
Vol:.(1234567890)

Algorithmica (2020) 82:2564–2585
https://doi.org/10.1007/s00453-020-00697-4

1 3

Queue Layouts of Planar 3‑Trees

Jawaherul Md. Alam1 · Michael A. Bekos2 · Martin Gronemann3 ·
Michael Kaufmann2 · Sergey Pupyrev1

Received: 6 October 2018 / Accepted: 6 March 2020 / Published online: 23 March 2020
© The Author(s) 2020

Abstract
A queue layout of a graph G consists of a linear order of the vertices of G and a par-
tition of the edges of G into queues, so that no two independent edges of the same
queue are nested. The queue number of graph G is defined as the minimum number
of queues required by any queue layout of G. In this paper, we continue the study of
the queue number of planar 3-trees, which form a well-studied subclass of planar
graphs. Prior to this work, it was known that the queue number of planar 3-trees is
at most seven. In this work, we improve this upper bound to five. We also show that
there exist planar 3-trees whose queue number is at least four. Notably, this is the
first example of a planar graph with queue number greater than three.

Keywords  Queue layouts · Constant queue number · Planar 3-trees

A preliminary version of this article has appeared in the proceedings of the 26th International
Symposium on Graph Drawing and Network Visualization (GD 2018). This work is supported by
the DFG Grant Ka812/17-1 and DAAD Project 57419183.

 *	 Michael A. Bekos
	 bekos@informatik.uni‑tuebingen.de

	 Jawaherul Md. Alam
	 jawaherul@gmail.com

	 Martin Gronemann
	 gronemann@informatik.uni‑koeln.de

	 Michael Kaufmann
	 mk@informatik.uni‑tuebingen.de

	 Sergey Pupyrev
	 spupyrev@gmail.com

1	 Department of Computer Science, University of Arizona, Tucson, USA
2	 Institut für Informatik, Universität Tübingen, Tübingen, Germany
3	 Institut für Informatik, Universität zu Köln, Köln, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00697-4&domain=pdf

2565

1 3

Algorithmica (2020) 82:2564–2585	

1  Introduction

In a queue layout [19], the vertices of a graph are restricted to a line and its edges
are drawn at different half-planes delimited by this line, called queues. The task is
to find a linear order of the vertices along the underlying line and a corresponding
assignment of the edges of the graph to the queues, so that no two independent edges
of the same queue are nested; see Fig. 1 for an illustration. Recall that two edges are
called independent, if they do not share an endvertex. The queue number of a graph
is the smallest number of queues that are required by any queue layout of the graph.
Note that queue layouts form the “dual” concept of stack layouts [22] (widely known
also as book embeddings), which do not allow two edges of the same stack to cross.

Apart from the intriguing theoretical interest, queue layouts find applications in
several domains [3, 18, 23, 29]. As a result, they have been studied extensively over
the years [5, 8, 13, 17, 19, 24, 25, 27–30]. The most remarkable result in this area
is due to Dujmović et al. [9], who recently proved that planar graphs have constant
queue number (by the time of writing at most 49) improving upon a series of results
[2, 5, 7] and thus settling in the positive an old conjecture by Heath, Leighton and
Rosenberg [18]. Notably, this breakthrough result has several important implica-
tions, e.g., that (i), (ii) every n-vertex planar graph admits a O(1) ×O(1) ×O(n)
straight-line grid drawing [31], (iii) every Hamiltonian bipartite planar graph admits
a 2-layer drawing and an edge-coloring of bounded size, in which edges of the
same color do not cross [12], and (iv) the queue number of k-planar graphs is also
bounded by a constant for fixed values of k [13].

Improved upper bounds on the queue number are known for several subclasses
of planar graphs. Every tree has queue number one [19], outerplanar graphs have
queue number at most two [18], and series-parallel graphs have queue number at
most three [27]. Planar 3-trees have queue number at most seven [30], although they
were conjectured to have super-constant queue number by Pemmaraju [24]; recall
that a planar 3-tree is a triangulated plane graph G with n ≥ 3 vertices, such that
G is either a 3-cycle, if n = 3 , or has a vertex whose deletion gives a planar 3-tree
with n − 1 vertices, if n > 3 . As a matter of fact, every graph that admits a 1-queue
layout is planar with at most 2n − 3 edges; however, testing this property is an NP

-complete problem [18]; for a survey that also covers results for non-planar graphs
the interested reader is referred to [13].

1

2
3 9

4
5

7
8

10

11

6

(a)
1 2 11 3 4 5 6 7 8 9 10

(b)

Fig. 1   a The Goldner-Harary planar 3-tree, and b a 5-queue layout of it produced by our algorithm, in
which edges of different queues are colored differently

2566	 Algorithmica (2020) 82:2564–2585

1 3

Our contribution. In this paper, we present improved upper and lower bounds
on the queue number of planar 3-trees. More precisely, we first discuss in Sect. 2
known results that are useful for our work. In Sect. 3, we improve the upper bound
on the queue number of planar 3-trees from seven [30] to five. In Sect. 4, we show
that there exist planar 3-trees whose queue number is at least four, thus strengthen-
ing a corresponding result of Wiechert [30] for general (that is, not necessarily pla-
nar) 3-trees; we stress that our lower bound is also the best known for planar graphs.
Table 1 puts our results in the context of existing bounds. In Sect. 5, we discuss
implications of our results to the closely-related track layouts [11]. Our work leads
to a number of interesting research questions, which we list in Sect. 6.

Remark  The core of the approach introduced by Dujmović et al. [9] consists of par-
titioning the input planar graph into sets of vertices, called bags, such that the graph
induced by the bags is planar and has treewidth at most 3. The queue number of the
input graph is then upper bounded by an expression that depends on the queue num-
ber of planar 3-trees. It is worth noting that the authors of [9] use our main result to
obtain the bound on the queue number of planar graphs, as paper [9] appeared after
the conference version [1] of this work.

2 � Preliminaries

In this section, we present preliminary notions and notation that is used through-
out this paper. We also present known results from the literature that are useful for
our work. We assume familiarity with basic graph theoretic notions (see, e.g., [16]).
Also, for standard definitions on planar graphs and drawings, we point the reader to
[4, 20].

For a pair of distinct vertices u and v of a graph G, we write u ≺ v if u precedes
v in a linear order of G. We also write [v1, v2,… , vk] to denote that vi precedes
vi+1 for all 1 ≤ i < k . Let F be a set of k ≥ 2 independent edges (si, ti) , that is,
F = {(si, ti); i = 1, 2,… , k} . Assume without loss of generality that si ≺ ti , for all
1 ≤ i ≤ k . If the linear order is [s1,… , sk, tk,… , t1] , then we say that F is a k-rain-
bow, while if the linear order is [s1,… , sk, t1,… , sk] , we say that F is a k-twist.

Table 1   Queue numbers of
various subclasses of planar
graphs

Graph class Upper bound Lower bound

Old New Old New

Tree 1 [19] 1 [19]
Outerplanar 2 [18] 2 [19]
Series-parallel 3 [27] 3 [30]
Planar 3-tree 7 [30] 5 [Thm. 1] 3 [30] 4 [Thm. 2]
Planar 49 [9] 3 [30] 4 [Thm. 2]

2567

1 3

Algorithmica (2020) 82:2564–2585	

The edges of F form a k-necklace, if [s1, t1,… , sk, tk] ; see Fig. 2. A preliminary
result for queue layouts is the following.

Lemma 1  (Heath and Rosenberg [19]) A linear order of the vertices of a graph
admits a k-queue layout if and only if there exists no (k + 1) -rainbow.

Central in our approach is also the following construction by Dujmović et al.
[11] for internally-triangulated outerplane graphs; for an illustration refer to
Figs. 3a, b.

Lemma 2  (Dujmović et al. [11]) Every internally-triangulated outerplane graph G
admits a straight-line outerplanar drawing � (G) , such that the y -coordinates of the
vertices of G are integers, and the absolute value of the difference of the y -coor-
dinates of the endvertices of each edge of G is either one or two. Furthermore, the
drawing can be used to construct a 2-queue layout of G.

