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Abstract
A road map can be interpreted as a graph embedded in the plane, in which each 
vertex corresponds to a road junction and each edge to a particular road section. In 
this paper, we consider the computational cartographic problem to place non-over-
lapping road labels along the edges so that as many road sections as possible are 
identified by their name, i.e., covered by a label. We show that this is NP-hard in 
general, but the problem can be solved in O(n3) time if the road map is an embed-
ded tree with n vertices and constant maximum degree. This special case is not only 
of theoretical interest, but our algorithm in fact provides a very useful subroutine in 
exact or heuristic algorithms for labeling general road maps.

Keywords  Map labeling · Road maps · NP-hardness · Efficient tree-based algorithm

1  Introduction

Map labeling is a well-known cartographic application problem in computational 
geometry [13, 16]. Depending on the type of map features, one can distinguish labe-
ling of points, lines, and areas. Common cartographic quality criteria are that labels 
must be disjoint and clearly identify their respective map features [8]. Most of the 
previous work concerns point labeling, while labeling line and area features received 
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considerably less attention. In this paper we address labeling line features, namely 
roads in a road map.

Geometrically speaking, a road map is the representation of a road graph G as 
an arrangement of fat curves, i.e., curves with fixed, positive stroke width, in the 
plane ℝ2 . Each road is a connected subgraph of G (typically a simple path) and each 
edge belongs to exactly one road. Roads may intersect each other in junctions, the 
vertices of G, and we denote an edge connecting two junctions as a road section. 
In road labeling, the task is to place the road names inside the fat curves so that all 
road sections are identified unambiguously but at the same time the road map is not 
overloaded with labels.

Chirié [1] presented a set of rules and quality criteria for label placement in road 
maps based on interviews with cartographers. These include that 

	(C1)	 Labels are placed inside and parallel to the road shapes,
	(C2)	 Every road section between two junctions should be clearly identified, and
	(C3)	 No two road labels may intersect.

Further, he gave a mathematical description for labeling a single road and intro-
duced a heuristic for sequentially labeling all roads in the map. Imhof’s foundational 
cartographic work on label positioning in maps lists very similar quality criteria [3]. 
Edmondson et al. [2] took an algorithmic perspective on labeling a single linear fea-
ture (such as a river). While Edmondson et  al. considered non-bent labels, Wolff 
et al. [15] introduced an algorithm for a single linear feature that places labels fol-
lowing the curvature of the linear feature. Strijk [10] considered static road labeling 
with embedded labels and presented a heuristic for selecting non-overlapping labels 
out of a set of label candidates. Seibert and Unger [11] considered grid-shaped road 
networks. They showed that in those networks it is NP-complete to decide whether 
for every road at least one label can be placed without any overlaps between labels. 
Further, they prove that the according optimization problem maximizing the number 
of roads having at least one label is APX-hard. Yet, Neyer and Wagner [7] intro-
duced a practically efficient algorithm that finds such a grid labeling if possible. 
Maass and Döllner [5] presented a heuristic for labeling the roads of an interactive 
3D map with objects (such as buildings). Apart from label–label overlaps, they also 
resolve label–object occlusions. Vaaraniem et  al. [14] used a force-based labeling 
algorithm for 2D and 3D scenes including road label placement. Schwartges et al. 
[12] presented a simple heuristic for maximizing the number of placed road labels 
in interactive maps providing operations for panning, zooming and rotating the map. 
Finally, Schwartges et al. [9] considered the problem of labeling roads in 3-dimen-
sional maps. In order to avoid distortion of the labels by projecting them onto the 
road, they used billboards instead, i.e., labels connected to their roads by short 
leaders.

Contribution and Outline While it is sufficient to place a single label per road to 
clearly identify all its road sections in grid-shaped road networks, this is not the case 
in general road networks. Consider the schematic example in Fig. 1. In Fig. 1a, it is 
not obvious whether the road section in the center belongs to Knuth St. or to Turing 
St. On the other hand, simply maximizing the number of placed labels, as often done 
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for labeling point features, can cause undesired effects like unnamed roads or clumsy 
label placements (e.g., the unlabeled Dijkstra St. and the threefold labeled Hamming 
St. in Fig. 1a. In order to overcome the problems outlined, we aim for maximizing the 
number of labeled road sections, i.e., the number of road sections that can be clearly 
assigned to labels; see Fig. 1b. Further, in contrast to the approaches of Chirié [1] and 
Strijk [10, Ch.  9], we consider label placement in road maps globally for the entire 
map, applying a continuous sliding model. More precisely, as the underlying model, 
we introduce a new and versatile planar graph model based on criteria (C1)–(C3); see 
Sect. 2.

We take an algorithmic, mathematical perspective on the optimization problem of 
maximizing the number of labeled road sections. In Sect. 3 we show that the problem 
of maximizing the number of labeled road sections is NP-hard for general road graphs, 
even if every road is a path. For the special case that the road graph is a tree, we pre-
sent a polynomial-time algorithm in Sect. 4. This special case is not only of theoretical 
interest, but our algorithm in fact provides a very useful subroutine in exact or heuristic 
algorithms for labeling general road graphs, as we demonstrated in an applied compan-
ion paper [6].
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Fig. 1   a, b Two ways to label the same road network. Junctions are marked gray. b Labels all road sec-
tions. c Illustration of the road graph and relevant terms. d Graph representation of (a) with five labels 
and five labeled road sections. e Graph representation of (b) with five labels and eight labeled road sec-
tions, which is optimal with respect to the considered objective (Color figure online)
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2 � Model

As argued before, a road map is a collection of fat curves in the plane, each repre-
senting a particular piece of a named road. If two (or more) such curves intersect, 
they form junctions. A road label is again a fat curve (the bounding shape of the 
road name) that is contained in and parallel to the fat curve representing its road. We 
observe that, by being contained inside the road curves, labels of different roads can 
intersect only within junctions and that the actual width of the curves is irrelevant, 
except for defining the shape and size of the junctions. We use these observations to 
define the following abstract road graph model.1

A road map M is a planar road graph G = (V ,E) together with a planar embed-
ding �(G) , which can be thought of as the geometric representation of the road axes 
as thin curves; see Fig. 1c. We denote the number of vertices of G by n, and the 
number of edges by m. Observe that, since G is planar, m = O(n) . Each edge e ∈ E 
is either a road section, which is not part of a junction, or a junction edge, which 
is part of a junction. Each vertex v ∈ V  is either a junction vertex incident only to 
junction edges, or a regular vertex incident to one road section and at most one junc-
tion edge, which implies that each regular vertex has degree at most two. A junc-
tion consists of a junction vertex v and its incident junction edges. The edge set E 
decomposes into a set R of edge-disjoint roads, where each road R ∈ R induces a 
connected subgraph of G. Without loss of generality we assume that no two road 
sections in G are incident to the same (regular) vertex. Thus, a road decomposes 
into road sections, separated by junction vertices and their incident junction edges. 
In realistic road networks the number of roads passing through a single junction is 
small and does not depend on the size of the road network. We therefore assume that 
each vertex in G has constant degree. We further assume that each road R ∈ R has a 
name (to be displayed in its label) whose length we denote by �(R).

For simplicity, we identify the embedding �(G) with the subset of the plane cov-
ered by �(G) , i.e., �(G) ⊆ ℝ

2 . We also use �(v) , �(e) , and �(R) to denote the embed-
dings of a vertex v, an edge e, and a road R.

We model a label as a simple open curve � ∶ [0, 1] → 𝖤(G) . Unless men-
tioned otherwise, we consider a curve � always to be simple and open, i.e., � 
has no self-intersections and its end points do not coincide. In order to ease the 
description, we identify a curve � in �(G) with its image, i.e., � denotes the set 
{�(t) ∈ �(G) ∣ t ∈ [0, 1]} . The start point �(0) of � is denoted as the head h(�) and 
the endpoint �(1) as the tail t(�) . The length of � is denoted by length (�) . The curve 
� (partly) covers a road section r if � ∩ �(r) ≠ � . In that case we say that � labels 
the road section r. For a set L of curves, �(L) is the number of road sections that 
are labeled by the curves in L . For a single curve � , we use �(�) instead of �({�}) . 
For two curves �1 and �2 it is not necessarily true that �({�1,�2}) = �(�1) + �(�2) 
because they may label the same road section twice.

