′<qN+r
0≤n

0≤r ′<q

Ar ′ f (n)

= (I − A0)[qN + r > 0] +
∑

0≤n<N

∑

0≤r ′<q

Ar ′ f (n) +
∑

0≤r ′<r

Ar ′ f (N )

= (I − A0)[qN + r > 0] + CF(N ) + Br f (N ).

This concludes the proof of (12.1).
Iteration of (12.1) and using (6.2) yield the assertion of the lemma; cf. [31,

Lemma 3.6]. ��

12.3 Proof of Theorem B

Proof of Theorem B For readability, this proof is split into several steps.

Setting. Before starting the actual proof, we introduce the setting using an infinite
product space which will be used to define the fluctuations �k . We also introduce the
maps linking the infinite product space to the unit interval.

We will first introduce functions �k defined on the infinite product space

� := {
x = (x0, x1, . . .) : x j ∈ {0, . . . , q − 1} for j ≥ 0, x0 
= 0

}
.

We equip it with the metric such that two elements x 
= x′ with a common prefix of
length j and x j 
= x ′

j have distance q
− j . We consider the map lval : � → [0, 1] with

lval(x) := logq
∑

j≥0

x jq
− j ;

see Fig. 5. By using the assumption that the zeroth component of elements of � is
assumed to be non-zero, we easily check that lval is Lipschitz-continuous; i.e.,

∣∣lval(x) − lval(x′)
∣∣ = O(q− j ) (12.2)

for x 
= x′ with a common prefix of length j .
For y ∈ [0, 1), let reprq(y) be the unique x ∈ � with lval(x) = y such that x does

not end on infinitely many digits q − 1, i.e., reprq(y) represents a q-ary expansion of
qy . This means that lval ◦ reprq is the identity on [0, 1).

From the definition of the metric on �, recall that a function � : � → C
d is

continuous if and only if for each ε > 0, there is a j such that‖�(x′)−�(x)‖ < ε holds
for all x and x′ that have a common prefix of length j . Further recall from the universal
property of quotients that if such a continuous function � satisfies �(x) = �(x′)
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Fig. 5 Maps in the proof of
Theorem B

whenever lval(x) = lval(x′), then there is a unique continuous function � : [0, 1] →
C
d such that � ◦ lval = �. This will be used in the “Descent”-step of the proof.

Notation. We will deal with the two sums in Lemma 12.2 separately. We will first
introduce notations corresponding to this split and to the eigenvector structure.

Let N have the q-ary expansion r�−1 . . . r0 and set

F1(N ) :=
∑

0≤ j<�

C j Br j Ar j+1 . . . Ar�−1 , F2(N ) :=
∑

0≤ j<�

C j (I − A0)

so that F(N ) = F1(N ) + F2(N ) by Lemma 12.2.
We consider the Jordan chain w = v′

0, . . . , v
′
m−1 generated by w, i.e., v′

k = w(C −
λI )k for 0 ≤ k < m and v′

m−1 is a left eigenvector of C . Thus we have wC j =∑
0≤k<m

( j
k

)
λ j−kv′

k for all j ≥ 0. If λ 
= 0, choose vectors v0, . . . , vm−1 ∈ C
d such

that

wC j = λ j
∑

0≤k<m

jkvk (12.3)

holds for all j ≥ 0. These vectors are suitable linear combinations of the vectors
v′
0, . . . , v

′
m−1. We note that we have

vm−1 = 1

λm−1(m − 1)!v
′
m−1. (12.4)

Second Summand.Wewill now rewrite wF2(N ) by evaluating the geometric sum and
rewriting it in terms of a fluctuation.

We claim that

wF2(N ) = wK + N logq λ
∑

0≤k<m

(logq N )k�
(2)
k ({logq N })

+(logq N )mwϑm + [λ = 0] O(N logq R) (12.5)

for suitable continuously differentiable functions �
(2)
k on R, 0 ≤ k < m. If R = 0,

then O(N logq R) shall mean that the error vanishes for almost all N .
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Consider first the case that λ 
= 1. Because of wC j = wC ′ j and wT−1DT = w

(see Sect. 7.3) we have

wF2(N ) =
∑

0≤ j<�

wC ′ j (I − A0
)

= w
(
I − C ′�)(I − C ′)−1(

I − A0
) = wK − wC�

(
I − C ′)−1(

I − A0
)
.

If λ = 0, then wC� = 0 for almost all �. We may set �
(2)
k = 0 for 0 ≤ k < m and

(12.5) is shown. Otherwise, as we have � − 1 = �logq N
 = logq N − {logq N } and
by (12.3), we can rewrite wC� as

wC� = λ�
∑

0≤k′<m

�k
′
vk′ = λ1+logq N−{logq N } ∑

0≤k′<m

(logq N + 1 − {logq N })k′
vk′ .

Let

G2(L, ν) := −λ1−ν
∑

0≤k′<m

(L + 1 − ν)k
′
vk′(I − C ′)−1(I − A0)

for reals L and ν, i.e.,

wF2(N ) = wK + λlogq NG2(logq N , {logq N }).

By the binomial theorem, we have

G2(L, ν) = −λ1−ν
∑

0≤k<m

Lk
∑

0≤r
k+r<m

(
k + r

k, r

)
(1 − ν)rvk+r (I − C ′)−1(I − A0).

This leads to a representation G2(L, ν) = ∑
0≤k<m Lk�

(2)
k (ν) for continuously dif-

ferentiable functions

�
(2)
k (ν) = −λ1−ν

∑

0≤r<m−k

(
k + r

k, r

)
(1 − ν)rvk+r (I − C ′)−1(I − A0)

for 0 ≤ k < m. As the functions �
(2)
k are continuously differentiable, they are Lips-

chitz continuous on compact subsets of R. We note that in the case k = m − 1, the
only occurring summand is for r = 0, which implies that

�
(2)
m−1(ν) = −λ1−νvm−1(I − C ′)−1(I − A0). (12.6)

Rewriting λlogq N as N logq λ and recalling that wϑm = 0 yields (12.5) for λ 
= 1.
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We now turn to the case λ = 1. We use wC j = ∑
0≤k<m

( j
k

)
v′
k for j ≥ 0 as above.

Thus

wF2(N ) =
∑

0≤ j<�

∑

0≤k<m

(
j

k

)
v′
k(I − A0)

=
∑

0≤k<m

v′
k(I − A0)

∑

0≤ j<�

(
j

k

)

=
∑

0≤k<m

v′
k(I − A0)

(
�

k + 1

)
,

where the identity [26, (5.10)] (“summation on the upper index”) has been used in the
last step.

Thus wF2(N ) is a polynomial in � of degree m. By writing � = 1 + logq N −
{logq N }, we can again rewrite this as a polynomial in logq N whose coefficients

depend on {logq N }. The coefficient of (logq N )m comes from v′
m−1(I − A0)

(
�
m

)
,

therefore, this coefficient is

1

m!v
′
m−1(I − A0) = 1

m!w(C − I )m−1(I − A0) = wϑm .

The additional factor T−1(I − D)T in ϑm has been introduced in order to annihilate
generalised eigenvectors to other eigenvalues. By construction of K , we havewK = 0.
Thus we have shown (12.5) for λ = 1, too.

Lifting the Second Summand. For later use—at this point, this may seem to be quite
artificial—we set �

(2)
k = �

(2)
k ◦ lval. As �

(2)
k is continuously differentiable, it is

Lipschitz continuous on [0, 1]. As lval is also Lipschitz continuous, so is �
(2)
k .

First Summand We now turn to wF1(N ). To explain our plan, assume that w is in
fact an eigenvector. Then wF1(N ) = ∑

0≤ j<� λ jwBr j Ar j+1 . . . Ar�−1 . For |λ| ≤ R,

it will be rather easy to see that the result holds. Otherwise, we will factor out λ� and
write the sum as wF1(N ) = λ�

∑
0≤ j<� λ−(�− j)wBr j Ar j+1 . . . Ar�−1 . We will then

reverse the order of summation and extend the sum to an infinite sum, which will be
represented by periodic fluctuations. The difference between the finite and the infinite
sums will be absorbed by the error term. The periodic fluctuations will be defined on
the infinite product space �.

We now return to the general case of a generalised eigenvector w and the actual
proof. If λ = 0, we certainly have |λ| ≤ R and we are in one of the first two cases of
this theorem. Furthermore, we have wC j = 0 for j ≥ m, thus

wF1(N ) = O

( ∑

0≤ j<m

R�− j
)

= O(R�) = O(N logq R)

by using (7.1). Together with (12.5), the result follows.
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From now on, we may assume that λ 
= 0. By using (12.3), we have

wF1(N ) =
∑

0≤ j<�

λ j
( ∑

0≤k<m

jkvk

)
Br j Ar j+1 . . . Ar�−1 . (12.7)

We first consider the case that |λ| < R [corresponding to Theorem B, (1)]. We get

wF1(N ) = O

( ∑

0≤ j<�

|λ| j jm−1R�− j
)

= O

(
R�

∑

0≤ j<�

jm−1
( |λ|
R

) j
)

= O(R�) = O(N logq R),

where (7.1) was used. Together with (12.5), the result follows.
Next, we consider the case where |λ| = R [Theorem B, (2)]. In that case, we get

wF1(N ) = O

( ∑

0≤ j<�

|λ| j jm−1R�− j
)

= O

(
R�

∑

0≤ j<�

jm−1
)

= O(R��m).