Let ⟨u, v,w⟩ be a face of a drawing � (G) produced by the constructive algorithm
supporting Lemma 2, where G is an internally triangulated outerplane graph.
Up to renaming of the vertices of this face, we may assume that y(v) > y(w) ,
y(v) − y(u) = y(u) − y(w) = 1 and y(v) − y(w) = 2 . We refer to vertex u as to the
anchor vertex of the face ⟨u, v,w⟩ of � (G) . Vertices v and w are referred to as top
and bottom, respectively. It is easy to verify that drawing � (G) can be converted
to a 2-queue layout of G as follows:

s1 s2 s3 t3 t2 t1
(a)

s1 s2 s3 t1 t2 t3
(b)

s1 t1 s2 t2 s3 t3
(c)

Fig. 2   Illustration of: a a 3-rainbow, b a 3-twist, and c a 3-necklace

c3

c1

c2

(a)

13

10
12

11
9

5 8
6 7

3 41 2

c1

c2 c3

y = 1
y = 2
y = 3
y = 4
y = 5
y = 6
y = 7

(b)

Fig. 3   Illustrations of: a an internally-triangulated outerplane graph G0 ; the dotted-gray edges have been
added to make it biconnected; its gray-shaded faces contain components c1 , c2 and c3 of the graph G1
formally introduced Section 3; b the drawing � (G0) by Lemma 2; the vertex-labels indicate the linear
order of its 2-queue layout; the anchor vertices of faces ⟨9, 10, 12⟩ , ⟨3, 5, 9⟩ and ⟨4, 8, 9⟩ are 10, 5, 8,
respectively

2568	 Algorithmica (2020) 82:2564–2585

1 3

–	 for any two distinct vertices u and v of G, u ≺ v if and only if the y-coordinate of
u is strictly greater than the one of v, or the y-coordinate of u is equal to the one
of v and u is to the left of v in � (G),

–	 edge (u, v) is assigned to the first (to the second) queue if and only if the absolute
value of the difference of the y-coordinates of u and v is one (two, respectively)
in � (G).

In the following, we present interesting properties of the 2-queue layout produced
from drawing � (G) . Let ⟨u, v,w⟩ and ⟨u′, v′,w′⟩ be two distinct faces of � (G) , such
that u and u′ are their anchors, v and v′ are their top vertices, and w and w′ are their
bottom vertices.

Property 1  If u ≠ u′ and u ≺ u′ in the 2-queue layout, then v ≺ v′ (if v ≠ v′) and
w ≺ w′ (if w ≠ w′).

Proof  The property clearly holds if vertices u and u′ do not have the same y-coordi-
nate. Otherwise, the property holds since � (G) is planar. 	� ◻

Property 2  If u = u� , v ≠ v′ and v ≺ v′ in the 2-queue layout, then w ≺ w′ (if w ≠ w′

).

Proof  The property follows from the fact that � (G) is planar. 	� ◻

Property 3  If u = u� , w ≠ w′ and w ≺ w′ in the 2-queue layout, then v ≺ v′ (if v ≠ v′

).

Proof  The property follows from the fact that � (G) is planar. 	� ◻

3 � The Upper Bound

In this section, we prove that the queue number of every planar 3-tree is at most five.
Our approach is inspired by the algorithm of Wiechert [30] which results in 7-queue
layouts for general (that is, not necessarily planar) 3-trees. To reduce the number of
required queues in the produced layouts, we make use of structural properties of the
input graph. In particular, we put the main ideas of the algorithm of Wiechert [30]
into a peeling-into-levels approach (see, e.g., [32]), according to which the vertices
and the edges of the input graph are partitioned as follows:

–	 Vertices incident to the outerface are at level zero,
–	 Vertices incident to the outerface of the graph induced by deleting all vertices of

levels 0,… , i − 1 are at level i,
–	 Edges between same-level vertices are called level edges, and
–	 Edges between vertices of different levels are called binding edges.

2569

1 3

Algorithmica (2020) 82:2564–2585	

To keep the description simple, we first show how to compute a 5-queue layout of
a planar 3-tree G, assuming that G has only two levels (refer to Sect. 3.1). Then, we
extend our approach to the general case of more than two levels (refer to Sect. 3.2).
We conclude by discussing the differences between the approach of Wiechert [30]
and ours (refer to Sect. 3.3); we also describe which properties of planar 3-trees we
exploited to reduce the required number of queues.

3.1 � The Two‑Level Case

We start with the (intuitively easier) case in which the given planar 3-tree G con-
sists of two levels, which we denote by L0 and L1 . Since we use this case as a tool
to cope with the general case of more than two levels, we consider a slightly more
general scenario. In particular, we make the following assumptions; see Fig. 3a for
an illustration:

A.1	the graph G0 induced by the vertices of level L0 is outerplane and internally tri-
angulated, and

A.2	each connected component of the graph G1 induced by the vertices of level L1 is
outerplane and resides within a (triangular) face of graph G0.

Without loss of generality we may also assume that graph G0 is biconnected, as oth-
erwise we can augment it to being biconnected by adding (level-L0 ) edges without
affecting its outerplanarity (see, e.g., the dotted-gray edges of Fig. 3a). Note that in a
planar 3-tree, the graph induced by the vertices at level zero is simply a 3-cycle (and
not any outerplane graph, as we have assumed), and as a result the graph induced by
the vertices at level one is a single outerplane component. Our algorithm maintains
the following invariants:

	 I.1	 the linear order is such that all vertices of level L0 precede all vertices of level
L1,

	 I.2	 the level edges of G are assigned to two queues, which we denote by Q0 and
Q1 , and

	 I.3	 the binding edges between L0 and L1 of G are assigned to three queues, which
we denote by Q2 , Q3 , and Q4.

To compute an order that satisfies Invariant I.1, we construct two orders, one for the
vertices of level L0 (that satisfies Invariant I.2) and one for the vertices of level L1
(that also satisfies Invariant I.2). Then, we concatenate them, so that all the vertices
of level L0 precede all the vertices of level L1 (as required by Invariant I.1). Note that
critical in this step is to also maintain Invariant I.3.

To compute an order of the vertices of level L0 satisfying Invariant I.2, we
directly apply Lemma 2, as by our initial assumption A.1, graph G0 is internally-
triangulated and outerplane. It follows that Invariant I.2 is satisfied for the vertices
of level L0 . To compute an order of the vertices of level L1 satisfying Invariant I.2,
we apply Lemma 2 individually to each connected component of graph G1 , which by

2570	 Algorithmica (2020) 82:2564–2585

1 3

our initial assumption A.2 is an internally-triangulated and outerplane graph. Then,
the resulting orders are concatenated, such that for every two connected components
of graph G1 , all vertices of the first one either precede or follow all vertices of the
second one (critical at this point is to maintain Invariant I.3, as already mentioned
above). The latter property allows us to use queues Q0 and Q1 for all the level edges
of level L1 . Therefore, Invariant I.2 is satisfied.

To guarantee that Invariant I.3 is satisfied, we proceed as follows. Consider a
connected component c of G1 . By our initial assumption A.2, component c resides
within a triangular face ⟨u, v,w⟩ of graph G0 . Without loss of generality, let u, v and
w be the anchor, top and bottom vertices of the face, respectively. We assign the
binding edges incident to u to queue Q2 , the binding edges incident to v to queue Q3
and the binding edges incident to w to queue Q4 ; see the blue, red, and green edges
in Fig. 4.