1  Our companion paper [6] explains how to extract an abstract road graph from a given road network 
such that the abstract model can be applied in practice.
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A label � for a road R is a curve � ⊆ �(R) of length �(R) whose endpoints must 
lie on road sections and not on junction edges or junction vertices. Requiring that 
labels end on road sections avoids ambiguous placement of labels in junctions where 
it is unclear how the road passes through it. A labeling L for a road map with road 
set R is a set of mutually non-overlapping labels, where we say that two labels � and 
�
′ overlap if they intersect in a point that is not their respective head or tail.

Following the cartographic quality criteria (C1)–(C3), our goal is to find a labe-
ling L that maximizes the number of labeled road sections, i.e., for any labeling L′ 
we have �(L�) ≤ �(L) . We call this algorithmic optimization problem MaxLabele-
dRoads. While Fig. 1d shows a sub-optimal labeling, Fig. 1e shows an optimal labe-
ling of the same road map with respect to the considered objective function.

Note that assuming the road graph G to be planar is not a restriction in practice 
[6]. Consider for example a road section r that overpasses another road section r′ , 
i.e., r is a bridge over r′ , or r′ is a tunnel underneath r. In order to avoid overlaps 
between labels placed on r and r′ , we either can model the intersection of r and r′ 
as a regular crossing of two roads or we split r′ into shorter road sections that do 
not cross r. In both cases the corresponding road graph becomes planar. In the lat-
ter case we may obtain more independent roads created by chopping r′ into smaller 
pieces.

3 � Computational Complexity

We first study the computational complexity of road labeling and prove NP-com-
pleteness of MaxLabeledRoads in the following sense.

Theorem 1  For a given road map M and an integer K it is NP-complete to decide 
if in total at least K road sections can be labeled even if M has maximum degree 4.

Proof  One can argue that the decision problem is in NP by guessing which junc-
tions are covered by which label and then using linear programming for computing 
the label positions. More precisely, by means of an integer linear programming for-
mulation with binary and continuous variables one can describe MaxLabeledRoads 
[6]. After guessing all binary variables contained in this formulation, a linear pro-
gramming formulation remains, which can be solved in polynomial time. For the 
technical details of that formulation we refer to the companion paper [6].

We perform a reduction from the NP-complete planar monotone 3-Sat problem 
[4]. An instance of planar monotone 3-Sat is a Boolean formula � with n variables 
and m clauses (disjunctions of at most three literals) that satisfies the following addi-
tional requirements: (i) � is monotone, i.e., every clause contains either only positive 
literals or only negative literals and (ii) the induced variable-clause graph H� of � is 
planar and can be embedded in the plane with all variable vertices on a horizontal 
line, all positive clause vertices on one side of the line, all negative clauses on the 
other side of the line, and the edges drawn as rectilinear curves connecting clauses 
and contained variables on their respective side of the line.
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We construct a road map M� that mimics the shape of the above embedding of 
H� by defining variable and clause gadgets, which simulate the assignment of truth 
values to variables and the evaluation of the clauses. We refer to Fig. 2 for a sketch 
of the construction.

Chain Gadget The basic building block is the chain gadget, which consists of 
an alternating sequence of equally long horizontal and vertical roads with identi-
cal label lengths that intersect their respective neighbors in the sequence and 
form junctions with them as indicated in Fig.  2c. Assume that the chain consists 
of k ≥ 3 roads. Then each road except the first and last one decomposes into three 
road sections split by two junctions, a longer central section and two short end sec-
tions; the first and last road consist of only two road sections, a short one and a 
long one, separated by one junction. (These two roads will later be connected to 
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see also Fig. 3 (Color figure online)
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other gadgets; indicated by dotted squares in Fig. 2c.) The label length and distance 
between junctions is chosen so that for each road either the central and one end sec-
tion is labeled, or no section at all is labeled. For the first and last road, both sections 
are labeled if the junction is covered and otherwise only the long section can be 
labeled. We have k roads and k − 1 junctions. Each label must block a junction if it 
labels two sections. So the best possible configuration blocks all junctions and labels 
2(k − 1) + 1 = 2k − 1 road sections.

The chain gadget has exactly two states in which 2k − 1 road sections are labeled. 
Either the label of the first road does not block a junction and labels a single section 
and all subsequent roads have their label cover the junction with the preceding road 
in the sequence, or the label of the last road does not block a junction and all other 
roads have their label cover the junction with the successive road in the sequence. 
In any other configuration there is at least one road without any labeled section and 
thus at most 2k − 2 sections are labeled. We use the two optimal states of the gadget 
to represent and transmit the values true and false from one end to the other.

Fork Gadget The fork gadget allows us to split the value represented in one chain 
into two chains, which is needed to transmit the truth value of a variable into multi-
ple clauses. It connects to the end roads of three chain gadgets by sharing junctions.

The core of the fork, as illustrated in Fig. 3, consists of six roads r1,… , r6 , where 
r1 , r2 , and r3 are vertical line segments and r4 , r5 , and r6 are horizontal line segments. 
We arrange these roads such that r1 and r2 each have one junction with r4 and one 
junction with r5 . Further, r3 has one junction with r4 , one with r5 and one with r6 . 
The label length of these roads is chosen so that it is exactly the length of the roads. 
Hence, a placed label blocks all road sections of the roads.

Further, there are three roads g1 , g2 , g3 such that g1 has one junction with r1 , g2 
has one junction with r2 , and g3 has one junction with r6 . In all three cases we place 
the junction so that it splits the road into a short road section that is shorter than the 
road’s label length and a long road section that has exactly the road’s label length. 
We call g1 , g2 and g3 gates, because later these roads will be connected by junctions 
to the end roads of chains. To that end, these connecting junctions will be placed on 
the long road sections of the gates; see the purple dotted areas in Fig. 3.
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Fig. 3   Illustration of the fork gadget. The dotted rectangles (lilac) indicate the parts of the road sections 
that are later used to connect the gadgets with other gadgets. For each label the number of labeled road 
sections is given. Each road section is labeled by at most one label. a Structure of the fork gadget. c Con-
figuration transmitting the value false. b Configuration transmitting the value true (Color figure online)



1888	 Algorithmica (2020) 82:1881–1908

1 3

The fork gadget has exactly two states, in which 16 road sections are labeled.2 In 
the first state the labels of r1 , r2 and r3 are placed; see Fig. 3b. Hence, the labels of 
g1 and g2 label only the long road sections of g1 and g2 , but not the short ones. The 
label of g3 labels both the long and short road section of g3 . In the second state the 
labels of r4 , r5 , r6 are placed; see Fig. 3c. Hence, the labels of g1 and g2 label the long 
and short road sections of g1 and g2 , while only the long road section of g3 is labeled. 
In any other configuration fewer road sections are labeled. We use the two optimal 
states of the gadget to represent and transmit the values true and false from one 
gate to the other two gates. More specifically the gates g1 and g2 are connected with 
chains that lead to the same literal, while g3 is connected with a chain that leads to 
the complementary literal.

Variable Gadget We define the variable gadgets simply by connecting chain 
and fork gadgets into a connected component of intersecting roads. This construc-
tion already has the functionality of a variable gadget: it represents (in a labeling 
that labels the maximum number of road sections) the same truth value in all of its 
branches, synchronized by the fork gadgets, see the blue chains and yellow forks in 
Figs. 2 and 4a. More precisely, we place a sequence of chains linked by fork gadgets 
along the horizontal line on which the variable vertices are placed in the drawing 
H� . Each fork creates a branch of the variable gadget either above or below the line. 
We create as many branches above (below) the line as the variable has occurrences 
in positive (negative) clauses in � . The leftmost and rightmost chain on the line also 
serve as branches. The synchronization of the different branches via the forks is such 
that either all top branches have their road labels pushed away from the line and all 
bottom branches pulled towards the line or vice versa. In the first case, we say that 
the variable is in the state false and in the latter case that it is in the state true. The 
example in Fig. 2 has one variable set to true, namely x2 , and four variables set to 
false, namely x1 , x3 , x4 and x5 . Note that in case a variable occurs only in one posi-
tive and one negative clause (see x4 in Fig. 2a), we connect the corresponding liter-
als via a single chain without introducing forks for that variable.

