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Abstract

We consider construction of the suffix tree and the directed acyclic word graph
(DAWG) indexing data structures for a collection T of texts, where a new symbol
may be appended to any text in T = {T1, . . . , TK}, at any time. This fully-online
scenario, which arises in dynamically indexing multi-sensor data, is a natural gener-
alization of the long solved semi-online text indexing problem, where texts T1, . . . , Tk
are permanently fixed before the next text Tk+1 is processed for each 1 ≤ k < K. We
present fully-online algorithms that construct the suffix tree and the DAWG for T in
O(N log σ) time and O(N) space, where N is the total lengths of the strings in T and
σ is their alphabet size. The standard explicit representation of the suffix tree leaf
edges and some DAWG edges must be relaxed in our fully-online scenario, since too
many updates on these edges are required in the worst case. Instead, we provide access
to the updated suffix tree leaf edge labels and the DAWG edges to be redirected via
auxiliary data structures, in O(log σ) time per added character.1

Keywords: string algorithms, suffix trees, DAWGs, multiple texts, online algorithms

1 Introduction

Text indexing is a fundamental problem in computer science, which arises in many applica-
tions including text retrieval, molecular biology, signal processing, and sensor data analysis.
In this paper, we focus on indexing a collection of multiple texts, so that subsequent pat-
tern matching queries can be answered quickly. In particular, we study online indexing for

1A preliminary conference version of this paper [16] contained an error in the analysis of the fully-online
DAWG algorithm, where the claimed O(N log σ) time bound neglected to account for the DAWG edge
re-directions. We show that in some cases Θ(N min(K,

√
N)) or Θ(N1.5) DAWG edge re-directions may

be structurally required, and that the correct time bound for the algorithm in the conference paper [16] is
O(N min(K,

√
N) log σ) (Lemma 2).
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a collection T of multiple texts, where a new character can be appended to each text at
any time. Such fully-online indexing for multiple growing texts has potential applications
to continuous processing of data streams, where a number of symbolic events or data items
are produced from multiple, rapid, time-varying, and unbounded data streams [1, 13]. For
example, motif mining system tries to discover characteristic or interesting collective be-
haviors, such as frequent path or anomalies, from data streams generated by a collection
of moving objects or sensors [18, 13].

In this paper we consider two fundamental text indexing data structures, the suffix
tree [19] and the directed acyclic word graph (DAWG) [2]. The suffix tree of a string T
is an edge-labeled rooted tree which represents all the suffixes of T in space linear in the
length of T , while the DAWG of T is the smallest (partial) DFA that recognizes all suffixes
of T which also occupies linear space. The suffix tree can be constructed in O(n log σ)
time and O(n) space, in a right-to-left online manner by Weiner’s algorithm [19], and in a
left-to-right online manner by Ukkonen’s algorithm [17], where n is the length of T and σ
is the alphabet size. The DAWG of a given text T can also be built in O(n log σ) time and
O(n) space, in a left-to-right online manner by Blumer et al.’s algorithm [2]. The “duality”
of the DAWG of T and the suffix tree of the reversal T of T is known, more specifically,
the tree of the suffix links of the DAWG of T coincides with the suffix tree of T [2, 7]. We
note that this property also holds for multiple texts.

Let N be the final total length of the growing texts in a fully-online text collection
T = {T1, . . . , TK}. The above existing suffix tree and DAWG construction algorithms for
a single text also work within the same O(N log σ) time and O(N) space bounds for a
collection of growing texts in the semi-online setting, where only the last inserted text
can be extended [11, 3]. However, special attention is needed for construction of the suffix
tree and the DAWG in our fully-online setting. For the fully-online right-to-left setting
where new characters are prepended to the multiple texts, we show that a matching upper
and lower bound Θ(N min(K,

√
N)) or Θ(N1.5) holds for a direct extension of Weiner’s

original algorithm, where K is the number of texts in the collection. This also implies that
up to Θ(N min(K,

√
N)) or Θ(N1.5) DAWG edge re-directions can be required during the

DAWG construction in the fully-online left-to-right setting. Also, we show that during the
construction of the suffix tree for a fully-online left-to-right text collection, the open-ended
suffix tree leaf edge label representation, the cornerstone of Ukkonen’s [17] on-line suffix
tree algorithm, may have to update the association between the numerous suffix tree leaf
edge labels and the various texts Omega(N

2

K ) times, which turns Ω(N2) when the collection
contains only a constant number of texts. Thus, if we wish to stay within the O(N log σ)
time bounds in the fully-online setting, the DAWG edges and the suffix tree leaf edge labels
in the fully-online left-to-right setting cannot be directly explicitly maintained. We call
this as the leaf ownership problem.

To overcome the above difficulties, we first show how to extend Weiner’s algorithm in
the fully-online right-to-left setting, with the aid of the nearest marked ancestor (NMA)
data structures [20]. The resulting algorithm runs in O(N log σ) time and takes O(N) total
space for a general ordered alphabet of size σ. We then show that how an O(N)-space
representation of the DAWG can be incrementally maintained for a left-to-right online text
collection, in overall O(N log σ) time and O(N) space. Hence, at any moment during the
fully-online growth of the texts, we can find all occ occurrences of a given pattern of length
M in the current text collection in O(M log σ + occ) time, using any of these two text
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indexing structures.
Our next goal is to extend Ukkonen’s construction [17] to fully-online left-to-right con-

struction of suffix trees for multiple texts in O(N log σ) time and O(N) space bounds. As
was already mentioned above, however, it is not possible to explicitly maintain the owners
of the leaf edges in the suffix tree here. To overcome this difficulty, we present a new novel
technique which swaps the active points among the texts that involved in the update of
the suffix tree, together with a query algorithm which efficiently answers the owners of the
particular leaf edges involved in the update. As a result, we obtain a natural extension of
Ukkonen’s construction where suffixes are inserted to the current tree in decreasing order
of their lengths (called the forward approach). We also present an alternative method that
inserts suffixes in increasing order of their lengths each time a new character is appended
to one of the texts (called the backward approach). Both methods work in O(N log σ)
time and O(N) space, with the aid of the extended Weiner algorithm for right-to-left text
collection.

Related work

We note that we can obtain fully-online text indexing data structure for multiple texts by
using existing more general dynamic text indexing data structures as follows. To use the
indexing data structure of Ferragina and Grossi [8] which permits character-wise updates,
we build a text $1 · · · $K which initially consists only of K delimiters. Then, appending a
character a to the kth text in the collection reduces to prepending a to the kth delimiter
$k. Using this approach, the text indexing data structure of Ferragina and Grossi [8] takes
O(N logN) total time to be constructed, requires O(N logN) space, and allows pattern
matching in O(M + logN + N logM + occ) time. Using the compressed indexing data
structure for a dynamic text collection of Chan et al. [5], we can append a new character
a to the kth text Tk by removing Tk and then adding Tka in O(|Tk|) time. This yields a
fully-online text indexing structure with O(N2 logN) construction time and O(N) bits of
space (or O(N/ logN) words of space assuming Θ(logN)-bit machine word), supporting
pattern matching in O(M logN + occ log2N) time.

2 Preliminaries

2.1 String notations

Let Σ be a general ordered alphabet. Any element of Σ∗ is called a string. For any string
T , let |T | denote its length. Let ε be the empty string, namely, |ε| = 0. If T = XY Z,
then X, Y , and Z are called a prefix, a substring, and a suffix of T , respectively. For any
1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends
at position j in T . For convenience, let T [i..j] = ε if i > j. For any 1 ≤ i ≤ |T |, let T [i]
denote the ith character of T . For any string T , let Suffix (T ) denote the set of suffixes of
T , and for any set T of strings, let Suffix (T ) denote the set of suffixes of all strings in T .
Namely, Suffix (T ) =

⋃
T∈T Suffix (T ). For any string T , let T denote the reversed string

of T , i.e., T = T [|T |] · · ·T [1].
Let T = {T1, . . . , TK} be a collection of K texts. For each text Tk, the integer k is

called its id. For any 1 ≤ k ≤ K, let lrsT (Tk) be the longest repeating suffix of Tk that
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Figure 1: Illustration for STrie(T ), STree(T ), and DAWG(T ) with T = {T1 = aaab, T2 =
ababc, T3 = bab}. The solid arrows and broken arrows represent the edges and the suffix
links of each data structure, respectively. The number k (k = 1, 2, 3) beside each node
indicates that the node represents a suffix of Tk. The nodes [ab]T and [b]T are separated
in DAWG(T ) since the node bab in STrie(T ) is represents a suffix of T3, while the node
abab does not (see also the subtrees rooted at nodes ab and b in STrie(T )).

occurs at least twice in the texts of T .

2.2 Suffix trees and DAWGs for multiple texts

2.2.1 Suffix tries

The suffix trie for a text collection T = {T1, . . . , TK}, denoted STrie(T ), is a trie which
represents Suffix (T ). The size of STrie(T ) is O(N2), where N is the total length of texts
in T . We identify each node v of STrie(T ) with the string that v represents. A substring
x of a text in T is said to be branching in T , if there exist two distinct characters a, b ∈ Σ
such that both xa and xb are substrings of some texts in T . Clearly, node x of STrie(T )
is branching iff x is branching in T .

For each node av of STrie(T ) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v. This
auxiliary edge slink(av) = v from av to v is called a suffix link. We define the reversed
suffix link Wa(v) = av iff slink(av) = v. For any node v and a ∈ Σ, if av is not a
substring of the texts in T , then Wa(v) is undefined. By definition, the reversed suffix
links on STrie(T ) form a rooted tree which coincides with STrie(T ), the suffix trie for the
collection T = {T1, . . . , TK} of the reversed texts.

