
Reachability Oracles for Directed Transmission Graphs∗

Haim Kaplan† Wolfgang Mulzer‡ Liam Roditty§ Paul Seiferth‡

Abstract

Let P ⊂ Rd be a set of n points in d dimensions such that each point p ∈ P has an associated radius
rp > 0. The transmission graph G for P is the directed graph with vertex set P such that there is an
edge from p to q if and only if |pq| ≤ rp, for any p, q ∈ P .

A reachability oracle is a data structure that decides for any two vertices p, q ∈ G whether G has a path
from p to q. The quality of the oracle is measured by the space requirement S(n), the query time Q(n),
and the preprocessing time. For transmission graphs of one-dimensional point sets, we can construct in
O(n log n) time an oracle with Q(n) = O(1) and S(n) = O(n). For planar point sets, the ratio Ψ between
the largest and the smallest associated radius turns out to be an important parameter. We present three
data structures whose quality depends on Ψ: the first works only for Ψ <

√
3 and achieves Q(n) = O(1)

with S(n) = O(n) and preprocessing time O(n log n); the second data structure gives Q(n) = O(Ψ3
√
n)

and S(n) = O(Ψ3n3/2); the third data structure is randomized with Q(n) = O(n2/3 log1/3 Ψ log2/3 n) and

S(n) = O(n5/3 log1/3 Ψ log2/3 n) and answers queries correctly with high probability.

1 Introduction

Representing the connectivity of a graph in a space efficient, succinct manner, while supporting
fast queries, is one of the most fundamental data structure questions on graphs. For an undirected
graph, it suffices to compute the connected components and to store with each vertex a label
for the respective component. This leads to a linear-space data structure that can decide in
constant time if any two given vertices are connected. For directed graphs, however, connectivity
is not a symmetric relation any more, and the problem turns out to be much more challenging.
Thus, if G is a directed graph, we say that a vertex s can reach a vertex t if there is a directed
path in G from s to t. Our goal is to construct a reachability oracle, a space efficient data
structure that answers reachability queries, i.e., that determines for any pair of query vertices s
and t whether s can reach t. The quality of a reachability oracle for a graph with n vertices
is measured by three parameters: the space S(n), the query time Q(n) and the preprocessing
time. The simplest solution stores for each pair of vertices whether they can reach each other,
leading to a reachability oracle with Θ(n2) space and constant query time. For sparse graphs
with O(n) edges, storing just the graph and performing a breadth first search for a query yields
an O(n) space oracle with O(n) query time. Interestingly, other than that, we are not aware
of any better solutions for general directed graphs, even sparse ones; see Cohen et al. [5] for
partial results. Thus, any result that simultaneously achieves subquadratic space and sublinear
query time would be of great interest. A lower bound by Pǎtraşcu [12] shows that we cannot

∗This work is supported in part by GIF projects 1161 and 1367, DFG project MU/3501/1 and ERC StG
757609. A preliminary version appeared as Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth.
Spanners and Reachability Oracles for Directed Transmission Graphs. Proc. 31st SoCG, pp. 156–170.
†School of Computer Science, Tel Aviv University, Israel, haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany, [mulzer,pseiferth]@inf.fu-berlin.de
§Department of Computer Science, Bar Ilan University, Israel liamr@macs.biu.ac.il

1

ar
X

iv
:1

60
1.

07
79

7v
2

 [
cs

.C
G

]
 3

 N
ov

 2
01

9

hope for o(log n) query time with O(n) space in sparse graphs, but it does not rule out constant
time queries with slightly superlinear space. In the absence of progress towards non-trivial
reachability oracles or better lower bounds, solutions for special cases become important. For
directed planar graphs, after a long line of research [2,4, 6, 7, 13], Holm, Rotenberg and Thorup
presented a reachability oracle with constant query time and O(n) preprocessing time and space
usage [8]. This data structure, as well as most other previous reachability oracles, can also
return the approximate shortest path distance between the query vertices.

Transmission graphs constitute a graph class that shares many similarities with planar graphs:
let P ⊂ R2 be a set of points where each point p ∈ P has a (transmission) radius rp associated
with it. The transmission graph has vertex set P and a directed edge between two distinct
points p, q ∈ P if and only if |pq| ≤ rp, where |pq| denotes the Euclidean distance between p and
q. Transmission graphs are a common model for directed sensor networks [10, 11, 14]. In this
geometric context, it is natural to consider a more general type of query where the target point
is an arbitrary point in the plane rather than a vertex of the graph. In this case, a vertex s ∈ P
can reach a point q ∈ R2 if there is a vertex t ∈ P such that s reaches t and such that |tq| ≤ rt.
We call such queries geometric reachability queries and we call oracles that can answer such
queries geometric reachability oracles. To avoid ambiguities, we sometimes use the term standard
reachability query/oracle when referring to the case where the query consists of two vertices.

Our Results. An extended abstract of this work was presented at the 31st International
Symposium on Computational Geometry [9]. This abstract also discusses the problem of
constructing sparse spanners for transmission graphs. While we were preparing the journal
version, it turned out that a full description of our results would yield a large and unwieldy
manuscript. Therefore, we decided to split our study on transmission graphs into two parts, the
present paper that deals with the construction of efficient reachability oracles, and a companion
paper that studies fast algorithms for spanners in transmission graphs [10].

In Section 3 we will see that one-dimensional transmission graphs admit a rich structure that
can be exploited to construct a simple linear space geometric reachability oracle with constant
query time, and O(n log n) preprocessing time.

In two dimensions, the situation is more involved. Here, it turns out that the radius ratio Ψ,
the ratio of the largest and the smallest transmission radius of a point in P , is an important
parameter. We consider first the case where Ψ <

√
3. In this case, the transmission graph has

a lot of structure: from the presence of two crossing edges pq and rs, we can conclude that
additional edges between p, q, r, and s must be present. Using this structural information,
we can turn the transmission graph into a planar graph in O(n log n) time, while preserving
the reachability relation and keeping the number of vertices linear in n. As mentioned above,
for planar graphs there is a linear time construction of a reachability oracle with linear space,
and constant query time [8]. Thus, our transformation together with this construction yields a
standard reachability oracle with linear space, constant query time and O(n log n) preprocessing
time. Furthermore, in the companion paper we show that any standard reachability oracle can
be transformed into a geometric one by paying an additive overhead of O(log n log Ψ) to the
query time and of O(n log Ψ) to the space [10]. We apply this transformation to the reachability
oracle that we get by planarizing the transmission graph and get a geometric oracle that requires
O(n) space, O(n log n) preprocessing time, and answers geometric queries in O(log n) time and
standard queries in O(1) time. Section 4.1 presents this result.

