
Vol.:(0123456789)

Algorithmica (2020) 82:2687–2707
https://doi.org/10.1007/s00453-020-00699-2

1 3

Compression of Dynamic Graphs Generated
by a Duplication Model

Krzysztof Turowski1,3 · Abram Magner2 · Wojciech Szpankowski1

Received: 9 October 2018 / Accepted: 12 March 2020 / Published online: 3 April 2020
© The Author(s) 2020

Abstract
We continue building up the information theory of non-sequential data structures
such as trees, sets, and graphs. In this paper, we consider dynamic graphs gener-
ated by a full duplication model in which a new vertex selects an existing vertex
and copies all of its neighbors. We ask how many bits are needed to describe the
labeled and unlabeled versions of such graphs. We first estimate entropies of both
versions and then present asymptotically optimal compression algorithms up to two
bits. Interestingly, for the full duplication model the labeled version needs Θ(n) bits
while its unlabeled version (structure) can be described by Θ(log n) bits due to sig-
nificant amount of symmetry (i.e. large average size of the automorphism group of
sample graphs).

Keywords  Random graphs · Structural entropy · Graph compression · Duplication
model

1  Introduction

Complex systems can often be modeled as dynamic graphs. In these systems, pat-
terns of interactions evolve in time, determining emergent properties, associated
function, robustness, and security of the system. There are several broad questions
whose answers shed light on the evolution of such dynamic networks: (i) how many
bits are required to best describe such a network and its structure (i.e., unlabeled

This work was supported by NSF Center for Science of Information (CSoI) Grant CCF-0939370,
and in addition by NSF Grant CCF-1524312, and National Science Center, Poland, under Grant
UMO-2016/21/B/ST6/03146.

 *	 Krzysztof Turowski
	 krzysztof.szymon.turowski@gmail.com

1	 Center for Science of Information, Purdue University, West Lafayette, IN, USA
2	 Department of Computer Science, University at Albany, SUNY, Albany, NY, USA
3	 Theoretical Computer Science Department, Jagiellonian University, Krakow, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00699-2&domain=pdf

2688	 Algorithmica (2020) 82:2687–2707

1 3

underlying graph); (ii) how to infer underlying dynamic processes governing net-
work evolution; (iii) how to infer information about previous states of the network;
and (iv) how to predict the forward evolution of the network state. In this paper we
deal with the first question (i.e., labeled and unlabeled graph compression).

To better understand the evolution of network structural properties, several prob-
abilistic models have been proposed, including, e.g., the preferential attachment,
duplication-divergence, Cooper-Frieze, and fit-get richer models [2, 6, 10, 24].

Clearly, some models are more suitable to certain types of data than others. For
example, it has been claimed that the preferential attachment mechanism [2] plays
a strong role in the formation of citation networks [23]. However, due to the high
power law exponent of their degree sequence (greater than 2) and lack of community
structure [6], preferential attachment graphs are not likely to describe well biologi-
cal networks such as protein interaction networks or gene regulatory networks [19].
For such networks another model, known as the vertex-copying model, or simply
the duplication model, has been claimed as a better fit [25]. In the vertex-copying
model, one picks an existing vertex and inserts its clone, possibly with some random
modifications, depending on the exact variation of the model [6, 14, 20]. Experi-
mental results show that these variations on the duplication model better capture
salient features of protein interaction networks than does the preferential attachment
model [22].

In this paper we present comprehensive information-theoretic results for the full
duplication model in which every new vertex is a copy of some older vertex. We
establish precisely (that is, within a o(1) additive error) the entropy for both unla-
beled and labeled graphs generated by this model and design asymptotically opti-
mal compression algorithms that match the entropies up to a constant additive term.
Interestingly, we shall see that the entropy of labeled graphs is H(Gn) = Θ(n) , while
the structural entropy (the entropy of the isomorphism class of a random graph from
the model, denoted by S(Gn) ) is significantly smaller: H(S(Gn)) = Θ(log n) . Thus,
the vast majority of information of the labeled graphs in this model is present in the
labeling itself, not in the underlying graph structure. In contrast, the entropy of the
labeled and generated by, e.g., the preferential attachment model is Θ(n log n) [17].

Clearly, given its simplicity, this model should be regarded as a stepping stone
toward a better understanding of more advanced models of this type. The extensions
are typically defined by a fixed-probability mix of the full duplication model and
other rules, such as no-duplication or uniform attachment. We shall deal with such
models in a forthcoming paper.