Next, we describe how to compute the relative order of the connected components
of graph G1 . Let c and c′ be two such components. By our initial assumption A.2,
components c and c′ reside within two triangular faces, say ⟨u, v,w⟩ and ⟨u′, v′,w′⟩ ,
of graph G0 . Without loss of generality, assume that u and u′ are the anchors, v and v′
are top, and w and w′ are bottom vertices of the two faces. If u ≠ u′ , then component
c precedes component c′ if and only if u ≺ u′ in the order of the vertices of level L0 .
If u = u� , we have v ≠ v′ or w ≠ w′ . If v ≠ v′ , then component c precedes component
c′ if and only if v ≺ v′ in the order of the vertices of level L0 . Otherwise (that is,
u = u� and v = v� ), component c precedes component c′ if and only if w ≺ w′ in the
order of the vertices of level L0 . We claim that for the resulting order of the vertices
of level L1 , Invariant I.3 is satisfied, that is, no two independent edges of each of the
queues Q2 , Q3 and Q4 are nested.

We start our proof with queue Q2 . Consider two independent edges (x, y) ∈ Q2
and (x�, y�) ∈ Q2 , where x, x� ∈ L0 and y, y� ∈ L1 (see the blue edges incident to ver-
tices 5 and 8 in Fig. 4). By construction of queue Q2 , vertices x and x′ are anchors of
two distinct faces fx and fx′ of graph G0 (see the faces of Fig. 3b that contain compo-
nents c2 and c3 ). Without loss of generality, we assume that x ≺ x′ in the order of the
vertices of level L0 . It follows that the two components, say cy and cy′ , of graph G1 ,
that reside within faces fx and fx′ and contain y and y′ , respectively, are such that all
vertices of component cy precede all vertices of component cy′ (in Fig. 4, x = 5 pre-
cedes y = 8 ; thus, cy = c2 precedes cy� = c3 ). Since y ∈ cy and y� ∈ cy� , edges (x, y)
and (x�, y�) are not nested, as desired.

1 2 113 4 5 6 7 8 9 10 1312 c2 c3 c1

Fig. 4   The 5-queue layout for the graph in Fig. 3; since 5 ≺ 8 and 8 ≺ 10 in the order of the vertices of
level L0 as seen in Fig. 3, c2 precedes c3 , and c3 precedes c1

2571

1 3

Algorithmica (2020) 82:2564–2585	

We continue our proof with queue Q3 . Let (x, y) and (x�, y�) be two independent
edges of Q3 , where x, x� ∈ L0 and y, y� ∈ L1 (see the red edges in Fig. 4 incident to
vertices 3 and 4). By construction of Q3 , vertices x and x′ are the top vertices of two
distinct faces fx and fx′ of graph G0 (see the faces of Fig. 3b that contain components
c2 and c3 ). Let cy and cy′ be the components of graph G1 that reside within faces fx
and fx′ and contain vertices y and y′ . Finally, let u and u′ be the anchors of faces fx
and fx′ , respectively. Suppose first that u ≠ u′ and assume that u ≺ u′ in the order the
vertices of level L0 . Since u ≺ u′ , by Property 1 it follows that x ≺ x′ and that all ver-
tices of component cy precede all vertices of component cy′ (in Fig. 4, u = 5 precedes
u� = 8 , which implies that x = 3 precedes x� = 4 ; thus, cy = c2 precedes c�

y
= c3 ).

Since y ∈ cy and y� ∈ cy� , it follows that edges (x, y) and (x�, y�) are not nested. Sup-
pose now that u = u� and assume without loss of generality that x ≺ x′ in the order of
the vertices of level L0 . Since u = u� and x ≺ x′ , all vertices of component cy precede
all vertices of component cy′ . Since y ∈ cy and y� ∈ cy� , it follows that edges (x, y)
and (x�, y�) are not nested, as desired.

We conclude our proof with queue Q4 . Let as above (x, y) and (x�, y�) be two inde-
pendent edges of Q4 , where x, x� ∈ L0 and y, y� ∈ L1 . It follows that vertices x and
x′ are the bottom vertices of two distinct faces fx and fx′ of graph G0 . Let cy and cy′
be the components of graph G1 that reside within faces fx and fx′ and contain verti-
ces y and y′ . Finally, let u and u′ be the anchors, and v and v′ be the top vertices of
faces fx and fx′ , respectively. If u ≠ u′ , or u = u� and v ≠ v′ , then the proof that edges
(x, y) and (x�, y�) are not nested follows using similar arguments as in corresponding
cases of queue Q3 . Thus, it remains to consider the case in which u = u� and v = v� .
Assume without loss of generality that x ≺ x′ in the order of the vertices of level
L0 . It follows that all vertices of component cy precede all vertices of component
cy′ . Since y ∈ cy and y� ∈ cy� , it follows that (x, y) and (x�, y�) are not nested. Hence,
Invariant I.3 is satisfied, as desired.

The discussion above concludes the two-level case. However, before we proceed
with the multi-level case, we make a useful observation. To satisfy Invariant I.3, we
did not impose any restriction on the order of the vertices of each connected compo-
nent of graph G1 (any order that satisfies Invariant I.2 for level L1 would be suitable
for us, that is, not necessarily the one constructed by Lemma 2). What we fixed, was
the relative order of these components. With this observation in mind, we are now
ready to proceed to the multi-level case.

3.2 � The Multi‑Level Case

We now consider the general case, in which our planar 3-tree G consists of more
than two levels, say L0, L1,… , L� with � ≥ 2 . For i = 0, 1,… , � , let Gi be the sub-
graph of G induced by the vertices of level Li . We claim that the connected com-
ponents of each graph Gi are internally-triangulated outerplane graphs that are not
necessarily biconnected. Clearly, this holds for graph G0 , which is a 3-cycle. Assum-
ing that, for some i = 1,… , � , graph Gi−1 has the claimed property, we observe that
each connected component of graph Gi resides within a facial 3-cycle of graph Gi−1 .
Since each non-empty facial 3-cycle of graph Gi−1 induces a planar 3-tree in graph

2572	 Algorithmica (2020) 82:2564–2585

1 3

G [21], the claim follows by observing that the removal of the outer face of a planar
3-tree yields a plane graph, whose outer vertices induce an internally-triangulated
outerplane graph.

For the recursive step of our algorithm, we will assume that for some
i ∈ {0, 1,… , � − 1} we have a 5-queue layout for each of the connected components
of the graph Hi+1 induced by the vertices of levels Li+1,… , L� , that satisfies the fol-
lowing invariants1:

M.1	 the linear order is such that all vertices of level Lj precede all vertices of level
Lj+1 for every j = i + 1,… , � − 1;

M.2	 the level edges of each of the levels Li+1,… , L� have been assigned to two
queues, which we denote by Q0 and Q1;

M.3	 for every j = i + 1,… , � − 1 , the binding edges between Lj and Lj+1 have
been assigned to three queues, which we denote by Q2 , Q3 , and Q4.

In the following, we show how to construct a 5-queue layout (that satisfies Invariants
M.1–M.3) for each of the connected components of the graph Hi induced by the ver-
tices of levels Li,… , L� . Let Ci be such a component. By definition, Ci is delimited
by a connected component ci of graph Gi , which is internally-triangulated and outer-
plane. If none of the faces of component ci contains a connected component of Hi+1 ,
then we compute a 2-queue layout of it using Lemma 2. Consider now the more gen-
eral case, in which some of the faces of component ci contain connected components
of Hi+1 . By Invariants M.1–M.3, we may assume that we have computed 5-queue
layouts for all the connected components, say d1,… , dk , of Hi+1 that reside within
the faces of component ci.

We proceed by applying the two-level algorithm to the subgraph of Ci induced by
the vertices of ci and the vertices incident to the outer faces of d1,… , dk . By the last
observation that we made in the two-level case, this will result in:

	 i.	 A linear order O(ci) of the vertices of component ci,
	 ii.	 A relative order of the components d1,… , dk,
	 iii.	 all vertices of ci precede those of d1,… , dk,
	 iv.	 An assignment of the (level-Li ) edges of ci into Q0 and Q1 , and
	 v.	 An assignment of the binding edges between ci and each of d1,… , dk into Q2 ,

Q3 and Q4.

