Skip to main content
Log in

A \(3+\varOmega (1)\) Lower Bound for Page Migration

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We address the page migration problem, one of the most classical online problems. In this problem, we are given online requests from nodes in a network for accessing a single page, i.e., a data set stored in a node, and asked to determine a node for the page to be stored in after each request. Serving a request costs the distance between the request and the page at the point of the request, and migrating the page costs the migration distance multiplied by the page size. The objective is to minimize the total sum of the service and migration costs. This problem is motivated by efficient cache management in multiprocessor systems. In this paper, we prove that no deterministic online page migration algorithm is \((3+o(1))\)-competitive, where the o-notation is with respect to the page size. Our lower bound first breaks the barrier of 3 by an additive constant for an arbitrarily large page size and disproves Black and Sleator’s conjecture even in the asymptotic sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Although this problem can be defined in any metric space, we consider only the graph metric in this paper.

References

  1. Bartal, Y., Charikar, M., Indyk, P.: On page migration and other relaxed task systems. Theor. Comput. Sci. 268(1), 43–66 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bartal, Y., Fiat, A., Rabani, Y.: Competitive algorithms for distributed data management. J. Comput. Sys. Sci. 51(3), 341–358 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bienkowski, M.: Migrating and replicating data in networks. Comput. Sci. Res. Dev. 27(3), 169–179 (2012)

    Article  Google Scholar 

  4. Bienkowski, M., Byrka, J., Mucha, M.: Dynamic beats fixed: On phase-based algorithms for file migration. In: I. Chatzigiannakis, P. Indyk, F. Kuhn, A. Muscholl (eds.) 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 13:1–13:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2017)

  5. Black, D.L., Sleator, D.D.: Competitive algorithms for replication and migration problems. Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie Mellon University (1989)

  6. Chrobak, M., Larmore, L.L., Reingold, N., Westbrook, J.: Page migration algorithms using work functions. J. Algorithms 24(1), 124–157 (1997)

    Article  MathSciNet  Google Scholar 

  7. Lund, C., Reingold, N., Westbrook, J., Yan, D.: Competitive on-line algorithms for distributed data management. SIAM J. Comput. 28(3), 1086–1111 (1999)

    Article  MathSciNet  Google Scholar 

  8. Matsubayashi, A.: Uniform page migration on general networks. Int. J. Pure Appl. Math. 42(2), 161–168 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Matsubayashi, A.: Asymptotically optimal online page migration on three points. Algorithmica 71(4), 1035–1064 (2015)

    Article  MathSciNet  Google Scholar 

  10. Westbrook, J.: Randomized algorithms for multiprocessor page migration. SIAM J. Comput. 23(5), 951–965 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Matsubayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version appeared in the proceedings of the 3rd International Symposium on Computing and Networking (CANDAR 2015). This work was supported by JSPS KAKENHI Grant Number 26330008.

Appendix

Appendix

We prove the following fact used in the proofs of Lemmas 9 and 10.

Lemma 14

If there exist values \(x>0\) and X, nodes p, q, and u, and a sequence \(\chi\) of clients such that

$$\begin{aligned} (2+x){\textsc { opt}}_p(u,\chi )+{\textsc { opt}}_q(u,\chi )<{\textsc { alg}}(u,\chi )+X+(2-x)D\text {d}_{{p}{q}}, \end{aligned}$$

and if we have recurrences

$$\begin{aligned} {\textsc { alg}}(u,\chi )+X+({\tilde{k}}_i+{\tilde{\ell }}_{i-1}+D(2i-1))\text {d}_{{p}{q}}&\le (3+x)({\textsc { opt}}_p(u,\chi )+{\tilde{\ell }}_{i-1}\text {d}_{{p}{q}}), \text { and}\\ {\textsc { alg}}(u,\chi )+X+({\tilde{k}}_i+{\tilde{\ell }}_{i}+2Di)\text {d}_{{p}{q}}&\le (3+x)({\textsc { opt}}_q(u,\chi )+{\tilde{k}}_{i}\text {d}_{{p}{q}}) \end{aligned}$$

for \(i\ge 1\) and \({\tilde{\ell }}_0 = 0\), then the sequence \(({\tilde{k}}_i)_{i\ge 1}\) is not monotonically increasing.

Proof

The recurrences yield the inequalities

$$\begin{aligned} {\tilde{k}}_i&\le (2+x){\tilde{\ell }}_{i-1}-D(2i-1)+A,\ \text {and} \end{aligned}$$
(41)
$$\begin{aligned} {\tilde{\ell }}_i&\le (2+x){\tilde{k}}_{i}-2Di+B\nonumber \end{aligned}$$

for \(i\ge 1\), where \(A:=((3+x){\textsc { opt}}_p(u,\chi )-{\textsc { alg}}(u,\chi )-X)/\text {d}_{{p}{q}}\) and \(B:=((3+x){\textsc { opt}}_q(u,\chi )-{\textsc { alg}}(u,\chi )-X)/\text {d}_{{p}{q}}\). By combining these inequalities, we obtain the recurrence

$$\begin{aligned} {\tilde{k}}_i\le (2+x)^2 {\tilde{k}}_{i-1}-2(3+x) Di+(5+2x)D+A+(2+x)B\quad \text {for } i\ge 2. \end{aligned}$$

This is equivalent to

$$\begin{aligned} {\tilde{k}}_i-F(i)\le & {} \left( {\tilde{k}}_{i-1}-F(i-1)\right) (2+x)^2\quad \text {for } i\ge 2, \hbox { where}\\ F(i):= & {} \tfrac{2Di}{1+x}+\tfrac{\frac{3+x}{1+x}D-A-(2+x)B}{(3+x)(1+x)}. \end{aligned}$$

Therefore, it follows that

$$\begin{aligned} \begin{aligned} {\tilde{k}}_i&\le \left( {\tilde{k}}_1-F(1)\right) (2+x)^{2(i-1)}+F(i)\quad \text {for } i\ge 2. \end{aligned} \end{aligned}$$

Because \({\tilde{k}}_1\le A-D\) by (41),

$$\begin{aligned} \begin{aligned} {\tilde{k}}_i&\le \left( A-D-F(1)\right) (2+x)^{2(i-1)}+F(i)\\&= \left\{ -\tfrac{(3+x)(2+x)D}{1+x}+(2+x)A+B\right\} \tfrac{(2+x)^{2i-1}}{(3+x)(1+x)}+F(i)\\&=\left\{ -\tfrac{(3+x)(2+x)D}{1+x}+(2+x)A+B\right\} \cdot \varTheta \left( (2+x)^{2i}\right) +O(i). \end{aligned} \end{aligned}$$

The factor of \(\varTheta ((2+x)^{2i})\) can be estimated as

$$\begin{aligned} -\tfrac{(3+x)(2+x)D}{1+x}+(2+x)A+B =\tfrac{3+x}{\text {d}_{{p}{q}}}\left\{ (2+x){\textsc { opt}}_p(\chi )+{\textsc { opt}}_q(\chi ) -{\textsc { alg}}(\chi )-X-\tfrac{2+x}{1+x}D\text {d}_{{p}{q}}\right\} , \end{aligned}$$

which is negative as \(-\frac{2+x}{1+x}<-(2-x)\) for \(x>0\) and by the assumption of the lemma. Therefore, \({\tilde{k}}_i\) decreases as i grows sufficiently large. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubayashi, A. A \(3+\varOmega (1)\) Lower Bound for Page Migration. Algorithmica 82, 2535–2563 (2020). https://doi.org/10.1007/s00453-020-00696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00696-5

Keywords

Navigation