Graph compression has enjoyed a surge in popularity in recent years, as the
recent survey [3] shows. However, rigorous information-theoretic results are still
lacking, with a few notable exceptions. The rigorous information-theoretic analy-
sis of graph compression (particularly in the unlabeled case) was initiated by Choi
and Szpankowski [5], who analyzed structural compression of Erdős-Rényi graphs
(see also [1]). The authors of [5] presented a compression algorithm that provably
achieves asymptotically the first two terms of the structural entropy. In Łuczak
et al. [17] the authors precisely analyzed the labeled and structural entropies and
gave asymptotically optimal compression algorithms for preferential attachment
graphs. There has been recent work on universal compression schemes, including

2689

1 3

Algorithmica (2020) 82:2687–2707	

in a distributed scenario, by Delgosha and Anantharam [8, 9]. Additionally, several
works deal with compression of trees [11, 12, 18, 26].

The full duplication model was almost exclusively analyzed in the context of
the typical properties such as degree distribution [6]. It was shown that the aver-
age degree depends strongly on the initial conditions [16]. It was also proved that
the asymptotic degree distribution fails to converge, yet it exhibits power-law behav-
ior with exponent dependent on the lowest nonzero degree in the initial graph [21].
Other parameters studied in the context of duplication models are the number of
small cliques [13] or degree-degree correlations [4]. To the best of our knowledge
the entropy and compression of duplication models were not discussed previously in
any available literature.

The rest of the paper is organized as follows: In Sect. 2 we define the full duplica-
tion model and present its basic properties. In Sect. 3 we establish main results con-
cerning the entropy of the unlabeled and labeled graphs with Sect. 4 being devoted
to the construction of algorithms that achieve these bounds within a constant addi-
tive term.

2 � Full Duplication Model

In this section we define the full duplication model and present some of its
properties.

2.1 � Definitions

The full duplication model is defined as follows: let us denote by G0 a given graph
on n0 vertices for some fixed constant n0 . Then, for any 1 ≤ i ≤ n we obtain Gi from
Gi−1 by choosing one of the vertices of Gi−1 (denoted by v) uniformly at random,
attaching to the graph a new vertex vi and adding edges between vi and all vertices
adjacent to v. Note that v and vi are not connected – although if one wants to achieve
higher clustering, the results in this paper can be straightforwardly applied to the
model in which we add not only edges between vi and the neighbors of v, but also
between vi and v. Observe that Gn has n + n0 vertices. Also, properties of Gn heavily
depend on G0 and its structure, which we assume to be fixed.

Throughout this paper, we will refer to the vertices of the starting graph G0 as
{u1,… , un0} and to all other vertices from Gn as {v1,… , vn} . We denote by V(G) and
E(G) the set of vertices and the set of edges of a graph G, respectively. Moreover,
we denote by Nn(v) the neighborhood of the vertex v, that is, all vertices that are
adjacent to v in Gn . Sometimes we drop the subscript, if the size of the graph is clear
from the context.

An example of the duplication process is presented in Fig. 1. On the top, we show
the original G0 on 6 vertices, and on the bottom we plot G3 with new vertices such
that v1 is a copy of u2 , v2 is a copy of u1 , and v3 is a copy of v1.

Here, due to the limited space, we restrict our analysis to asymmetric G0 (i.e.,
the underlying automorphism group is of size 1); however, extensions to general

2690	 Algorithmica (2020) 82:2687–2707

1 3

G0 are rather straightforward. We observe that typically even moderate-sized
graphs are likely to be asymmetric.

2.2 � Basic Properties

Let us introduce the concept of a parent and an ancestor of a vertex. We say that
w is the parent of v (denoted by w = P(v) ), when v was copied from w at some
time 1 ≤ i ≤ n . We say that w ∈ U is the ancestor of v (denoted by w = A(v) ),
when there exist vertices vi1 ,… , vik such that w = P(vi1) , vij = P(vij+1) for
1 ≤ j ≤ k − 1 , and vik = v . For convenience we write that if u ∈ U , then P(u) = u
and A(u) = u . Note that the ancestor of any given vertex is unique. In our example
from Fig. 1 u2 is the ancestor of both v1 and v3 , but only a parent of v1 and not v3.