Again, the result follows.
From now on, we may assume that |λ| > R. We set Q := |λ|/R and note that

1 < Q ≤ q by assumption and Lemma 12.1. We claim that there are continuous
functions �

(1)
k on � for 0 ≤ k < m such that

wF1(N ) = N logq λ
∑

0≤k<m

(logq N )k �
(1)
k

(
reprq({logq N })) (12.8)

and such that

∥∥�
(1)
k (x) − �

(1)
k (x′)

∥∥ = O( jm−1Q− j ) (12.9)

when the first j entries of x and x′ ∈ � coincide.
Write N = q�−1+{logq N } and let x = reprq({logq N }), i.e., x is the q-ary expansion

of q{logq N } = N/q�−1 ∈ [1, q) ending on infinitely many zeros. This means that
x j = r�−1− j for 0 ≤ j < � and x j = 0 for j ≥ �. Reversing the order of summation
in (12.7) yields

wF1(N ) = λ�−1
∑

0≤ j<�

λ− j
( ∑

0≤k<m

(� − 1 − j)kvk

)
Bx j Ax j−1 . . . Ax0 .

For j ≥ �, we have x j = 0 and therefore Bx j = 0. Thus we may extend the sum to
run over all j ≥ 0, i.e.,

wF1(N ) = λ�−1
∑

j≥0

λ− j
( ∑

0≤k<m

(� − 1 − j)kvk

)
Bx j Ax j−1 . . . Ax0 .
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We insert � − 1 = logq N − {logq N } and obtain

wF1(N ) = λlogq N G1
(
logq N , reprq({logq N }))

where

G1(L, x) = λ−lval(x)
∑

j≥0

λ− j
( ∑

0≤k<m

(L − lval(x) − j)kvk

)
Bx j Ax j−1 . . . Ax0

= λ−lval(x)
∑

j≥0

λ− j
( ∑

0≤a, 0≤r , 0≤s
a+r+s<m

La(− j)r
(
a + r + s

a, r , s

)

× (− lval(x)
)s

va+r+s

)
Bx j Ax j−1 . . . Ax0

for L ∈ R and x ∈ �. Note that in contrast to G2, the second argument of G1 is an
element of � instead of R. Collecting G1(L, x) by powers of L , we get

G1(L, x) =
∑

0≤k<m

Lk�
(1)
k (x)

where

�
(1)
k (x) =

∑

j≥0

λ− j
∑

0≤r<m−k

jr ψkr
(
lval(x)

)
Bx j Ax j−1 . . . Ax0

for functions

ψkr (ν) = λ−ν(− 1)r
∑

0≤s<m−k−r

(
k + r + s

k, r , s

)
(− ν)svk+r+s

which are continuously differentiable and therefore Lipschitz continuous on the unit
interval. This shows (12.8). For k = m − 1, only summands with r = s = 0 occur,
thus

�
(1)
m−1(x) =

∑

j≥0

λ− j−lval(x)vm−1Bx j Ax j−1 . . . Ax0 . (12.10)

Note that �(1)
k (x) is majorised by

O

(∑

j≥0

|λ|− j jm−1R j
)

according to (7.1). We now prove (12.9). So let x and x′ have a common prefix of
length i . Consider the summand of �

(1)
k (x) with index j . First consider the case that
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j < i . For all r , we have

∥∥ψkr
(
lval(x)

) − ψkr
(
lval(x′)

)∥∥ = O(q−i )

due to Lipschitz continuity of ψkr ◦ lval. As the matrix product Ax j−1 . . . Ax0 is the
same for x and x′, the difference with respect to this summand is bounded by

O
(|λ|− j jm−1q−i R j ) = O(q−i jm−1Q− j ).

Thus the total contribution of all summands with j < i is O(q−i ). Any summand
with j ≥ i is bounded by O

(|λ|− j jm−1R j
) = O( jm−1Q− j ), which leads to a total

contributionofO(im−1Q−i ).Adding the twobounds leads to a boundofO(im−1Q−i ),
as requested.

Descent. As we have defined the periodic fluctuations �
(1)
k on the infinite product

space �, we now need to prove that the periodic fluctuation descends to a periodic
fluctuation on the unit interval. To do so, wewill verify that the values of the fluctuation
coincide whenever sequences in the infinite product space correspond to the same real
number in the interval.

By setting �k(x) = �
(1)
k (x) + �

(2)
k (x), we obtain

wF(N ) = wK + N logq λ
∑

0≤k<m

(logq N )k �k
(
reprq({logq N })) + (logq N )mwϑm

(12.11)

and

‖�k(x) − �k(x′)‖ = O( jm−1Q− j ) (12.12)

whenever x and x′ ∈ � have a common prefix of length j .
It remains to show that �k(x) = �k(x′) holds whenever lval(x) = lval(x′) or

lval(x) = 0 and lval(x′) = 1.
Choose x and x′ such that one of the above two conditions on lval holds and such

that x j = 0 for j ≥ j0 and x ′
j = q − 1 for j ≥ j0. Be aware that now the prefixes of

x and x′ of length j0 do not coincide except for the trivial case j0 = 0.
Fix some j ≥ j0 and set x′′ to be the prefix of x′ of length j , followed by infinitely

many zeros. Note that we have q lval(x
′′) = q lval(x

′)−q−( j−1). Set n = q j−1+lval(x′′). By
construction, we have n+1 = q j−1+lval(x)+[lval(x)=0]. This implies reprq({logq n}) =
x′′ and reprq({logq(n + 1)}) = x. Taking the difference of (12.11) for n + 1 and n
yields

w f (n) = (n + 1)logq λ
∑

0≤k<m

(
logq(n + 1)

)k
�k(x) − nlogq λ

∑

0≤k<m

(logq n)k�k(x′′)

+(
(logq(n + 1))m − (logq n)m

)
wϑm .
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We estimate n + 1 as n(1 + O(1/n)) and get

w f (n) = nlogq λ
∑

0≤k<m

(logq n)k
(
�k(x) − �k(x′′)

) + O
(
nlogq |λ|−1(log n)m−1).

(12.13)

We havew f (n) = O(R j ) = O(Rlogq n) = O(nlogq R) by (6.2) and (7.1). By (12.12),

∥∥�k(x′′) − �k(x′)
∥∥ = O

(
(log n)m−1n− logq Q)

which is used below to replace x′′ by x′. Inserting these estimates in (12.13) and
dividing by nlogq λ yields

∑

0≤k<m

(logq n)k
(
�k(x′) − �k(x)

) = O
(
n− logq Q(log n)2m−2). (12.14)

Note that �k(x′) − �k(x) does not depend on j . Now we let j (and therefore n) tend
to infinity. We see that (12.14) can only remain true if�k(x′) = �k(x) for 0 ≤ k < m,
which we had set out to show.

Therefore,�k descends to a continuous function�k on [0, 1]with�k(0) = �k(1);
thus �k can be extended to a 1-periodic continuous function.

Hölder Continuity. We will now prove Hölder continuity. As the fluctuations have
been defined on the infinite product space �, we will basically have to prove Hölder
continuity there. The difficulty will be that points in the unit interval which are close
to each other there may have drastically different q-ary expansions, thus correspond to
drastically different points in the infinite product space�. To circumvent this problem,
the interval between the two points will be split into two parts.

We first claim that for 0 ≤ y < y′′′ < 1, we have

∥∥�k(y
′′′) − �k(y)

∥∥ = O
(
(log(qy′′′ − qy))m−1(qy′′′ − qy)logq Q) (12.15)

as y′′′ → y. To prove this, let x := reprq(y) and x′′′ := reprq(y′′′). Let � be
the length of the longest common prefix of x and x′′′ and choose j ≥ 0 such that
q− j ≤ qy′′′ − qy < q− j+1. We define x′ and x′′ ∈ � such that

x = (x0, x1, . . . , x�−1, x�, x�+1, x�+2, . . .),

x′ = (x0, x1, . . . , x�−1, x�, q − 1, q − 1, . . .),

x′′ = (x0, x1, . . . , x�−1, x� + 1, 0, 0, . . .),

x′′′ = (x0, x1, . . . , x�−1, x
′′′
� , x ′′′

�+1, x ′′′
�+2, . . .)

and set y′ := lval(x′) and y′′ := lval(x′′). As lval(x) = y < y′′′ = lval(x′′′), we have
x ′′′
� > x�. We conclude that y ≤ y′ = y′′ ≤ y′′′. Therefore,

qy′ − qy ≤ qy′′′ − qy < q− j+1,
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so in view of the fact that each entry of x′ is greater or equal than the corresponding
entry of x, the expansions x and x′ must have a common prefix of length j . Similarly,
the expansions x′′ and x′′′ must have a common prefix of length j . Thus (12.12) implies
that

∥∥�k(y
′′′) − �k(y)

∥∥ ≤ ∥∥�k(y
′′′) − �k(y

′′)
∥∥ + ∥∥�k(y

′) − �k(y)
∥∥

= ∥∥�k(x′′′) − �k(x′′)
∥∥ + ∥∥�k(x′) − �k(x)

∥∥ = O( jm−1Q− j ).