When Ψ ≥
√

3, we do not know how to obtain a planar graph representing the reachability
relation of G. Fortunately, we can use a theorem by Alber and Fiala that allows us to find a
small and balanced separator with respect to the area of the union of the disks [1]. This leads
to a standard reachability oracle with query time O(Ψ3√n) and space and preprocessing time

2

O(Ψ3n3/2), see Section 4.2. When Ψ is even larger, we can use random sampling combined
with a quadtree of logarithmic depth to obtain a standard reachability oracle with query time
O(n2/3 log1/3 Ψ log2/3 n), space O(n5/3 log1/3 Ψ log2/3 n), and preprocessing time O(n5/3(log Ψ +
log n) log1/3 Ψ log2/3 n). Refer to Section 4.3. Again, we can transform both oracles into geometric
reachability oracles using the result from the companion paper [10]. Since the overhead is additive,
the transformation does not affect the performance bounds.

2 Preliminaries and Notation

Unless stated otherwise, we let P ⊂ R2 denote a set of n points in the plane, and we assume
that for each point p, we have an associated radius rp > 0. Furthermore, we assume that the
input is scaled so that the smallest associated radius is 1. The elements in P are called vertices.
The radius ratio Ψ of P is defined as Ψ = maxp∈P rp (the smallest radius is 1). Given a point
p ∈ R2 and a radius r, we denote by D(p, r) the closed disk with center p and radius r. If p ∈ P ,
we use D(p) as a shorthand for D(p, rp). We write C(p, r) for the boundary circle of D(p, r).

Our constructions for the two-dimensional reachability oracles make extensive use of planar
grids. For i ∈ {0, 1, . . . }, we denote by Qi the grid at level i. It consists of axis-parallel squares
with diameter 2i that partition the plane in grid-like fashion (the cells). Each grid Qi is aligned
so that the origin lies at the corner of a cell. We assume that our model of computation allows
to find the grid cell containing a given point in constant time.

In the one-dimensional case, our construction immediately yields a geometric reachability
oracle. In the two-dimensional case, we are only able to construct standard reachability oracles
directly. However, we can use the following result from our companion paper to transform these
oracles into geometric reachability oracles in a black-box fashion [10].

Theorem 2.1 (Theorem 4.3 in [10]). Let G be the transmission graph for a set P of n points
in the plane with radius ratio Ψ. Given a reachability oracle for G that uses S(n) space and has
query time Q(n), we can compute in O(n log n log Ψ) time a geometric reachability oracle with
S(n) +O(n log Ψ) space and query time O(Q(n) + log n log Ψ).

To achieve a fast preproccesing time, we need a sparse approximation of the transmission
graph G. Let ε > 0 be constant. A (1 + ε)-spanner for G is a sparse subgraph H ⊆ G such that
for any pair of vertices p and q in G we have dH(p, q) ≤ (1 + ε)dG(p, q) where dH and dG denote
the shortest path distance in H and in G, respectively. In our companion paper we show that
(1 + ε)-spanners for transmission graphs can be constructed efficiently [10].

Theorem 2.2 (Theorem 3.12 in [10]). Let G be the transmission graph for a set P of n points
in the plane with radius ratio Ψ. For any fixed ε > 0, we can compute a (1 + ε)-spanner for G
with O(n) edges in O(n(log n+ log Ψ)) time using O(n log Ψ) space.

3 Reachability Oracles for 1-dimensional Transmission Graphs

In this section, we prove the existence of efficient reachability oracles for one-dimensional
transmission graphs and show that they can be computed quickly.

Theorem 3.1. Let G be the transmission graph of an n-point set P ⊂ R. Given the point set P
with the associated radii, we can construct in O(n log n) time a geometric reachability oracle for
G that requires O(n) space and can answer a query in O(1) time.

We begin with a simple structural observation. For p ∈ P , let Rp = {q ∈ P | p can reach q}
be the set of all vertices that are reachable from p, and let Ip =

⋃
q∈Rp

D(q) denote the union of
their associated disks. Then, Ip is an interval.

3

Lemma 3.2. Let p ∈ P . There exist two points lr(p), rr(p) ∈ R such that Ip = [lr(p), rr(p)]. For
any point q ∈ R, the vertex p can reach q if and only if q ∈ [lr(p), rr(p)].

Proof. Let lr(p) = min{s− rs | s ∈ Rp} and rr(p) = max{s+ rs | s ∈ Rp}. From the definition,
it follows that Ip ⊆ [lr(p), rr(p)]. Conversely, let q ∈ [lr(p), rr(p)], and assume w.l.o.g that q lies
to the left of p. Let s ∈ P be the vertex that defines lr(p), i.e., lr(p) = s − rs. By definition,
there is a path p = p1p2 . . . pk = s from p to s in G. Since G is a transmission graph, we
have |pi − pi+1| ≤ rpi , for i = 1, . . . , k − 1, so the disks D(pi) cover the entire interval [lr(p), p].
Thus, there is a pi with q ∈ D(pi). This means that [lr(p), p] ⊆ Ip. Similarly, we have that
[p, rr(p)] ⊆ Ip, so [lr(p), rr(p)] ⊆ Ip The second statement of the lemma is now immediate.

Lemma 3.2 suggests the following reachability oracle with O(n) space and O(1) query time:
for each p ∈ P , store the endpoints lr(p) and rr(p). Given a query p, q, where p is a vertex and
q a point in R, we return YES if and only if q ∈ [lr(p), rr(p)]. It only remains to compute the
interval endpoints lr(p) and rr(p) for all p ∈ P efficiently.

Lemma 3.3. We can find the left interval endpoint lr(p), for each p ∈ P , in O(n log n) total
time. An analogous statement holds for the right interval endpoints rr(p), for p ∈ P .

Proof. Let p1, p2, . . . , pn be the vertices in P , sorted in ascending order of the left endpoints
of their associated disks: p1 − rp1 ≤ p2 − rp2 ≤ · · · ≤ pn − rpn . Let G′ be the transpose graph
for G in which the directions of all edges are reversed. We perform a depth-first search in
G′ with start vertex p1, and we denote the set of all vertices encountered during this search
by Q. By construction, Q contains exactly those vertices from which p1 is reachable in G, so
lr(q) = p1 if and only if q ∈ Q. For each vertex p ∈ P \Q, no vertex in Q is reachable from p,
i.e., Rp ∩Q = ∅. Thus, we can repeat the procedure with the remaining vertices to obtain all
left interval endpoints. The right interval endpoints are computed analogously.