Let now define the set of descendants of ui ∈ U : Ci,n ∶= {w ∈ Gn ∶ A(w) = ui}
for 1 ≤ i ≤ n0 . The neighborhood of a vertex is closely tied to its ancestor, as the
following lemma shows:

Lemma 1  Let us fix any 1 ≤ i ≤ n0 . For all n ≥ 0 and any v ∈ Ci,n we have

Proof  We prove this by induction. For n = 0 we have Ci,0 = {ui} and the claim holds.
Now suppose that the claim holds for some n ≥ 0 and that P(vn+1) = w . If

A(w) = uk , then A(vn+1) = uk . Moreover,

We split the remaining part of the proof into several cases:

Nn(v) =
⋃

uiuj∈E(G0)

Cj,n.

Ck,n+1 = Ck,n ∪ {vn+1}

Ci,n+1 = Ci,n for i ≠ k.

u1 u2 u3 u4

u5u6

(a) Initial G0

u1 u2 u3 u4

u5u6v1v2

v3

(b)G3

Fig. 1   Example graph growth in the full duplication model

2691

1 3

Algorithmica (2020) 82:2687–2707	

Case 1, i = k , v = vn+1:	� by induction hypothesis we have

Case 2, i = k , v ≠ vn+1:	� similarly,

Case 3, i ≠ k , uiuk ∈ E(G0):	� for any v ∈ Ci,n+1 = Ci,n we have

Case 4, i ≠ k , uiuk ∉ E(G0):	� for any v ∈ Ci,n+1 = Ci,n we have

 Therefore, the proof is completed. 	� ◻

This means that effectively Gn is composed of clusters such that every vertex of
i-th cluster is connected to every vertex of j-th cluster if and only if uiuj ∈ E(G0) .
For example, for a graph in Fig. 1b we may identify (marked with ellipses in the fig-
ure) the following classes of vertices with identical neighborhoods: C1,n = {u1, v2} ,
C2,n = {u2, v1, v3} , C3,n = {u3} , C4,n = {u4} and C5,n = {u5}.

Let now Ci,n = |Ci,n| , that is, the number of vertices from Gn that are ultimately
copies of ui (including ui itself).

It is not hard to see that the sequence of variables (Ci,n)
n0
i=1

 can be described as a
ball and urn model with n0 urns. At time n = 0 each urn contains exactly one ball.
Each iteration consists of picking an urn at random, proportionally to the number of
balls in each bin – that is, with probability Ci,n∑n0

j=1
Cj,n

 – and adding a new ball to this

urn. It is known [15] that the joint distribution of (Ci,n)
n0
i=1

 is directly related to the
Dirichlet multinomial distribution denoted as Dir(n, �1,… , �K) , with K = n0 and
�i = 1 for 1 ≤ i ≤ n0:

where B(x, y) is the Euler beta function.

Nn+1(vn+1) = Nn+1(P(vn+1)) =
⋃

j∶ukuj∈E(G0)

Cj,n =
⋃

j∶ukuj∈E(G0)

Cj,n+1.

Nn+1(v) = Nn(v) =
⋃

j∶ukuj∈E(G0)

Cj,n =
⋃

j∶ukuj∈E(G0)

Cj,n+1.

Nn+1(v) = Nn(v) ∪ {vn+1} =
⋃

j∶uiuj∈E(G0)

Cj,n ∪ {vn+1}

=
⋃

j ∶ uiuj ∈ E(G0)

j ≠ k

Cj,n ∪ Ck,n ∪ {vn+1}

=
⋃

j ∶ uiuj ∈ E(G0)

j ≠ k

Cj,n+1 ∪ Ck,n+1 =
⋃

j∶uiuj∈E(G0)

Cj,n+1.

Nn+1(v) = Nn(v) =
⋃

j∶uiuj∈E(G0)

Cj,n =
⋃

j∶uiuj∈E(G0)

Cj,n+1.

Pr
�
(Ci,n)

n0
i=1

= (ki + 1)
n0
i=1

�
=

�
nB(n, n0) if

∑n0
i=1

ki = n,∀1≤i≤n0ki ∈ ℕ+,

0 otherwise.

2692	 Algorithmica (2020) 82:2687–2707

1 3

Each variable Ci,n is identically distributed – though not independent, as we know
that

∑n0
i=1

Ci,n = n – so we may analyze the properties of Cn ∼ Ci,n for every 1 ≤ i ≤ n0 .
Actually, Cn − 1 has the beta-binomial distribution BBin(n, �, �) with parameters
� = 1 , � = n0 − 1 . That is, for any k ≥ 0:

Chung et al. claimed in [6] that the distribution of Cn can be approximated by a den-
sity function f (x) = exp

(
−

x

�Cn

)
 . Instead, here we have an exact formula.