Noting that − j = logq(q
y′′′ − qy) + O(1) leads to (12.15).

In order to prove Hölder continuity with exponent α < logq Q, we first note that
Lipschitz-continuity of y �→ qy on the interval [0, 1] shows that (12.15) implies

∥∥�k(y
′′′) − �k(y)

∥∥ = O
(
(y′′′ − y)α

)
.

This can then easily be extended to arbitrary reals y < y′′′ by periodicity of�k because
it is sufficient to consider small y′′′− y and the interval may be subdivided at an integer
between y and y′′′.

Constant Dominant Fluctuation. To finally prove the final assertion on constant fluc-
tuations, we will have to inspect the explicit expression for the fluctuations using the
additional assumption.

Under the additional assumption that the vector w(C − I )m−1 = v′
m−1 is a left

eigenvector to all matrices A0, . . . , Aq−1 associated with the eigenvalue 1, the same
holds for vm−1 by (12.4). Then vm−1 is also a left eigenvector of C associated with
the eigenvalue q. In particular, λ = q 
= 1.

We can compute�
(2)
m−1(ν) using (12.6). As vm−1 ∈ Wq , we have vm−1C = vm−1C ′

by definition of C ′ (see Sect. 7.3) which implies that vm−1(I − C ′)−1 = 1
1−q vm−1.

As vm−1(I − A0) = 0 by assumption, we conclude that �(2)
m−1(ν) = 0 in this case.

We use (12.10) to compute �
(1)
m−1(x). By assumption, vm−1Bx j = x jvm−1 which

implies that

�
(1)
m−1(x) = q−lval(x)

(∑

j≥0

q− j x j

)
vm−1 = q−lval(x)q lval(x)vm−1 = vm−1

by definition of lval.
Together with (12.4), we obtain the assertion. ��

12.4 Proof of Theorem C

Proof of Theorem C We denote the rows of T as w1, . . . , wd and the columns of T−1

by t1, . . . , td . Thus
∑

1≤ j≤d t jw j = I and w j is a generalised left eigenvector of C of
some rank m j corresponding to some eigenvalue λ j ∈ σ(C). Theorem B and the fact
that there are no eigenvalues ofC of absolute value between ρ and R then immediately
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imply that

F(N ) =
∑

1≤ j≤d

t jw j F(N )

= K +
∑

1≤ j≤d

(logq N )m j t jw jϑm j

+
∑

1≤ j≤d
|λ j |>ρ

N logq λ j
∑

0≤k<m j

(logq N )k t j� jk({logq N })

+ [∃λ ∈ σ(C) : |λ| ≤ ρ] O(
N logq R(log N )max{0}∪{m j : |λ j |=R})

for some 1-periodic Hölder continuous functions � jk with exponent less than
logq |λ j |/R. The first summand K as well as the error term already coincide with
the result stated in the theorem. From Sect. 7.3 we recall that w jϑm j = 0 for λ j 
= 1.

We set

�λk(u) :=
∑

1≤ j≤d
λ j=λ

k<m j

(
t j� jk(u) + [λ = 1][m j = k]t jw jϑm j

)

for λ ∈ σ(C) with |λ| > ρ and 0 ≤ k < m(λ).
Then we still have to account for

(logq N )m(1)
∑

1≤ j≤d
λ j=1

m j=m(1)

t jw jϑm(1). (12.16)

The factor (C − I )m(1)−1 in the definition of ϑm(1) implies that w jϑm(1) vanishes
unless λ j = 1 and m j = m(1). Therefore, the sum in (12.16) equals ϑ . ��

13 Meromorphic Continuation of the Dirichlet Series: Proof of
TheoremD

For future use, we state an estimate for the binomial coefficient. Unsurprisingly, it is a
consequence of a suitable version of Stirling’s formula. Alternatively, it can be seen as
the most basic case of Flajolet and Odlyzko’s singularity analysis [19, Proposition 1],
where uniformity in s is easily checked.

Lemma 13.1 Let k ∈ Z, k ≥ 0. Then

∣∣∣∣

(−s

k

)∣∣∣∣ ∼ 1

|�(s)|k
�s−1 (13.1)

uniformly for s in a compact subset of C and k → ∞.
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Proof By [26, (5.14)] (“negating the upper index”), we rewrite the binomial coefficient
as

(−s

k

)
= (− 1)k

(
s + k − 1

k

)
= (− 1)k

�(s)

�(s + k)

�(k + 1)
.

Thus (13.1) follows by [36, 5.11.12] (which is an easy consequence of Stirling’s
formula for the Gamma function). ��
Proof of Lemma 6.3 We have

�(s, β,D) =
∑

n≥n0

(
(n + β)−s − n−s)d(n) (13.2)

for �s > logq R′ + 1. We note that

(n + β)−s − n−s = n−s
((

1 + β

n

)−s − 1
)

= O
(|s|n−�s−1).

Therefore,

�(s, β,D) = O

(
|s|

∑

n≥n0

nlogq R′−�s−1
)

,

and the series converges for �s > logq R′. As this holds for all R′ > ρ, we obtain
�(s, β,D) = O(|�s|) as |�s| → ∞ uniformly for logq ρ +δ ≤ �s ≤ logq ρ +δ+1.
In the language of [27, § 3.3], �(s, β,D) has order at most 1 for logq ρ + δ ≤ �s ≤
logq ρ + δ + 1. As logq ρ + δ + 1 is larger than the abscissa of absolute convergence
of �(s, β,D), it is clear that �(s, β,D) = O(1) for �s = logq ρ + δ + 1, i.e.,
�(s, β,D) has order at most 0 for �s = logq ρ + δ + 1. By Lindelöf’s theorem (see

[27, Theorem 14]), we conclude that �(s, β,D) = O
(|�s|μδ(�s)

)
for logq ρ + δ ≤

�s ≤ logq ρ + δ + 1.
For �s > logq R′ + 1, we may rewrite (13.2) using the binomial series as

�(s, β,D) =
∑

n≥n0

n−s
∑

k≥1

(−s

k

)
βk

nk
d(n)

=
∑

k≥1

(−s

k

)
βk

∑

n≥n0

n−(s+k)d(n). (13.3)

Switching the order of summation was legitimate because

∥∥∥∥
∑

n≥n0

n−(s+k)d(n)

∥∥∥∥ ≤
∑

n≥n0

n−(�s+k)‖d(n)‖
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=
∑

n≥n0

O
(
nlogq R′−�s−k) = O

(
n
logq R′−�s−k+1
0

)

for �s + k > logq R′ + 1 and Lemma 13.1 imply absolute and uniform convergence
for s in a compact set. Noting that the previous arguments hold again for all R′ > ρ

and that the inner sum in (13.3) is D(s + k) completes the proof. ��
Proof of TheoremD As f (n) = O(Rlogq n) = O(nlogq R) by (6.2) and (7.1), the
Dirichlet series Fn0(s) = ∑

n≥n0 n
−s f (n) (see Sect. 6.2) converges absolutely and

uniformly on compact sets for�s > logq R+1. As this holds for all R > ρ, i.e., does
not depend on our particular (cf. Sect. 6.2) choice of R > ρ, this convergence result
holds for �s > logq ρ + 1.

We use (6.1) and Lemma 6.3 (including its notation) to rewrite Fn0 as

Fn0(s) =
∑

n0≤n<qn0

n−s f (n) +
∑

0≤r<q

∑

n≥n0

(qn + r)−s f (qn + r)

=
∑

n0≤n<qn0

n−s f (n) + q−s
∑

0≤r<q

Ar

∑

n≥n0

(
n + r

q

)−s
f (n)

=
∑

n0≤n<qn0

n−s f (n) + q−sCFn0(s) + Hn0(s)

with

Hn0(s) := q−s
∑

0≤r<q

Ar �
(
s, r

q ,Fn0

)

for �s > logq R + 1. Thus

(
I − q−sC

)
Fn0(s) =

∑

n0≤n<qn0

n−s f (n) + Hn0(s) (13.4)

for�s > logq R+1. ByLemma6.3we haveHn0(s) = O
(|�s|μδ(�s)

)
for logq ρ+δ ≤

�s ≤ logq ρ + δ + 1. Rewriting the expression for Hn0(s) using the binomial series
(see Lemma 6.3 again) yields

Hn0(s) = q−s
∑

0≤r<q

Ar

∑

k≥1

(−s

k

)( r
q

)k
Fn0(s + k).