2.2.2 Suffix trees

The suffix tree [19] for a text collection T , denoted STree(T ), is a “compacted trie” which
represents Suffix (T ). STree(T ) is obtained by compacting every path of STrie(T ) which
consists of non-branching internal nodes (see Fig. 1). Since every internal node of STree(T )
is branching, and since there are at most N leaves in STree(T ), the numbers of edges and
nodes are O(N). The edge labels of STree(T ) are non-empty substrings of some text in
T . By representing each edge label x with a triple 〈k, i, j〉 of integers s.t. x = Tk[i..j],
STree(T ) can be stored with O(N) space. We say that any branching (resp. non-branching)
substring of T is an explicit node (resp. implicit node) of STree(T ). An implicit node x is
represented by a triple (v, a, `), called a reference to x, such that v is an explicit ancestor

4



of x, a is the first character of the path from v to x, and ` is the length of the path from v
to x. A reference (v, a, `) to node x is called canonical if v is the lowest explicit ancestor
of x.

For each explicit node av of STree(T ) with a ∈ Σ and v ∈ Σ∗, let slink(av) = v. For
each explicit node v and a ∈ Σ, we also define the reversed suffix link Wa(v) = avx where
x ∈ Σ∗ is the shortest string such that avx is an explicit node of STree(T ). Wa(v) is
undefined if av is not a substring of texts in T . These reversed suffix links are also called
as Weiner links (or W-link in short) in the literature [4]. A W-link Wa(v) = avx is said
to be hard if x = ε, and soft if x ∈ Σ+. Let w be a Boolean function such that for any
explicit node v and a ∈ Σ, wa(v) = 1 iff (soft or hard) W-link Wa(v) exists. Notice that if
wa(v) = 1 for a node v and a ∈ Σ, then wa(u) = 1 for every ancestor of v.

2.2.3 Directed acyclic word graphs (DAWGs)

The directed acyclic word graph (DAWG in short) [2, 3] of a text collection T , denoted
DAWG(T ), is a smallest DAG which represents Suffix (T ). DAWG(T ) is obtained by
merging identical subtrees of STrie(T ) connected by the suffix links (see Fig. 1). Hence,
the label of every edge of DAWG(T ) is a single character. The numbers of nodes and
edges of DAWG(T ) are O(N) [3], and hence DAWG(T ) can be stored with O(N) space.
DAWG(T ) can be defined formally as follows: For any string x, let EposT (x) be the set of
ending positions of x in the texts in T , i.e.,

EposT (x) = {(k, j) | x = Tk[j − |x|+ 1..j], 1 ≤ j ≤ |Tk|, 1 ≤ k ≤ K}.

Consider an equivalence relation ≡T on substrings x, y of texts in T such that x ≡T y iff
EposT (x) = EposT (y). For any substring x of texts of T , let [x]T denote the equivalence
class w.r.t. ≡T . There is a one-to-one correspondence between each node v of DAWG(T )
and each equivalence class [x]T , and hence we will identify each node v of DAWG(T )
with its corresponding equivalence class [x]T . Let long([x]T ) denote the longest member of
[x]T . By the definition of equivalence classes, long([x]T ) is unique for each [x]T and every
member of [x]T is a suffix of long([x]T ). If x, xa are substrings of some text in T with
x ∈ Σ∗ and a ∈ Σ, then there exists an edge labeled with character a ∈ Σ from node [x]T
to node [xa]T . This edge is called primary if |long([x]T )|+ 1 = |long([xa]T )|, and is called
secondary otherwise. For each node [x]T of DAWG(T ) with |x| ≥ 1, let slink([x]T ) = y,
where y is the longest suffix of long([x]T ) which does not belong to [x]T . In the example
of Fig. 1, [aaab]T = {aaab, aab}. The edge labeled with b from node [aaa]T to node
[aaab]T is primary, while the edge labeled with b from [aa]T to node [aaab]T is secondary.
slink([aaab]T ) = [ab]T .

2.2.4 Duality of suffix trees and DAWGs

There exists a nice duality between suffix trees and DAWGs. To observe this, it is conve-
nient to consider the collection T of the reversed texts each of which begins with a special
marker $i, i.e., T = {$1T1, . . . , $KTK}. For ease of notation, let Sk = Tk for 1 ≤ k ≤ K
and S = {$1S1, . . . , $KSK} = T . Then, it is known (c.f. [2, 3, 7]) that the reversed suffix
links of DAWG(S) coincide with the suffix tree STree(T ) for the original text collection
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T . This fact can also be observed from the other direction. Namely, the hard (resp. soft)
W-links of STree(T ) coincide with the primary (resp. secondary) edges of DAWG(S).

Intuitively, this duality holds because

(1) The reversed suffix links of STrie(S) form STrie(T ) (and vice versa), and

(2) When we construct DAWG(S) from STrie(S), we merge isomorphic subtrees that
are connected by suffix links. During this merging process, the reversed suffix links
get compacted and the resulting compacted links form the edges of STree(T ).

Using this duality, we can immediately show that the total number of hard and soft
W-links is linear in the total text length N , since the number of edges of the DAWG is
linear in N . This also means that we can easily maintain the Boolean indicator w with
O(N) space, so that wa(v) for a given node v and a ∈ Σ can be answered in O(log σ) time
(e.g., at each node v we can maintain a BST storing only the characters c s.t. wc(v) = 1.)

2.3 Fully-online text collection

We consider a collection {T1, . . . , TK} of K growing texts, where each text Tk (1 ≤ k ≤ K)
is initially the empty string ε. Given a pair (k, a) of a text id k and a character a ∈ Σ which
we call an update operator, the character a is appended to the k-th text of the collection.
For a sequence U of update operators, let U [1..i] denote the sequence of the first i update
operators in U with 0 ≤ i ≤ |U |. Also, for 0 ≤ i ≤ |U | let TU [1..i] denote the collection of
texts which have been updated according to the first i update operators of U . For instance,
consider a text collection of three texts which grow according to the following sequence
U = (1, a), (2, b), (2, a), (3, a), (1, a), (3, c), (3, b), (2, b), (1, a), (1, b),
(3, c), (3, b), (1, c), (3, b), (2, c) of 15 update operators. Then,

TU [1..0] =


ε

ε

ε

 , . . . , TU [1..14] =


1
a

5
a

9
a

10
b

13
c

2
b

3
a

8
b

4
a

6
c

7
b

11
c

12
b

14
b

 , TU [1..15] =


1
a

5
a

9
a

10
b

13
c

2
b

3
a

8
b

15
c

4
a

6
c

7
b

11
c
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b

14
b


where the superscript i over each character a in the k-th text implies that U [i] = (k, a).
For instance, U [15] = (2, c) and hence c was appended to the 2nd text T2 = bab in TU [1..14],
yielding T2 = babc in TU [1..15].

If there is no restriction on U like the one in the example above, then U is called fully-
online. If there is a restriction on U such that once a new character is appended to the
k-th text, then no characters will be appended to its previous k− 1 texts, then U is called
semi-online. Hence, any semi-online sequence of update operators is of form

(1, T1[1]), . . . , (1, T1[|T1|]), . . . , (K,TK [1]), . . . , (K,TK [|TK |]).

When we talk about the duality of suffix trees and DAWGs in our fully-online scenario,
SU [1..i] represents the set of the reversed texts from TU [1..i].
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3 Fully-online version of DAWG and Weiner’s suffix tree
algorithm

Blumer et. al. [2, 3] and Crochemore [6] introduced the DAWG, also called suffix automaton,
and gave a DAWG construction algorithm for a collection of semi-online texts. Their
DAWG construction algorithm is very closely related to Weiner’s reverse right-to-left suffix
tree construction algorithm [7, 11, 14, 19]. In fact, both algorithms build dual structures
and each exposes different parts of these structures, where the collection of semi-online left-
to-right text inputs to the DAWG algorithm can be perceived as the same texts reversed
right-to-left inputs to Weiner’s suffix tree algorithm. Blumer et al.’s algorithm does not
require a terminating $ symbol and it was noted that the set of nodes of the DAWG and
the reverse string’s suffix tree coincide if the terminator symbols are present in both sets
of inputs.

3.1 Semi-online construction of Weiner’s suffix trees and DAWGs

We briefly explain how the suffix tree of a collection of semi-online right-to-left texts can be
built by using Weiner’s algorithm. For convenience, we assume that there is an auxiliary
node ⊥ that is the parent of the root r. We also assume that the edge from ⊥ to r is
labeled with any character c from Σ, Wc(⊥) = r, and slink(r) =⊥. Assume that we
have constructed STree({T1$1, . . . , Tk−1$k−1}) in which all the hard W-links have been
constructed and the Boolean indicator w have been appropriately maintained. Now we
process the k-th and extend it from right-to-left. Since the end-marker $k is a unique
character, a new leaf representing $k is created. Suppose we have inserted the leaves for
the suffixes of Tk$k with Tk ∈ Σ∗. The leaf that represents the k-th text Tk$k is called the
handle leaf for Tk$k. Now we are to prepend a new character a and insert the extended
text aTk$k to the tree. We begin with the handle leaf ` for Tk$k. We walk up from the
handle leaf ` until finding the lowest explicit ancestor u′ of ` which has hard W-linkWa(u′)
defined for the added character a. Also, let u be the lowest explicit ancestor of ` such that
wa(u) = 1. Note that u is a descendant of u′. Let b be the first character of the path
label from u′ to `. We move to the node v′ = au′ using the hard W-link Wa(u′), and let
v′′ = au′by be the child of v′ below the edge whose label begins with b, where y ∈ Σ∗.
There are two cases: (1) If |v′′| − |v′| = |au′by| − |au′| = |by| > |u| − |u′|, then we create a
new explicit node v = v′′[1..|u| + 1] and set Wa(u) = v. (2) Otherwise (|by| = |u| − |u′|),
then there already exists an explicit node v′′[1..|u| + 1] and let v be this node. In both
cases, we insert a new leaf `′ representing aTk$k as a child of v, and create a new hard
W-link Wa(`) = `′. This insertion point v for `′ represents the longest prefix of aTk$k
that appears at least twice in the updated text collection, and hence, v is sometimes called
as the longest repeating prefix of aTk$k. Let s be any node in the path from u to ` such
that s 6= u (if any). In the suffix tree before the text Tk$k was extended with a, we had
wa(s) = 0. Now in the updated suffix tree, we update wa(s) = 1 due to the insertion of the
new handle leaf `′ which represents aTk$k. Also, node s gets a new soft W-linkWa(s) = `′.
These updates are common to both of Cases (1) and (2). There can be further updates
in Case (1): Let s′ be any node in the path from u′ to u such that s′ 6= u′ and s′ 6= u (if
any). In the suffix tree before the text Tk$k was extended with a, node s′ had a soft W-link
Wa(s′) = v′′. Now in the updated suffix tree, this soft W-link is redirected as Wa(s′) = v.
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Also, the soft W-link Wa(u) = v′′ in the previous suffix tree gets redirected and becomes
the hard W-link Wa(u) = v in the updated suffix tree. See Figure 2 for illustration.