For an efficient implementation, we store the rp-balls around the vertices in P in an interval
tree T [3]. When a vertex p is visited for the first time, we delete the corresponding rp-ball from
T . When we need to find an outgoing edge in G from a vertex p, we use T to find one ball that
contains p. This can be done in O(log n) time. Since the depth-first search algorithm traverses
at most n edges, this results in running time O(n log n).

4 Reachability Oracles for 2-dimensional Transmission Graphs

In the following sections we present three different geometric reachability oracles for transmission
graphs in R2. By Theorem 2.1, we can focus on the construction of standard reachability oracles
since they can be extended easily to geometric ones. This has no effect on the space required
and the time bound for a query, expect for the oracle given in Section 4.1. This oracle applies
for Ψ <

√
3, it needs O(n log n) space and has O(1) query time. Thus, when we apply the

transformation from an oracle that can answer standard reachability queries to an oracle that
can answer geometric reachability queries, we increase the query time of this oracle to O(log n).

4.1 Ψ is less than
√

3

Suppose that Ψ ∈ [1,
√

3). In this case, we show that we can make G planar by first removing
unnecessary edges and then resolving edge crossings by adding O(n) additional vertices. This
will not change the reachability relation between the original vertices. The existence of efficient
reachability oracles then follows from known results for directed planar graphs. The main goal
is to prove the following lemma.

4

Lemma 4.1. Let P be a set of n points in R2 with Ψ <
√

3 and let G be the transmission graph
for P . We can compute, in O(n log n) time, a plane graph H = (V,E) such that

(i) |V | = O(n) and |E| = O(n);

(ii) P ⊆ V ; and

(iii) for any p, q ∈ P , p can reach q in G if and only if p can reach q in H.

Given Lemma 4.1, we can obtain our reachability oracle from known results.

Theorem 4.2. Let G be the transmission graph for a set P of n points in R2 of radius ratio
less than

√
3. Then, we can construct in O(n log n) time a standard reachability oracle for G

with S(n) = O(n) and Q(n) = O(1) or a geometric reachability oracle for G with S(n) = O(n)
and Q(n) = O(log n).

Proof. We apply Lemma 4.1 and construct the distance oracle of Holm, Rotenberg, and Thorup
for the resulting graph [8]. This distance oracle can be constructed in linear time, it needs linear
space, and it has constant query time. The result for the geometric reachability oracle follows
from Theorem 2.1.

We prove Lemma 4.1 in three steps. First, we show how to make G sparse without changing
the set of reachable pairs. Then, we show how to turn G into a planar graph. Finally, we argue
that we can combine these two operations to get the desired result.

Obtaining a Sparse Graph. We construct a subgraph H ⊆ G with the same reachability
relation as G but with O(n) edges and O(n) edge crossings. The bounded number of crossings
allows us to obtain a planar graph later on. Consider the grid Q0 (as defined in Section 2), and
let σ ∈ Q0 be a grid cell. We say that an edge of G lies in σ if both endpoints are contained in
σ. The neighborhood N(σ) of σ consists of the 7× 7 block of cells in Q0 with σ at the center.
Two grid cells are neighboring if they lie in each other’s neighborhood. Since a cell in Q0 has
side length

√
2/2, the two endpoints of every edge in G must lie in neighboring grid cells.1

σ

τ τ

σ

Fig. 1: The vertices and edges of two neighboring cells of G (left) and of H (right)

The subgraph H has vertex set P , and we pick its edges as follows (see also Figure 1): for
each non-empty cell σ ∈ Q0, we set Pσ = P ∩ σ, and we compute the Euclidean minimum
spanning tree (EMST) Tσ of Pσ. For each edge pq of Tσ, we add the directed edges pq and qp to
H. Then, for every cell τ ∈ N(σ), we check if there are any edges from σ to τ in G. If so, we
add an arbitrary such edge to H. We denote by F the set of edges pq such that p and q are in
different cells. The following lemma summarizes the properties of H.

Lemma 4.3. The graph H has the following properties.

1 Since the maximum edge length in G is
√
3, and since 2

√
2

2
<

√
3 < 3

√
2
2
, the neighborhood N(σ) needs to

contain three cells in each direction around σ.

5

(i) for any two vertices p and q, p can reach q in G if and only if p can reach q in H;

(ii) H has O(n) edges;

(iii) H can be constructed in O(n log n) time; and

(iv) the straight line embedding of H in the plane has O(n) edge crossings.

Proof. (i): All edges of H are also edges of G: inside a non-empty cell σ, Pσ induces a clique in
G, and the edges of H between cells lie in G by construction. It follows that if p can reach q in
H then p can reach q in G.

To show the converse let pq be an edge in G. We show that there is a path from p to q in H.
If pq lies in a cell σ of Q0, we take the path from p to q along the EMST Tσ. If pq goes from a
cell σ to another cell τ , then there is an edge uv from σ to τ in H, and we take the path in Tσ
from p to u, then the edge uv, and finally the path in Tτ from v to q.

(ii): For a nonempty cell σ, we create |Pσ| − 1 edges inside σ. Furthermore, since |N(σ)| is
constant, there are O(1) edges between points in σ and points in other cells. Thus, H has O(n)
edges.

(iii): Since we assumed that we can find the cell for a vertex p ∈ P in constant time, we can
easily compute the sets Pσ, for every nonempty σ ∈ Q0, in O(n) time. Computing the EMST
Tσ for a cell σ requires O(|Pσ| log |Pσ|) time, which sums to O(n log n) time for all cells. To find
the edges of F (i.e., edges between neighboring cells) we build a Voronoi diagram together with
a point location structure for each set Pσ. This takes O(n log n) time for all cells. Let σ and τ
be two neighboring cells. For each point in Pσ, we locate the nearest neighbor in Pτ using the
Voronoi diagram of Pτ . If there is a point p ∈ Pσ whose nearest neighbor q ∈ Pτ lies in D(p),
we add the edge pq to H, and we proceed to the next pair of neighboring cells. Since |N(σ)| is
constant, a point participates in O(1) point location queries, each taking O(log n) time. The
total running time of all point location queries is O(n log n).