Combining this with (13.4) yields the expression (6.4) for Gn0 .
Solving (6.3) for Fn0 yields the meromorphic continuation of Fn0(s) to �s >

logq R (and thus to �s > logq ρ) with possible poles where qs is an eigenvalue of C .
As long as qs keeps a fixed positive distance δ from the eigenvalues, the bound for
Gn0 (coming from the bound for Hn0 ) carries over to a bound for Fn0 , i.e., (6.5).

To estimate the order of the poles, let w be generalised left eigenvector of rank m
of C corresponding to an eigenvalue λ with |λ| > R. We claim that wFn0(s) has a
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pole of order at most m at s = logq λ + χk and no other poles for �s > logq R. We
prove this by induction on m.

Set v := w(C − λI ). By definition, v = 0 or v is a generalised eigenvector of rank
m − 1 of C . By induction hypothesis, vFn0(s) has a pole of order at most m − 1 at
s = logq λ + χk for k ∈ Z and no other poles for �s > logq R.

Multiplying (6.3) by w, inserting the definition of v and reordering the summands
yields

(
1 − q−sλ

)
wFn0(s) = q−svFn0(s) + wGn0(s).

The right-hand side has a pole of order at most m − 1 at logq λ + χk for k ∈ Z and
1 − q−sλ has a simple zero at the same places. This proves the claim. ��

14 Fourier Coefficients: Proof of Theorem E

In contrast to the rest of this paper, this section does not directly relate to a regular
sequence but gives a general method to derive Fourier coefficients of fluctuations.

14.1 Pseudo-Tauberian Theorem

In this section, we generalise the pseudo-Tauberian argument by Flajolet, Grabner,
Kirschenhofer, Prodinger and Tichy [18, Proposition 6.4]. The basic idea is that for a
1-periodicHölder-continuous function� andγ ∈ C, there is a 1-periodic continuously
differentiable function � such that

∑

1≤n<N

nγ �(logq n) = N γ+1�(logq N ) + o(N�γ+1),

and there is a straight-forward relation between the Fourier coefficients of � and the
Fourier coefficients of �. This relation exactly corresponds to the additional factor
s+1 when transitioning from the zeroth orderMellin–Perron formula to the first order
Mellin–Perron formula.

In contrast to [18, Proposition 6.4], we allow for an additional logarithmic factor,
have weaker growth conditions on the Dirichlet series and quantify the error. We
also extend the result to all complex γ . The generalisation from q = 2 there to our
real q > 1 is trivial.

Proposition 14.1 Let γ ∈ C and q > 1 be a real number, m be a positive integer,
�0, . . . , �m−1 be 1-periodic Hölder continuous functions with exponent α > 0,
and 0 < β < α. Then there exist continuously differentiable functions �−1,
�0, . . . , �m−1, periodic with period 1, and a constant c such that

∑

1≤n<N

nγ
∑

j+k=m−1
0≤ j<m

(log n)k

k! � j (logq n)
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= c + N γ+1
∑

j+k=m−1
−1≤ j<m

(log N )k

k! � j (logq N ) + O
(
N�γ+1−β

)
(14.1)

for integers N → ∞.
Denote the Fourier coefficients of� j and� j byϕ j� := ∫ 1

0 � j (u) exp(− 2�π iu) du

and ψ j� := ∫ 1
0 � j (u) exp(− 2�π iu) du, respectively. Then the corresponding gener-

ating functions fulfil

∑

0≤ j<m

ϕ j�Z
j =

(
γ + 1 + 2�π i

log q
+ Z

) ∑

−1≤ j<m

ψ j�Z
j + O(Zm) (14.2)

for � ∈ Z and Z → 0.
If qγ+1 
= 1, then �−1 vanishes.

Remark 14.2 Note that the constant c is absorbed by the error term if �γ + 1 > α, in
particular if �γ > 0. Therefore, this constant does not occur in the article [18].

Remark 14.3 The factor γ +1+ 2�π i
log q + Z in (14.2) will turn out to correspond exactly

to the additional factor s + 1 in the first order Mellin–Perron summation formula with
the substitution s = γ + 2�π i

log q + Z such that the local expansion around the pole in

s = γ + 2�π i
log q of the Dirichlet generating function is conveniently written as a Laurent

series in Z . See the proof of Theorem E for details.

Before actually proving Proposition 14.1, we give an outline.

Overview of the Proof of Proposition 14.1 We start with the left-hand side of (14.1) and
split the range of summation according to �logq n
, thereby, in terms of our periodic
functions, split after each period. We then use periodicity of the � j and collect terms.
This results in Riemann sums which converge to the corresponding integrals. There-
fore, we can approximate these sums by the integrals.

More rewriting constructs and reveals the functions � j [of the right-hand side
of (14.1)]: these functions are basically defined via the above mentioned integral. We
then show that these functions are indeed periodic and that their Fourier coefficients
relate to the Fourier coefficients of the � j . The latter is done by a direct computation
of the integrals defining these coefficients.

For this proof, we use an approach via exponential generating functions. This
reduces the overhead for dealing with the logarithmic factors (log n)k in (14.1) such
that we can essentially focus on the case m = 1. The resulting formula (14.1) follows
by extracting a suitable coefficient of this power series.

There is another benefit of the generating function approach: this formulation allows
to easily translate the relation between the Fourier coefficients here to the additional
factors occurring when transitioning to higher order Mellin–Perron summation for-
mulæ, in particular the factor s + 1 in the first order Mellin–Perron summation. ��
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Proof of Proposition 14.1 We split the proof into six parts.

Notations. We start by defining quantities that are used through the whole proof.
Without loss of generality, we assume that q�γ+1 
= qα: otherwise, we slightly

decrease α keeping the inequality β < α intact. We use the abbreviations � :=
�logq N
, ν := {logq N }, i.e., N = q�+ν . We use the generating functions

�(u, Z) :=
∑

0≤ j<m

� j (u)Z j ,

L(N , Z) :=
∑

1≤n<N

nγ+Z �(logq n, Z) =
∑

1≤n<N

nγ exp
(
(log n)Z

)
�(logq n, Z),

Q(Z) := qγ+1+Z

for 0 ≤ u ≤ 1 and 0 < |Z | < 2r where r > 0 is chosen such that r < (α − β)/2
and such that Q(Z) 
= 1 and |Q(Z)| 
= qα for these Z . (The condition Z 
= 0 is only
needed for the case q1+γ = 1.) We will stick to the above choice of r and restrictions
for Z throughout the proof.

It is easily seen that the left-hand side of (14.1) equals [Zm−1]L(N , Z), where
[Zm−1] denotes extraction of the coefficient of Zm−1.

Approximation of the Sum by an Integral. We will now rewrite L(N , Z) so that its
shape is that of a Riemann sum, therefore enabling us to approximate it by an integral.

Splitting the range of summation with respect to powers of q yields

L(N , Z) =
∑

0≤p<�

∑

q p≤n<q p+1

nγ+Z �(logq n, Z)

+
∑

q�≤n<q�+ν

nγ+Z �(logq n, Z).

We write n = q px (or n = q�x for the second sum), use the periodicity of � in u
and get

L(N , Z) =
∑

0≤p<�

Q(Z)p
∑

x∈q−p
Z

1≤x<q

xγ+Z �(logq x, Z)
1

q p

+ Q(Z)�
∑

x∈q−�
Z

1≤x<qν

xγ+Z �(logq x, Z)
1

q�
.

The inner sums are Riemann sums converging to the corresponding integrals for p →
∞. We set

I (u, Z) :=
∫ qu

1
xγ+Z �(logq x, Z) dx .
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It will be convenient to change variables x = qw in I (u, Z) to get

I (u, Z) = (log q)

∫ u

0
Q(Z)w �(w, Z) dw. (14.3)

We define the error εp(u, Z) by

∑

x∈q−p
Z

1≤x<qu

xγ+Z �(logq x, Z)
1

q p
= I (u, Z) + εp(u, Z).

As the sum and the integral are both analytic in Z , their difference εp(u, Z) is analytic
in Z , too. We bound εp(u, Z) by the difference of upper and lower Darboux sums
(step size q−p) corresponding to the integral I (u, Z): On each interval of length q−p,
the maximum and minimum of a Hölder continuous function can differ by at most
O(q−α p). As the integration interval as well as the range for u and Z are finite, this
translates to the bound εp(u, Z) = O(q−α p) as p → ∞ uniformly in 0 ≤ u ≤ 1 and
|Z | < 2r . This results in

L(N , Z) = I (1, Z)
∑

0≤p<�

Q(Z)p +
∑

0≤p<�

Q(Z)pεp(1, Z)

+I (ν, Z) Q(Z)� + Q(Z)�ε�(ν, Z).

If |Q(Z)|/qα = q�γ+1+�Z−α < 1, i.e., �γ + �Z < α − 1, the second
sum involving the integration error converges absolutely and uniformly in Z for
� → ∞ to some analytic function c′(Z); therefore, we can replace the second
sum by c′(Z) + O

(
q(�γ+1+2r−α)�

) = c′(Z) + O
(
N�γ+1+2r−α

)
in this case. If

�γ + �Z > α − 1, then the second sum is O
(
q(�γ+2r+1−α)�

) = O
(
N�γ+1+2r−α

)
.