FF FFFFFF

x x x x

x̄ x̄ x̄ x̄

Fig. 4   Illustration of the variable gadget. The gadget has four connections for the positive literal x and 
four connections for the negative literal x̄ . In the current state the variable x is set to false (Color figure 
online)

2  For counting we consider the fork gadgets without connected chain gadgets, i.e., the roads g
1
 , g

2
 , and 

g
3
 consist of two road sections and two junction edges each. Connecting chain gadgets to the fork gadgets 

do not change their functionality and the counting argument.
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Clause Gadget Finally, we need to create the clause gadget, which links three 
branches of different variables. The core of the gadget is a single road that con-
sists of three subpaths meeting in one junction. Each subpath of that road shares 
another junction with one of the three incoming variable branches. Beyond each of 
these three junctions the final road sections are just long enough so that a label can 
be placed on the section. However, the section between the central junction of the 
clause road and the junctions with the literal roads is shorter than the label length. 
The road of the clause gadget has six sections in total and we argue that the six 
sections can only be labeled if at least one incoming literal evaluates to true. Oth-
erwise at most five sections can be labeled. By construction, each road in the chain 
of a false literal has its label pushed towards the clause, i.e., it blocks the junction 
with the clause road. As long as at least one of these three junctions is not blocked, 
all sections can be labeled; see Fig. 2b. But if all three junctions are blocked, then 
only two of the three inner sections of the clause road can be labeled and the third 
one remains unlabeled. We observe that this requires that the core of the gadget is a 
single road.

Reduction Obviously, the size of the instance M� is polynomial in n and m. If 
we have a satisfying variable assignment for � , we can construct the corresponding 
road labeling and the number of labeled road sections is six per clause and a fixed 
constant number K′ of sections in the variable gadgets, i.e., at least K = K� + 6m . 
On the other hand, if we have a road labeling with at least K labeled sections, each 
variable gadget is in one of its two maximum configurations and each clause road 
has at least one label that covers a junction with a literal road, meaning that the cor-
responding truth value assignment of the variables is indeed a satisfying one. This 
concludes the reduction. 	�  ◻

Most roads in the reduction are paths, except for the central road in each clause 
gadget, which is a degree-3 star. In fact, we can strengthen Theorem 1 by using a 
more complex clause gadget instead that consists only of paths as described next.

Theorem 2  For a given road map M and an integer K it is NP-complete to decide 
if in total at least K road sections can be labeled, even if M has maximum degree 4 
and all roads are paths.

Proof  The clause gadget consists of twelve roads, ra , rb , rc , ga , gb , gc , ai , bi , and ci 
with i ∈ {1, 2} that all are paths; see Fig.  5. We choose ra , rb , and rc such that ra 
and rb consist of vertical segments and rc consists of horizontal segments. Going 
along ra from bottom to top, the junctions with the roads a1 , a2 , c1 and b1 occur 
in the sequence Ba = (a1, c2, b1, a2) . Going along rb from top to bottom, the junc-
tions with the roads b1 , b2 , a2 and c1 occur in the sequence Bb = (a2, b1, c1, b2) . 
Going along rc from right to left, the roads b2 , c1 , c2 and a1 occur in the sequence 
Bc = (b2, c1, c2, a1) . Further, the label lengths of ra , rb , and rc is chosen such that 
exactly one label can be placed.

We now describe junctions of the roads ga , gb , gc , ai , bi , and ci with i ∈ {1, 2} . 
The road a1 first intersects ga , then ra , and finally rc . Let s1

a1
 , s2

a1
 , s3

a1
 and s4

a1
 denote 



1890	 Algorithmica (2020) 82:1881–1908

1 3

these road sections in that particular order. The length of s1
a1

 is chosen such that a 
single label can be placed on s1

a1
 , while the others are shorter than the label length of 

a1 . More specifically, we define a1 ’s label length such that a label covers the sections 
in either {s1
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} , {s1
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} , {s2
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} or {s3
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, s4
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} . We define the inter-

sections and the label length for a2 analogously. Further, ga intersects a1 and a2 in 
one junction, i.e., the edge of ga connecting both junction vertices is a junction edge. 
The label length of ga is chosen so that a label can cross ga ’s only junction. The 
length of ga ’s road sections is at least as long as ga ’s label length. We call ga a gate, 
because later this road will be connected to the end road of a chain by a junction; see 
the lilac dotted square in Fig. 5a. For b1 , b2 , c1 , c2 we introduce analogous junctions 
and road sections, however, b1 and b2 intersect gb instead of ga , and c1 and c2 inter-
sect gc instead of ga.

In order to label both road sections of a gate, either two labels can be placed on 
the road sections separately, or one label that goes through the junction. In the for-
mer case the gate is open, and in the latter case it is closed; see Fig. 5b. We observe 
that it only makes sense to close a gate if at least one road section of the gate does 
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Fig. 5   Illustration of an alternative clause gadget that consists only of paths as roads. The dotted rectan-
gles (lilac) indicate the parts of the road sections that are used to connect the gadgets with other gadgets. 
For each label the number of labeled road sections is given. Each road section is labeled by at most one 
label. a Structure of the clause gadget. b Optimal labeling for the case that at least one literal is true. c 
Optimal labeling for the case that all literals are false (Color figure online)
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not allow to place a label that is only contained in that road section. This case will 
occur if and only if the connected chain transmits the value false to the clause.

Assume that at least one gate is open, i.e., one literal of the clause is true; see 
Fig.  5b for an example with two open gates. Without loss of generality let ga be 
open. We place a label �r on ra such that it crosses the junctions of sequence Ba and 
labels five sections. Since ga is open, we can place a label �1 that labels s1

a1
 and s2

a1
 . 

Analogously, we can place a label �2 labeling s1
a2

 and s2
a2

 . Placing further labels as 
indicated in Fig. 5b, we label five road sections of ra and all road sections of any 
other road except for s4

c2
 , s4

b1
 . Hence, 33 road sections are labeled.

We observe that we can place the labels of b1 , b2 , c1 , c2 such that they do not cross 
the junctions of gb and gc , respectively. Hence, it does not matter whether gb and gc 
are closed or open, i.e., it does not matter whether the corresponding literals are true 
or false.

We now argue that this is an optimal labeling. If s4
c2

 or s4
b1

 were labeled, the label 
�r must be placed such that the junctions of r with c2 and b1 are not crossed, respec-
tively. This decreases the number of labeled road sections at least as much as labe-
ling s4

c2
 and s4

b1
 increases the number of labeled road sections. In order to label at 

least one of the unlabeled road sections of r, we need to place a label that crosses Bb 
or Bc . Obviously, this yields a smaller number of labeled road sections than 31.

Finally, assume that all gates are closed as in Fig. 5c. Consider the same labeling 
as before. This time, however, we cannot label s2

a1
 and s2

a2
 anymore. Hence, this labe-

ling has only 31 labeled road sections. Obviously, it cannot be improved by chang-
ing the placement of the remaining labels or adding more labels. 	�  ◻

4 � An Efficient Algorithm for Tree‑Shaped Road Maps

In this section we assume that the underlying road graph of the road map is a tree 
T = (V ,E) . In Sect. 4.1 we present a polynomial-time algorithm to optimally solve 
MaxLabeledRoads for trees; Sect. 4.2 shows how to improve its running time and 
space consumption. Our approach uses the basic idea that removing the vertices 
whose embeddings lie in a curve c ⊆ �(T) splits the tree into independent parts. In 

horizontal

ρ

= child of �
curve � vertical

head of �

tail of �

ρ

curve �

(a) Horizontal label. (b) Vertical label.

Fig. 6   Basic definitions of horizontal and vertical labels
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particular this is true for labels. We assume that T is rooted at an arbitrary leaf � and 
that its edges are directed away from � ; see Fig. 6. For two points p, q ∈ �(T) we 
define d (p, q) as the length of the shortest curve in �(T) that connects p and q. For 
two vertices u and v of T we also write d (u, v) instead of d (�(u),�(v)) . For a point 
p ∈ �(T) we abbreviate the distance d (p, �) to the root � by d p . For a curve � in 
�(T) , we call p ∈ � the highest point of � if d p ≤ d q, for any q ∈ � . As T is a tree, p 
is unique. We distinguish two types of curves in �(T) . A curve � is vertical if h(�) or 
t(�) is the highest point of � ; otherwise we call � horizontal; see Fig. 6. Without loss 
of generality we assume that the highest point of each vertical curve � is its tail t(�) . 
Since labels are modeled as curves, they are also either vertical or horizontal. For a 
vertex u ∈ V  let Tu denote the subtree rooted at u.