Moreover, since Cn ∼ BBin(n, 1, n0 − 1) + 1 we know immediately that
�Cn =

n

n0
+ 1 . For further results we will also need further properties of the beta bino-

mial distribution (with proofs provided in the appendices).
Note that all the logarithms used in subsequent theorems (unless explicitly noted as

ln ) have base 2.

Lemma 2  If X ∼ BBin(n, �, �) , then it is true that
�[log(X + 1)] = log n + (�(�) − �(� + �)) log e + o(1) where �(x) =

Γ�(x)

Γ(x)
 is the

Euler digamma function.

Since for all integers r, s we have �(r) − �(s) = Hr−1 − Hs−1 (where Hj denotes the
j-th harmonic number), it follows that

Corollary 1 �[logCn] = log n − Hn0−1
log e + o(1) for large n.

Similarly, we may prove that:

Lemma 3  If X ∼ BBin(n, �, �) , then

From the above lemma it is straightforward that:

(1)Pr(Cn = k + 1) =

(
n

k

)
B(k + 1, n + n0 − k − 1)

B(1, n0 − 1)

(2)= (n0 − 1)

(
n

k

)
B(k + 1, n + n0 − k − 1).

�[(X + 1) log(X + 1)] = n log n
�

� + �
+ n

�(�(� + 1) − �(� + � + 1)) log e

� + �

+ log n +

(
�(�) − �(� + �) + 1 +

�

2(� + �)

)
log e + o(1).

2693

1 3

Algorithmica (2020) 82:2687–2707	

Corollary 2  Asymptotically

3 � Main Theoretical Results

As discussed in the introduction, our goal is to present results for the duplication
graphs on structural parameters which are fundamental to statistical and informa-
tion-theoretic problems involving the information shared between the labels and the
structure of a random graph. In graph structure compression the goal is to remove
label information to produce a compact description of a graph structure.

Formally, the labeled graph compression problem can be phrased as follows:
one is given a probability distribution Gn on graphs on n vertices, and the task is
to exhibit a pair of mappings (i.e., a source code) (E, D), where E maps graphs to
binary strings satisfying the standard prefix code condition, and D maps binary
strings back to graphs, such that, for all graphs G, D(E(G)) = G , and the expected
code length �[|E(G)|] , with G ∼ Gn , is minimized. The standard source coding
theorem tells us that the fundamental limit for this quantity is H(G), the Shannon
entropy, defined as:

where G is a functional of the distribution, not a fixed graph.
The unlabeled version of this problem relaxes the invertibility constraint on the

encoder and decoder. In particular, we only require D(E(G)) ≅ G ; i.e., the decoder
only outputs a graph isomorphic to G. Again, the optimization objective is to mini-
mize the expected code length. Thus, in effect, the source code efficiently describes
the isomorphism type of its input. Denoting by S(G) the isomorphism type of G,
the fundamental limit for the expected code length is the structural entropy of the
model, which is given by H(S(G)).

There is a relation between the labeled entropy H(G) and structural entropy
H(S(G)). To express it succinctly for a broad class of graph models we need the
automorphism group1 Aut(G) , and the set Γ(G) of feasible permutations of G; i.e.,
the set of permutations of G that yield a graph that has positive probability under the
random graph model in question. See [5, 17] for more details.

Now, we are ready to present a relation between H(G) and H(S(G)). The follow-
ing lemma was proved in [17]:

�[Cn logCn] =
1

n0
n log n + n

(1 − Hn0
) log e

n0
+ log n

+

(
3

2
−

1

2n0
− Hn0−1

)
log e + o(1).

(3)H(G) = −
∑

G∈Gn

P(G) logP(G),

1  An automorphism of a graph is a permutation that preserves edge relations. In other words, it is a per-
mutation which, when applied to the graph, yields the same graph (note that, in mathematical literature, a
graph is by default labeled).

2694	 Algorithmica (2020) 82:2687–2707

1 3

Lemma 4  We have, for any graph model Gn in which all positive-probability labeled
graphs that are isomorphic have the same probability,

Now we prove the following results regarding the expected logarithms of the
sizes of the automorphism group and feasible permutation set for samples Gn
from the full duplication model.

Lemma 5  We have

for large n.

Proof  Under the assumption that |Aut(G0)| = 1 we have
�[log �Aut(Gn)�] = �

�
log

∏n0
i=1

Ci,n!
�
 . To prove it, it is sufficient to notice that all ver-

tices v, w such that A(v) = A(w) can be mapped on one another arbitrarily (since
by Lemma 1 they have equal neighborhoods)—but if A(v) ≠ A(w) , there does not
exist any automorphism � for which v and w are in the same orbit. Precisely, this is
because, if such a � did exist, then one may show that it induces an automorphism
of G0.