By our choice of r , the case �γ + �Z = α − 1 cannot occur. So in any case, we may
write the second sum as c′(Z) + O

(
N�γ+1−β

)
by our choice of r . The last summand

involving ε�(ν, Z) is absorbed by the error term of the second summand. Note that
the error term is uniform in Z and, by its construction, analytic in Z .

Thus we end up with

L(N , Z) = c′(Z) + S(N , Z) + O
(
N�γ+1−β

)
(14.4)

where

S(N , Z) := I (1, Z)
∑

0≤p<�

Q(Z)p + I (ν, Z)Q(Z)�. (14.5)

It remains to rewrite S(N , Z) in the form required by (14.1). We emphasise that we
will compute S(N , Z) exactly, i.e., no more asymptotics for N → ∞ will play any
rôle.
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Construction of �. We will now rewrite the expression S(N , Z) such that the gener-
ating function � [i.e., the fluctuations of the right-hand side of (14.1)] appears. After
this, we will gather properties of � including properties of its Fourier coefficients.

We rewrite (14.5) as

S(N , Z) = I (1, Z)
1 − Q(Z)�

1 − Q(Z)
+ I (ν, Z) Q(Z)�.

We replace � by logq N − ν and use

Q(Z)� = Q(Z)logq N Q(Z)−ν = N γ+1+Z Q(Z)−ν

to get

S(N , Z) = I (1, Z)

1 − Q(Z)
+ N γ+1+Z�(ν, Z) (14.6)

with

�(u, Z) := Q(Z)−u
(
I (u, Z) − I (1, Z)

1 − Q(Z)

)
. (14.7)

Periodic Extension of �. A priori, it is not clear that the function �(u, Z) defined
above can be extended to a periodic function (and therefore Fourier coefficients can
be computed later on). The aim now is to show that it is possible to do so.

It is obvious that �(u, Z) is continuously differentiable in u ∈ [0, 1]. We have

�(1, Z) = I (1, Z)

Q(Z)

(
1 − 1

1 − Q(Z)

)
= − I (1, Z)

1 − Q(Z)
= �(0, Z)

because I (0, Z) = 0 by (14.3). The derivative of �(u, Z) with respect to u is

∂ �(u, Z)

∂u
= −(

log Q(Z)
)
�(u, Z) + (log q) Q(Z)−u Q(Z)u �(u, Z)

= −(
log Q(Z)

)
�(u, Z) + (log q)�(u, Z),

which implies that

∂ �(u, Z)

∂u

∣∣∣
u=1

= ∂ �(u, Z)

∂u

∣∣∣
u=0

.

We can therefore extend �(u, Z) to a 1-periodic continuously differentiable function
in u on R.
Fourier Coefficients of � Knowing that � is a periodic function, we can now head
for its Fourier coefficients and relate them to those of �.
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By using equations (14.7) and (14.3), Q(Z) = qγ+1+Z , and exp(− 2�π iu) =
q−χ�u with χ� = 2π i�

log q , we now express the Fourier coefficients of �(u, Z) in terms
of those of �(u, Z) by

∫ 1

0
�(u, Z) exp(− 2�π iu) du

= (log q)

∫

0≤w≤u≤1
Q(Z)w−u �(w, Z)q−χ�u dw du

− I (1, Z)

1 − Q(Z)

∫ 1

0
q−(γ+1+Z+χ�)u du

= (log q)

∫

0≤w≤1
Q(Z)w �(w, Z)

∫

w≤u≤1
q−(γ+1+Z+χ�)u du dw

− I (1, Z)

(1 − Q(Z))(log q)(γ + 1 + Z + χ�)

(
1 − 1

Q(Z)

)

= 1

γ + 1 + Z + χ�

∫ 1

0
Q(Z)w �(w, Z)

(
q−(γ+1+Z+χ�)w − 1

Q(Z)

)
dw

+ I (1, Z)

Q(Z)(log q)(γ + 1 + Z + χ�)

= 1

γ + 1 + χ� + Z

∫ 1

0
�(w, Z) exp(−2�π iw) dw

− 1

Q(Z)(γ + 1 + χ� + Z)

∫ 1

0
Q(Z)w �(w, Z) dw

+ I (1, Z)

Q(Z)(log q)(γ + 1 + Z + χ�)
.

The second and third summands cancel, and we get

(
γ+1+χ�+Z

) ∫ 1

0
�(u, Z) exp(− 2�π iu) du =

∫ 1

0
�(w, Z) exp(− 2�π iw) dw.

(14.8)

Extracting Coefficients. So far, we have proven everything in terms of generating
functions. We now extract the coefficients of these power series which will give us the
result claimed in Proposition 14.1.

By (14.7), �(u, Z) is analytic in Z for 0 < |Z | < 2r . If qγ+1 
= 1, then it is
analytic in Z = 0, too. If qγ+1 = 1, then (14.7) implies that �(u, Z) might have a
simple pole in Z = 0. Note that all other possible poles have been excluded by our
choice of r . For j ≥ −1, we write

� j (u) := [Z j ] �(u, Z)
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and use Cauchy’s formula to obtain

� j (u) = 1

2π i

∮

|Z |=r

�(u, Z)

Z j+1 dZ .

This and the properties of �(u, Z) established above imply that � j is a 1-periodic
continuously differentiable function.

Inserting (14.6) in (14.4) and extracting the coefficient of Zm−1 using Cauchy’s
theorem and the analyticity of the error in Z yields (14.1) with c = [Zm−1](c′(Z) +
I (1,Z)
1−Q(Z)

)
. Rewriting (14.8) in terms of � j and � j leads to (14.2). Note that we have

to add O(Zm) in (14.2) to compensate the fact that we do not include ψ j� for j ≥ m.
��

We prove a uniqueness result.

Lemma 14.4 Let m be a positive integer, q > 1 be a real number, γ ∈ C such that
γ /∈ 2π i

log qZ, c ∈ C, and �0, . . . , �m−1 and �0, . . . , �m−1 be 1-periodic continuous
functions such that

∑

0≤k<m

(logq N )k�k(logq N ) =
∑

0≤k<m

(logq N )k�k(logq N ) + cN−γ + o(1)

(14.9)

for integers N → ∞. Then �k = �k for 0 ≤ k < m.

Proof If �γ < 0 and c 
= 0, then (14.9) is impossible as the growth of the right-hand
side of the equation is larger than that on the left-hand side. So we can exclude this
case from further consideration. We proceed indirectly and choose k maximally such
that �k 
= �k . Dividing (14.9) by (logq N )k yields

(�k − �k)(logq N ) = cN−γ [k = 0] + o(1) (14.10)

for N → ∞. Let 0 < u < 1 and set N j = �q j+u
.We clearly have lim j→∞ N j = ∞.
Then

j + u + logq(1 − q− j−u) = logq(q
j+u − 1) ≤ logq N j ≤ j + u.

We define ν j := logq N j − j − u and see that ν j = O(q− j ) for j → ∞, i.e.,
lim j→∞ ν j = 0. This implies that lim j→∞{logq N j } = u and therefore

lim
j→∞(�k − �k)(logq N j ) = lim

j→∞(�k − �k)({logq N j }) = �k(u) − �k(u).

Setting N = N j in (14.10) and letting j → ∞ shows that

�k(u) − �k(u) = lim
j→∞ cN−γ

j [k = 0]. (14.11)
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If k 
= 0 or �γ > 0, we immediately conclude that �k(u) − �k(u) = 0. If �γ < 0
we have c = 0, which again implies that �k(u) − �k(u) = 0.

Now we assume that �γ = 0 and k = 0. We set β := − log q
2π i γ , which implies

that N−γ = exp(2π iβ logq N ). We choose sequences (r�)�≥1 and (s�)�≥1 such that
lim�→∞ s� = ∞ and lim�→∞|s�β − r�| = 0: For rational β = r/s, we simply take
r� = �r and s� = �s, and for irrational β, we consider the sequence of convergents
(r�/s�)�≥1 of the continued fraction of β and the required properties follow from the
theory of continued fractions; see for example [28, Theorems 155 and 164]. By using
logq N j = j + u + ν j , we get

lim
�→∞ N−γ

s� = lim
�→∞ exp(2π i(r� + βu + (s�β − r�) + βνs� ) = exp(2π iβu),

lim
�→∞ N−γ

s�+1 = lim
�→∞ exp(2π i(r� + β + βu + (s�β − r�) + βνs�+1)

= exp
(
2π iβ(1 + u)

)
.

These two limits are distinct as β /∈ Z by assumption. Thus lim j→∞ N−γ

j does not
exist. Therefore, (14.11) implies that c = 0 and therefore �k(u) − �k(u) = 0.

We proved that �k(u) = �k(u) for u /∈ Z. By continuity, this also follows for all
u ∈ R; contradiction. ��

14.2 Proof of Theorem E

We again start with an outline of the proof.