(iv): Clearly each such crossing involves at least one edge of F (the set of edges between
points in different cells). Each edge e of H intersects O(1) cells σ (this holds for edges in F and
trivially holds for edges inside cells). Each intersection of e with an edge of F must occur in one
of these O(1) cells that e intersects. On the other hand, each cell σ intersects only O(1) edges of
F . So there are only O(1) intersections per edge of H.

Making G Planar. We now describe how to turn a graph G, embedded in the plane, into a
planar graph. (This transformation can be applied to any graph embedded in the plane. But
Lemma 4.6 applies only if G is a transmission graph.) Suppose an edge pq and an edge uv of G
cross at a point x. To eliminate this crossing, we add the intersection point x as a new vertex to
the graph, and we replace pq and uv by the four new edges px, xq, ux and xv. Furthermore, if
qp is an edge of G, we replace it by the two edges qx, xp, and if vu is an edge of G, we replace
it by the two edges vx, xu. See Figure 2. We say that this resolves the crossing between p, q, u
and v. Let G̃ be the graph obtained by iteratively resolving all crossings in G.

u

p

q

v

u

p

q

v
x⇒

Fig. 2: Resolving a crossing. Since the edge vu exists, we also add vx and xu as edges.

First, we want to show that resolving crossings keeps the local reachability relation between
the four vertices of the crossing edges. Intuitively speaking, the restriction Ψ < 3 forces the

6

vertices to be close together. This guarantees the existence of additional edges between p, q, u, v
in G, and these edges justify the new paths introduced by resolving the crossing.

To formally prove this, we first need a geometric observation. For a point p ∈ P , let D(p, r)
and C(p, r) be the disk and the circle around p with radius r.

Lemma 4.4. Let p, q be two points in R2 with |pq| =
√

3.

(i) Let a ∈ C(p, 1)∩C(q, 1), and let b ∈ C(p, r)∩C(q, r) for some r ∈ [1,
√

3) such that a and
b lie on different sides of the line through p and q. Then |ab| ≥ r. See Figure 3a.

(ii) Let {a, b} = C(p,
√

3) ∩ C(q, 1). Then, |ab| >
√

3. See Figure 3b.

Proof. (i): Let x be the intersection point of the line segments pq and ab. Then |ab| = |ax|+ |xb|.
Using that |pa| = 1 and |px| =

√
3/2, the Pythagorean Theorem gives |xa| = 1/2. Similarly, we

can compute |xb| as a function of r: with |pb| = r we get |xb| =
√
r2 − 3/4. We want to show

that

r ≤ |ab| = 1/2 +
√
r2 − 3/4 ⇔ r2 ≤ 1/4 +

√
r2 − 3/4 + r2 − 3/4 ⇔ 1 ≤ r2,

which holds since r ∈ [1,
√

3).
(ii): Let x be the intersection point of pq and ab. Use the Pythagorean Theorem in the

triangles 4apx and 4aqx in Figure 3b we get that |ab| = 2
√

11/12 >
√

3.

p

b

a

q

(a)

p q

a

b

(b)

Fig. 3: The cases (i) and (ii) of Lemma 4.4.

Lemma 4.5. Suppose that pq and uv are edges in a transmission graph G that cross. Let
G′ ⊆ G be the transmission graph induced by p, q, u and v. If Ψ <

√
3, then p reaches v in G′

and u reaches q in G′.

Proof. We may assume that rp ≥ ru. Furthermore, we assume that rq = rv = 1. This does not
add new edges and thus reachability in the new graph implies reachability in G′. We show that
if either u does not reach q (case 1) or p does not reach v (case 2), then |uv| > ru. Hence uv
cannot be an edge of G′ despite our assumption.

Case 1: u does not reach q. Then we have p /∈ D(u), q /∈ D(u), p /∈ D(v) and q /∈ D(v).
Equivalently this gives u /∈ D(p, ru) ∪D(q, ru) and v /∈ D(p, 1) ∪D(q, 1). Thus, the positions of
u and v that minimize |uv| are the intersections u ∈ C(p, ru)∩C(q, ru) and v ∈ C(p, 1)∩C(q, 1)
on different sides of the line through p and q. To further minimize |uv|, observe that |uv| depends
on the distance of p and q and that |uv| strictly decreases as |pq| grows, i.e., as |pq| approaches√

3. For the limit case |pq| =
√

3, we are in the situation of Lemma 4.4(i) with a = u and b = v
and thus we would get |uv| ≥ ru. But since Ψ <

√
3, we must have |pq| <

√
3 and by strict

monotonicity, it follows that |uv| > ru, as desired.

7

Case 2: p does not reach v. Then we have u /∈ D(p), v /∈ D(p), u /∈ D(q) and v /∈ D(q). We
scale everything, such that rp =

√
3, and we reduce rv, rq once again to 1. Now, the positions

of u and v minimizing |uv| are {u, v} = C(p,
√

3) ∩ C(q, 1). As above, further minimizing |uv|
gives |pq| =

√
3. By Lemma 4.4(ii), we have |uv| >

√
3 and thus uv cannot be an edge of G′

(note that even after scaling we have ru ≤
√

3 since we assumed that rp ≥ ru).

Recall that we iteratively resolve crossings in G and call the resulting graph G̃. Next, we
show that for any p, q ∈ P , if p can reach q in G̃, then p can also reach q in G. This seems
to be a bit more difficult than what one might expect, because when resolving the crossings,
we introduce new vertices and edges to which Lemma 4.5 is not directly applicable (since the
intermediate graph is not a transmission graph). Thus, a priori, we cannot exclude the possiblity
that there are new reachabilities in G̃ that use the additional vertices and edges.

Lemma 4.6. Let G be a transmission graph of a set P of points with Ψ <
√

3. Let G̃ be the
planar graph obtained from G by resolving all crossings as described above. Then, for any two
points p, q ∈ P , p can reach q in G̃ if and only if p can reach q in G.

Proof. If p and can reach q in G then it immediately follows from our construction that p can
reach q in G̃. We now prove the converse.

Each edge e of G̃ lies on an edge e′ of G with the same direction as e. We call e′ the supporting
edge of e. Consider a path π from p to q in G̃. A supporting switch on π is a pair of consecutive
edges 〈e, e′〉 on π such that the supporting edge of e and the supporting edge of e′ are different.