Thus,

We use Stirling’s approximation together with Corollarys 1 and 2 to obtain

Finally,

H(Gn) − H(S(Gn)) = �[log |Γ(Gn)|] − �[log |Aut(Gn)|].

�[log |Aut(Gn)|] = n log n − nHn0
log e +

3n0

2
log n

+

(
n0

2
−

1

2
−

3n0

2
Hn0−1

)
log e +

n0

2
log(2�) + o(1)

�[log |Aut(Gn)|] = �

[
log

n0∏

i=1

Ci,n!

]
=

n0∑

i=1

�[logCi,n!] = n0�[logCn!].

�[logCn!] = �[Cn logCn] − �Cn log e +
1

2
�[logCn] +

1

2
log(2�) + o(1)

= �[Cn logCn] − n
log e

n0
− log e +

1

2
�[logCn] +

1

2
log(2�) + o(1)

= n log n
1

n0
− n

Hn0
log e

n0
+

3

2
log n

+

(
1

2
−

1

2n0
−

3

2
Hn0−1

)
log e +

1

2
log(2�) + o(1).

2695

1 3

Algorithmica (2020) 82:2687–2707	

The proof is completed. 	� ◻

Observe that Gn has n + n0 vertices; therefore, the trivial upper bound on |Γ(Gn)|
is (n + n0)! . We can do the exact computation of Γ(Gn) using the following lemma:

Lemma 6  For a permutation � of all vertices in Gn , the following two claims are
equivalent:

1.	 � is a relabeling of Gn which produces a positive-probability graph under the full
duplication model,

2.	 � is a permutation such that for every 1 ≤ i ≤ n0 there exists v ∈ Ci,n such that
�(v) = ui.

Proof  In the whole proof we denote by u�
1
,… , u�

n0
 the vertices that are mapped by �

to the starting graph vertices u1,… , un0 . That is, u�
i
= �−1(ui) for each

i ∈ {1, 2,… , n0}.
(⇒ ) Let � produce a graph under the considered model with positive probability.
Suppose now that there exists 1 ≤ k ≤ n0 such that u�

k
∉ Ck,n , but u�

k
∈ Cl,n for

some l ≠ k . Then, by Lemma 1 we know that Nn(uk) =
⋃

ukuj∈E(G0)
Cj,n and

Nn(u
�
k
) = Nn(ul) =

⋃
uluj∈E(G0)

Cj,n.
Since |Aut(G0)| = 1 by assumption, N0(uk) ≠ N0(ul) and therefore

which proves that Nn(u
�
k
) ≠ Nn(uk) and therefore G′

0
 cannot be identical to G0.

(⇐ ) Denote by v′
1
 , ..., v′

n
 the vertices �−1(v1) , ..., �−1(vn) ; i.e., these vertices are

mapped by � to vertices outside the seed graph.
By assumption, for every v′

i
 , 1 ≤ i ≤ n , there exists some u�

j
= �−1(uj) , 1 ≤ j ≤ n0 ,

such that v�
i
, u�

j
∈ Cj,n . Now, in i-th step we may just copy v′

i
 from its respective u′

j
 . It

is easy to check that for the neighborhoods N�(v�
i
) in the graph created in this way for

every 1 ≤ k ≤ n0 and every v�
i
∈ Ck,n we have

�[log |Aut(Gn)|] = n log n − nHn0
log e +

3n0

2
log n

+

(
n0

2
−

1

2
−

3n0

2
Hn0−1

)
log e +

n0

2
log(2�) + o(1).

Nn(u
�

k
) ⧵ Nn(uk) =

⋃

uluj∈E(G0)

Cj,n ⧵
⋃

ukuj∈E(G0)

Cj,n

⊇
⋃

uluj∈E(G0)

Cj,0 ⧵
⋃

ukuj∈E(G0)

Cj,0

= N0(ul) ⧵ N0(uk) ≠ �

N�

n
(v�

i
) = N�

n
(u�

k
) =

⋃

j∶ukuj∈E(G0)

Cj,n = Nn(uk) = Nn(v
�

i
),

2696	 Algorithmica (2020) 82:2687–2707

1 3

which concludes the proof. 	� ◻

Lemma 7  Asymptotically

Proof  From Lemma 6, we may construct all admissible permutations by choosing
for each Ci,n exactly one vertex which would be mapped to ui and then arranging
remaining n vertices in any order. Therefore:

Then

and the final result follows from the Stirling approximation. 	� ◻

We now proceed to estimate the structural entropy.