Overview of the Proof of Theorem E The idea is to compute the repeated summatory
function of F twice: On the one hand, we use the pseudo-Tauberian Proposition 14.1
to rewrite the right-hand side of (6.6) in terms of periodic functions �aj . On the other
hand, we compute it using a higher order Mellin–Perron summation formula, relating
it to the singularities of F . More specifically, the expansions at the singularities of F
give the Fourier coefficients of �aj . The Fourier coefficients of the functions �aj are
related to those of the functions � j via (14.2). ��

And up next comes the actual proof.

Proof of Theorem E Initial observations and notations. As � j is Hölder continuous,
its Fourier series converges by Dini’s criterion; see, for example, [40, p. 52].

For any sequence g on Z>0, we set (Sg)(N ) := ∑
1≤n<N g(n). We set A =

1 + max{�η
, 0}. In particular, A is a positive integer with A > η.

Asymptotic Summation.We first compute the Ath repeated summatory function S AF
of F (i.e., the (A + 1)th repeated summatory function S A+1 f of the function f ) by
applying Proposition 14.1 A times. This results in an asymptotic expansion involving
new periodic fluctuations while keeping track of the relation between the Fourier
coefficients of the original fluctuations and those of the new fluctuations.

A simple induction based on (6.6) and using Proposition 14.1 shows that there exist
1-periodic continuous functions �aj for a ≥ 0 and − 1 ≤ j < m and some constants
cab for 0 ≤ b < a such that
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(Sa+1 f )(N ) =
∑

0≤b<a

cabN
b + N γ+a

∑

j+k=m−1
−1≤ j<m

(log N )k

k! �aj ({logq N })

+ O(N γ0+a) (14.12)

for integers N → ∞. In fact, �0 j = � j for 0 ≤ j < m. For a ≥ 1 and − 1 ≤
j < m, �aj is continuously differentiable. Note that the case that qγ+a+1 = 1
occurs for at most one 0 ≤ a < A, which implies that the number of non-vanishing
fluctuations increases at most once in the application of Proposition 14.1. Also note
that the assumption α > �γ −γ0 implies that the error terms arising in the application
of Proposition 14.1 are absorbed by the error term stemming from (6.6).

We denote the corresponding Fourier coefficients by

ψaj� :=
∫ 1

0
�aj (u) exp(− 2�π iu) du

for 0 ≤ a ≤ A,− 1 ≤ j < m, � ∈ Z. By (14.2) the generating functions of the Fourier
coefficients fulfil

∑

−1≤ j<m

ψaj�Z
j = (γ + a + 1 + χ� + Z)

∑

−1≤ j<m

ψ(a+1) j�Z
j + O(Zm)

for 0 ≤ a < A, � ∈ Z and Z → 0. Iterating this recurrence yields

∑

0≤ j<m

ψ0 j�Z
j =

( ∏

1≤a≤A

(γ + a + χ� + Z)

) ∑

−1≤ j<m

ψAj�Z
j + O(Zm)

(14.13)

for � ∈ Z and Z → 0.

Explicit Summation.We now compute S A+1 f explicitly with the aim of decomposing
it into one part which can be computed by the Ath order Mellin–Perron summation
formula and another part which is smaller and can be absorbed by an error term.

Explicitly, we have

(Sa+1 f )(N ) =
∑

1≤n1<n2<···<na+1<N

f (n1) =
∑

1≤n<N

f (n)
∑

n<n2<···<na+1<N

1

for 0 ≤ a ≤ A. Note that we formally write the outer sum over the range 1 ≤
n < N although the inner sum is empty (i.e., equals 0) for n ≥ N − a; this will be
useful later on. The inner sum counts the number of selections of a elements out of
{n + 1, . . . , N − 1}, thus we have

(Sa+1 f )(N ) =
∑

1≤n<N

(
N − n − 1

a

)
f (n) =

∑

1≤n<N

1

a! (N − n − 1)a f (n)

(14.14)
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for 0 ≤ a ≤ A and falling factorials za := z(z − 1) · · · (z − a + 1).
The polynomials 1

a! (U − 1)a , 0 ≤ a ≤ A, are clearly a basis of the space of
polynomials in U of degree at most A. Thus, there exist rational numbers b0, . . . , bA
such that

U A

A! =
∑

0≤a≤A

ba
a! (U − 1)a .

Comparing the coefficients of U A shows that bA = 1. Substitution of U by N − n,
multiplication by f (n) and summation over 1 ≤ n < N yield

1

A!
∑

1≤n<N

(N − n)A f (n) =
∑

0≤a≤A

ba(Sa+1 f )(N )

by (14.14). When inserting the asymptotic expressions from (14.12), the summands
involving fluctuations for 0 ≤ a < A are absorbed by the error term O(N γ0+A) of
the summand for a = A because �γ − γ0 < 1. Thus there are some constants cb for
0 ≤ b < A such that

1

A!
∑

1≤n<N

(N − n)A f (n) =
∑

0≤b<A

cbN
b

+N γ+A
∑

j+k=m−1
−1≤ j<m

(log N )k

k! �Aj ({logq N }) + O(N γ0+A) (14.15)

for integers N → ∞.
If γ + A = b + χ�′ for some 0 ≤ b < A and �′ ∈ Z, then we assume without

loss of generality that cb = 0: Otherwise, we replace �A(m−1)(u) by �A(m−1)(u) +
cb exp(− 2�′π iu) and cb by 0. Both (14.15) and (14.13) remain intact: the former triv-
ially, the latter because the factor for a = A−b in (14.13) equals γ +A−b−χ�′ +Z =
Z which compensates the fact that the Fourier coefficient ψA(m−1)(− �′) is modified.

Mellin–Perron summation. We use the Ath order Mellin–Perron summation formula
to write the main contribution of S A+1 f as determined above in terms of new peri-
odic fluctuations � j whose Fourier coefficients are expressed in terms of residues of
a suitably modified version of the Dirichlet generating function F .

Without loss of generality, we assume that σabs > 0: the growth condition (6.8)
trivially holds with η = 0 on the right of the abscissa of absolute convergence of
the Dirichlet series. By the Ath order Mellin–Perron summation formula (see [18,
Theorem 2.1]), we have

1

A!
∑

1≤n<N

(N − n)A f (n) = 1

2π i

∫ σabs+1+i∞

σabs+1−i∞
F(s)Ns+A

s(s + 1) · · · (s + A)
ds

with the arbitrary choice σabs + 1 > σabs for the real part of the line of integration.
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The growth condition (6.8) allows us to shift the line of integration to the left such
that

1

A!
∑

1≤n<N

(N − n)A f (n)

=
∑

�∈Z
Res

( F(s)Ns+A

s(s + 1) · · · (s + A)
, s = γ + χ�

)

+
∑

0≤a≤min{−γ0,A}
(− 1)a

F(− a)

a!(A − a)!N
A−a

[
γ /∈ −a + 2π i

log q
Z

]

+ 1

2π i

∫ γ0+i∞

γ0−i∞
F(s)Ns+A

s(s + 1) · · · (s + A)
ds.

The summand for a in the second term corresponds to a possible pole at s = −a which
is not taken care of in the first sum; note that F(s) is analytic at s = −a in this case
by assumption because of γ0 < −a.

We now compute the residue at s = γ + χ�. We use

Ns+A = N γ+A+χ�
∑

k≥0

(log N )k

k! (s − γ − χ�)
k

to split up the residue as

Res
( F(s)Ns+A

s(s + 1) · · · (s + A)
, s = γ + χ�

)
= N γ+A+χ�

∑

k+ j=m−1
−1≤ j<m

(log N )k

k! ξ j�

with

ξ j� = Res
(F(s)(s − γ − χ�)

m−1− j

s(s + 1) · · · (s + A)
, s = γ + χ�

)
(14.16)

for j ≥ −1. Note that we allow j = −1 for the case of γ ∈ −a + 2π i
log qZ for some

1 ≤ a ≤ A when F(s)/
(
s · · · (s + A)

)
might have a pole of order m + 1 at s = −a.

Using the growth condition (6.8) and the choice of A yields

F(s)

s(s + 1) · · · (s + A)
= O

(|�s|−1−A+η
) = o

(|�s|−1) (14.17)

for |�s| → ∞ and s which are at least a distance δ away from the poles γ + χ�. By
writing the residue in (14.16) in terms of an integral over a rectangle around s = γ +χ�

(distance again at least δ away from γ + χ�), we see that (14.17) implies

ξ j� = O
(|�|−1−A+η

) = o
(|�|−1) (14.18)
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for |�| → ∞. Moreover, by (14.17), we see that

1

2π i

∫ γ0+i∞

γ0−i∞
F(s)Ns+A

s(s + 1) · · · (s + A)
ds = O(N γ0+A).