a

Tk$k

aTk$k

v’ u’

u 

u’’v’’

v 

(a)

a

Tk$k

aTk$k

v’ u’

u 

u’’v’’

v 

(b)

a

Tk$k

aTk$k

v’ u’

u 

u’’v’’

v 

(c)

Figure 2: Extending the text Tk$k to aTk$k. Soft W-links are shown short-dashed and hard
W-links are shown long-dashed. (a) relevant existing W-links before extending. (b) New W-links
pointing to aTk$k are created from all nodes on the path between Tk$k up to u. (c) Existing
W-links pointing to v′′ from all nodes on the path between u up to u′ are redirected to point to
v instead of v′′. The new hard W-link Wa(Tk$k) = aTk$k and redirected hard W-link Wa(u) = v
have corresponding nodes on the path to aTk$k, while all the other new soft W-links involved point
to aTk$k and the redirected soft W-links involved point to v. The new node v also adopts all the
outgoing W-links from v′′ (not shown).

Weiner’s original algorithm is designed for a single right-to-left text, and for each
prepended character a to the text T$, the number of internal explicit nodes from the
leaf for T to its lowest ancestor u′ for which hard W-link Wa(u′) exists can be amortized
constant. This amortization argument is based on the fact that the depth of the path from
the root to the handle leaf `′ representing the extended text aT$ is by at most one larger
than that of the path from the root to the handle leaf ` representing T$. This property
holds also in the semi-online setting, since while the kth text Tk$k is being extended from
right to left, other texts remain static and thus do not change the topology of the suffix
tree. Hence, we can build STree(T ) for a collection of semi-online left-to-right texts in
O(N log σ) time and O(N) space.

Blumer et al. [2] showed how the DAWG for a collection S of semi-online left-to-right
texts can be built in O(N log σ) time. Recall that each DAWG node represents an equiv-
alence class of substrings which have the same ending positions in the texts. Appending
a new character a to the currently processed text $kSk can affect some equivalence class
under the current text collection. This can cause splitting an existing node into two nodes.
Let w be the node that gets split and w′ be the copy of this node w. The original node
w will contains longer substrings than the copy w′. The longest element belonging to w′

is the longest repeating suffix X of $kSka in the updated text collection, and any element
of w that is shorter than X will belong to w′. Eventually, any element of w that is longer
than X remains in w. This node split operation can be done by redirecting corresponding
in-coming edges from w to w′. The key argument in the time analysis of Blumer et al.’s al-
gorithm is that this cost of redirecting in-coming edges can also be amortized constant per
added character a. Observe that this update is exactly the same as the above-mentioned
update of the suffix tree for the corresponding right-to-left text collection. For instance, the
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longest repeating suffix of $kSka for the current left-to-right text collection is the reverse
of the longest repeating prefix of aTk$k for the corresponding right-to-left text collection.
Also, redirecting those in-coming edges in the DAWG are exactly the same as updating a
soft W-link to a hard one and redirecting soft W-links, in the suffix tree of the correspond-
ing right-to-left texts (recall Case (1) above). Consequently, we can build the DAWG for
a collection of semi-online left-to-right texts in O(N log σ) time and O(N) space as well.

3.2 Fully-online construction of Weiner’s suffix trees and DAWGs

In this subsection, we consider how to maintain the suffix tree for a collection of K texts
which grow from right to left in a fully-online manner. This means that we will have to
maintain K handle leaves for the K texts simultaneously. We also consider how to maintain
the DAWG for a collection of K texts which grow from left to right in a fully-online manner.

Unfortunately, the identical amortization argument in both algorithms does not carry
over in the fully-online setting. However, we will show next that Weiner’s algorithm can be
modified to work within the desired O(N log σ) time and O(N) space bounds with the aid
of σ nearest marked ancestor (NMA) data structures of total size O(N), where σ denotes
the number of all distinct characters appearing in the texts in the collection. Moreover, the
same data structures can provide access to the DAWG edges, which cannot be maintained
explicitly within our bounds, in O(log σ) time per edge query.

We will use the following NMA data structure as a building block of our algorithm.

Lemma 1 ([20]). There exists an NMA data structure for a growing rooted tree, which
supports the following operations in amortized O(1) time each: 1) find the NMA of a given
node; 2) insert an unmarked node; 3) mark an unmarked node. This NMA data structure
requires linear space in the size of the tree.

Suppose that we have STree(TU [1..i−1]) for a fully-online right-to-left text collection
TU [1..i−1] and assume U [i] = (k, a), i.e., the kth text Tk$k gets extended with a new character
a being prepended to it. As in the case with the semi-online texts, some new soft and
hard W-links are created in the updated STree(TU [1..i]). Fortunately, the number of such
newly created W-links are bounded by the size of the resulting suffix tree, which is O(N).
However, the number of redirected soft W-links, which are the same as the number of
DAWG edges to be redirected, can be too numerous to be done within our desired bounds
as the next lemma shows.

Lemma 2. Weiner’s suffix tree algorithm takes Θ(N min(K,
√
N)) time in the fully-online

setting, where N is the total length of the K texts. Hence, for K = Θ(
√
N) it also takes

Θ(N
√
N) time to explicitly maintain the soft W-links (equivalently, the DAWG secondary

edges) in the fully-online setting. The lower bound holds for a constant alphabet.

Proof. To show that these bounds hold for constant alphabets, we here assume that each
text in the collection terminates with the same end-marker $. However, in our collection
of texts each text will be distinct, so that each Tk$ will be represented by a unique handle
leaf.

First, we consider a lower bound. Consider the following K right-to-left texts T =
{Tk = ak$ | 1 ≤ k ≤ K} where a ∈ Σ and each text terminates with a common end-marker
$. Suppose we have constructed the suffix tree of T in any order. Then, we prepend a new
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character c ∈ Σ, such that c 6= a, to each text Tk = ak$ in decreasing order of their length,
k = K, . . . , 1. Since we process each text in decreasing order of k, there are Ω(k) explicit
nodes in the path from the handle leaf for Tk = ak$ to its lowest ancestor r = ε (the root)
for which hard W-link Wc(r) is defined. Hence, it takes Ω(k) time to näıvely walk up this
path. Also, with the exception of the first longest text TK that introduces Ω(k) new soft
W-links, for all other k < K, there are Ω(k) soft W-links to be redirected along the way.
Thus, there are Ω(K2) edge re-directions in total, for all k’s. We then repeat the above
procedure several times. At each repetition i (i > 1), for each k in decreasing order it
again takes Ω(k) time to walk up from the handle leaf for ci−1ak$ until reaching its lowest
ancestor r for which hard W-link Wc(r) is defined. Also, there are Ω(k) soft W-links to be
redirected along the way. Thus, at each repetition i, it takes a total of Ω(K2) time for all
k’s, too,

Let N be the total length of the texts in the collection after performing the above
procedure several times. The initial total length of the text collection T = {ak$ | 1 ≤
k ≤ K} is K(K+3)

2 . We then append c’s to each of the K texts, and the text collection

of total length finally becomes N . Hence, the number of iterations is (N − K(K+3)
2 )/K =

Θ(N/K−K), which is Θ(N/K) in the case where K < α
√
N with some constant α. Since

each iteration requires re-directions of Ω(K2) soft W-links, it takes a total of Ω(NK) time
in this case. Now consider the case where K > α

√
N . In this case, we can apply the same

procedure as above only to α
√
N texts in the collection, and the other K − α

√
N texts

remain empty. This leads to Ω(N
√
N) total work for re-directing soft W-links. Combining

these two, we obtain an Ω(N min(K,
√
N)) lower bound.

To see that this lower bound actually gives rise to the worse case in Weiner’s algorithm,
we can focus only on the time required for soft W-link re-direction, since new edge insertions
and node insertions are always accounted globally to be the total size of the the suffix tree,
which is O(N).

Recall that the number of soft W-link re-directions when appending a symbol a to text
Tk$ is no larger than the suffix tree depth of the handle leaf representing Tk$, which is
in turn smaller than the length of Tk$. Also, the depth of the new leaf aTk$ is at most
one more than the depth of leaf Tk$ minus the number of edge re-directions that reduce
depth of the current handle leaf associated with each of the K text, while the depth of all
current handle leaves Ti$, i 6= k, may also increase by at most one while updating Tk$,
by the insertion of the internal node off which the leaf Tk$ is hanging above the handle
leaf of Ti. Thus, each of the O(N) symbols may increase by at most one the depth of
all the K handle leaves. This depth increase was not an issue in the semi-online setting
since previous Tk$ are no longer updated and their handle leaves were no longer used. In
the fully-online setting, this depth increase is problematic. The depth reduction argument
gives an obvious O(N) upper bound on the soft W-link re-directions while updating each
of the K texts, which adds up to O(KN) overall upper bound.