4.1 � Basic Approach

We first determine a finite set of candidate positions for the heads and tails of labels, 
and transform T into a tree T � = (V �,E�) by subdividing some of T’s edges so that the 
resulting tree contains a vertex for every candidate position. To that end we construct 
for each regular vertex v ∈ V  a chain of tightly packed vertical labels that starts at 
�(v) , is directed towards � , and ends when either the road ends, or adding the next 
label does not increase the number of labeled road sections; see Fig. 7. More spe-
cifically, we place a first vertical label �1 such that h(�1) = �(v) ; recall that t(�1) is 
the highest point of �1 . For i = 2, 3,… we add a new vertical label �i with h(�i) = 
t(�i−1) , as long as h(�i) and t(�i) do not lie on the same road section and none of �i ’s 
endpoints lies on a junction edge. We use the tails of all these labels to subdivide the 
tree T. Doing this for all regular vertices of T we obtain the tree T ′ , which we call the 
subdivision tree of T. The vertices in V ′⧵V  are neither junction vertices nor regular 

ρ

T .

ρ

(a) Tree (b) Subdivision tree of T .

Fig. 7   Illustration of subdivision trees. a The original tree T with root � and a tightly packed chain of 
labels (orange) starting at a leaf of T. The label length is five. b The corresponding subdivision tree. The 
inserted vertices (marked by × ) have the same color as the original vertex at which the according chain 
of tightly packed labels has started. In case that two subdivision vertices coincide only one is kept (Color 
figure online)
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vertices. Since each chain consists of O(n) labels, the cardinality of V ′ is O(n2) . We 
call an optimal labeling L of T a canonical labeling if for each label � ∈ L

� there 
exists a vertex v in T ′ with �(v) = h(�) or �(v) = t(�) . The next lemma proves that it 
is sufficient to consider canonical labelings.

Lemma 1  For any road graph T that is a tree, there exists a canonical labeling L.

Proof  Let L be an optimal labeling of T. We push the labels of L as far as possible 
towards the leaves of T without changing the labeled road sections; see Fig. 8. More 
specifically, starting with the labels closest to the leaves, we move each label away 
from the root as far as possible while its head and tail must remain on their respec-
tive road sections. For a vertical label this direction is unique, while for horizontal 
labels we can choose any of the two possible directions. Then, for each label its head 
or tail either coincides with a leaf of T, with some internal regular vertex, or with the 
head of another label. Consequently, each vertical label belongs to a chain of tightly 
packed vertical labels starting at a regular vertex v ∈ V  . Further, the head or tail of 
each horizontal label coincides with the end of a chain of tightly packed vertical 
labels or with a regular vertex of T, which proves the claim. 	�  ◻

We now explain how to construct a canonical labeling that is optimal among 
all possible labelings. To that end, we first introduce some notations. For a vertex 
u ∈ V � let L(u) denote a labeling that labels a maximum number of road sections 
in T using only valid labels in �(T �

u
) , where T ′

u
 denotes the subtree of T ′ rooted at u. 

Note that these labels may also cover the incoming road section of u, e.g., label � in 
Fig. 8b covers the edge e′.

Further, the children of a vertex u ∈ V � are denoted by the set N(u); we explicitly 
exclude the parent of u from N(u). Further, consider an arbitrary curve � in �(T) and 
let �� = �⧵{t(�), h(�)} . We observe that removing all vertices of T ′ contained in �′ 
together with their incident outgoing edges creates several independent subtrees. We 

u

T ′
u

added vertex

e

e′

�

chain

(a) Pushing labels. (b) Canonical labeling.

Fig. 8   Illustration of canonical labelings. a Each label is moved away from the root as far as possible 
while its head and tail must remain on their respective road sections. b The canonical labeling obtained 
from (a). The tree is subdivided by additional vertices (pink squares) at the tails and heads of the labels 
(Color figure online)
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call the roots of these subtrees (except the one containing � ) children of � (see Fig. 6). 
If no vertex of T ′ lies in �′ , the curve is contained in a single edge (u, v) ∈ E� . In that 
case v is the only child of � . We denote the set of all children of � as N(�).

For each vertex u in T ′ we introduce a set C(u) of candidates, which model potential 
labels with highest point �(u) . If u is a regular vertex of T or u ∈ V �⧵V , the set C(u) 
contains all vertical labels � with highest point �(u) . If u is a junction vertex, C(u) con-
tains all horizontal labels that start or end at a vertex of T ′ and whose highest point is 
�(u) . In both cases we assume that C(u) also contains the degenerate curve ⊥u = �(u) , 
which is the dummy label of u. We set N(⊥u) = N(u) and 𝜔(⊥u) = 0.

For a curve � we define L(�) =
⋃

v∈N(�) L(v) ∪ {�} . Thus, L(�) is a labeling com-
prising � and the labels of its children’s optimal labelings. We call a label � ∈ C(u) 
with � = argmax {�(L(�)) ∣ � ∈ C(u)} an optimal candidate of u. Next, we prove 
that it is sufficient to consider optimal candidates to construct a canonical labeling.

Lemma 2  Let u be a vertex of T ′ with optimal labeling L(u), and let � be an optimal 
candidate of u, then it is true that �(L(u)) = �(L(�)).

Proof  First note that �(L(u)) ≥ �(L(�)) by the definition of L(u) and because both 
labelings L(u) and L(�) only contain labels that are embedded in �(T �

u
).

By Lemma 1 we can assume without loss of generality that L(u) is a canonical 
labeling. Let � be the label of L(u) with �(u) as the highest point of � (if it exists).

If � exists, then the vertices in N(�) are roots of independent subtrees, which 
directly yields �(L(u)) = �(L(�)) . By construction of C(u) we further know 
that � is contained in C(u). Hence, � is an optimal candidate of u, which implies 
�(�) = �(�).

If � does not exist, then we have

Equality (1) follows from N(⊥u) = N(u) and the definition that ⊥u does not label any 
road section. Since ⊥u is contained in C(u), the dummy label ⊥u is the optimal candi-
date � . 	�  ◻

Algorithm 1 first constructs the subdivision tree T � = (V �,E�) from T. Then starting 
with the leaves of T ′ and going to the root � of T ′ , it computes an optimal candidate 
� = ������������(u) for each vertex u ∈ V � in a bottom-up fashion. By Lemma 2, 
the labeling L(�) is an optimal labeling of T ′

u
 . In particular, L(�) is the optimal labeling 

of T. 

𝜔(L(u)) = 𝜔

(
⋃

v∈N(u)

L(v)

)
(1)
=𝜔

(
⋃

v∈N(⊥u)

L(v) ∪ {⊥u}

)
= 𝜔(L(⊥u)).
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Due to the size of the subdivision tree T ′ we consider O(n2) vertices. Implement-
ing ������������(u) , which computes an optimal candidate � for u, naively, cre-
ates C(u) explicitly. We observe that if u is a junction vertex, C(u) may contain O(n2) 
labels; as we assume that each vertex has constant degree, O(n2) pairs of road sec-
tions of different subtrees of u can be connected by horizontal labels. Each label 
can be constructed in O(n) time using a breadth-first search. Thus, for each vertex u 
the procedure OptCandidate needs in a naive implementation O(n3) time, which 
yields O(n5) running time in total. Further, we need O(n2) storage to store T ′ . Note 
that we do not need to store L(u) for each vertex u of T ′ , because by Lemma 2 we 
can reconstruct it using L(�) , where � is the optimal candidate of u. To that end we 
store for each vertex of T ′ its optimal candidate � and w(L(�)).

Theorem  3  For a road map with a tree as underlying road graph with constant 
maximum degree, MaxLabeledRoads can be solved in O(n5) time using O(n2) space.