Up to renaming, we may assume without loss of generality that d1,… , dk is the com-
puted order of these components; see Fig. 5a. By (iv) and (v), all edges of Ci are
assigned to Q0,… ,Q4 , since the edges of components d1,… , dk have been recur-
sively assigned to these queues. Next, we describe the order of the vertices of Ci .
First, we partition the order of the vertices of Ci into � − i + 1 disjoint intervals, say
Ii,… , I� , such that I� precedes I� if and only if 𝜇 < 𝜈 . All the (level-Li ) vertices of ci

1  Observe that Invariants M.1–M.3 are modifications of Invariants I.1–I.3.

2573

1 3

Algorithmica (2020) 82:2564–2585	

are contained in Ii in the order O(ci) by (i). For j = i + 1,… , � , interval Ij contains
the vertices of level Lj of each of the components d1,… , dk , such that the vertices of
level Lj of component d� precede the vertices of level Lj of component d� if and only
if 𝜇 < 𝜈 ; see Fig. 5b. We are not ready to state the main theorem of this section.

Theorem 1  Every planar 3-tree has queue number at most 5.

Proof  Since Invariant M.1 is clearly satisfied for Ci , it remains to prove that the
assignment of the edges of Ci to queues Q0,… ,Q4 is such that Invariants M.2 and
M.3 are satisfied.

Since the edges of Hi are partitioned into level and binding, the endvertices of
each edge are either in the same or in two consecutive intervals. In the former case,
the edge is level and thus assigned either to Q0 or to Q1 , while in the latter case
the edge is binding and thus assigned to one of Q2 , Q3 and Q4 . Edges assigned to
Q0 and Q1 cannot nest, as otherwise our two-level algorithm has computed an inva-
lid assignment for the level edges of ci or an invalid assignment in Q0 and Q1 has
been recursively computed for some of the components d1 … , dk . For the same rea-
son, any two (binding) edges of Q2 , Q3 or Q4 cannot be nested, if both bridge ci
with the same or with two different components of level Li+1 , or both belong to the
same component dj , for some j = 1,… , k . It remains to prove that there exist no two
nested edges of Q2 , Q3 or Q4 that belong to two different components d� and d� and
their endvertices are in two consecutive intervals Ij and Ij+1 , where 1 ≤ �, � ≤ k and
j = i,… , � − 1 . This holds because all vertices of d� either precede or follow all ver-
tices of d� in both Ij and Ij+1 (by the choice of the relative order). Therefore, Invari-
ants M.1–M.3 are satisfied and the proof follows. 	� ◻

3.3 � Differences with Wiechert’s Algorithm

We conclude this section by discussing the main differences between our algorithm
and the previously best-known algorithm by Wiechert [30]. It is worth noting that
the latter algorithm builds upon another algorithm by Dujmović et al. [10]. Both
yield queue layouts for general (that is, not necessarily planar) k-trees, using the

Li+1 Li+2 Lλ

d1O(ci)

1 2 3 4 5 6 7

d2 dk

Li+1 Li+2 Lλ Li+1 Li+2 Lλ

Hi+1

(a)

Ii Hi

Li+1 Li+1 Li+1

Ii+1

1 2 3 4 5 6 7

Ii+2 Iλ

Li+2 Li+2 Li+2 Lλ Lλ Lλ

(b)

Fig. 5   Illustrations for the proof of Theorem 1. a For each of the components d1,… , dk , all vertices of
level Lj precede all vertices of level Lj+1 ; j = i + 1,… , � − 1 , and b the computed linear order based on
pi,… , p�

2574	 Algorithmica (2020) 82:2564–2585

1 3

breadth-first search starting from an arbitrary vertex r of graph G. For each d > 0
and each connected component C induced by the vertices at distance d from vertex
r, create a node (called bag) “containing” all vertices of component C; two bags are
adjacent if and only if there is an edge of graph G between them. For a k-tree, the
result is a tree of bags, which we denote by T, called tree-partition, which has the
following properties:

	P.1.	 every node of T induces a connected (k − 1)-tree, and
	P.2.	 for each non-root node x ∈ T  , if y ∈ T is the parent of x, then the vertices in y

having a neighbor in x form a clique of size k.

Both algorithms order the bags of T such that the vertices of the bags at distance
d from r precede those at distance d + 1 . The vertices within each bag are ordered
by induction using P.1. The algorithms differ in the way the edges are assigned to
queues; the more efficient one by Wiechert [30] uses 2k − 1 queues ( 2k−1 for the
inter- and 2k−1 + 1 for the intra-bag edges), which is worst-case optimal for 1- and
2-trees.

If graph G is a planar 3-tree and the breadth-first search is started from a dummy
vertex incident to the three outervertices of graph G, then the intra- and inter-bag
edges correspond to the level and binding edges of our approach, while the bags at
distance d from r in T correspond to different connected components of level d − 1.

To reduce the number of queues, we observed that in graph G every node of tree-
partition T induces a connected outerplanar graph, while each clique of size three by
P.2 is a triangular face of graph G. By the first observation, we reduced the number
of queues for intra-bag edges; by the second, we combined orders from different
bags more efficiently.

4 � The Lower Bound

In this section, we will prove that the queue number of planar 3-trees is at least
four. To this end, we will define recursively a planar 3-tree and we will show that
it contains at least one 4-rainbow in any linear order of its vertices. By Lemma 1,
this directly implies that the queue number of this graph is at least four. Recall that
according to the formal definition that we gave in Sect. 1, a planar 3-tree is a maxi-
mal planar graph. To keep the presentation simple, however, in this section we will
relax this constraint by defining a subgraph of a planar 3-tree.

Starting with a set of T independent edges (si, ti) with 1 ≤ i ≤ T and T to be deter-
mined later, we connect their endpoints to two unique vertices, which we denote by
A and B; see Fig. 6a. We refer to these edges as (s, t)-edges. We also assume A and B
to be adjacent. As a next step, we stellate each 3-cycle ⟨A, si, ti⟩ with a vertex xi , that
is, we introduce vertex xi and connect it to A, si and ti . Symmetrically, we also stel-
late each 3-cycle ⟨B, si, ti⟩ with a vertex yi . Afterwards, we perform a second round
of stellations, where we stellate each of the 3-cycles ⟨xi, si, ti⟩ , ⟨yi, si, ti⟩ , ⟨A, xi, si⟩ ,
⟨A, xi, ti⟩ , ⟨B, yi, si⟩ and ⟨B, yi, ti⟩ with vertices �i , �i , pi , qi , ui and vi , respectively. We

2575

1 3

Algorithmica (2020) 82:2564–2585	

further stellate ⟨si, ti, �i⟩ with �′
i
 and then ⟨si, ti, �′

i
⟩ with �′′

i
 . Symmetrically, we stel-

late ⟨si, ti, �i⟩ with �′
i
 , and ⟨si, ti, �′i ⟩ with �′′

i
 . For an illustration refer to Fig. 6b.

Let GT be the graph constructed so far. We refer to vertices A and B as the poles
of GT and we assume that GT admits a 3-queue layout Q . By symmetry, we may
assume without loss of generality that A ≺ B and that si ≺ ti for each edge (si, ti) .
Consider a single edge (si, ti) and the relative order of its endvertices with respect to
the poles A and B of graph GT . Clearly, there exist six possible permutations:

	P.1.	 si ≺ A ≺ B ≺ ti,
	P.2.	 A ≺ si ≺ B ≺ ti,
	P.3.	 si ≺ A ≺ ti ≺ B,
	P.4.	 A ≺ B ≺ si ≺ ti,
	P.5.	 si ≺ ti ≺ A ≺ B , and
	P.6.	 A ≺ si ≺ ti ≺ B.

The main steps in our proof are the following. We first observe that by the pigeon-
hole principle and by setting T = 6� , at least one of the permutations P.1,… , P.6
applies to at least � edges. Then, we show that if “too many” (s, t)-edges share one of
the permutations P.1,… , P.5, there exists a 4-rainbow regardless of the linear order
of the vertices of GT , which by Lemma 1 contradicts the fact that Q is a 3-queue
layout for graph GT . Therefore, if T is large enough, then for at least one (s, t)-edge
of GT permutation P.6 applies. Based on this implication, we describe how to aug-
ment graph GT , such that we can also rule out permutation P.6. Thereby, proving the
claimed lower bound of four. We start with an auxiliary lemma.