The analysis will separate those short texts Tk$, such that |Tk$k| ≤
√
N from the longer

texts. For the short texts, each time a symbol is prepended to a text Tk$, the number of
soft W-link edge re-directions is bounded by the length of each short text, which is at most√
N , totaling at most O(N

√
N) such re-directions. For the long texts, we observe that

there are at most O(
√
N) such long texts, and for each specific text, the total number

of soft W-link edge re-directions is at most O(N), totaling at most O(KN) ⊆ O(N
√
N).
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Figure 3: Extending the text Tk$k to aTk$k. Soft W-links are shown short-dashed and
hard W-links are shown long-dashed. Gray nodes of NMA data structures mean marked
nodes. Nodes with new hard W-link (of added character a) in the suffix tree are added to
the NMA as marked nodes. Nodes with new soft W-link (of a) are added to the NMA as
normal nodes.

Combining these bounds, we get the desired Θ(N min(K,
√
N)) tight bound.

Remark To show that the bounds hold for a constant alphabet, we used the same end-
marker $ for all the texts in the proof of Lemma 2. We remark that the same arguments
hold for the case where each text Tk is terminated with a unique end-marker $k, as we
assume elsewhere in this paper, since also in this case each text Tk$k is represented by
a unique handle text. We then use K + 2 characters in the lower bound example (the
alphabet is {a, b, $1, . . . , $K}).

To avoid the above-stated super-linear cost in Lemma 2, we shall only maintain hard
W-links and will not explicitly maintain soft W-links. Instead of soft W-links we will
maintain only the Boolean indicator wa(v) that tells us whether a (soft or hard) W-link
Wa(v) is defined or not. Once wa(v) is set to 1, it remains 1 and does not need to be
updated even when the corresponding soft W-link would have to be redirected.

Like in the semi-online setting, we here also go up from the leaf ` representing Tk$k to
its lowest ancestor u′ for which Wa(u′) is defined. The cost for walking up to the lowest
ancestor u of ` for which wa(u) = 1 can be charged to the cost for creating new soft W-links
(or equivalently, that for creating new corresponding DAWG edges), which is amortized
constant per added character a. One problem remains: We would like to skip all explicit
nodes s′ in the path from node u to u′, since näıvely walking up this path can be as costly
as redirecting W-links Wa(s′) for all such nodes s′. In so doing, we shall also maintain for
each character σ an NMA data structure of Lemma 1 on the subtree of the suffix tree which
consists of the two following disjoint sets of nodes: (1) the set of unmarked nodes v such
that wa(v) = 1 and Wa(v) is a soft W-link, and (2) the set of marked nodes v such that
Wa(v) is a hard W-link. Our version of Weiner’s algorithm will näıvely walk up the suffix
tree from the leaf ` representing Tk$k until the lowest node u such that wa(u) = 1, and
from there it will jump to u′ using the NMA data structure for the prepended character a.
In what follows, we will denote this as the a-NMA data structure.

Theorem 3. Given a fully-online sequence U of N update operators for a collection of K
right-to-left texts T , our version of Weiner’s algorithm can update the suffix tree in a total
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of O(N log σ) time and O(N) space.

Proof. The correctness of our algorithm should be clear from the above discussion.
Let us analyze the time complexity. The algorithm will now still climb up the suffix tree

from the currently focused leaf ` up to its lowest ancestor u with wa(u) = 1. From there, it
would jump to its nearest ancestor u′ of u having hard W-link Wa(u′) defined in constant
amortized time using an NMA query on the a-NMA data structure. Now we update the a-
NMA data structure. If the insertion point v for the new leaf `′ representing aTk$k is newly
created (see Case (1) in the previous sub-section), then the soft W-link Wa(u) becomes
hard. Hence, we mark node u in the a-NMA data structure. Otherwise, the W-link Wa(u)
is already hard and hence u is already marked in the a-NMA data structure. Recall that
each node s between the leaf ` and u obtain new soft W-links and hence wa(s) is now set to
1. Hence, we insert an unmarked node for each s in the a-NMA data structure. Since the
NMA data structure allows us to insert a new leaf in amortized constant time, we insert
these unmarked nodes in increasing order of depth, from the child of u to the parent of
` contained in the path. We also spend O(log σ) time at each visited node for searching
the corresponding NMA data structure. Overall, it takes a total of O(N log σ) time to
construct the suffix tree for a fully-online right-to-left text collection of total length N .

Let us now analyze the space complexity. For each character c ∈ Σ, each marked node
u in the c-NMA data structure corresponds to a unique hard W-link Wc(u). Also, each
unmarked node s in the c-NMA data structure corresponds to a unique soft W-linkWc(s).
Since the total number of hard and soft W-links for all characters c ∈ Σ is O(N), the total
size of the c-NMA data structures for all characters c ∈ Σ is O(N).

Now we turn our attention to construction of the DAWG for a fully-online left-to-right
text collection S. Since our version of Weiner’s algorithm does not explicitly maintain
soft W-links, we do not have explicit representation of secondary edges of the DAWG for
the left-to-right texts. However, the Weiner’s suffix tree augmented with the NMA data
structures indeed is implicit representation of the DAWG secondary edges:

Lemma 4. Using Weiner’s suffix tree augmented with the NMA data structures, we can
simulate each soft W-link per query in amortized O(log σ) time.

Proof. A given node u has soft W-link Wa(u) for a given character a iff wau = 1 and
Wa(u) is not a hard W-link. Suppose u has soft W-link Wa(u). We query the NMA u′

of u in the a-NMA data structure. Let b be the first character of the path label from u′

to u. We follow the hard W-link Wa(u′) = v′, and find the out-going edge of v′ whose
edge label begins with b. Then, the child v′′ of v′ below this edge is the destination of the
soft W-link Wa(u). The time for the NMA query is amortized to O(1) and finding the
appropriate a-NMA data structure and the appropriate out-going edge of v′ takes O(log σ)
time each.

The next corollary immediately follows from Theorem 3 and Lemma 4.

Corollary 5. Given a fully-online sequence U of N update operators for a collection of K
left-to-right texts, the DAWG can be maintained in a total of O(N log σ) time and O(N)
space with O(log σ) query time for an out-going DAWG edge.
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4 Fully-online version of Ukkonen’s suffix tree algorithm

Ukkonen’s algorithm [17] constructs the suffix tree of a given text in an online manner,
from left to right. In this section, we show how Ukkonen’s algorithm can be extended
to maintain the suffix tree for a fully-online left-to-right text collection. We will do so
by first explaining that Ukkonen’s algorithm can readily be extended to the semi-online
setting. Then, we will describe some difficulties in extending Ukkonen’s algorithm to our
fully-online setting, and finally we will present how to overcome these difficulties achieving
O(N log σ)-time algorithm.

4.1 Semi-online left-to-right suffix tree construction

Ukkonen’s algorithm [17] can easily be extended to incrementally construct the suffix tree
for multiple texts in the semi-online setting.

Let U be a semi-online sequence of N update operators such that the last update
operator for each k (1 ≤ k ≤ K) is (k,#k), where #k is a special end-marker for the kth
text in the collection. Also, assume that we have already constructed STree(SU [1..i−1]) and
that the next update operator is U [i] = (k, a). Thus a new character a is appended to the
text Sk and it becomes Ska.

In updating STree(SU [1..i−1]) to STree(SU [1..i]), we have to assure that all suffixes of the
extended text Ska will be represented by STree(SU [1..i]). These suffixes are categorized to
three different types:

Type-1 The suffixes of Ska that are longer than lrsSU [1..i−1]
(Sk)a.

Type-2 The suffixes of Ska that are not longer than lrsSU [1..i−1]
(Sk)a and are longer than

lrsSU [1..i](Ska).

Type-3 The suffixes of Ska that are not longer than lrsSU [1..i]
(Ska).

The suffixes of Ska are inserted in decreasing order of length.
The Type-1 suffixes are maintained as follows. Let s be any suffix of Sk which is

represented by a leaf of STree(SU [1..i−1]). Since s is a non-repeating suffix of Sk in SU [1..i−1],
sa is a non-repeating suffix of Ska in SU [1..i], which implies that sa will also be a leaf of
STree(SU [1..i]). Based on this observation, the label of the in-coming edge of the leaf is
represented by a pair 〈k, b〉 called an open edge, where b is the beginning position of the
label of the in-coming edge in the kth text. We can retrieve the ending position of the edge
label in constant time by looking at the current length of the kth text. This way, every
existing leaf will then be “automatically” extended.

Hence, updating STree(SU [1..i−1]) to STree(SU [1..i]) reduces to inserting the Type-2
suffixes of Ska (note that the Type-3 suffixes of Ska already exists in the suffix tree). For this
sake, the algorithm maintains an invariant which indicates the locus of x = lrsSU [1..i]

(Sk)
on STree(SU [1..i−1]) called the active point. Since x can be an implicit node, the algorithm
maintains the canonical reference (v, c, `) to x. For convenience, if x is an explicit node,
then let its canonical reference be (x, ε, 0). The update starts from the current active point
x represented by its canonical reference pair, and the Type-2 suffixes of Ska are inserted in
decreasing order of length, by using the chain of (virtual) suffix links. There are two cases:
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I. If it is possible to go down from x with character a, then no updates to the tree
topology are needed. The new active point is xa, and the reference to xa is made
canonical if necessary. The update ends.