In case that all roads are paths, Algorithm 1 runs in O(n4) time, because for each 
u ∈ V � the set C(u) contains O(n) labels. We shortly note that besides the primary 
objective to label a maximum number of road sections, Chirié [1] also suggested 
several additional secondary objectives, e.g., labels should overlap as few junctions 
as possible. Our approach allows us to easily incorporate secondary objectives by 
changing the weight function � appropriately. In particular, as the primary and sec-
ondary objectives might contradict each other, the weight function can be used to 
express a compromise between them. The improvements that we present in the fol-
lowing sections are specialized for the objective of maximizing the number labeled 
road sections.

4.2 � Improvements on Running Time

Next we describe how the running time of Algorithm 1 can be improved to O(n3) 
time by speeding up OptCandidate(u) to O(n) time.

For an edge e = (u, v) ∈ E ∪ E� we call a vertical curve � ⊆ �(T) an e-rooted 
curve if 

	 (i)	 t(�) = �(u),
	 (ii)	 h(�) is located on a road section but not on a junction edge, and
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	 (iii)	 length (�(e) ∩ �) = min{ length (�), length (�(e))} , i.e., � emanates from �(u) 
passing through e.

For instance, the red label in Fig. 8b is an e-rooted curve. We observe that in any 
canonical labeling each vertical label � is a (u, v)-rooted curve with (u, v) ∈ E� , and 
each horizontal label � can be composed of a (u, v1)-rooted curve �1 and a (u, v2)
-rooted curve �2 with (u, v1), (u, v2) ∈ E� and �(u) is the highest point of � ; see 
Fig. 9a, b, respectively. Moreover, an e-rooted curve � is maximal if there is no other 
e-rooted curve �′ with length (�) = length (��) and 𝜔(L(��)) > 𝜔(L(�)).

For a sub-curve c ⊆ �(e�) of a road section e′ we say that it is an e-dock if for any 
two e-rooted curves � and �′ that end on c we have �(L(�)) = �(L(��)) ; we call 

ρ

c

u

x

w

�

e′

e

ρ

u

w

{

P

d(u,w) ≥ λ(R)d(u,w) < λ(R)

e
�

v1 v2

u

ρ

e1 e2

�1 �2

(a) Case 1: Regular vertex. (b) Case 2: Junction vertex.

Fig. 9   Application of linearizations. a The vertex u is a regular vertex. Hence, only vertical labels can 
end at u. b The vertex u is a junction vertex. Hence, only horizontal labels can cover u 
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Fig. 10   Schematic illustration of e-docks. For simplicity the tree consists only of road sections (segments 
between black dots). The curves c

1
,… , c

6
 are examples for e-docks. a The tree is annotated with distance 
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weight. For example the e-dock c
6
 is maximal, as for every point p of c

6
 there is a maximal e-rooted 

curve ending at p. Two e-docks superpose each other if their distance intervals intersect
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�(L(�)) the weight �e(c) of c. See Fig. 10 for an illustration. Further, an e-dock c is 
maximal if for every point p on c there is a maximal e-rooted curve � that ends on c, 
i.e., h(�) = p . Hence, with a maximal e-dock c in �(T) we can represent all maximal 
e-rooted curves that end on c without storing them explicitly.

Moreover, we are only interested in maximal e-docks such that no two maxi-
mal e-docks represent maximal e-rooted curves of the same length. To that end, we 
define the distance interval I(c) of an e-dock as [ d t(c), d h(c)] . Since T is a tree, for 
every point p of c we have d p ∈ I(c) . We say that two e-docks c and c′ superpose 
each other if I(c) ∩ I(c�) ≠ � . Hence, two maximal e-docks that do not superpose 
each other represent maximal e-rooted curves of different lengths.

Next, we introduce a data structure that encodes for each edge e = (u, v) of T all 
maximal e-rooted curves as O(n) pairwise superposition-free maximal e-docks in 
�(Tu).

Definition 1  (Linearization) Let e = (u, v) be an edge of T. A tuple (L,� ∶ L → ℕ) 
is called a linearization of e if L is a set of pairwise superposition-free maximal 
e-docks such that 

(1)	 For each e-dock c ∈ L it holds that �(c) = �e(c) , and
(2)	 For any e-rooted curve � there is an e-dock c ∈ L with length (�) + d u ∈ I(c).

The main idea of the linearization is that for each length of a possible e-rooted 
curve there is an e-dock in L that represents the best possible weight of an e-rooted 
curve with the same length. To that end, Condition (1) enforces that the function 
� actually encodes the weights of the e-docks in L. Condition (2) ensures that L is 
complete in the sense that for any e-rooted curve � there is an e-rooted curve �′ of 
the same length that ends on an e-dock of L. We observe that �′ is unique as L con-
tains pairwise superposition-free e-docks.

Assume that we apply Algorithm 1 on T ′ and that we currently consider the ver-
tex u of T ′ . Hence, we can assume that for each vertex v ≠ u of T ′

u
 its optimal candi-

date and �(L(v)) is given. We first explain how to speed up OptCandidate using 
linearizations. Afterwards, we present the construction of linearizations.

4.2.1 � Speeding up OptCandidate with Linearizations

Here we assume that the linearizations are given for the edges of T. Depending on 
the type of u we describe how to compute its optimal candidate.

Case 1: u is regular. If u is a leaf, the set C(u) contains only ⊥u . Hence, assume 
that u has one outgoing edge e = (u, v) ∈ E� , which belongs to a road R. Let P be the 
longest path of vertices in T ′

u
 that starts at u and does not contain any junction ver-

tex. Note that the path is unique. Further, by construction of T ′ the last vertex w of P 
must be a regular vertex in V, but not in V ′⧵V  . We consider two cases; see Fig. 9a.

If d (u,w) ≥ �(R) , the optimal candidate is either ⊥u or the e-rooted curve � of 
length �(R) that ends on �(P) . By assumption and due to 𝜔(L(⊥u)) = 𝜔(L(v)) , we 
decide in O(1) time whether 𝜔(L(⊥u)) ≥ 𝜔(L(�)) , obtaining the optimal candidate.
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If d (u,w) < 𝜆(R) , the optimal candidate is either ⊥u or goes through a junction. 
Since w is regular, it has only one outgoing edge e� = (w, x) . Further, by the choice 
of P the edge e′ is a junction edge in T; therefore the linearization (L,�) of e′ is given. 
In linear time we search for the e-dock c ∈ L such that there is an e-rooted curve � 
of length �(R) with its head on c. To that end we consider for each e-dock c ∈ L its 
distance interval I(c) and check whether there is a t ∈ I(c) with t − d u = �(R) . Note 
that using a binary search tree for finding c speeds this procedure up to O(log n) 
time, however, this does not asymptotically improve the total running time. The 
e-rooted curve � then can be easily constructed in O(n) time by walking from c to u 
in �(T).

If such an e-dock c exists, by definition of a linearization the optimal can-
didate is either ⊥u or � , which we can decide in O(1) time by checking whether 
𝜔(L(⊥u)) ≥ 𝜔(L(�)) . Note that we have 𝜔(L(⊥u)) = 𝜔(L(v)) and �(L(�)) = �(c) . 
If c does not exist, again by definition of a linearization there is no vertical label 
� ∈ C(u) and ⊥u is the optimal candidate.

Case 2: u is a junction vertex. The set C(u) contains horizontal labels. 
Let � be such a label and let e1 = (u, v1) and e2 = (u, v2) be two junc-
tion edges in E covered by � ; see Fig.  9b. Then there is an e1-rooted curve 
�1 and an e2-rooted curve �2 whose composition is � . Further, we have 
�(L(�)) = �(L(�1) ∪ L(�2)) +

∑
v∈N(u)⧵{v1,v2}

�(L(v)) . We use this as follows.
Let e1 and e2 be two outgoing edges of u that belong to the same road R, and let 

(L1,�1) and (L2,�2) be the linearizations of e1 and e2 , respectively. We now define 
for e1 and e2 and their linearizations the operation opt-cand (L1, L2) that returns an 
optimal candidate of u restricted to labels covering e1 and e2.

31
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For i ∈ {1, 2} let Di = max{ d u ∣ u is vertex ofTvi} and let 
fu(t) = d u − (t − d u) = 2 d u − t be the function that “mirrors” the point t ∈ ℝ

2 
at d u . Applying fu(t) on the boundaries of the distance intervals of the curves in 
L1 , we first mirror these intervals such that they are contained in the interval 
[2 d u − D1, d u] ; see Fig. 11. Thus, the curves in L1 ∪ L2 are mutually superposition-
free such that their distance intervals lie in J = [2 d u − D1,D2].