Lemma 3  In every queue that contains r2 independent edges, there exists either an
r-twist or an r-necklace.

Proof  Assume that no r-twist exists, as otherwise there is nothing to prove. We
will prove the existence of an r-necklace. Let (s1, t1),… , (sr2 , tr2) be the r2 inde-
pendent edges such that si ≺ ti , for i = 1,… , r2 . Assume without loss of general-
ity that si ≺ si+1 for each i = 1,… , r2 − 1 . Consider the edge (s1, t1) . Since s1 is the
first vertex in the order and no two edges nest, each vertex ti , with i > 1 , is to the

.

.

.

tT

B
t1

s1

sT
A

(a)

ui

vi

yi

pi

qi

A
xi

si

ti

B
β′
i βiα′′

iα′
iαi β′′

i

(b)

Fig. 6   Construction of graph GT : Each gray subgraph in a corresponds to a copy of the graph of b 

2576	 Algorithmica (2020) 82:2564–2585

1 3

right of t1 . Since no r-twist exists, vertex sr is to the right of vertex t1 . Thus, edges
(s1, t1) and (sr, tr) do not cross. The removal of the edges (s1, t1),… , (sr−1, tr−1)
makes vertex sr first. By applying this argument r − 1 times, we conclude that
(s1, t1), (sr, tr),…

(
s(r−1)2+1, t(r−1)2+1

)
 form an r-necklace and the proof of the lemma

follows. 	� ◻

Applying the pigeonhole principle to a k-queue layout, we obtain the following.

Corollary 1  Every k-queue layout with at least kr2 independent edges contains at
least one r-twist or at least one r-xnecklace.

We exploit Corollary 1 as follows. Recall that Q is a 3-queue layout for graph GT .
So, if we set T = 18r2 for an r > 0 of our choice, then at least 3r2 (s, t)-edges of graph
GT share the same permutation. Since these edges are by construction independent,
by Corollary 1 at least r of them, say without loss of generality (s1, t1),… , (sr, tr) ,
form a necklace or a twist (while also sharing the same permutation). In the follow-
ing, we show that, for an appropriate choice of r, if (s1, t1),… , (sr, tr) form a neck-
lace or a twist and simultaneously share one of the permutations P.1,… , P.5, then a
4-rainbow is inevitably induced, which by Lemma 1 contradicts the fact that Q is a
3-queue layout for GT . We consider each case separately.

Case P.1  Let r = 8 . It is sufficient to consider the case in which the edges
(s1, t1),… , (s8, t8) form a twist, since for r > 1 the necklace case is impossible. Since
(s1, t1),… , (s8, t8) share permutation P.1, the order is [s1 … s8ABt1 … t8] . In the fol-
lowing, we prove the existence of a 4-rainbow, contradicting the fact that Q is a
3-queue layout for graph GT . More precisely:

–	 if x4 ≺ s3 , then the edges (x4, t4) , (s3, t3) , (s4,B) and (s5,A) form a 4-rainbow; see
Fig. 7a,

–	 if s3 ≺ x4 ≺ A , then the edges (s1, t1) , (s2,B) , (s3,A) and (s4, x4) form a 4-rainbow;
see Fig. 7b,

–	 if A ≺ x4 ≺ B , then the edges (s1, t1) , (s2,B) , (s4, x4) and (s5,A) form a 4-rainbow;
see Fig. 7c,

A B t3· · ·s4 t4x4 · · ·s3 s5· · ·

(a) x4 s3

A B t1· · ·s4 x4s3s2s1

(b) s3 x4 A

A B t1· · ·s4 x4s5s2s1 · · ·

(c) A x4 B

s8 B t6· · ·· · · A t4 t8· · ·x4 · · · t7

(d) B x4 t6

s4 s7 B· · ·· · · s6 A t4s8 · · · t6

(e) t6 x4

Fig. 7   Illustration for the Case P.1

2577

1 3

Algorithmica (2020) 82:2564–2585	

–	 if B ≺ x4 ≺ t6 , then the edges (s8, t8) , (A, t7) , (B, t6) and (x4, t4) form a 4-rain-
bow; see Fig. 7d, and

–	 if t6 ≺ x4 , then the edges (s4, t4) , (s6, t6) , (s7,B) and (s8,A) form a 4-rainbow; see
Fig. 7e.

Since each subcase yields a 4-rainbow, the proof of Case P.1 follows. 	� ◻

Case P.2  As in the previous case, we set r = 8 and we only consider the case, in
which (s1, t1),… , (s8, t8) form a twist, since the necklace case is again impossi-
ble. Hence, the order is [As1 … s8Bt1 … t8] . First, we claim that t8 ≺ x4 . To prove
the claim, assume to the contrary that x4 ≺ t8 . In the following, we prove that this
assumption inevitably implies a 4-rainbow, contradicting the fact that Q is a 3-queue
layout for graph GT . More precisely:

–	 if t6 ≺ x4 ≺ t8 , then the edges (A, t8) , (s4, x4) , (s6, t6) and (B, t4) form a 4-rain-
bow; see Fig. 8a,

–	 if B ≺ x4 ≺ t6 , then the edges (A, t8) , (s7, t7) , (B, t6) and (x4, t4) form a 4-rain-
bow; see Fig. 8b,

–	 if s3 ≺ x4 ≺ B , then the edges (A, t8) , (s1, t1) , (s2,B) and (s4, t4) form a 4-rain-
bow; see Fig. 8c,

–	 if A ≺ x4 ≺ s3 , then the edges (A, t8) , (x4, t4) , (s3, t3) and (B, t1) form a 4-rain-
bow; see Fig. 8d, and

–	 if x4 ≺ A , then the edges (x4, t4) , (A, t3) , (s2, t2) and (B, t1) form a 4-rainbow; see
Fig. 8e.

An analogous case distinction yields that t8 ≺ x5 must also hold. However, we
have no knowledge about the relative order of x4 and x5 . In the following, we
show that regardless of the relative order of x4 and x5 , a 4-rainbow is inevitably
formed. More precisely:

–	 if x4 ≺ x5 , then the edges (A, x5) , (s4, x4) , (s8, t8) and (B, t4) form a 4-rainbow;
see Fig. 9a, and

A B t8· · ·· · · s4 · · ·t4 t6 x4· · ·s6 · · ·· · · · · ·

(a) t6 x4 t8

A B t7 t8· · · t6· · · s7 · · ·t4
t4

· · ·x4
x4· · ·

(b) B x4 t6

A B· · · t1 t8· · · · · ·s1 s2
s4

s4
· · ·x4

x4

(c) s3 x4 B

A B t1· · ·s3x4· · · · · · t3 t4 t8· · · · · ·

(d) A x4 s3

A B t1· · ·s2x4 · · · · · · t2 t3 t4

(e) x4 A

Fig. 8   Illustration for the Case P.2 when x4 ≺ t8 holds

2578	 Algorithmica (2020) 82:2564–2585

1 3

–	 if x5 ≺ x4 , then the edges (A, x4) , (s5, t5) , (s8, t8) and (B, t4) form a 4-rainbow; see
Fig. 9b.

Since each subcase yields a 4-rainbow, the proof of this case follows. 	� ◻

Case P.3  This case can be ruled out as Case P.2 due to symmetry. 	� ◻

Case P.4  We set r = 10 and we proceed by distinguishing two subcases based on
whether the edges (s1, t1),… , (s10, t10) form a twist or a necklace. Note that in con-
trast to the previous cases, here both subcases are possible.