II. If it is impossible to go down from x with character a, then we create a new leaf. Let
j be the beginning position of the suffix of Ska which corresponds to this new leaf.
The following procedure is repeated until Case I happens.

(a) If the active point x is on an explicit node, then a new leaf node s is created as a
new child of x, with its incoming edge labeled by 〈k, b〉, where b = |Ska|−|x|+1.
The active point x is updated to slink(x).

(b) If the active point x is on an implicit node, then x becomes explicit in this step.
A new leaf node s is created as a new child of x with its incoming edge labeled
by 〈k, b〉. Since the suffix link of the new explicit node x does not yet exist,
we simulate the suffix link traversal as follows: Let (vj , cj , `j) be the canonical
reference to x. First, we follow the suffix link slink(vj) of vj , and then go down
along the path of length `j from slink(vj) starting with character cj . Let this
locus be x′. Let vj+1 be the longest explicit node in this path. (i) If |vj+1| = |x′|,
then we firstly create the new suffix link slink(x) = vj+1 for the new explicit
node x. The active point x is updated to x′ and is represented by canonical
reference (vj+1, ε, 0). (ii) If |vj+1| < |x′|, then the next active point is implicit.
The active point x is updated to x′ and is represented by canonical reference
(vj+1, cj+1, `j+1). The suffix link of x will be set to x′ when x′ becomes explicit
in the next step.

The most expensive case is II-b-(ii). Since the path from vj+1 to x′ contains at most `j−`j+1

explicit nodes, it takes O((`j − `j+1 + 1) log σ) time to locate the next active point x′ (note
`j − `j+1 ≥ 0 holds). All the other operations take O(log σ) time. Hence, the total cost to

insert all leaves (suffixes) for the kth text is O(
∑Nk

j=1(`j − `j+1 + 1) log σ) = O(Nk log σ),
where Nk is the final length of the kth text. Thus the amortized time cost for each leaf
(suffix) for the kth text is O(log σ). Overall, it takes a total of O(N log σ) time to construct
STree(SU ) for a semi-online sequence U of update operators. The space requirement is
O(N).

4.2 Difficulties in fully-online left-to-right suffix tree construction

The following observations suggest that it does not seem easy to extend Ukkonen’s algo-
rithm to our left-to-right fully-online setting:

A. [Keeping track of active points] Let U [i] = (k, a) which updates the current kth
text Sk to Ska, and assume that we have just constructed STree(SU [1..i]). Recall that
we defined the initial locus of the active point for Ska on STree(SU [1..i]) to be the
longest repeating suffix of Tka in SU [1..i]. However, since U is fully-online, any other
text Th (h 6= k) in the collection would be updated by following update operators
U [r] with r > i. Then, the longest repeating suffix of Ska in SU [1..r] can be much
longer than that of Ska in SU [1..i]. In other words, some Type-1 suffixes of Ska in
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SU [1..i] can become of Type-2 in SU [1..r]. What is worse, updating Sh can affect the
longest repeating suffix of any other text in the collection as well.

B. [Canonization of active points] Even if we somehow manage to efficiently main-
tain the active point for each text in the collection, there remains another difficulty.
Let j be the beginning position of the longest repeating suffix of Ska in SU [1..i], and
let (vj , cj , `j) be the canonical reference to this suffix. Let U [i′] = (k, a′) be the first
update operator in U which updates the kth text after U [i] = (k, a). Let (v′j , c

′
j , `
′
j)

be the canonical reference to the longest repeating suffix of Ska in SU [1..i′], which is
the “real” initial active point where insertion of the Type-2 suffixes should start at
this i′th step. By the property of suffix trees `′j ≥ `j holds, and what is worse, this
length `′j is unbounded by the number of Type-2 suffixes inserted at this i′th step.
Thus, it is not clear whether the amortization technique we used for the semi-online
construction works in our fully-online setting.

C. [Maintaining leaf ownerships] The phenomenon mentioned in Difficulty A also
causes a problem of how to represent the labels of the in-coming edges to the leaves.
Assume that we created a new leaf w.r.t. an update operator (k, a), and let 〈k, bk〉
be the pair representing the label of the in-coming edge to the leaf, where bk is the
beginning position of the edge label in the kth text. We say that the kth text Sk
is the owner of the leaf. It corresponds to a Type-1 suffix of the kth text, but the
leaf can later be extended by another growing text Sh. Namely, Sh can overtake the
ownership of the leaf from Sk. After this happens, then the pair 〈k, bk〉 has to be
updated to 〈h, bh〉, where bh is the beginning position of the edge label in the hth
text. Notice that this update may happen repeatedly.

4.3 Fully-online left-to-right suffix tree algorithms

Let us now consider how to construct the suffix tree for a fully-online left-to-right text
collection. Our fully-online version of Ukkonen’s algorithm works with the aid of the fully-
online version of Weiner’s algorithm proposed in Section 3. Namely, for a fully-online
left-to-right text collection S with K texts, we build STree(S) in tandem with STree(T ),
where T is the set of reversed texts from S (i.e., T = S). Since we use the fully-online
version of Weiner’s algorithm, as in Section 3, we assume that each text in T terminates
with a special symbol $k, namely, T = {T1$1, . . . , TK$K}. This in turn implies that each
text in S begins with $k, namely, S = {$1S1, . . . , $KSK}, where Si = Ti for 1 ≤ i ≤ K.

In what follows, we will propose two alternative approaches. Suppose we have con-
structed STree(SU [1..i−1]). Given the ith update operator U [i] = (k, a), the first one called
the forward approach traverses a chain of (virtual) suffix links in a forward manner and
inserts new leaves of the updated text $kSka in decreasing order of the lengths of the
suffixes of $kSka. This forward approach is a direct extension of Ukkonen’s original algo-
rithm. The second one called the backward approach traverses a chain of (virtual) suffix
links in a backward manner and inserts new leaves in increasing order of the lengths of
the suffixes of $kSka. This backward approach can be seen an extension of Breslauer and
Italiano’s algorithm [4] which was originally proposed for real-time suffix tree construction
for a single left-to-right text.
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4.3.1 Forward approach

In this subsection, we present our forward approach to update STree(SU [1..i−1]) to STree(SU [1..i]).
The key notions in this forward approach are swapping active points and tight connections
between active points and leaf ownerships. In what follows we will explain these notions in
full details.

Let us first consider maintaining active points (Point A). This is indeed closely related to
maintaining leaf ownerships (Point C). We will for now put it aside the cost for maintaining
leaf ownerships, and will focus on describing how active points can affect ownerships of
leaves.

For a single right-to-left online text, the suffix links of the leaves form a single path
from the longest leaf to the shortest one. On top of them we also consider a virtual suffix
link from the shortest leaf to the active point.

We generalize the above notion to our fully-online text collection S. Unlike the single
text case, a leaf can represent a suffix of multiple texts in our fully-online setting. This
implies that the suffix links of STree(S) form a forest. Let FS denote this forest. This
forest is only conceptual, namely, in our algorithms to follow we will not explicitly maintain
it. However, the forest gives us more insights into Points A and C. Formally, the forest FS
is a set of maximal trees such that each maximal tree SLT in FS satisfies:

• the root of SLT is the locus (an implicit or an explicit internal node) of the active
point of a text,

• the other nodes of SLT are leaves of STree(S), and

• the (reversed) edges of SLT are suffix links of STree(S) (if the root of SLT is an
implicit node, then the (reversed) edges from the root to its children are virtual
suffix links from the children).

Since a leaf of STree(S) can be a suffix of multiple texts, there are multiple choices for
the owner of each leaf. Our choice of the owner of a leaf is either

(R1) the text that created the leaf, or

(R2) the last text whose active point has extended the leaf.

Regarding Rule (R2) above, we will soon describe in more details how the active point of
a text can extend an existing leaf.

Suppose that we have constructed STree(SU [1..i−1]) and that we are given an update
operator U [i] = (k, a) which appends new character a to text $kSk.

If the active point of $kSk is not on a leaf of STree(SU [1..i−1]), then the suffix tree is
updated as in the semi-online setting and there are no changes on the ownerships of the
leaves. Hence, in what follows we consider the case where the active point of $kSk is on a
leaf of STree(SU [1..i−1]).

Let s be the leaf of STree(SU [1..i−1]) where the active point of the text $kSk lies. Let
SLT denote the suffix link tree in FSU [1..i−1]

that contains this node s, and let Pi be the
path from s to the root of SLT . Also, let Oi be the set of texts which are the owners of
the suffix tree leaves in Pi. Finally, let Li be the list of all nodes u in the path from the
parent of s to the root of SLT such that the active point of some text in Oi lies on u. For
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each 1 ≤ x ≤ m = |Li|, let ux = Li[x]. For convenience, let u0 = s. For each 1 ≤ x ≤ m,
let kx denote the text id of the owner of ux. Then, due to the way how the ownerships of
leaves are defined by Rules (R1) and (R2) above, for every 1 ≤ j < m the owner of every
leaf between uj−1 and uj is the kjth text in the collection. See also the left diagram of
Figure 4 for illustration.

Now we describe how the ownerships of leaves and the active points of texts can change
when a new character is appended to a text in the fully-online setting. We begin with
the first node u1 = s in the list Li whose current owner is text $k1Sk1 . See also the left
diagram of Figure 4. Since $kSk now gets extended to $kSka, the active point of this text
extends the suffix tree leaf u1. Then, the extended leaf u1 no more represents a suffix of its
original owner $k1Sk1 . This implies that the new owner of this suffix tree leaf u1 is $kSka.
The same happens to all leaves in the path up to u1. Then, we swap the active points of
texts $kSk and $k1Sk1 . We continue the same procedure recursively for the other nodes
u2, . . . , um in the list Li, and finally the new owner of each leaf in the path Pi becomes
the updated kth text $kSka. After reaching the root of SLT , we possibly create new edges
labeled with a following virtual suffix links, and finally arrive at the new locus of the active
point for the updated kth text $kSka. This operation may split the original suffix link tree
SLT into some smaller suffix link trees (see also Figure 4).