We call an interval [x, y] ⊆ J a window if it has length �(R) , if d u ∈ [x, y] , and 
if there is an e1-dock c1 ∈ L1 and an e2-dock c2 ∈ L2 with x ∈ I(c1) and y ∈ I(c2) ; 
see Fig.  11. By the definition of a linearization there is a maximal e1-rooted 
curve �1 ending on c1 and a maximal e2-rooted curve �2 ending on c2 such that 
length (�1) + length (�2) = �(R) . Consequently, the composition of �1 and �2 forms 
a horizontal label � with �(L(�)) = �(L(�1) ∪ L(�2)) +

∑
v∈N(u)⧵{v1,v2}

L(v) ; we call 
�(L(�)) the value of the window. Using a simple sweep from left to right we com-
pute for the distance interval I(c) of each curve c ∈ L1 ∪ L2 a window [x,  y] that 
starts or ends in I(c) (if such a window exists). The result of opt-cand (L1, L2) is then 
the label � of the window with maximum value. For each pair e1 and e2 of outgo-
ing edges we apply opt-cand (L1, L2) , which yields a label � . By construction either 
the label � with maximum �(�) or ⊥u is the optimal candidate for u, which we can 
check in O(1) time. Later on we prove that we consider only linearizations of linear 
size. Since we assume that every vertex of T ′ has constant degree, we obtain the next 
lemma.

Lemma 3  For each u ∈ V � the optimal candidate can be found in O(n) time.

4.2.2 � Construction of Linearizations

We now show how to recursively construct a linearization for an edge e = (u, v) 
of T. To that end we assume that we are given the subdivision tree T ′ of T and 
the linearizations for the outgoing edges e1 = (v,w1),… , ek = (v,wk) of v that 
belong to the same road R as e. Further, we can assume that we have computed 
the weight �(L(w)) for each vertex w in T ′

u
 except for u. In case that two of these 

vertices share the same position in �(T �
u
) we remove the one with less weight. Let 
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v = v3

v2

c1

I(c)

I(c′)I(c3)

du dpdv

(L, ω)
(Li, ωi)

dv2

I(c4)

(a) e is a junction edge. (b) e is a road section. (c) Interval representation of (b).

Fig. 12   First step of constructing a linearization: for each edge ei its linearization (L,�) is extended to a 
linearization (Li,�i) of the tree Ti rooted at u 
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Ti be the tree induced by the edges e, ei and the edges of the subtree rooted at wi . 
As a first step we compute for each linearization (L,�) of each edge ei a lineariza-
tion (Li,�i) for e restricted to tree Ti , i.e., conceptually, we assume that Tu consists 
only of Ti ’s edges.

If e is a junction edge (see Fig. 12a), we set Li ← L and determine the weight 
of each curve c ∈ Li as

Otherwise, if e is a road section, let v1,… , vl be the vertices of the subdivision tree 
T ′ that lie on e, i.e., �(vj) ∈ �(e) for all 1 ≤ j ≤ l ; see Fig. 12b–c. We assume that 
d (v1) < … < d (vl) , which in particular yields v1 = u and vl = v . Let c1 be the curve 
�((v1, v2)) and for 2 ≤ j < l let cj be the curve �((vj, vj+1))⧵�(vj) . Hence, we have ⋃l

j=1
cj = �(e) and cj ∩ cj� = � for 1 ≤ j < j′ < l . We set

We weight each curve c ∈ Li as follows. If c is contained in L, we set 
�i(c) ← �(c) + 1.

Otherwise, c is a sub-curve of �(e) and there exists a j with c = cj . We set 
�i(c) ← �(L(vj+1) ∪ {�c}) , where �c ⊆ �(e) is an e-rooted curve that starts at �(u) 
and ends on c. The next lemma shows that this transformation yields a lineariza-
tion as desired.

Lemma 4  For each outgoing edge ei with linearization (L,�), the tuple (Li,�i) is a 
linearization of e restricted to the tree Ti.

�i(c) ← �(c) +
∑

w∈N(v)⧵{wi}

�(L(w)).

Li ← L ∪

l−1⋃

j=1

{cj}.
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Fig. 13   Second step of constructing a linearization: Merging the linearizations of the trees Ti and Tj
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Proof  We use the same notation as used above and prove the following three 
statements: 

(A)	� The curves in Li are pairwise superposition-free.
(B)	� The curves in Li are maximal e-docks with weight �e(c) = �i(c).
(C)	� For each e-rooted curve � there is an e-dock c ∈ L with length (�) + d u ∈ I(c)

.

(A) The curves in Li are pairwise superposition-free. Since L contains only curves 
that do not superpose each other, the only curves that could superpose another curve 
in Li are contained in Li⧵L . Since Li⧵L is empty for a junction edge, we can assume 
that e is a road section. By construction these curves in Li⧵L partition �(e) without 
intersecting each other. Further, by assumption no two road sections share a com-
mon vertex and since all curves of L are contained in �(Tv) , the curves in Li⧵L can-
not superpose any curve in L.

(B) The curves in Li are maximal e-docks with �e(c) = �(c) . First of all, all 
curves in Li are sub-curves of road sections: since L is a linearization, each curve 
of L must be a sub-curve of a road section. Further, if e is a road section, the curves 
Li⧵L are sub-curves of e and otherwise, if e is a junction edge, the set Li⧵L is empty. 
Next, we show that for each point p of any curve c ∈ Li there is a maximal e-rooted 
curve � that ends at p with �(L(�)) = �i(c) . This particularly shows that c is an 
e-dock as any two e-rooted curves ending on c have consequently the same weight. 
We distinguish the two cases that e is a road section or a junction edge.

Case: e is a road section. We distinguish the two cases that c ∈ Li⧵L or c ∈ L . 
First, let c be an arbitrary curve in Li⧵L and let � be any e-rooted curve that ends on 
c. Obviously, � must be a maximal e-rooted curve, because there is no other point 
in �(Ti) having the same distance to � as h(�) has. We show that �e(c) = �i(c) . Let 
v1,… , vl be the vertices of the subdivision tree T ′ that lie on e as defined above. By 
construction there is an edge (vj, vj+1) with 1 ≤ j < l and c ⊆ �(vj, vj+1) . It holds that

Hence, we obtain that c is an e-dock with weight �e(c) = �i(c).
Now, consider a curve c ∈ L and let � be any e-rooted curve that ends on c. As L 

is a linearization of ei , for each point p on c there must be a maximal ei-rooted curve 
�
′ with h(��) ∈ c . We choose �′ such that h(��) = h(�) . Since �′ is a maximal ei

-rooted curve, the curve � must be a maximal e-rooted curve. Further, � labels one 
road section more than �′ . Hence, we obtain

Hence, we again obtain that c is a maximal e-dock with weight �e(c) = �i(c).
Case: e is a junction edge. Let c be a curve in Li and let � be any e-rooted curve 

that ends on c. Further, let �′ be the ei-rooted sub-curve of � that starts at �(v) and 
ends at h(�) ; by definition of L such a curve exists. It holds

�e(c) = �(L(�)) = �(L(vj+1) ∪ {�}) = �i(c).

�e(c) = �(L(�)) = �(L(��)) + 1 = �(c) + 1 = �i(c).
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Since �′ is a maximal ei-rooted curve, it directly follows that � is a maximal 
e-rooted curve with respect to Ti . Hence, we obtain that c is an e-dock with weight 
�e(c) = �i(c).

(C) For each e-rooted curve � there is an e-dock c ∈ L with length (�) + d u ∈ I(c) . 
First consider an e-rooted curve � that either ends on ei or on an edge of Twi

 . Recall 
that h(�) must lie on a road section. Then there is an ei-rooted curve �′ with �′ ⊆ � 
and h(�) = h(��) . Hence, there is a curve c ∈ L with length (��) + d v ∈ I(c) . Since 
�
′ is a sub-curve of � , we also have length (�) + d u ∈ I(c) . Now, consider an 

e-rooted curve � that ends on e. In that case e is a road section. By construction 
there is a curve c ∈ Li⧵L with length (�) + d u ∈ I(c) . 	�  ◻

In the next step we define an operation ⊕ by means of which two linearizations 
(Li,�i) and (Lj,�j) can be combined to one linearization (Li,𝜔i)⊕ (Lj,𝜔j) of e 
that is restricted to the subtree Ti,j induced by the edges of Ti and Tj . Consequently, ⨁k

i=1
(Li,�i) is the linearization of e without any restrictions.