We start with the twist case. Hence, the order is [ABs1 … s10t1 … t10] . Let
Z4…7 = {x4,… , x7} ∪ {y4,… y7} and let z4…7 be any element of Z4…7 . By con-
struction of graph GT , vertex z4…7 has a neighbor in {s4,… , s7} , and a neighbor in
{t4,… , t7} . Denote by s4…7 the endvertex of the former neighbor. Symmetrically,
denote by t4…7 the latter neighbor. First, we claim that t9 ≺ z4…7 , that is, all x4,… , x7
and y4,… , y7 are preceded by t9 . To prove the claim, assume to the contrary that
z4…7 ≺ t9 . In the following, we prove that this assumption inevitably implies a
4-rainbow, contradicting the fact that Q is a 3-queue layout for graph GT . More
precisely:

–	 if t8 ≺ z4…7 ≺ t9 , then the edges (A, t10) , (B, t9) , (s4…7, z4…7) and (s8, t8) form a
4-rainbow; see Fig. 10a,

A B t8· · ·· · · s4 t4 t5 x4· · · s8 · · · x5

(a) t8 x4 x5

A B t8· · ·· · · s5 t4 x4· · · s8 · · · x5

(b) t8 x5 x4

Fig. 9   Illustration for the Case P.2 when t8 ≺ x4 and t8 ≺ x5 hold

A B t8· · · t10· · · t9s8 z4...7s4 s7· · ·

(a) t8 z4...7 t9

A B t8· · · t10· · ·s8 t9t4 t7· · ·
z4...7

(b) t3 z4...7 t8

A B t3· · · t10· · ·s3 t9· · ·s4 s7· · ·
z4...7

(c) s3 z4...7 t3

AB t3· · · · · ·· · ·s3z4...7 t9t4 t7· · · t10· · ·

(d)B z4...7 s3

A Bz4...7 s1 t1 t3· · · t10· · · t4 t7· · · · · ·

(e) A z4...7 B

· · ·A Bz4...7 s1 t1 t2 t3 t4· · · t7· · ·

(f) z4...7 A

Fig. 10   Illustration for the Case P.4 when z4…7 ≺ t9 holds

2579

1 3

Algorithmica (2020) 82:2564–2585	

–	 if t3 ≺ z4…7 ≺ t8 , then the edges (A, t10) , (B, t9) , (s8, t8) and (z4…7, t4…7) form a
4-rainbow; see Fig. 10b,

–	 if s3 ≺ z4…7 ≺ t3 , then the edges (A, t10) , (B, t9) , (s3, t3) and (s4…7, z4…7) form a
4-rainbow; see Fig. 10c,

–	 if B ≺ z4…7 ≺ s3 , then the edges (A, t10) , (B, t9) , (z4…7, t4…7) and (s3, t3) form a
4-rainbow; see Fig. 10d,

–	 if A ≺ z4…7 ≺ B , then the edges (A, t10) , (z4…7, t4…7) , (B, t3) and (s1, t1) form a
4-rainbow; see Fig. 10e, and

–	 if z4…7 ≺ A , then the edges (z4…7, t4…7) , (A, t3) , (B, t2) and (s1, t1) form a 4-rain-
bow; see Fig. 10f.

From the above case analysis, it follows that t9 ≺ z4…7 , that is, all x4,… , x7 and
y4,… , y7 are preceded by t9 . Let us now take a closer look at the ordering of the
eight vertices in Z4…7 . We claim that their ordering has to comply with the fol-
lowing two requirements:

	R.1.	 the indices of the first 7 elements of Z4…7 are non-decreasing, and
	R.2.	 for the last 7 elements of Z4…7 , all xi ’s precede all yj’s.

Assume to the contrary, that R.1 does not hold. Then, there exists a pair of
vertices, say without loss of generality xi and xj with i < j , such that xj ≺ xi , and
xi is not the last element of Z4…7 . Since the last element of Z4…7 has a connection
to either A or B, this connection and the edges (si, xi) , (sj, xj) and (s9, t9) form a
4-rainbow, contradicting the fact that Q is a 3-queue layout for graph GT . Hence,
R.1 holds, as desired.

To complete the proof of our claim, now assume to the contrary that R.2 does
not hold. Then, there exists a pair of vertices, say without loss of generality xi
and yj , such that yj ≺ xi , and yj is not the first element of Z4…7 . Without loss of
generality, let xk be the first element of Z4…7 . Then, the edges (A, xi) , (B, yj) , (sk, xk)
and (s9, t9) form a 4-rainbow, contradicting the fact that Q is a 3-queue layout for
graph GT . Hence, R.2 holds, as desired.

Now, we show that R.1 and R.2 cannot simultaneously hold, which by our
claim implies the existence of a 4-rainbow. Consider the last element of Z4…7 .
Assume that R.1 and R.2 both hold. By R.2, we may deduce that the last three
elements of Z4…7 belong to {y4,… y7} . Let them be yi, yj, y� as they appear from
left to right. Then, by R.1 we have that i < j . Consider now xj . By R.1, yi ≺ xj
must hold. This contradicts the fact that yi, yj, y� are the last three elements of
Z4…7.

We continue with the necklace case. Here, the order is [ABs1t1 … s10t10] . In the
following, we make several observations in the form of propositions.

Proposition 1  Let wi be a neighbor of si or ti not in {A,B, si, ti} , for 3 ≤ i ≤ 8 . Then,
either si−1 ≺ wi ≺ ti+1 , or s10 ≺ wi holds in Q.

2580	 Algorithmica (2020) 82:2564–2585

1 3

Proof  Let zi ∈ {si, ti} be the neighbor of vertex wi . We prove in the following that
for any placement of wi such that neither si−1 ≺ wi ≺ ti+1 nor s10 ≺ wi hold, there is
a 4-rainbow:

–	 if wi ≺ A , then the edges (wi, zi) , (A, t2) , (B, s2) and (s1, t1) form a 4-rainbow; see
Fig. 11a;

–	 if A ≺ wi ≺ B , then the edges (A, s10) , (wi, zi) , (B, s2) and (s1, t1) form a 4-rain-
bow; see Fig. 11b;

–	 if B ≺ wi ≺ si−1 , then (A, t10) , (B, s10) , (wi, zi) and (si−1, ti−1) form a 4-rainbow;
see Fig. 11c, and

–	 if ti+1 ≺ wi ≺ s10 , then (A, t10) , (B, s10) , (zi,wi) and (si+1, ti+1) form a 4-rainbow;
see Fig. 11d.

Since each case yields a 4-rainbow, the proof follows. 	� ◻

Proposition 2  Let wi and zi be two vertices not in {A,B} that form a K4 with si and
ti for 3 ≤ i ≤ 8 . Then, at least one of the following holds in Q : s10 ≺ wi or s10 ≺ zi.

Proof  The edges of the K4 formed by the vertices si , ti , wi and zi induce a 2-rainbow
regardless of the relative order of their endvertices. By Proposition 1, each of wi and
zi is either between si−1 and ti+1 , or after s10 . But if both wi and zi were between si−1
and ti+1 , then the 2-rainbow composed of the edges of the K4 , along with the two
edges (A, t10) , (B, s10) , would form a 4-rainbow; a contradiction. Hence, s10 ≺ wi or
s10 ≺ zi must hold, as desired. 	� ◻

Proposition 3  For 4 ≤ i ≤ 8 , each vertex from the set {xi, yi, pi, qi, ui, vi} is between
si−1 and ti+1 in Q.

Proof  Let wi be an arbitrary vertex from the set {xi, yi, pi, qi, ui, vi} . Observe that, by
construction of graph GT , vertex wi has an edge (which we call long) to exactly one
of A and B, and an edge (which we call short) to at least one of si and ti . By Proposi-
tion 1, it is sufficient to prove that wi is not after s10 . Assume for a contradiction that
s10 ≺ wi.