A pair p, q ∈ P such that p can reach q in G̃, but not in G is called a bad pair. The proof is
by contradition. We assume that there exists a bad pair and among all bad pairs, we pick a pair
p, q and a path π from p to q (in G̃) such that π consists of a minimum number of supporting
switches, among all paths (in G̃) between bad pairs. Let 〈e1, e′1〉, 〈e2, e′2〉, . . . , 〈ek−1, e′k−1〉 be the
supporting switches along π and let p1q1, . . . , pkqk be the sequence of supporting edges as they
are visited along π (p1 = p, qk = q). That is e1 is on p1q1, for i = 1, . . . , k − 2, e′i and ei+1 are
on pi+1qi+1, and e′k−1 is on pkqk. Let xi be the common vertex of ei and e′i. The vertex xi is on
the segments piqi and pi+1qi+1.

p1

p2

q2

x1

p4

p3

p5

p6

p7

x2

x3

x4

x5

x6

q1
q3

q4

q5

q6

q7

Fig. 4: A path (blue) with k = 7 supporting edges that is in G̃ but not in G.

Claim 4.7. The following holds in G: (P1) p1 reaches q2, . . . , qk−1; (P2) p2, . . . , pk reach qk;
(P3) p1 and q1 do not reach p2, . . . , pk; and (P4) there is no edge qipi, for i ≥ 2. Furthermore,
for i = 1, . . . , k − 1, we have that (P5) the vertex xi is in the interior of piqi and pi+1qi+1 and
(P6) xi+1 lies in the interior of xiqi+1.

Proof. P1 and P2 follow from the minimality of π, and P3 follows from P2. For P4, assume
that G contains an edge qipi, for i ≥ 2. By P1, p1 reaches qi in G and thus p1 reaches pi, despite
P3. For P5, notice that if xi is not in the interior of piqi and pi+1qi+1, then xi = qi = pi+1.

8

But then, by P1, p1 reaches qi = pi+1, despite P3. P6 is immediate from P5 and the fact that
pi+1qi+1 cannot be equal to qipi.

By Lemma 4.5, we have k ≥ 3, since for two crossing edges (k = 2) no new reachabilities
between the endpoints are created. We now argue that the path π cannot exist. Since p1q1
and p2q2 cross, Lemma 4.5 implies that G contains at least one of p1p2, q1p2, p1q2, or q1q2. This
is because by Lemma 4.5, in the induced subgraph for p1, p2, q1, q2, the vertex p1 can reach
q2, and this requires that at least one of the edges p1p2, q1p2, p1q2, or q1q2 be present. By P3,
neither p1p2 nor q1p2 exist. There are two cases, depending on whether G contains p1q2, or q1q2
(see Fig. 5). Each case leads to a contradiction with the minimality of π.

p2

p1

q2

q1x1

p2

p1

q2

q1x1

p3

q3

p3

q3

x2
x2

Fig. 5: Either p1q2 or q1q2 locks x3 in the corresponding triangle.

Case 1. G contains p1q2. Consider the triangle 4 = 4p1x1q2. Since q2, x1 ∈ D(p1), we
have 4 ⊂ D(p1). Thus, by P3, none of p2, . . . , pk may lie inside 4. By P6, p3q3 intersects
the boundary of 4 in the line segment x1q2. First, suppose that k = 3. In this case q3 6∈ 4
(otherwise p1 could reach q3). Thus, p3q3 intersects the boundary of 4 twice, so p3q3 either
intersects p1q1 or p1q2. In both cases, Lemma 4.5 shows that p1 reaches q3. Thus, we must have
k ≥ 4.

We now prove that the intersection x3 of p3q3 and p4q4 must lie in 4. If p3q3 intersects 4
once, then q3 ∈ 4, and therefore x3, that by P6 must lie on the segment x2q3, is in 4. So
assume that p3q3 intersects 4 twice, and let y be the second intersection point of p3q3 with the
boundary of 4. We claim that y follows x2 along p3q3. Assume otherwise, then since by P6, x3
follows x2 on p3q3, we can construct a path with fewer supporting switches than π: If y ∈ p1x1,
we omit p2q2 and if y ∈ p1q2, we omit p2q2 and substitute p1q1 by p1q2. By the same argument,
x3 cannot follow y on p3q3. Thus, x3 lies on the line segment x2y ⊂ 4. This concludes the proof
that x3 ∈ 4. Now, consider the segment p4x3. Since we observed that p4 6∈ 4, we have that
p4x3 intersects 4, and we can again replace π by a path with fewer supporting switches from p
to q.

Case 2. G contains q1q2. Consider the triangle 4 = 4x1q1q2. We claim that 4 ⊂
D(p1) ∪ D(q1). Then the argument continues analogously to Case 1. In particular, P3 still
shows that none of p2, . . . , pk may lie inside 4. The case k = 3 can again be ruled out, because
then p3q3 would have to intersect either p1q1 or q1q2, and Lemma 4.5 would show that p1 can
reach q3. For k ≥ 4, we can again show that x3 would have to lie inside 4 (otherwise, we could
obtain bad pair with fewer supporting switches by either omitting p2q2 or omitting p2q2 and
substituting p1q1 by q1q2). Thus, by considering the segment p4x3, we could again find a bad
pair with fewer supporting switches.

We now show that that 4 ⊂ D(p1) ∪D(q1). If x1 ∈ D(q1) then 4 ⊆ D(q1) and we are done.
Otherwise, let D(x1) ⊆ D(p1) be the disk with center x1 and q1 on its boundary. We claim that
D(x1) contains 4 \D(q1). Let y be the intersection of C(q1) with x1q2. Since |q1y| ≥ |q1q2|,
∠q1yq2 ≤ π/2. Therefore ∠q1yx1 ≥ π/2 and |x1y| < |x1q1|. This implies that x1y is contained
in D(x1) and therefore 4 \D(q1) is contained in D(x1) as required.

9

Putting it together. Let G be a transmission graph of a set P of points, given by the point set
P and the associated radii. To prove Lemma 4.1, we first construct the sparse subgraph H of G
as in Lemma 4.3 in time O(n log n). Then we iteratively resolve the crossings in H to obtain H̃.
Since H has O(n) crossings that can be found in O(n) time, this takes O(n) time.

The graph H is not necessarily a transmission graph. Therefore, we cannot directly apply
Lemma 4.6 to H and conclude that H̃ preserves the reachability relation (between points of P)
of H and therefore of G. Nevertheless, in the following lemma, we will prove that H̃ and G do
have the same reachability relation between points of P .

Lemma 4.8. Let G be a transmission graph on a set P of points. Let H be a sparse subgraph of
G constructed as in Lemma 4.3 and let H̃ be the planar graph obtained by resolving the crossings
in H as described above. Then for any two points p, q ∈ P , p can reach q in H̃ if and only if p
can reach q in G.