Thus we proved that

1

A!
∑

1≤n<N

(N − n)A f (n)

= N γ+A
∑

k+ j=m−1
−1≤ j<m

(log N )k

k! � j (logq N )

+
∑

0≤a≤min{−γ0,A}
(− 1)a

F(− a)

a!(A − a)!N
A−a

[
γ /∈ −a + 2π i

log q
Z

]
+ O(N γ0+A)

(14.19)

for

� j (u) =
∑

�∈Z
ξ j� exp(2�π iu) (14.20)

where the ξ j� are given in (14.16). By (14.18), the Fourier series (14.20) converges
uniformly and absolutely. This implies that � j is a 1-periodic continuous function.

Fourier Coefficients.Wewill now compare the two asymptotic expressions for S A+1 f
obtained so far to see that the fluctations coincide.We know explicit expressions for the
Fourier coefficients of the� j in terms of residues, andwe knowhow the Fourier coeffi-
cients of the fluctuations of the repeated summatory function are related to the Fourier
coefficients of the fluctuations of F . Therefore, we are able to compute the latter.

By (14.15), (14.19), elementary asymptotic considerations for the terms Nb with
b > �γ + A, Lemma 14.4 and the fact that cb = 0 if b ∈ γ + A + 2π i

log qZ for some
0 ≤ b < A, we see that � j = �Aj for − 1 ≤ j < m. This immediately implies that
F(0) = 0 if γ0 < 0 and γ /∈ 2π i

log qZ.
To compute the Fourier coefficients ψAj� = ξ j�, we set Z := s − γ − χ� to

rewrite (14.16) using (6.7) as

ψAj� = [Z−1]
∑

b≥0 ϕb�Zb− j−1

∏
1≤a≤A(γ + a + χ� + Z)

= [Z j ]
∑

b≥0 ϕb�Zb

∏
1≤a≤A(γ + a + χ� + Z)

for − 1 ≤ j < m and � ∈ Z. This is equivalent to

∑

−1≤ j<m

ψAj�Z
j =

∑
j≥0 ϕ j�Z j

∏
1≤a≤A(γ + a + χ� + Z)

+ O(Zm)
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for � ∈ Z and Z → 0. Clearing the denominator and using (14.13) as announced in
Remark 14.3 lead to

∑

0≤ j<m

ψ0 j�Z
j =

∑

j≥0

ϕ j�Z
j + O(Zm)

for � ∈ Z and Z → 0. Comparing coefficients shows that ψ0 j� = ϕ j� for 0 ≤ j < m
and � ∈ Z. This proves (6.9). ��

15 Proof of Theorem A

Proof of TheoremA By Remark 3.2, we have x(n) = e1 f (n)v(0). If v(0) = 0, there
is nothing to show. Otherwise, as observed in Sect. 7.1, v(0) is a right eigenvector of
A0 associated to the eigenvalue 1. As a consequence, Kv(0), ϑmv(0) and ϑv(0) all
vanish. Therefore, (3.3) follows from Theorem C by multiplication by e1 and v(0)
from left and right, respectively. Note that the notation is somewhat different: Instead
of powers (logq N )k in Theorem C we write (log N )k/k! here.

The functional equation (3.4) follows fromTheoremD for n0 = 1 bymultiplication
from right by v(0).

For computing the Fourier coefficients, we denote the rows of T by w1, . . . , wd .
Thus wa is a generalised left eigenvector of C of some order ma associated to some
eigenvalue λa of C . We can write e1 = ∑

1≤a≤d cawa for some suitable constants
c1, . . . , cd . For 1 ≤ a ≤ d, we consider the sequence ha on Z>0 with

ha(n) = wa
(
v(n) + v(0)[n = 1]).

The reason for incorporating v(0) into the value for n = 1 is that the corresponding
Dirichlet series H(a)(s) := ∑

n≥1 n
−sha(n) only takes values at n ≥ 1 into account.

By definition, we have H(a)(s) = wav(0) + waV(s). Taking the linear combination
yields

∑
1≤a≤d caH(a)(s) = x(0)+X (s). We choose γ0 > logq R such that there are

no eigenvalues λ ∈ σ(C) with logq R < logq λ ≤ γ0 and such that γ0 /∈ Z≤0.
By Theorem B, we have

∑

1≤n<N

ha(n) = N logq λa
∑

0≤k<ma

(log N )k

k! �ak({logq N }) + O(N γ0) (15.1)

for N → ∞ for suitable 1-periodic Hölder continuous functions �ak (which vanish if
|λa | ≤ R). By Theorem D, the Dirichlet series H(a)(s) is meromorphic for �s > γ0
with possible poles at s = logq λa + χ� for � ∈ Z.

The sequence ha satisfies the prerequisites of Theorem E, either with γ = logq λa
if� logq λa > γ0 or with arbitrary real γ > γ0 and� j = 0 for all j if� logq λa ≤ γ0.
The theorem then implies that
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H(a)(0) = 0 (15.2)

if γ0 < 0 and λa 
= 1.
If |λa | > R, Theorem E also yields

�ak(u) =
∑

�∈Z
ψak� exp(2π i�u)

where the ψak� are given by the singular expansion

H(a)(s)

s
�

∑

�∈Z

∑

0≤k<ma

ψak�

(s − logq λa − χ�)k+1 (15.3)

for �s > γ0. Note that (15.2) ensures that there is no additional pole at s = 0 when
γ0 < 0 and λa 
= 1. Also note that in comparison to Theorem E, �ma−1−k there
corresponds to �ak here.

We now have to relate the results obtained for the sequences ha with the results
claimed for the original sequence f . For λ ∈ σ(C) with |λ| > R, we have

�λk(u) =
∑

1≤a≤d
λa=λ

ca�ak(u).

We denote the Fourier coefficients of �λk by ϕλk� for � ∈ Z and will show that these
Fourier coefficients actually fulfil (3.5). Taking linear combinations of (15.3) shows
that

∑

1≤a≤d
λa=λ

caH(a)(s)

s
�

∑

�∈Z

∑

0≤k<m(λ)

ϕλk�

(s − logq λ − χ�)k+1

for �s > γ0.
Summing over all λ ∈ σ(C) yields (3.5) because summands λ with |λ| ≤ R are

analytic for �s > γ0 and do therefore not contribute to the right-hand side. ��
It might seem to be somewhat artificial that Theorem E is used to prove that

H( j)(0) = 0 in some of the cases above. In fact, this can also be shown directly
using the linear representation; we formulate and prove this in the following remark.

Remark 15.1 With the notations of the proof of Theorem A, H( j)(0) = 0 if λ j 
= 1
and R < 1 can also be shown using the functional equation (3.4).

Proof We prove this by induction onm j . By definition of T , we have w j (C −λ j I ) =
[m j > 1]w j+1. (We havemd = 1 thuswd+1 does not actually occur.) Ifm j > 1, then
H( j+1)(0) = 0 by induction hypothesis.
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We add (I − q−s) v(0) to (3.4) and get

(
I − q−sC

)(
v(0) + V(s)

) = (
I − q−sC

)
v(0) +

∑

1≤n<q

n−sv(n)

+ q−s
∑

0≤r<q

Ar

∑

k≥1

(−s

k

)( r
q

)k
V(s + k).

Multiplication by w j from the left yields

(
1 − q−sλ

)
H( j)(s) = [m j > 1] q−sH( j+1)(s)

+ w j
(
I − q−sC

)
v(0) + w j

∑

1≤n<q

n−sv(n)

+ w j q
−s

∑

0≤r<q

Ar

∑

k≥1

(−s

k

)( r
q

)k
V(s + k).

As R < 1 and λ j 
= 1, the Dirichlet seriesH( j)(s) is analytic in s = 0 by Theorem D.
It is therefore legitimate to set s = 0 in the above equation. We use the induction
hypothesis that H( j+1)(0) = 0 as well as the fact that v(n) = Anv(0) (note that v(0)
is a right eigenvector of A0 to the eigenvalue 1; see Sect. 7.1) for 0 ≤ n < q to get

(1 − λ)H( j)(0) = w j

∑

0≤n<q

Anv(0) − w jCv(0) = 0

because all binomial coefficients
(0
k

)
vanish. ��

16 Proof of Proposition 6.4

Proof of Proposition 6.4 We set

j0 :=
⌊

− p
(
π + arg(λ)

)

2π

⌋
+ 1

with the motive that

−π < arg(λ) + 2 jπ

p
≤ π

holds for j0 ≤ j < j0 + p. This implies that for j0 ≤ j < j0 + p, the pth root
of unity ζ j := exp(2 jπ i/p) runs through the elements of Up such that logq(λζ j ) =
logq(λ) + 2 jπ i/(p log q). Then
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N logq (ζ jλ) = N logq λ exp
(2 jπ i

p
logq N

)

= N logq λ exp(2 jπ i logq p N ) = N logq λ exp(2 jπ i{logq p N }).

We set

�(u) :=
∑

j0≤ j< j0+p

exp
(2 jπ i

p
u
)
�(ζ jλ)(u),

thus � is a p-periodic function.
For the Fourier series expansion, we get

�(u) =
∑

�∈Z

∑

j0≤ j< j0+p

Res

⎛

⎝D(s)

(
s − logq λ − 2(� + j

p )π i

log q

k)
, s = logq λ

+ 2(� + j
p )π i

log q

⎞

⎠ × exp
(
2π i

(
� + j

p

)
u
)
.