· · · Awi s1 t1 t2s2 · · ·B zi

(a) w A

A Bwi s10s1 t1 s2 · · · zi

(b)A w B

A B wi· · · s10 t10· · · · · ·
s i

−
1

t i
−
1 zi

(c) B w si 1

A B wi· · · s10 t10· · · · · ·

t i
+
1

s i
+
1zi

(d) ti+1 w s10

Fig. 11   Illustrations for the proof of Proposition 1

2581

1 3

Algorithmica (2020) 82:2564–2585	

Consider the edges (xi−1, �i−1) , (��
i−1

, ���
i−1

) , (yi−1, �i−1) , (��i−1, �
��
i−1

) , and observe that
the endpoints of each of these edges create a K4 with si−1 and ti−1 . By Proposition 2,
one endvertex from each of these four edges is after s10 . By the pigeonhole principle,
at least two of these endvertices either precede or follow wi . Call them ai−1 and bi−1 ,
where without loss of generality ai−1 ≺ bi−1 . Then, the edges (si−1, bi−1) , (ti−1, ai−1)
and (s9, t9) form a 3-rainbow, since si−1 ≺ ti−1 ≺ s9 ≺ t9 ≺ s10 ≺ ai−1 ≺ bi−1 . This
3-rainbow together with the short edge of wi (when both ai−1 and bi−1 follow wi , that
is, wi ≺ ai−1 ≺ bi−1 ), or with the long edge of wi (when both ai−1 and bi−1 precede wi ,
that is, ai−1 ≺ bi−1 ≺ wi ) yield a 4-rainbow; a contradiction. 	� ◻

Since si and ti are between si−1 and ti+1 , it follows from Proposition 3, that each
vertex from the set {si, ti, xi, yi, pi, qi, ui, vi} is between si−1 and ti+1 , for 4 ≤ i ≤ 8 .
Then, the edges between these vertices cannot form a 2-rainbow, as otherwise this
2-rainbow along with the two edges (A, t10) and (B, s10) would form a 4-rainbow,
contradicting the fact that Q is a 3-queue layout for GT . Assume without loss of
generality that xi ≺ yi . Since (xi, yi) is the only missing edge between vertices
{xi, yi, si, ti} , it follows that in order to avoid a 2-rainbow, we may assume that one of
the following two cases applies (for an illustration, refer to Fig. 12):

–	 xi ≺ si ≺ ti ≺ yi,
–	 si ≺ xi ≺ yi ≺ ti.

In both cases, vertex pi must precede both xi and si , as otherwise either (pi, si), (xi, ti) ,
or (pi, xi), (si, ti) would form a 2-rainbow; see Fig. 12. But then there is no valid posi-
tion for qi without creating a 2-rainbow in either case, resulting together with (A, t10)
and (B, s10) in a 4-rainbow. This completes the description of Case P.4. 	� ◻

Case P.5  This case can be ruled out as Case P.4 due to symmetry. 	� ◻

From the above case analysis it follows that if r is at least 10 (which implies that
T is at least 1,800), then for at least one (s, t)-edge of GT permutation P.6 applies,
that is, there exists 1 ≤ i0 ≤ T such that A ≺ si0 ≺ ti0 ≺ B . Notice that the edges
(A, B) and (si0 , ti0) form a 2-rainbow.

We proceed by augmenting graph GT as follows. For each edge (si, ti) of graph
GT , we introduce a new copy of graph GT , which has si and ti as poles. Let G′

T
 be the

augmented graph and let (s�
1
, t�
1
),… , (s�

T
, t�
T
) be the (s, t)-edges of the copy of graph

GT in G′
T
 corresponding to the edge (si0 , ti0) of the original graph GT . Then, by our

arguments above, in any 3-queue layout of G′
T
 , there exists 1 ≤ i1 ≤ T  , such that

· · · pi si ti yixi · · ·BA s10 t10

(a) xi si ti yi

· · · pi xi yi tisi · · ·BA s10 t10

(b) si xi yi ti

Fig. 12   Contradiction for placing xi, yi, pi, qi, ui, vi in range (si−1, ti+1) , 4 ≤ i ≤ 8

2582	 Algorithmica (2020) 82:2564–2585

1 3

si0 ≺ s′
i1
≺ t′

i1
≺ ti0 . Hence, the edges (A, B), (si0 , ti0) and (s�

i1
, t�
i1
) form a 3-rainbow,

since A ≺ si0 ≺ ti0 ≺ B holds. If we apply the same augmentation procedure to graph
G′

T
 , then we guarantee that the resulting graph G′′

T
 , which is clearly a subgraph of a

planar 3-tree, has inevitably a 4-rainbow. Hence, Theorem 2 follows. We stress here
that graph G′′

T
 is rather large. Since T ≥ 1, 800 , the total number of (s, t)-edges in G′′

T

is at least 1, 8003.

Theorem 2  There exist planar 3-trees that have queue number at least 4.

5 � Track Layouts

In this section, we discuss implications of our results to the closely-related track
layouts [11], which are formally defined as follows. Let {Vi ∶ 1 ≤ i ≤ t} be a parti-
tion of the vertex set of a graph G such that for every edge (u, v) of G, if u ∈ Vi and
v ∈ Vj , then i ≠ j . Suppose that <i is a total order of Vi . Then, the ordered set (Vi,<i)
is called a track and the partition is called a t-track assignment of G. An X-crossing
in a track assignment consists of two edges (u, v) and (u�, v�) such that u and u′ are on
the same track Vi , v and v′ are on a different track Vj with u <i u

′ and v′ <j v . A track
layout is a track assignment with no X-crossings. In other words, a track layout of a
graph is a partition of its vertices into a number of tracks, such that the vertices in
each track form an independent set and the edges between each pair of tracks form a
non-crossing set. The track number of graph G is the minimum t, such that G has a
t-track layout.

Track and queue layouts are closely related to each other, as observed by
Dujmović et al. [11]. In particular, every graph that admits a t-track layout has queue
number at most (t − 1) , while every graph that admits a q-queue layout has track
number at most 4q ⋅ 4q(2q−1)(4q−1) . For the case of graphs with bounded tree-width,
several upper bounds on the track number are known; trees have track number 3
[14], outerplanar graphs have track number 5 [11], series-parallel graphs have track
number at most 15 [6], and planar 3-trees have track number at most 5415 [6].

In the following, we improve the upper bound on the track number of planar
3-trees, utilizing the following relation between the acyclic chromatic number of a
graph admitting a q-queue layout and its track number. Recall that a vertex coloring
is acyclic, if there is no bichromatic cycle, that is, all cycles consists of at least three
colors.

Lemma 4  (Dujmović et al. [10]) Every q-queue graph with acyclic chromatic num-
ber c has track-number at most c(2q)c−1.

Since the unique 4-coloring of a planar 3-tree is acyclic [15], combining
Lemma 4 with Theorem 1 we obtain the following result.

Theorem 3  The track number of a planar 3-tree is at most 4000.

2583

1 3

Algorithmica (2020) 82:2564–2585	

Notice that the upper bound of Theorem 3 has been recently improved [26].

6 � Conclusions

In this work, we presented improved bounds on the queue number of planar 3-trees.
We conclude by mentioning two interesting open problems that arise from our work:

–	 The first one concerns the exact upper bound on the queue number of planar
3-trees. Does there exist a planar 3-tree whose queue number is five (as our upper
bound) or the queue number of every planar 3-tree is four (as our lower bound
example)?

–	 The second problem is whether the technique that we developed for planar
3-trees can be extended so to improve the upper bound for the queue number of
general (that is, non-planar) k-trees, which is currently exponential in k [30].