Proof. Let G̃ be the graph obtained by resolving the crossings in G, as described above. If p
can reach q in G, then by Lemma 4.3, p can reach q in H, and by the definition of the way we
resolve crossings, p can reach q also in H̃.

Conversely, if p can reach q in H̃, then p can reach q in G̃, because a subdivision of every
edge of H̃ is contained in G̃. Therefore, by Lemma 4.6, p can reach q in G.

4.2 Polynomial Dependence on Ψ

We now present a standard reachability oracle whose performance parameters depend poly-
nomially on the radius ratio Ψ. Together with Theorem 2.1 we will obtain the following
result:

Theorem 4.9. Let G be the transmission graph for a set P ⊂ R2 of n points. We can construct
a geometric reachability oracle for G with S(n) = O(Ψ3n3/2) and Q(n) = O(Ψ3√n) in time
O(Ψ3n3/2).

Our approach is based on a geometric separator theorem for planar disks. Let D be the set
of disks associated with the points in P . For a subset E of D we write

⋃ E :=
⋃
D∈E D and we

let µ(E) be the area occupied by
⋃ E . Alber and Fiala show how to find a separator for D with

respect to µ(·) [1].

Theorem 4.10 (Theorem 4.12 in [1]). There exist positive constants α < 1 and β such that
the following holds: let D be a set of n disks and let Ψ be the ratio of the largest and the
smallest radius in D. Then we can find in O(Ψ2n) time a partition A∪B ∪S of D satisfying (i)⋃A ∩⋃B = ∅, (ii) µ(S) ≤ βΨ2

√
µ(D) and (iii) µ(A), µ(B) ≤ αµ(D).

Since any directed path in G lies completely in
⋃D, any path from a vertex of a disk in A

to a vertex of a disk in B needs to use at least one vertex of a disk in S, see Figure 6. (Notice
that there may not be a path from a center p of a disk in A to another center q of a disk in A
containing only centers of disks in A. It may be that every path from p to q goes through a
center corresponding to a disk in S.) Since µ(S) is small, we can approximate

⋃S with a few
grid cells. We choose the diameter of the cells small enough such that all vertices in one cell
form a clique and are equivalent in terms of reachability. We can thus pick one vertex per cell
and store the reachability information for it. Applying this idea recursively gives a separator
tree that allows us to answer reachability queries efficiently. The details follow.

10

p q

µ(A) ≤ αµ(D)
µ(S) = O(

√
µ(D)) µ(B) ≤ αµ(D)

Fig. 6: Any path from A to B needs to use at least one vertex of S. Since µ(S) is small, we can
approximate

⋃S with few grid cells.

Preprocessing Algorithm and Space Requirement. For the preprocessing phase, consider the
grid Q = Q0 whose cells have diameter 1. All vertices in a single cell form a clique in G, so
the reachability information of all vertices in a grid cell is the same and it suffices to compute
this information only for one such vertex. For each non-empty cell σ ∈ Q, we pick an arbitrary
vertex pσ ∈ P ∩ σ as the representative of σ. For a subset C ⊂ D of disks we denote the set of
representatives of the non-empty cells containing centers of the disks in C by RC .

We recursively create a separator tree T that contains all the required reachability information.
Each node v of T corresponds to an induced subgraph of the transmission graph and the root
corresponds to the entire transmission graph. We construct the tree top down. Let Gv be the
subgraph associated with a node v and let Dv be the set of disks of the vertices of Gv. We
compute a separator Sv and subsets Av,Bv, satisfying the conditions of Theorem 4.10 for Gv.
Let Qv be all cells in Q containing centers of disks of Sv. Let Rv be the set of representatives
of Qv, and let Cv ⊂ Dv be all disks with centers in Qv (Note that Cv contains Sv). For each
r ∈ Rv, we store all the disk centers of Dv that r can reach and all the disk centers of Dv that
can reach r in Gv. We recursively compute separator trees for the transmission graphs induce by
the centers of Av \ Cv and the centers of Bv \ Cv. The roots of these trees are children of v in T .

To obtain the required reachability information at a node v of T , we compute a 2-spanner Hv

for the transmission graph Gv, as in Theorem 2.2. Since we are only interested in the reachability
properties of the spanner, ε = 1 (or any constant) suffices. For each r ∈ Rv, we compute a BFS
tree in Hv with root r. Next, we reverse all edges in Hv, and we again compute BFS-trees for
all r ∈ Rv in the transposed graph. This gives the required reachability information for v.

As T has O(log n) levels, the total running time for computing the spanners is O(n log n(log n+
log Ψ)). Since the spanners are sparse, the time for computing a single BFS-tree associated with
a node v is O(|Dv|). It follows that the time for computing all BFS-trees at v is O(|Dv| · |Rv|)
and the time to compute all BFS trees of all nodes of the separator tree T is O(

∑
v∈T |Dv| · |Rv|).

To bound this sum, we need the following lemma.

Lemma 4.11. Let E be a set of n disks with radius at least 1. Then the number of cells in Q0

that intersect
⋃ E is O(µ(E)).

Proof. Let S ⊂ Q0 be the set of all cells that intersect
⋃ E . For σ ∈ S, the neighborhood of σ is

defined as the region consisting of σ and its eight surrounding cells. Let S′ ⊆ S be a maximal
subset of cells in S whose neighborhoods are pairwise disjoint. Then, |S| = O(|S′|). Now, let
σ ∈ S′. Since all disks in E have radius at least 1, there is a disk D′ (not necessarily in E) of radius
exactly 1/(2

√
2) such that D′ ⊆ ⋃ E and such that D′ intersects the boundary of σ. Thus, the

intersection of
⋃ E and the neighborhood of σ contributes at least µ(D′) = Ω(1) to µ(E). Since

the neighborhoods for the cells in S′ are pairwise disjoint, it follows that |S| = O(|S′|) = O(µ(E)),
as claimed.