Lemma 6. The above procedure correctly maintains the active points of texts and the leaf
ownerships under Rules (R1) and (R2).

Proof. It is clear that the above procedure correctly maintains the leaf ownerships under
Rules (R1) and (R2).

Let $kjSkj be any text in Oi. After swapping the active points of $kSka and those texts
in Oi, the locus of the active point of $kjSkj is one character above the suffix tree leaf (say
u) that has just been extended by $kSka. By the definition of list Li, this leaf u before
extension was the longest leaf whose previous owner was $kjSkj . Hence, the string depth
of the new active point of $kjSkj is at least |u| − 1. Also, it cannot be larger than |u| − 1,
since otherwise it contradicts with the definitions of Oi and Li (see also Figure 4). Hence,
the above procedure of swapping active points correctly maintains the active points of the
texts in the collection.

Now we wish to maintain leaf ownerships as described above. However, the next lemma
shows that it requires super-linear cost to explicitly maintain leaf ownerships.

Lemma 7. There is a left-to-right fully-online collection of K texts of total length N for
which explicitly maintaining leaf ownerships requires Ω(N

2

K ) time.

Proof. Consider an initial text collection S = {$1, . . . , $K}. We will update this text
collection in i rounds so that in each jth round the same character aj is appended to each
text. The order of the texts to which aj is appended is arbitrary in each round. Thus,
after the jth round, the text collection becomes of form {$1a1 · · · aj , . . . , $Ka1 · · · aj}. We
also assume that aj 6= ah for any 1 ≤ j 6= h ≤ i. This implies that in each jth round, we
will have j leaves representing common suffixes a1 · · · aj , a2 · · · aj , . . . , aj .

Notice that during the jth round, the ownership of each such leaf has to be updated K
times since each such leaf is shared by the K texts. Therefore, the total number of updates
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Figure 4: The left diagram depicts a suffix link tree in the forest before the ith update with
update operator U [i] = (k, a), where the solid and broken arrows respectively represent
suffix tree edges and suffix links, and the white and black circles respectively represent
suffix tree leaves and active points. The dotted circle represents the root of the suffix link
tree (which is an implicit node in this case). The suffix link path Pi of interest is shown
with bold broken arrows, where the staring node is s = u0. The integers kj below each
leaf shows the current owner of the leaf, and hence Oi = {$kSk, $k1Sk1 , $k2Sk2 , $k3Sk3}.
The integer kj in each black circle implies that it is the active point for text $kjSkj . The
black circles without text id’s are the active points of texts which are not in Oi. The right
diagram shows how it looks after the text $kSk has been extended to $kSka with a new
character a. Since its active point has extended the leaf u0 with a, text $kSk becomes the
new owner of every leaf in the path Pi. In the meantime, we swap the active point for text
$kSka with the active points of texts in Oi, in the order they appear in the path Pi. After
the active point of text $kSka and that of the last text in the path (which in this figure is
$k3Sk3) have been swapped, we possibly create new leaves (in this figure we create just one
new leaf), and eventually we find the new locus for the active point for the updated text
$kSka. Since all the leaves in the path Pi have been extended by the new character a, this
path breaks away from the original suffix link tree. As a result, we obtain several smaller
suffix link trees.

for the leaf ownership after the final ith round is at least

K(1 + 2 + · · ·+ i) =
Ki(i+ 1)

2
. (1)

Since N is the total length of the resulting text collection after the ith round, we get
N = K(i + 1). Hence, i = Θ(NK ). Plugging this into equation 1, we obtain the desired

lower bound Ω(N
2

K ).

The above Ω(N
2

K ) lower bound requires us a super-linear cost for explicit leaf ownership
maintenance when K = o(N). Indeed, K = o(N) is the only meaningful case in our fully-
online problem: If K = Θ(N), then each of the K texts is of constant size and hence a
näıve algorithm would update the suffix tree in constant time per each text no matter how
they are updated, resulting in an O(N)-time construction anyway. Hence, in what follows,
we will only consider the case where K = o(N).

Due to Lemma 7, we shall not explicitly maintain leaf ownerships in our fully-online
algorithm. However, when swapping the active point of the kth text with those of the
texts in the set Oi, we need to know the owner of the leaf that has just been extended by
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the active point of the kth text. We also need to know the set Oi of texts which are the
owners of the leaves in the path Pi, and need to know the list Li of leaves where those
active points currently lie. For this sake we use the aid of our version of Weiner’s algorithm
for fully-online right-to-left construction. Namely, we build STree(SU [1..i]) in tandem with
STree(TU [1..i]) for each increasing i = 1, . . . , N . For simplicity, we will call the left-to-right
fully-online suffix tree STree(SU [1..i]) as the Ukkonen tree and the right-to-left fully-online
suffix tree STree(TU [1..i]) as the Weiner tree.

Below we show key observations that connect our versions of Weiner’s algorithm and
Ukkonen’s algorithm in the fully-online setting. For each node v of the Weiner tree, let
w deg(v) denote the number of (soft or hard) W-links from v, namely, w deg(v) = |{c ∈
Σ | wc(v) = 1}|.

Lemma 8. Let u be any leaf in the list Li of the Ukkonen tree STree(SU [1..i−1]). Then,
there exists an explicit node v of the Weiner tree STree(TU [1..i−1]) such that (1) v = u, (2)
v is in the path from the root to the leaf representing Tk$k, and (3) w deg(v) = 0.

Proof. Since u is a leaf of the Ukkonen tree STree(SU [1..i−1]), it is a suffix of the text $kSk
to which a new character a will be appended. Hence v = u is a prefix of the reversed
text Tk$k, and is located on the path from the root to the leaf Tk$k in the Weiner tree
STree(TU [1..i−1]). By the definition of the list Li, the active point of some other text (say
$hSh, with h 6= k) lies on the leaf u in the Ukkonen tree, which implies that u is the longest
suffix of $hSh that occurs at least twice in the left-to-right collection. Since each left-to-
right text begins with a distinct $ symbol, there must be at least two distinct characters
that immediately precede occurrences of u. This in turn implies that there are at least two
distinct characters that immediately follow occurrences of v = u in the right-to-left text
collection, and hence v = u is an explicit node in the Weiner tree. To prove (3) assume
on the contrary that w deg(v) > 0, and let c be any character such that wc(v) = 1. Since
cv = cu is a substring of some text in the right-to-left collection TU [1..i−1], uc is a substring
of some text in the left-to-right collection SU [1..i−1]. However, this contradicts that u is a
leaf of the Ukkonen tree STree(SU [1..i−1]). Hence w deg(v) = 0.

As was shown in Section 3, when we update the Weiner tree STree(TU [1..i−1]) to
STree(TU [1..i]) with update operator U [i] = (k, a) which prepends character a to text Tk$k,
we walk up from the leaf Tk$k until finding the first node with a (soft or hard) W-link w.r.t.
a defined. Since the total cost of walking up these paths for all characters prepended to
the right-to-left texts is linear in the final total length N of all texts, the number of nodes
in the list Li for 1 ≤ i ≤ N is also linear in N .

Notice that not every explicit node v with w deg(v) = 0 in the path from the leaf Tk$k
to the root of the Weiner tree corresponds to a leaf in the list Li on the Ukkonen tree.
However, as was shown above, we can afford to check each such explicit node v in total
linear time.

The next lemma shows how to maintain correspondence between these nodes in the
Weiner tree and the Ukkonen tree.

Lemma 9. We can maintain correspondence between each node v of the Weiner tree with
w deg(v) = 0 and its corresponding leaf u in the Ukkonen tree in O(N log σ) total time.

19



Proof. Let v be any node of the Weiner tree STree(TU [1..i−1]) with w deg(v) = 0. Suppose
we have maintained correspondence between v and its corresponding leaf u in the Ukkonen
tree STree(SU [1..i−1]). This correspondence is maintained by bidirectional links between
the two trees.

Now suppose we are given an update operator U [i] = (k, a) which appends a new
character a to $kSk and prepends a to Tk$k. There are three cases to consider.

(a) If the active point of the kth left-to-right text extends a leaf of the Ukkonen tree:
In this case, as was described previously and was illustrated in Figure 4, the leaves
in the path Pi get extended by the new character a that was appended to the kth
left-to-right text $kSk. This implies that v in the updated Weiner tree STree(TU [1..i])
does not correspond to a leaf in the updated Ukkonen tree STree(SU [1..i]). Thus,
we remove the bidirectional link that connects v and the corresponding leaf in the
Ukkonen tree.

(b) If the active point of the kth text catches up a leaf u of the Ukkonen tree: Since u is
a leaf whose current owner is another text $hSh with h 6= k, u is a suffix of at least
two distinct left-to-right texts in the updated collection SU [1..i]. Hence, u is a prefix
of at least two distinct right-to-left texts in the updated collection TU [1..i], and hence
is represented by an explicit node in the updated Weiner tree STree(TU [1..i]). Let v
be this explicit node. Moreover, since u is the locus of the active point of $kSka, u is
the longest repeating suffix of $kSka and hence v = u is the longest repeating prefix
of aTk$k. This node v is exactly the insertion point of the new leaf aTk$k in the
Weiner tree. Hence, we can find the locus of v = u during the updates of the Weiner
tree and can easily create a bidirectional link between v and u.

(c) Otherwise, there are no changes in the correspondence and hence no maintenance of
bidirectional links is needed.

In both cases (a) and (b), the costs can be charged to the construction of the Weiner
tree which takes total O(N log σ) time.