Acknowledgements  Open Access funding provided by Projekt DEAL. The authors would like to thank
the reviewers of this work for their very helpful comments and suggestions.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Alam, J.M., Bekos, M.A., Gronemann, M., Kaufmann, M., Pupyrev, S.: Queue layouts of planar
3-trees. In: T.C. Biedl, A. Kerren (eds.) Graph Drawing and Network Visualization, vol. 11282 ,
LNCS, pp. 213–226. Springer, Berlin (2018). https​://doi.org/10.1007/978-3-030-04414​-5_15

	 2.	 Bekos, M.A., Förster, H., Gronemann, M., Mchedlidze, T., Montecchiani, F., Raftopoulou, C.N.,
Ueckerdt, T.: Planar graphs of bounded degree have bounded queue number. SIAM J. Comput.
48(5), 1487–1502 (2019). https​://doi.org/10.1137/19M12​5340X​

	 3.	 Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Scheduling tree-dags using FIFO
queues: a control-memory trade-off. J. Parallel Distrib. Comput. 33(1), 55–68 (1996). https​://doi.
org/10.1006/jpdc.1996.0024

	 4.	 Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualiza-
tion of Graphs. Prentice-Hall, New York (1999)

	 5.	 Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM J. Comput. 42(6),
2243–2285 (2013). https​://doi.org/10.1137/13090​8051

	 6.	 Di Giacomo, E., Liotta, G., Meijer, H.: Computing straight-line 3D grid drawings of graphs in linear
volume. Comput. Geom. 32(1), 26–58 (2005). https​://doi.org/10.1016/j.comge​o.2004.11.003

	 7.	 Dujmović, V.: Graph layouts via layered separators. J. Comb. Theory Ser. B 110, 79–89 (2015).
https​://doi.org/10.1016/j.jctb.2014.07.005

	 8.	 Dujmović, V., Frati, F.: Stack and queue layouts via layered separators. J. Graph Algorithms Appl.
22(1), 89–99 (2018). https​://doi.org/10.7155/jgaa.00454​

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-04414-5_15
https://doi.org/10.1137/19M125340X
https://doi.org/10.1006/jpdc.1996.0024
https://doi.org/10.1006/jpdc.1996.0024
https://doi.org/10.1137/130908051
https://doi.org/10.1016/j.comgeo.2004.11.003
https://doi.org/10.1016/j.jctb.2014.07.005
https://doi.org/10.7155/jgaa.00454

2584	 Algorithmica (2020) 82:2564–2585

1 3

	 9.	 Dujmović, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar graphs have bounded
queue-number. In: Zuckerman, D. (ed.) FOCS, pp. 862–875. IEEE Computer Society (2019). https​
://doi.org/10.1109/FOCS.2019.00056​

	10.	 Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput.
34(3), 553–579 (2005). https​://doi.org/10.1137/S0097​53970​24161​41

	11.	 Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theoret. Comput. Sci.,
6(2), 497–522 (2004). http://dmtcs​.episc​ience​s.org/315

	12.	 Dujmović, V., Wood, D.R.: Tree-partitions of k-trees with applications in graph layout. In: Bod-
laender, H.L. (ed.) WG, vol. 2880 LNCS, pp. 205–217. Springer, Berlin (2003). https​://doi.
org/10.1007/978-3-540-39890​-5_18

	13.	 Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Discrete Math.
Theoret. Comput. Sci., 7(1), 155–202 (2005). http://dmtcs​.episc​ience​s.org/346

	14.	 Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and
three dimensions. J. Gr. Algorithms Appl. 7(4), 363–398 (2003). https​://doi.org/10.7155/jgaa.00075​

	15.	 Fertin, G., Raspaud, A., Reed, B.A.: On star coloring of graphs. In: Brandstädt, A., Le, V.B. (eds.)
WG, vol. 2204 of LNCS, pp. 140–153. Springer, Berlin (2001). https​://doi.org/10.1007/3-540-
45477​-2_14

	16.	 Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1972)
	17.	 Hasunuma, T.: Laying out iterated line digraphs using queues. In: Liotta, G. (ed.) Graph Drawing,

volume 2912 of LNCS, pp. 202–213. Springer, Berlin (2003). https​://doi.org/10.1007/978-3-540-
24595​-7_19

	18.	 Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for lay-
ing out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992). https​://doi.org/10.1137/04050​31

	19.	 Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958
(1992). https​://doi.org/10.1137/02210​55

	20.	 Kaufmann, M., Wagner, D. (eds).: Drawing Graphs, Methods and Models, volume 2025 of LNCS.
Springer, Berlin (2001)

	21.	 Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of plane 3-trees. J.
Gr. Algorithms Appl. 15(2), 177–204 (2011). https​://doi.org/10.7155/jgaa.00222​

	22.	 Ollmann, T.: On the book thicknesses of various graphs. In Hoffman, F., Levow, R., Thomas, R.
(eds.) Southeastern Conference on Combinatorics, Graph Theory and Computing, volume VIII of
Congressus Numerantium, p. 459 (1973)

	23.	 Pach, J., Thiele, T., Tóth, G.: Three-dimensional grid drawings of graphs. In Di Battista, G.
(ed.) Graph Drawing, volume 1353 of LNCS, pp. 47–51. Springer, Berlin (1997). https​://doi.
org/10.1007/3-540-63938​-1_49

	24.	 Pemmaraju, S.V.: Exploring the powers of stacks and queues via graph layouts. PhD thesis, Virginia
Tech (1992)

	25.	 Pupyrev, S.: Mixed linear layouts of planar graphs. In: Graph Drawing, volume 10692 of LNCS, pp.
197–209. Springer, Berlin (2017). https​://doi.org/10.1007/978-3-319-73915​-1_17

	26.	 Pupyrev, S.: Improved bounds for track numbers of planar graphs. CoRR, 1910.14153, (2019). https​
://arxiv​.org/abs/1910.14153​

	27.	 Rengarajan, S., Madhavan, C.E.V.: Stack and queue number of 2-trees. In: Du, D., Li, M. (eds.)
COCOON, volume 959 of LNCS, pp. 203–212. Springer, Berlin (1995). https​://doi.org/10.1007/
BFb00​30834​

	28.	 Shahrokhi, F., Shi, W.: On crossing sets, disjoint sets, and pagenumber. J. Algorithms 34(1), 40–53
(2000). https​://doi.org/10.1006/jagm.1999.1049

	29.	 Tarjan, R.E.: Sorting using networks of queues and stacks. J. ACM 19(2), 341–346 (1972). https​://
doi.org/10.1145/32169​4.32170​4

	30.	 Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr. J. Comb., 24(1),
P1.65, (2017). http://www.combi​nator​ics.org/ojs/index​.php/eljc/artic​le/view/v24i1​p65

	31.	 Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing. In: Agrawal, M.,
Seth, A. (eds.) FSTTCS, volume 2556 of LNCS, pp. 348–359. Springer, Berlin (2002). https​://doi.
org/10.1007/3-540-36206​-1_31

	32.	 Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989).
https​://doi.org/10.1016/0022-0000(89)90032​-9

https://doi.org/10.1109/FOCS.2019.00056
https://doi.org/10.1109/FOCS.2019.00056
https://doi.org/10.1137/S0097539702416141
http://dmtcs.episciences.org/315
https://doi.org/10.1007/978-3-540-39890-5_18
https://doi.org/10.1007/978-3-540-39890-5_18
http://dmtcs.episciences.org/346
https://doi.org/10.7155/jgaa.00075
https://doi.org/10.1007/3-540-45477-2_14
https://doi.org/10.1007/3-540-45477-2_14
https://doi.org/10.1007/978-3-540-24595-7_19
https://doi.org/10.1007/978-3-540-24595-7_19
https://doi.org/10.1137/0405031
https://doi.org/10.1137/0221055
https://doi.org/10.7155/jgaa.00222
https://doi.org/10.1007/3-540-63938-1_49
https://doi.org/10.1007/3-540-63938-1_49
https://doi.org/10.1007/978-3-319-73915-1_17
https://arxiv.org/abs/1910.14153
https://arxiv.org/abs/1910.14153
https://doi.org/10.1007/BFb0030834
https://doi.org/10.1007/BFb0030834
https://doi.org/10.1006/jagm.1999.1049
https://doi.org/10.1145/321694.321704
https://doi.org/10.1145/321694.321704
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p65
https://doi.org/10.1007/3-540-36206-1_31
https://doi.org/10.1007/3-540-36206-1_31
https://doi.org/10.1016/0022-0000(89)90032-9

2585

1 3

Algorithmica (2020) 82:2564–2585	

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Queue Layouts of Planar 3-Trees
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Upper Bound
	3.1 The Two-Level Case
	3.2 The Multi-Level Case
	3.3 Differences with Wiechert’s Algorithm

	4 The Lower Bound
	5 Track Layouts
	6 Conclusions
	Acknowledgements
	References