11

Now, by Lemma 4.11, we have |Rv| = O(µ(Sv)). Thus, if we denote by Li the nodes of the
separator tree at level i of the recursion, we get that the sum

∑
v |Dv| · |Rv| is proportional to

∑

i≥0

∑

v∈Li

|Dv| · µ(Sv) ≤
∑

i≥0

∑

v∈Li

|Dv| · βΨ2
√
µ(Dv) (by Theorem 4.10(ii))

=
∑

i≥0

∑

v∈Li

|Dv| · βΨ2
√
αiµ(D) (by Theorem 4.10(iii))

= βΨ2
√
µ(D)

∑

i≥0
αi/2

∑

v∈Li

|Dv|

≤ βΨ2n
√
µ(D)

∑

i≥0
αi/2 (the Dv at a level are disjoint)

= O(Ψ3n3/2) (µ(D) = O(Ψ2n), α < 1)

Thus, the total preprocessing time is O(n log2 n+ n log Ψ + Ψ3n3/2) = O(Ψ3n3/2). The space
requirement is also bounded by the preprocessing time.

Query Algorithm. Let p, q ∈ P be given. We assume that p and q are the representatives of
their cells. (Otherwise we replace either p or q by its representative.) Let v and w be the nodes
in T with p ∈ Rv and q ∈ Rw. Let u be least common ancestor of v and w. We can find u
by walking up the tree starting from v and w in O(log n) time. Let L be the path from u to
the root of T . We check for each r ∈ ⋃x∈LRx whether p can reach r and whether r can reach
q. If so, we return YES. If there is no such vertex r then we return NO. Since |Rx| increases
geometrically along L, the running time is dominated by the time for processing the root, which
is O(Ψ2µ(D)1/2). Bounding µ(D) by O(Ψ2n), we get that the total query time is O(Ψ3√n).

It remains to argue that our query algorithm is correct. By construction, it follows that we
return YES only if there is a path from p to q. Now, suppose there is a path π in G from p to q,
where p and q are representatives of their grid cells with p 6= q. Let v, w be the nodes in T with
p ∈ Rv and q ∈ Rw. Let u be their least common ancestor, and L be the path from u to the root.
By construction,

⋃
x∈L Sx contains a disk D(r) of a vertex r in π. Let x be the node of L closest

to the root such that Sx contains such a disk, and let r be a vertex on π with D(r) ∈ Sx. Let r′

be the representative of the cell σ containing r. Since the vertices in σ constitute a clique, p can
reach r′ and r′ can reach q in Gx. Thus, when walking along L, the algorithm will discover r′

and the path from p to q. Theorem 4.9 now follows.

4.3 Logarithmic Dependence on Ψ

Finally, we improve the dependence on Ψ to be logarithmic, at the cost of a slight increase at the
exponent of n. We prove the following theorem by constructing a standard reachability oracle
and then using Theorem 2.1.

Theorem 4.12. Let G be the transmission graph for a set P of n points in the plane. We
can construct a geometric reachability oracle for G with S(n) = O(n5/3 log1/3 Ψ log2/3 n) and
Q(n) = O(n2/3 log1/3 Ψ log2/3 n) that answers all queries correctly with high probability. The
preprocessing time is O(n5/3(log Ψ + log n) log1/3 Ψ log2/3 n).

We scale everything such that the smallest radius in P is 1. Our approach is as follows: let
p, q ∈ P . If there is a p-q-path with “many” vertices, we detect this by taking a large enough
random sample S ⊆ P and by storing the reachability information for every vertex in S. If

12

there is a path from p to q with “few” vertices, then p must be “close” to q, where “closeness”
is defined relative to the largest radius along the path. The radii of the point of P can lie in
O(log Ψ) different scales, and for each scale we store local information to find such a “short”
path.

Long Paths. Let 0 < α < 1 be a parameter to be determined later. First, we show that a
random sample can be used to detect paths with many vertices.

Lemma 4.13. We can sample a set S ⊂ P of size O(nα log n) such that the following holds
with probability at least 1− 1/n2: For any two points p, q ∈ P , if there is a path π from p to q in
G with at least n1−α vertices, then π ∩ S 6= ∅.
Proof. We take S to be a random subset of size m = 4nα lnn vertices from P . Now fix p and
q and let π be a path from p to q with k ≥ n1−α vertices. The probability that S contains no
vertex from π is

(
n−k
m

)
(
n
m

) =
(n−m)(n−m− 1) · · · (n−m− k + 1)

n(n− 1) · · · (n− k + 1)

=
(

1− m

n

)(
1− m

n− 1

)
· · ·
(

1− m

n− k − 1

)
≤ (1−m/n)k ≤ e−mk/n ≤ 1/n4,

by our choice of m. Since there are n(n− 1) ordered vertex pairs, the union bound shows that
the probability that S fails to detect a pair of vertices connected by a long path is at most
n(n− 1)/n4 ≤ 1/n2.

We draw a sample S as in Lemma 4.13, and for each s ∈ S, we store two Boolean arrays
that indicate for each p ∈ P whether p can reach s and whether s can reach p. This requires
O(n1+α log n) space. It remains to deal with vertices that are connected by a path with fewer
than n1−α vertices.

Short Paths. Let L = dlog Ψe. We consider the L grids Q0, . . . ,QL (recall that the cells in Qi
have diameter 2i). For each cell σ ∈ Qi, let Rσ ⊆ P be the vertices p ∈ P ∩σ with rp ∈ [2i, 2i+1).
The set Rσ forms a clique in G, and for each p ∈ Rσ, the disk D(p) contains the cell σ. For every
i = 0, . . . , L and for every σ ∈ Qi with Rσ 6= ∅, we fix an arbitrary representative point rσ ∈ Rσ.

The neighborhood N(σ) of σ ∈ Qi is defined as the set of all cells in Qi that have distance at
most 2i+1n1−α from σ. We have |N(σ)| = O(n2−2α). Let Pσ ⊆ P be the vertices that lie in the
cells of N(σ).

For every vertex p ∈ P , and for every i ∈ {0, . . . , L} we store two sorted lists of representative
of cells σ ∈ Qi such that p ∈ Pσ. The first list contains all representatives rσ, such that p ∈ Pσ
and p can reach rσ. The second list contains all representatives rσ, such that p ∈ Pσ and rσ can
reach p. A vertex p belongs to O(n2−2α log Ψ) sets Pσ, so the total space is O(n3−2α log Ψ).

Performing a Query. Let p, q ∈ P be given. To decide whether p can reach q, we first check
the Boolean tables for all O(nα log n) points in S. If there is an s ∈ S such that p reaches s and
s reaches q, we return YES. If not, for i ∈ {0, . . . , L}, we consider the list of representatives
that are reachable from p in their neighborhood at level i and the list of representatives that
can reach q in their neighborhood at level i. We check whether these lists contain a common
element. Since the lists are sorted, this can be done in time linear in their size. If we find a
common representative for some i, we return YES. Otherwise, we return NO.