Replacing �p + j by � leads to the Fourier series claimed in the proposition. ��

Part IV: Computational Aspects

The basic idea for computing the Fourier coefficients is to use the functional equation
in Theorem D. This part describes in detail how this is done. We basically follow
an approach found in Grabner and Hwang [25] and Grabner and Heuberger [23], but
provide error bounds.

An actual implementation is also available; SageMath [38] code can be found at
https://gitlab.com/dakrenn/regular-sequence-fluctuations .We use theArb library [33]
(more precisely, its SageMath bindings) for ball arithmeticwhich keeps track of round-
ing errors such that we can be sure about the precision and accuracy of our results.

We use the results of this part to compute Fourier coefficients for our examples, in
particular for esthetic numbers (Sect. 9) and Pascal’s rhombus (Sect. 10).

17 Strategy for Computing the Fourier Coefficients

The computation of the Fourier coefficients relies on the evaluation of Dirichlet series
at certain points s = s0. It turns out to be numerically preferable to split up the sum as

F1(s0) =
∑

1≤n<n0

n−s0 f (n) + Fn0(s0)

for some suitable n0 (see Sect. 18.2), compute the sum of the first n0 − 1 summands
directly and evaluate Fn0(s0) as it is described in the following.
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For actually computing the Fourier coefficients, we use a formulation in terms of
a residue; for instance, see (3.6) where this is formulated explicitly in the set-up of
Theorem A. As said, we will make use of the functional equation (6.3) for the matrix-
valued Dirichlet series Fn0(s) with its right-hand side, the matrix-valued Dirichlet
series Gn0(s).

Let us make this explicit for a simple eigenvalue λ 
= 1 of C and a corresponding
eigenvector w. Then w(I − q−sC) = w(1 − q−sλ) and (6.3) can be rewritten as

wF1(s) = 1

1 − q−sλ
w G1(s).

Thus, wF1(s) has simple poles at s = logq λ + χ� for all � ∈ Z, where χ� = 2�π i
log q .

By (6.7) and (6.9) of Theorem E (with κ = logq λ and m = 1), the �th Fourier
coefficient is given by the residue

Res
(wF1(s)

s
, s = logq λ + χ�

)
= w G1(logq λ + χ�)

1

(log q)(logq λ + χ�)
.

Note that log q is the derivative of 1−q−sλwith respect to s evaluated at the pole s =
logq λ.

By (6.4), Gn0(logq λ + χ�) is expressed in terms of an infinite sum containing
Fn0(logq λ + χ� + k) for k ≥ 1. We truncate this sum and bound the error; this
is the aim of Sect. 18.1 and in particular Lemma 18.2. We can iterate the above
idea for the shifted Dirichlet series Fn0(logq λ + χ� + k) which leads to a recursive
evaluation scheme. Note that once we have computed Gn0(logq λ + χ� + k), we get
Fn0(logq λ + χ� + k) by solving a system of linear equations.

18 Details on the Numerical Computation

18.1 Bounding the Error

We need to estimate the approximation error which arises if the infinite sum over
k ≥ 1 in (6.4) is replaced by a finite sum. It is clear that for large �s and n0, the value
Fn0(s) will approximately be of the size of its first summand n−s

0 f (n0). In view of
‖ f (n0)‖ = O(ρlogq n0), this will be rather small. We give a precise estimate in a first
lemma.

Lemma 18.1 Let n0 > 1 and let M := max0≤r<q‖Ar‖. For �s > logq M + 1, we
have ∑

n≥n0

‖ f (n)‖
n�s

≤ M

(�s − logq M − 1)(n0 − 1)�s−logq M−1 .
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Proof By definition of M , we have ‖ f (n)‖ ≤ M1+logq n = Mnlogq M . Therefore, we
have

∑

n≥n0

‖ f (n)‖
n�s

≤ M
∑

n≥n0

1

n�s−logq M
≤ M

∫ ∞

n0−1

dn

n�s−logq M

= M

(�s − logq M − 1)(n0 − 1)�s−logq M−1

where we interpret the sum as a lower Riemann sum of the integral. ��

We now give a bound for the approximation error in (6.4).

Lemma 18.2 Let n0 > 1 and M as in Lemma 18.1. Let K ≥ 1 and s ∈ C be such that
�s + K > max(logq M + 1, 0).

Then

∥∥∥Gn0 (s) −
∑

n0≤n<qn0

n−s f (n) − q−s
∑

0≤r<q

Ar
∑

1≤k<K

(−s

k

)( r
q

)k
Fn0 (s + k)

∥∥∥

≤ q−�s
∣∣∣∣

(−s

K

)∣∣∣∣
M

(�s + K − logq M − 1)(n0 − 1)�s+K−logq M−1

∑

0≤r<q

‖Ar‖
( r
q

)K
.

Proof We set

D := Gn0(s) −
∑

n0≤n<qn0

n−s f (n) − q−s
∑

0≤r<q

Ar

∑

1≤k<K

(−s

k

)( r
q

)k
Fn0(s + k)

and need to estimate ‖D‖.
By definition of Gn0(s), we have

Gn0(s) = (1 − q−sC)Fn0(s)

=
∑

n0≤n<qn0

n−s f (n) + Fqn0(s) − q−sCFn0(s)

=
∑

n0≤n<qn0

n−s f (n) +
∑

0≤r<q

∑

n≥n0

Ar f (n)

(qn + r)s
− q−sCFn0(s)

=
∑

n0≤n<qn0

n−s f (n) + q−s
∑

0≤r<q

Ar

∑

n≥n0

f (n)

ns

((
1 + r

qn

)−s − 1
)
.

Thus we have

D = q−s
∑

0≤r<q

Ar

∑

n≥n0

f (n)

ns

((
1 + r

qn

)−s −
∑

0≤k<K

(−s

k

)( r

qn

)k)
.
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For 0 ≤ x < 1, Taylor’s theorem (or induction on K ≥ 1 using integration by
parts) implies that

(1 + x)−s −
∑

0≤k<K

(−s

k

)
xk = K

∫ x

0

(−s

K

)
(1 + t)−s−K (x − t)K−1 dt .

For 0 ≤ t ≤ x < 1, we can bound |(1 + t)−s−K | from above by 1 since we have
assumed that �s + K > 0. Thus

∣∣∣∣∣∣
(1 + x)−s −

∑

0≤k<K

(−s

k

)
xk

∣∣∣∣∣∣
≤ K

∣∣∣∣

(−s

K

)∣∣∣∣
∫ x

0
(x − t)K−1 dt =

∣∣∣∣

(−s

K

)∣∣∣∣ x
K .

Thus we obtain the bound

‖D‖ ≤ q−�s
∣∣∣∣

(−s

K

)∣∣∣∣
∑

0≤r<q

‖Ar‖
( r
q

)K ∑

n≥n0

‖ f (n)‖
n�σ+K

.

Bounding the remaining Dirichlet series by Lemma 18.1 yields the result. ��

18.2 Choices of Parameters

As mentioned at the beginning of this part, we choose the Arb library [33] for reliable
numerical ball arithmetic. In our examples (esthetic numbers in Sect. 9 and Pascal’s
rhombus in Sect. 10), we choose n0 = 1024 and recursively compute Fn0(logq λ +
χ� + k) for k ≥ 1 by (6.4). In each step, we keep adding summands for k ≥ 1 until
the bound of the approximation error in Lemma 18.2 is smaller than the smallest
increment which can still be represented with the chosen number of bits. For plotting
the graphs, we simply took machine precision; for the larger number of significant
digits in Table 2, we used 128 bits precision.

19 Non-vanishing Coefficients

Using reliable numerical arithmetic for the computations (see above) yields small
balls in which the true value of the Fourier coefficients is. If such a ball does not
contain zero, we know that the Fourier coefficient does not vanish. If the ball contains
zero, however, we cannot decide whether the Fourier coefficient vanishes. We can
only repeat the computation with higher precision and hope that this will lead to a
decision that the coefficient does not vanish, or we can try to find a direct argument
why the Fourier coefficient does indeed vanish, for instance using the final statement
of Theorem B (3).

Vanishing Fourier coefficients appear in our introductory Example 3.1: In its con-
tinuation (Example 3.3) an alternative approach is used to compute these coefficients
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explicitly symbolically. In this way a decision for them being zero is possible. The
same is true for the example of transducers in Sect. 8.

It should also be noted that in the analysis of esthetic numbers (example in Sect. 9)
we could have modelled the problem by a complete transducer (by just introducing
a sink) and then applied the results of Sect. 8. This would have led to an asymptotic
expansion where the fluctuations of the main term (corresponding to the eigenvalue q)
would in fact have vanished, but an argument would have been needed. So we chose
a different approach in Sect. 9 to avoid this problem. There the eigenvalue q does
no longer occur. This implies that the fluctuations for q of the transducer approach
vanish. Note also that half of the remaining fluctuations still turn out to vanish: this is
shown in the proof of Corollary G.
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