We define (L,𝜔) = (Li,𝜔i)⊕ (Lj,𝜔j) as follows; for an illustration see also 
Figs. 13 and 14. Let c1,… , c

�
 be the curves of Li ∪ Lj such that for any two curves 

cs , ct with s < t the left endpoint of I(cs) lies to the left of the left endpoint of I(ct) ; 
ties are broken arbitrarily. We successively add the curves to L in the given order 
enforcing that the curves in L remain superposition-free. Let c be the next curve to 
be added to L.

Without loss of generality, let c ∈ Li . The opposite case can be handled 
analogously. In case that there is no curve superposing c, we add c to L and set 
�(c) = �i(c) . If c superposes a curve in L, due the order of insertion, there can 

�e(c) =�(L(�)) = �(L(��)) +
∑

w∈N(v)⧵{wi}

�(L(w)) = �(c)

+
∑

w∈N(v)⧵{wi}

�(L(w)) = �i(c)

8
4

Ti
Tj

u

c′ c

8 4

Ti
Tj

c′[IL]

c[IR]

IL IM IR

I(c′)
I(c) 8

c′[IM ]

IL IM IR

v

u

v

Fig. 14   Illustration of merging two linearizations (Li,�i) and (Lj,�j) into one linearization (L
1
,�i) . The 

trees are annotated with distance marks
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only be one curve c′ in L that superposes c. First we remove c′ from L. Let IM 
be the interval describing the set I(c) ∩ I(c�) , and let IL and IR be the intervals 
describing the set I(c) ∪ I(c�)⧵(I(c) ∩ I(c�)) such that IL lies to the left of IM and IR 
lies to the right of IM.

We now define three curves cL , cM and cR with I(cL) = IL , I(cM) = IM and 
I(cR) = IR such that each of these three curves is a sub-curve of either c or c′ . To 
that end let c[I] denote the sub-curve of c whose distance interval is I. We define 
the curve cR with weight �(cR) as

The curve cL and its weight �(cL) is defined analogously. The curve cM and its 
weight �(cM) is

The next lemma proves that (Li,𝜔i)⊕ (Lj,𝜔j) is a restricted linearization.

Lemma 5  Let (Li,�i) and (Lj,�j) be two linearizations of e = (u, v) that are 
restricted to the trees Ti and Tj, respectively. Then (L,𝜔) = (Li,𝜔i)⊕ (Lj,𝜔j) is a lin-
earization of e restricted to Ti,j. The operation needs O(|Li| + |Lj|) time.

Proof  First of all, the set L contains only curves that are pairwise free from any 
superpositions. This directly follows from the construction that curves c and c′ 
superposing each other are replaced by three superposition-free curves cL , cM and 
cR . Due to I(cL) ∪ I(cM) ∪ I(cR) = I(c) ∪ I(c�) the second condition of a lineariza-
tion is satisfied. Further, as all curves in Li and Lj are e-docks and as they remain the 
same or are shortened when added to L, all curves in L are also e-docks.

We finally prove that all e-docks are maximal and Condition (1) of a lineariza-
tion is satisfied by doing an induction over the curves inserted to L. Let Lk be L 
after the k-th insertion step. Since L0 is empty, the condition obviously holds for L0 . 
So assume that we insert c to Lk obtaining the set Lk+1 . Without loss of generality 
assume that c ∈ Li . If c does not superpose any curve in Lk , the condition directly 
follows from the definition of c. So assume that c� ∈ Lk superposes c. Since c ∈ Li , 
the curve c′ is contained in �(Tj) . We remove c′ from Lk and insert the curves cR , cM 
and cL as defined above. We prove that all three curves satisfy Condition (1).

Consider in the following the subtree Ti,j of Tu restricted to the edges of Ti and Tj . 
We set cR = c[IR] and set �(cR) = �i(c) , if IR ⊆ I(c) . In that case there is no e-rooted 
curve � ⊆ �(Tj) with length (�) + d u ∈ IR , i.e., either there is no curve � in �(Tj) 
with t(�) = �(u) and length (�) + d u ∈ IR , or any curve in �(Tj) with t(�) = �(u) 
and length (�) + d u ∈ IR ends on a junction edge. Consequently, any e-rooted curve 
� with length (�) + d u ∈ IR and in particular any maximal e-rooted curve � with 
length (�) + d u ∈ IR lies in �(Ti) . Thus, the curve cR is a maximal e-dock and satis-
fies Condition (1). For the case IR ⊆ I(c�) and the curve cL we can argue analogously.

(cR,𝜔(cR)) =

{
(c[IR],𝜔i(c)), if IR ⊆ I(c)

(c�[IR],𝜔(c
�)), if IR ⊆ I(c�).

(cM ,𝜔(cM)) =

{
(c[IM],𝜔i(c)), if𝜔i(c) ≥ 𝜔(c�)

(c�[IM],𝜔(c
�)), if𝜔i(c) < 𝜔(c�).
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So consider the curve cM . Without loss of generality we assume that �i(c) ≥ �(c�) . 
The opposite case can be handled analogously. For any maximal e-rooted curve � in 
�(Tj) with length (�) + d u ∈ IM it must be true that �(L(�)) ≤ �(cM) . Further, since 
cM ⊆ c and c satisfies Condition (1) with respect to Ti , cM is a maximal e-port and 
satisfies the Condition (1) with respect to Ti,j . 	�  ◻

Lemmas  4 and 5 yield that 
⨁k

i=1
(Li,�i) is the linearization of e without any 

restrictions. Computing it needs O(
∑k

i=1
�Li�) time.

Note that when computing optimal candidates (see Sect. 4.2.1) we are only inter-
ested in e-rooted curves � that have length at most �(R) , where R is the road of 
e. Hence, when constructing (Li,�i) for an edge ei in the first step, we discard any 
curve c of Li that does not allow an e-rooted curve that both ends on c and has length 
at most �(R) ; the curve c is not necessary for our purposes. Hence, we conceptually 
restrict Ti to the edges that are reachable from u by one label length. It is not hard 
to see that T ′ restricted to �(Ti) contains only O(n) vertices, because each vertex of 
V ′⧵V  is induced by a chain of tightly packed vertical labels, whereas each label has 
length �(R) . Hence, T ′ restricted to �(Ti) contains for each such chain at most one 
vertex of V ′⧵V  . Further, the endpoints of the curves in Li are induced by the vertices 
of T ′ . Hence, by discarding the unnecessary curves of Li the set Li has size O(n). 
Altogether, by Lemma 5 and due to the constant degree of each vertex we can con-
struct 

⨁k

i=1
(Li,�i) in O(

∑k

i=1
n) = O(n) time.

When constructing L(u) for u as described in Algorithm 1, we first build the lin-
earization Le of each of u’s outgoing edges. By Lemma 3 we can find in O(n) time 
the optimal candidate of u. Then, due to the previous reasoning, the linearization of 
an edge of T and the optimal candidate of a vertex u can be constructed in O(n) time. 
Altogether we obtain the following result.

Proposition 1  For a road map M with a tree T as underlying road graph, MaxLa-
beledRoads can be solved in O(n3) time.

4.3 � Improvements on Storage Consumption

Since T ′ contains O(n2) vertices, the algorithm needs O(n2) space. This can be 
improved to O(n) space. To that end T ′ is constructed on the fly while executing 
Algorithm 1. Parts of T ′ that become unnecessary are discarded. We prove that it is 
sufficient to store O(n) vertices of T ′ at any time such that the optimal labeling can 
still be constructed.

When constructing the optimal labeling of T, we build for each edge (u, v) of T 
its linearization based on the linearization of the outgoing edges of v. Afterwards we 
discard the linearizations of these outgoing edges. Since we assume that each vertex 
has constant degree, it is sufficient to maintain a constant number of linearizations at 
any time if we consider the vertices of T ′ in an appropriate order.