We now prove the correctness of the query algorithm. First note that we return YES, only if
there is a path from p to q. Now suppose that there is a path π from p to q. If π has at least

13

n1−α vertices, then by Lemma 4.13, the sample S hits π with probability at least 1− 1/n2, and
the algorithm returns YES. If π has less than n1−α vertices, let r be the vertex of π with the
largest radius, and let i be such that the radius of r lies in [2i, 2i+1). Let σ be the cell of Qi that
contains r. Since π has at most n1−α vertices, and since each edge of π has length at most 2i+1,
the path π lies entirely in Pσ and in particular both p and q are in Pσ. Since r ∈ Rσ and since
Rσ forms a clique in G, the representative point rσ of σ can be reached from p and can reach q.
It follows from the definition of the sorted lists of representatives stored with p and q, that rσ is
contained in the list of representatives reachable from p and in the list of representatives that
can reach q. Our query algorithm detects this when it checks whether the corresponding lists for
p and q at level i, have a nonempty intersection.

Time and Space Requirements. We consider first the query time. To test if there is a long
path from p to q we traverse S, and for every s ∈ S we test, in O(1) time, whether p can reach
s and whether s can reach q. This takes O(|S|) = O(nα log n) time. To test if there is a short
path from p to q we use the lists of reachable representatives associated with p and q at each
of the O(log Ψ) grids. At each level we step through two lists of size O(n2−2α). So in total we
spend O(n2−2α log Ψ) time. We choose α to balance the times we spend to detect short and long
paths. That is α satisfies

nα log n = n2−2α log Ψ⇔ nα = n2/3(log Ψ/ log n)1/3.

This yields Q(n) = O(n2/3 log1/3 Ψ log2/3 n). This choice of α results in a space bound of
O(n5/3 log1/3 Ψ log2/3 n).

For the preprocessing algorithm, we first compute the reachability arrays for each s ∈ S.
To do so, we build a 2-spanner H for G as in Theorem 2.2 in O(n(log n+ log Ψ)) time. Then,
for each s ∈ S we perform a BFS search in H and its transposed graph. This gives all vertices
that s can reach and all vertices that can reach s in O(n5/3 log1/3 Ψ log2/3 n) total time. For the
short paths, the preprocessing algorithm goes as follows: For each i = 0, . . . , L and for each cell
σ ∈ Qi that has a representative rσ, we compute a 2-spanner Hσ as in Theorem 2.2 for Pσ. For
each representative rσ, we do a BFS search in Hσ and the transposed graph, each starting from
rσ. This gives all p ∈ Pσ that can reach rσ and that are reachable from rσ via a short path. The
running time is dominated by the time for constructing the spanners. Since each point p ∈ P is
contained in O(n2−2α log Ψ) = O(n2/3 log1/3 Ψ log2/3 n) different Pσ, and since constructing Hσ

takes O(|Pσ|(log Ψ+log |Pσ|)) time, the bound on the preprocessing time stated in Theorem 4.12
follows.

5 Conclusion

Transmission graphs constitute a natural class of directed graphs for which non-trivial reachability
oracles can be constructed. As mentioned in the introduction, it seems to be a very challenging
open problem to obtain similar results for general directed graphs. We believe that our results
only scratch the surface of the possibilities offered by transmission graphs, and several interesting
open problems remain.

All our results on 2-dimensional transmission graphs depend on the radius ratio Ψ. Whether
this dependency can be avoided is a major open question. Our most efficient reachability oracle
is for Ψ <

√
3. In this case the reachability relation in a transmission graph with n vertices can

be represented by the reachability relation in a planar graph with O(n) vertices. However, it
is not clear to us that the upper bound of

√
3 in this result is tight. Can we obtain a similar

construction for, say, Ψ = 100? Is there a way to represent the reachability relation in any

14

transmission graph, regardless of Ψ, by the reachability relation in a planar graph with o(n2)
vertices? This would immediately imply a non-trivial reachability oracle for any value of Ψ.

Conversely, it is interesting to see if we can represent the reachability relation of an arbitrary
directed graph using a transmission graph. If this is possible, the relevant questions are how
many vertices such a transmission graph must have, what is the required radius ratio, and how
fast can we compute it. A representation with not too many vertices and low radius ratio would
lead to efficient reachability oracles for general directed graphs.

Acknowledgments. We like to thank Günter Rote and the anonymous reviewers for valu-
able comments, in particular for pointing out a drastic simplification for the one-dimensional
reachability oracle.

References

[1] J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.

[2] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar spanners
and approximate shortest path queries among obstacles in the plane. In Proc. 4th Annu.
European Sympos. Algorithms (ESA), pages 514–528, 1996.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[4] D. Z. Chen and J. Xu. Shortest path queries in planar graphs. In Proc. 32nd Annu. ACM
Sympos. Theory Comput. (STOC), pages 469–478, 2000.

[5] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via
2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003.

[6] H. N. Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In Proc.
22nd International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pages 151–165, 1996.

[7] G. N. Federickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16(6):1004–1022, 1987.

[8] J. Holm, E. Rotenberg, and M. Thorup. Planar reachability in linear space and constant
time. In Proc. 56th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 370–389,
2015.

[9] H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth. Spanners and reachability oracles for
directed transmission graphs. In Proc. 31st Int. Sympos. Comput. Geom. (SoCG), pages
156–170, 2015.

[10] H. Kaplan, W. Mulzer, L. Roditty, and P. Seiferth. Spanners for directed transmission
graphs. SIAM J. Comput., 47(4):1585–1609, 2018.

[11] D. Peleg and L. Roditty. Localized spanner construction for ad hoc networks with variable
transmission range. ACM Transactions on Sensor Networks (TOSN), 7(3):25:1–25:14, 2010.

[12] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011.

15

[13] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
J. ACM, 51(6):993–1024, 2004.

[14] P. von Rickenbach, R. Wattenhofer, and A. Zollinger. Algorithmic models of interference in
wireless ad hoc and sensor networks. IEEE/ACM Transactions on Networking, 17(1):172–
185, 2009.

16

	1 Introduction
	2 Preliminaries and Notation
	3 Reachability Oracles for 1-dimensional Transmission Graphs
	4 Reachability Oracles for 2-dimensional Transmission Graphs
	4.1 is less than 3
	4.2 Polynomial Dependence on
	4.3 Logarithmic Dependence on

	5 Conclusion