In Lemmas 8 and 9 we have shown how to efficiently find those suffix tree leaves in the
list Li of the Ukkonen tree with the aid of the Weiner tree. What remains is how to find
each text in the set Oi of owners of the leaves in the list Li. The next lemma shows yet
another application of the Weiner tree for this purpose.

Lemma 10. With the aid of the Weiner tree, we can find the owner of each leaf in the list
Li in total O(N log σ) time for all 1 ≤ i ≤ N .

Proof. In each internal explicit node of the Weiner tree, we store the id of the text which
created the oldest leaf in the subtree rooted at this internal explicit node. This can be
easily maintained in O(1) time per node: When we split an edge and create a new internal
node, then we simply copy the text id stored in its unique child.

Consider any update operator U [i] = (k, a). Let u be any leaf in the list Li of the
Ukkonen tree and let v be its corresponding node in the Weiner tree (hence v = u and it is
an explicit node due to Lemma 8). Then, if the text id stored in v is h, then the hth text
is the current owner of the leaf u in the Ukkonen tree. This is true in either case where
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the leaf u was created by the hth text and has never been extended by an active point, or
the leaf u was last extended by the hth text. In both cases, the subtree rooted at v = u in
the Weiner tree may contain leaves which correspond to suffixes of some other texts than
the hth text, but in the Ukkonen tree the active points of these texts only caught up with
the leaf u. Hence none of these texts is the one which created the leaf u, or the last one
that has extended u. Therefore, the hth text is the current owner of u.

A careful consideration is required when the leaf u gets extended by the active point
of text $kSk. Now the extended leaf represents the extended string ua and its new owner
is the kth text $kSka. As was shown in the proof for Lemma 9, in the Weiner tree the
reversed extended string au is represented by a new, different locus than the locus for u.
It is also possible that au is on an implicit node in the Weiner tree at this stage, but it
will become explicit when the active point of another text catches up the leaf ua in the
Ukkonen tree. Thus, we will be able to return the text id k as the correct answer for a leaf
ownership query when the active point of another text extends the leaf ua in future.

In the above arguments we have shown that Difficulties A and C can be efficiently re-
solved by swapping active points and by neglecting explicit maintenance of leaf ownerships.

Meanwhile, this lazy maintenance of leaf ownership causes two more issues; Suppose
that the active point of some text $iSi lies on an edge that leads to a leaf u, and that a
new character a has been appended to this text. Let x be the string represented by the
active point.

• The first question is how we can determine whether the active point can step forward
along this edge by character a, or a new explicit node must be created at the locus of
x together with a new edge labeled with a. Since we do not know the owner of the leaf
u, we are not able to answer the above question by a simple character comparison.
However, this can be answered again by the aid of the Weiner tree. Recall that there
is an explicit node representing the reversed string x in the Weiner tree and we know
its locus through the updates of the Weiner tree. Now, the active point can step
forward with character a if and only if the node x has a (soft or hard) W-link for
character a. Hence, we can answer the above question in O(log σ) time. In case
where we cannot step forward with character a, then we need to create a new edge
leading to a new leaf. Instead of explicitly maintaining the owner of the leaf, we only
maintain the first character a of this edge label. If the locus of the active point is on
an edge, then we create a new explicit node u representing x in the Ukkonen tree.
Now u has two out-going edges both leading to leaves, one of which is labeled with
a as was described above. Since x was on an edge, there was a unique character, say
b, such that b 6= a and the W-link of node x for character b is defined in the Weiner
tree. Thus the other out-going edge of u is labeled with b in the Ukkonen tree. Also,
by storing the string depth in each active point, the whole label of the edge from the
parent of u to u can be easily determined in constant time. Thus, we are able to
eagerly maintain the whole label of every edge leading to an internal explicit node.

• The second question is how we can know that the active point catches up the leaf.
In the preceding discussions, we only proved that we can find the owner of the leaf
after we know that the active point has caught up the leaf. We observe that the
active point catches up the leaf if and only if the Weiner tree node v representing ax
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is of Weiner degree zero, namely, the W-link of node v is undefined for any character.
Hence, this question can also be answered by the aid of the Weiner tree in constant
time.

The final issue in this forward approach is how to overcome Difficulty B on the cost for
canonizing active points. The next lemma implies that the cost in our fully-online setting
can indeed be amortized by a simple modification to the original amortization arguments
in the semi-online setting.

Lemma 11. The total cost for canonizing the active points for all K texts in a left-to-right
collection S is O(N log σ).

Proof. Since we swap active points, the owner of each active point can change during the
construction of the Ukkonen tree. However, our analysis below does not consider which
text is the owner of each active point and hence it will lead us to simple arguments.

Let A denote any active point and let (uA, cA, `A) denote the reference pair of A. We
remark that in our fully-online setting, this reference pair may not be canonical, since
some other text can split the out-going edge of node uA whose label begins with cA. The
potential of the active point A is `A of the string that hangs off from the explicit node uA.

Suppose we have constructed STree(SU [1..i−1]), and that we are given the ith update
operator U [i] = (k, a) which appends new character a to the kth text $kSk. Also, suppose
that A is the active point for $kSk at this stage. Now the algorithm finds the new locus
for the active point A for the updated text $kSka, while possibly swapping several active
points and inserting new leaves. In this event the algorithm traverses a chain of (virtual)
suffix links. When a canonization is conducted after tracing a virtual suffix link, then the
potential `A decreases at least one. Also, when the new locus of the active point A is found
on the updated suffix tree STree(SU [1..i]), then the potential increases exactly by one with
the new character a. Hence, the total number of canonizations performed for all N added
characters is at most N .

Each canonization operation requires O(log σ) time to find the out-going edge whose
label begins with the corresponding character. Hence, the total cost for canonizations for
all N characters is O(N log σ).

Putting the above arguments all together, we have proven the following theorem.

Theorem 12. Given a fully-online sequence U of N update operators for a collection of
K left-to-right texts S, our forward version of Ukkonen’s algorithm can update the suffix
tree in a total of O(N log σ) time and O(N) space.

A snapshot of left-to-right fully-online suffix tree construction is shown in Fig. 5, where
the $i symbols are omitted for simplicity.

4.3.2 Backward approach

In this subsection, we propose the backward approach which traces a chain of (virtual)
suffix links in the reversed order and inserts new leaves in increasing order of their string
lengths.

Suppose we have constructed STree(SU [1..i−1]) and we are now given an update operator
U [i] = (k, a). Consider the locus of the insertion point of the shortest Type-2 suffix of
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Figure 5: A snapshot of left-to-right fully-online suffix tree construction in the forward
approach, where we update STree(S) to STree(S ′) with S = {S1 = abab, S2 = aabab} and
S ′ = {S1b, S2} (here the terminate symbols $1 and $2 are omitted for simplicity). Recall
that we employ lazy maintenance of leaf ownership, and hence each character within a box
is only imaginary and is not computed during the updates. Due to lazy representation of
leaves, we do nothing to insert the Type-1 suffixes of S1b. The active point of S1 was on
a leaf whose owner was S2, and then it has extended the leaf. Hence, we swap the active
points of S1 and S2. To start inserting the Type-2 suffixes in decreasing order of length, we
first insert the longest Type-2 suffix abb at the locus of the active point of S1. With the aid
of the Weiner tree, we determine whether the active point can step forward along this edge
by character b. In this case, the active point cannot step forward, and hence create a new
internal node in the middle of this edge. After creating a new leaf from the new internal
node and its in-coming edge with the first character label b, we determine the label of the
in-coming edge of the new internal node using Weiner tree. Then the active point traces
the virtual suffix link from the new internal node ab to node b. This virtual link can be
computed by using the suffix link of node a. The next Type-2 suffix is bb, and the active
point cannot step forward with b. Therefore we create a new internal node in the middle
of this edge. After creating a new leaf from the new internal node and its in-coming edge
with the first character label b, we determine the label of the in-coming edge of the new
internal node using Weiner tree. The reversed suffix link is set from this new internal node
b to node ab. Then the active point traces the virtual suffix link from the new internal
node b to the root. The next shorter suffix b is Type-3, since we can step forward with
character b from the root. Therefore, we move the active point from the root to node b

that represents the longest repeating suffix of S1b, and the reversed suffix link is set from
root to the node b. Since we have inserted all the Type-2 suffixes, the update finishes.
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the updated text §kSka in the Ukkonen tree STree(SU [1..i−1]). This locus corresponds to
the suffix of $kSka that is exactly one character longer than the longest Type-3 suffix
lrsS[U1..i−1]

($kSka) of $kSka in the text collection SU [1..i−1] before update. In the backward
approach we first find this locus, and insert the Type-2 suffixes of the updated text $kSka
in increasing order of lengths. Since we trace the chain of suffix links backward, we use the
reversed suffix links with character labels. In other words, we maintain the hard W-links
on the Ukkonen tree.

We also remark that we do not need to swap active points in this backward approach,
since we begin with the shortest Type-2 suffix. This somewhat simplifies the concept
of the algorithm and might be an advantage over the forward counterpart presented in
Section 4.3.1.

To find the canonical reference to the locus of the insertion point of the shortest Type-
2 suffix of $kSka, we use the spanning tree of DAWG(TU [1..i]) which consists only of the
primary edges. This tree consists of the longest paths from the source of the DAWG to
its nodes, and hence, it coincides with the tree of the reversed hard W-links of the Weiner
tree (this should not be confused with the hard W-links on the Ukkonen tree for backward
suffix link traversals). For each 1 ≤ i ≤ N , let LPT (SU [1..i]) denote this tree. By the
property of DAWGs (and hence that of the equivalence relation), the following fact holds.

Fact 1. For any 2 ≤ i ≤ N , if an edge e is a primary edge of DAWG(TU [1..i−1]), then e is
a primary edge of DAWG(TU [1..i]).