Hence, because each linearization has size O(n), we need O(n) space for storing 
the required linearizations in total. However, we store for each vertex u of T ′ the 
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weight �(L(u)) and its optimal candidate. As T ′ has size O(n2) the space consump-
tion is O(n2) . In the following, we improve that bound to O(n) space.

We call a vertex v ∈ V � reachable from a vertex u ∈ V � if there is a curve 
� ⊆ �(T �

u
) that starts at �(u) and that is contained in the embedding of a road R with 

�(R) ≥ length (�) such that �(v) ∈ � or v ∈ N(�) ; see Fig. 15a. The set �u contains 
all vertices of T ′

u
 that are reachable from u. The next lemma shows that �u has linear 

size.

Lemma 6  For any vertex u of T ′ the set �u has size O(n).

Proof  Recall how T ′ is constructed: For each vertex v ∈ V  we construct a chain C of 
tightly packed vertical valid labels that starts at �(v) , is directed towards � , and ends 
when either the road ends, or adding the next label does not increase the number of 
labeled road sections.

Each label of such a chain C induces one vertex of T ′ . Hence, C induces a set VC 
of vertices in T ′ . We show that for each chain C the set VC ∩ �u contains at most two 
vertices. As we construct n chains in order to build T ′ the claim follows.

For the sake of contradiction assume that there is a chain C and a vertex u in T ′ 
such that VC ∩ �u contains more than two vertices. Without loss of generality we 
assume that VC ∩ �u contains three vertices, which we denote by v1 , v2 and v3 ; see 
Fig. 15b. We further assume that d v1

< d v2
< d v3

 . By construction all labels in C lie 
in the embedding of the same road RC , and d (v1, v2) ≥ �(RC) and d (v2, v3) ≥ �(RC) . 
By definition of C there is a vertical curve � ∈ �(T �

u
) that starts at �(u) and contains 

v1 , v2 and v3 . Let e be the outgoing edge of u in T ′ whose embedding is covered by 
� and consider the sub-curve �′ ⊆ � with length �(RC) that starts at u. By defini-
tion of �u , we know for each vi with 1 ≤ i ≤ 3 that either its embedding is contained 
in �′ or vi ∈ N(��) . The definition of N(��) implies the vertices of N(��) cannot lie 
on a common vertical curve in T. Hence, as v1 , v2 and v3 lie on the vertical curve 

u

ρ

u

v1

v2

v3

� }
}
≥ λ(R)

≥ λ(R)

u

ρ

�

τ�

σ�

(a) Reachable vertices. (b) Lemma 6. (c) Chains of label �.

Fig. 15   Improvements on storage consumption. a Illustration of the reachable vertices from u. Vertices 
not reachable from u are marked gray. b Illustration of proof for Lemma 6. c Illustration for reconstruct-
ing the computed labeling (Color figure online)
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� , only v3 can be contained in N(��) . Hence, �(v1),�(v2) ∈ �
� . Further, because 

v2 ∉ N(��) , we have �(v2) ≠ h(��) , which implies d (v1, v2) < 𝜆(R) and contradicts 
d (v1, v2) ≥ �(R) . 	� ◻

Assume that we apply Algorithm 1 considering vertex u. When constructing 
u’s optimal candidate, by Lemma 6 it is sufficient to consider the vertices of T ′

u
 

that lie in �u . On that account we discard all vertices of T ′
u
 that lie in V ′⧵V  , but 

not in �u . Further, we compute the vertices of V ′⧵V  that subdivide the incoming 
edge (t, u) ∈ E on demand, i.e., we compute them when constructing the optimal 
candidate of t. Hence, the space consumption is linear.

However, when discarding vertices of T ′ , we lose the possibility of recon-
structing the labeling. We therefore annotate each vertex u ∈ V  of the original 
tree T with further information. To that end consider a canonical labeling L of 
T. Let � be a horizontal label of L and let e be the edge of T on which � ’s head 
is located; see Fig. 15c. Either, no other label of L ends on e, or another label �′ 
ends on e that belongs to a chain �

�
 of tightly packed vertical labels. Analogously, 

we can define the chain �
�
 with respect to edge e′ on which �′s tail is located. On 

that account we store for a junction vertex u ∈ V  not only its optimal candidate 
� ∈ C(u) , but also the two chains �

�
 and �

�
 , if they exist. Note that such a chain of 

tightly packed vertical labels is uniquely defined by its start and endpoint, which 
implies that O(1) space is sufficient to store both chains. Using a breadth-first 
search we can easily reconstruct these chains in linear time. For a regular vertex 
u ∈ V  we analogously store the chain �

�
 of its optimal candidate � ∈ C(u) if it 

exists. Since � is vertical, we do not need to consider its tail. For the special case 
that � = ⊥u , we define that �

�
 is the chain of tightly packed vertical labels that 

ends on the only outgoing edge e of u. Summarizing, the additional information 
together with the optimal candidates stored at the vertices of the original tree are 
sufficient to reconstruct the labeling of T. Together with Proposition 1 we obtain 
the following result.

Theorem 4  For a road map M with a tree T as underlying road graph with con-
stant maximum degree, MaxLabeledRoads can be solved in O(n3) time using O(n) 
space.

5 � Conclusions

In this paper, we investigated the problem of maximizing the number of labeled 
road sections in a labeling of a road map. We showed that this problem is NP-
hard in general. For the special case of trees we introduced a dynamic programming 
algorithm. This algorithm utilizes the basic observation that a label passing through 
a vertex splits the tree into sub-instances that can be considered independently. By 
systematically exploring all O(n2) possibilities how a label can pass through a ver-
tex, the dynamic programming approach recursively computes an optimal solution 
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in O(n5) time. We improved that bound to O(n3) by using the new concept of lin-
earizations. Finally, we showed that by computing the necessary data structures on 
the fly, the approach needs linear space while maintaining O(n3) running time.

The underlying road graphs of real-world road maps are rarely trees. However, 
in an applied companion paper [6] we show that road maps decompose into a 
large number of subgraphs by placing trivially optimal road labels and remov-
ing the corresponding edges from the graph. It turns out that a vast majority 
of the resulting subgraphs are actually trees, which we can label optimally by 
the algorithm proposed here. As a consequence, this means that a large fraction 
of all road sections in our real-world road graphs can be labeled optimally by 
combining this simple preprocessing strategy with our tree labeling algorithm. 
For the remaining subgraphs we observe that a majority are nearly trees in the 
sense that the cycles can be broken by removing only few edges. Hence, a future 
research direction points to the investigation of MAXLABELEDROADS for such 
tree-like graphs. In addition, the investigation of MAXLABELEDROADS for cactus 
graphs and graphs with bounded tree-width promises new interesting insights. Is 
MAXLABELEDROADS already NP-hard for these graphs, or can our dynamic pro-
gramming approach be adapted accordingly?

In the presented model, we maximize the number of labeled road sections, which 
is a rather simple optimization function. From a cartographic point of view more 
complex cost functions (e.g., priority of road sections, shape of labels, etc.) may 
also be of interest. Hence, the question arises whether our results carry over. The 
NP-hardness result strongly relies on the assumption that the number of labeled 
road sections is maximized. As a consequence, the computational complexity of 
the problem cannot be directly transferred, but must be considered for each cost 
function individually. Still, we believe that the basic constructions of the presented 
gadgets may help to find NP-hardness proofs for newly considered cost functions.

In contrast to the NP-hardness proof, the basic dynamic programming 
approach for trees is more likely to carry over. As long as a cost-optimal labe-
ling can be composed by a discrete and pre-defined set of label candidates, the 
dynamic programming idea can be used to compute it. However, the running time 
strongly relies on the number of label candidates to be considered. Hence, mini-
mizing the number of label candidates a priori becomes an important research 
question. In particular, the question arises whether the introduced speed-up tech-
niques (e.g., the use of linearizations) carry over.

In the last decades maps have undergone a dramatic change from static fig-
ures to dynamic visualizations in which the scale, rotation and view of the map 
changes over time. Accordingly, in order to obtain a temporally coherent label 
placement, the change of the map needs to be taken into account. While dynamic 
maps have been extensively investigated for labeling point features, labeling line 
features has hardly been considered. Hence, an interesting and important research 
direction is to adapt the presented model and algorithms to dynamic maps.
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