We also use the following fact in our algorithm.

Fact 2. For any substring x of texts in a left-to-right text collection S, node x is branching
(explicit) in STree(S) iff node [x]S is branching in DAWG(S).

Based on Fact 2, for each 1 ≤ i ≤ N , we will maintain the NMA data structure
LPT (SU [1..i]) and mark its nodes iff they correspond to the branching nodes of STree(SU [1..i−1]).
Note that, due to Fact 1, no edges of LPT (SU [1..i−1]) will be deleted in LPT (SU [1..i]) and
only new edges will be added. Hence we can use the NMA data structure on top of this
tree.

The next lemma shows how we can efficiently find the new locus of the active point for
the updated text $kSka in the Ukkonen tree.

Lemma 13. We can compute, in amortized O(log σ) time, the canonical reference to the
locus of the active point of $kSka on the Ukkonen tree, using a data structure which requires
O(N) space.

Proof. Suppose we have constructed the Ukkonen tree STree(SU [1..i−1]) in tandem with the
Weiner tree STree(TU [1..i−1]) and LPT (SU [1..i−1]). A node v of LPT (SU [1..i−1]) is marked
iff its corresponding node v in the Weiner tree STree(TU [1..i−1]) has at least two W-links de-
fined, namely, wc(v) = wc′(v) = 1 with at least two distinct characters c 6= c′. This in turn
implies that the corresponding node of the (implicitly maintained) DAWG is branching.
Every marked node of LPT (SU [1..i−1]) is linked to its corresponding node of the Ukko-
nen tree STree(SU [1..i−1]) which is also branching by Fact 2 (see also Figure 6). We also
maintain an NMA data structure on LPT (SU [1..i−1]).
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Figure 6: Illustration for DAWG(SU [1..14]), LPT (SU [1..14]), and the Ukkonen tree
STree(SU [1..13]) before update, where SU [1..13] = {S1 = aaab, S2 = ababc, S3 = bab} and
SU [1..14] = {S1c, S2, S3}. For simplicity, we here omit the terminate symbols $1, $2, and $3.
The bold solid arrows represent the primary edges of DAWG(SU [1..14]), the gray nodes are
the marked nodes of LPT (SU [1..14]), and the dashed arrows represent the links between the
marked nodes of LPT (SU [1..14]) and the corresponding branching nodes of STree(SU [1..13]).
The longest repeating suffix of S1c in SU [1..14] is abc, and hence we perform an NMA query
from node abc on LPT (SU [1..14]), obtaining node ab. We then access the suffix tree node
ab using the link from LPT (SU [1..14]), and obtain the canonical reference (ab, c, 1) to abc

on the Ukkonen tree STree(SU [1..13]) before update.

Given an update operator U [i] = (k, a), we first update the Weiner tree to STree(TU [1..i]).
This introduces at most two new hard W-links, one for the new leaf and one for its par-
ent. This means that these edges are also inserted to LPT (SU [1..i−1]) and we then obtain
LPT (SU [1..i]). Because of these new edges, at most two DAWG non-branching nodes can
become branching. We mark their corresponding nodes in LPT (SU [1..i−1]), and link them
to the corresponding Ukkonen tree nodes only after we have built the updated Ukkonen
tree STree(SU [1..i−1]). This is because the corresponding nodes of STree(SU [1..i−1]) before
the update are still non-branching (see Fact 2).

Let y be the insertion point of the leaf aTk$k in the Weiner tree which is the longest
repeating prefix of aTk$k in the right-to-left text collection TU [1..i]. By the definition of
LPT (SU [1..i]), there is a node in LPT (SU [1..i]) which represents y. We conduct an NMA
query from y on LPT (SU [1..i]), and let v be the NMA of y. Let ` = |y| − |v|, and let c be
the label of the first edge in the path from v to y. We move from v to its corresponding
node x in the Ukkonen tree STree(SU [1..i−1]). Then, (x, c, `) is a reference to the insertion
point of the shortest Type-2 suffix of $kSka. Since v is the NMA of y in LPT (SU [1..i]), and
since updating $kSk to $kSka does not explicitly insert any suffix of $kSka that is shorter
than the longest repeating suffix of $kSka in SU [1..i], this reference is canonical by Fact 2.

Clearly the total size of the above data structures is linear in the total length N of
the texts in the final text collection S. We analyze the time complexity. We can find the
insertion point y of the new leaf in the Weiner tree in amortized O(log σ) time due to
Theorem 3. Using the link from the node y in LPT (SU [1..i]), the corresponding node in
the Ukkonen tree STree(SU [1..i−1]) can be found in O(1) time. Updating LPT (SU [1..i−1])
to LPT (SU [1..i]) takes O(log σ) amortized time. Inserting a new node and querying an
NMA from a given node takes amortized O(1) time. We can link a new marked node
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of LPT (SU [1..i]) to the corresponding new branching node of STree(SU1..i) in O(1) time,
since it is easy to remember this new branching node when updating STree(SU [1..i−1]) to
STree(SU [1..i]). Hence, the total amortized bound is O(log σ).

Let w and w′ denote the strings that are represented by the loci of the insertion points
of the shortest and longest new leaves w.r.t. the update operator U [i] = (k, a). Let
q = |w′| − |w| + 1 be the number of new leaves to be inserted in the Ukkonen tree. Our
backward approach terminates the ith update after inserting the qth new leaf. How do
we compute this value q? If (x, c, `) is the canonical reference to the locus for w, then
|w| = |x|+`, and hence what remains is how to compute |w′|. We note that w′ is the longest
suffix of $kSk which has at least one more occurrence in SU [1..i] immediately followed by
another character b 6= a. This is because any longer suffix of $kSk is immediately followed
only by a, and will thus correspond to existing leaves in the updated Ukkonen tree. These
two occurrences of w′ must be immediately preceded by distinct characters, say c and d, in
the left-to-right text collection SU [1..i] since otherwise there will be a longer suffix of $kSk
which has at least one more occurrence in SU [1..i], a contradiction. Also, w′c and w′d occur

in the right-to-left text collection TU [1..i−1] before the ith update. Thus, w′ is represented
by an explicit node in the Weiner tree STree(TU [1..i−1]). Since this node is on the path
from the leaf for Tk$k to the root of the Weiner tree, and since it is the deepest node with
the hard W-link for character a, we visit this node during the update of the Weiner tree.
Hence, we can compute |w′| in O(log σ) amortized time by the aid of the Weiner tree.

The cost to trace the suffix link chains in this backward approach is exactly the same
as that in the forward approach. Hence, the total cost is for suffix link chain traversals is
O(N log σ) for all 1 ≤ i ≤ N by Lemma 112.

The lower bound of Lemma 7 also applies to this backward approach. Hence, we do
not maintain the leaf ownerships, and we label the edges leading to the leaves only with
their first characters.

We have shown the following:

Theorem 14. Given a fully-online sequence U of N update operators for a collection of
K left-to-right texts S, our backward version of Ukkonen’s algorithm can update the suffix
tree in a total of O(N log σ) time and O(N) space.

5 Conclusions and open problems

In this paper, we considered construction of the suffix tree and the DAWG of the fully-
online multiple texts, where new characters can be added to any of the texts.

Our contribution is two-folds.
First, we proposed the fully-online version of Weiner’s suffix tree construction algorithm

for a collection of K right-to-left growing texts. This algorithm runs in O(N log σ) time
with O(N) space, where N is the total length of the texts in the collection and σ is
the alphabet size. We showed that the direct application of Weiner’s algorithm to our
fully-online setting takes Θ(N min(K,

√
N)) time (Lemma 2), and showed that how it can

2In the preliminary versions [15, 16] of this paper, a simplified version of the suffix tree oracle [10] was
used to obtain the same bound. However, we do not need it any more due to our amortization argument
of Lemma 11.
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be modified to run in O(N log σ) time with a novel use of NMA data structures which
occupy O(N) total space (Theorem 3). We also showed an algorithm which simulates soft
W-links with hard W-links and these NMA data structures in O(log σ) time per query,
which immediately gives us an O(N log σ)-time construction algorithm for an O(N)-space
representation of the DAWG for a fully-online left-to-right text collection (Corollary 5).

Second, we proposed two variants of the fully-online version of Ukkonen’s suffix tree
construction algorithm for a collection of K left-to-right growing texts. We showed that
explicit maintenance of the owners of leaves requires us super-linear cost (Lemma 7) in
the worst case. Then, we proposed the first variant called the forward approach, which
runs in O(N log σ) time with O(N) space. The key to this forward approach is the notion
of swapping active points and the efficient algorithm for answering leaf ownerships in a
spacial case which happens during the construction of the suffix tree. The second variant
called the backward approach traces a virtual suffix link chain in the reversed direction to
the forward approach, and also works in O(N log σ) time with O(N) space.

There are many intriguing open problems for the left-to-right fully-online suffix tree
construction. Examples are the following:

(1) Is it possible to maintain the Ukkonen’s tree for a left-to-right text collection without
the aid of the Weiner tree for the corresponding right-to-left text collection?

(2) Is there a data structure which maintains leaf ownerships in an implicit manner, so
that the ownership of an arbitrary leaf can be efficiently answered upon query, at any
stage of the construction algorithm?

(3) Our bound is amortized, namely, for each new character our algorithm takes O(log σ)
amortized time. Is it possible to de-amortize it, e.g. by using techniques in [4, 9, 10]?

(4) Is it possible to extend our approach for a bidirectional fully-online text collection,
where each text can grow both directions? There is a O(n log σ)-time O(n)-space
algorithm for constructing the suffix tree for a single bidirectional text of length
n [12]. We note that for a bidirectional fully-online text collection, we cannot use
terminal $k symbols either ends of each text during the updates.
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