Theorem 1  For large n we have

Proof  Recalling that we assume throughout that the initial graph G0 is asymmetric,
it may be seen that the isomorphism type of Gn is entirely specified by the vector
(Ci,n)

n0
i=1

 . We know that (Ci,n)
n0
i=1

 has the Dirichlet multinomial distribution with �i = 1
for 1 ≤ i ≤ n0.

Therefore

The last two lines follow respectively from the Stirling approximation and the Taylor
expansion of logB(n, n0) , which completes the proof. 	� ◻

�[log |Γ(Gn)|] = n log n − n log e +
(
n0 +

1

2

)
log n

− Hn0−1
log e +

1

2
log(2�) + o(1).

|Γ(Gn)| = n!

n0∏

i=1

(
Ci,n

1

)
= n!

n0∏

i=1

Ci,n.

�[log |Γ(Gn)|] = log n! +

n0∑

i=1

�[logCi,n] = log n! + n0�[logCn]

= log n! + n0 log n − Hn0−1
log e + o(1),

H(S(Gn) | G0) = (n0 − 1) log n − log(n0 − 1)! + o(1).

H(S(Gn) | G0) = H
(
(Ci,n)

n0
i=1

)

= −
∑

(ki)

Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

) log Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

)

= − log(nB(n, n0))
∑

(ki)

Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

)

= − log n − logB(n, n0) = (n0 − 1) log n − log(n0 − 1)! + o(1).

2697

1 3

Algorithmica (2020) 82:2687–2707	

To compute the graph entropy H(G) we can use Lemmas 4, 5 and 7 together
with Theorem 1, therefore obtaining the following result.

Theorem 2  For large n

Clearly, to compress the whole Gn we would have to encode G0 as well, but
since n0 is fixed, this does only affect the constant term. Moreover, by the condi-
tional entropy property, any optimal G0 compression algorithm yields an asymp-
totically optimal compression for Gn.

4 � Algorithmic Results

In this section we present asymptotically optimal algorithms for compression of
labeled and generated according to the full duplication model.

4.1 � Retrieval of Parameters from G
n

In order to present efficient compression algorithms for the duplication model,
we must first reconstruct G0 from Gn and find values of n0 and n. This is relatively
easy to accomplish, as the proof of the next theorem shows.

Theorem 3  For a given labeled Gn or its unlabeled version S(Gn) , we can retrieve its
n, n0 and G0 (in the case of structure up to isomorphisms of G0 ) in polynomial times
in terms of n.

Proof  For a labeled Gn let (w1,w2,… ,wn+n0
) be its vertices in the order of appear-

ance. Since (w1,… ,wn0
) = (u1,… , un0) and (wn0+1

,… ,wn0+n
) = (v1,… , vn) , it is

sufficient to find the smallest k such that Nn(wk) = Nn(wi) for some 1 ≤ i < k . Then
n0 = k − 1 and G0 is induced by the sequence (w1,… ,wk−1).

The case for is similar: we know (for details see Lemma 6) that the sequence of
the first n0 vertices of the graph (that is, G0 ) contains exactly one vertex from each
set Ci,n.

From Lemma 1 it follows that A(v) = A(w) iff Nn(v) = Nn(w) for every
v,w ∈ V(Gn) , so it is sufficient to scan all vertices of Gn and split them into sets such
that v and w belongs to the same set iff Nn(v) = Nn(w) . Then, we pick one vertex
from each set to from G0 . Obviously, n0 and n may be extracted from the sizes of G0
and Gn . 	� ◻

H(Gn | G0) = n(Hn0
− 1) log e + log n

n0 − 1

2
− log(n0 − 1)!

+

(
1 − n0

2
+

3n0 − 2

2
Hn0−1

)
log e +

n0

2
log(2�) + o(1).

2698	 Algorithmica (2020) 82:2687–2707

1 3

Recall for example that in Fig. 1b we identified the clusters {u1, v2} , {u2, v1, v3} ,
{u3} , {u4} and {u5} . Therefore, we know that n0 = 6 , n = 3 and the G0 is isomorphic to
a graph induced, for example, by the set {v2, v3, u3, u4, u5}.

4.2 � Unlabeled Graphs

A trivial algorithm CompressUnlabeledSimple for unlabeled compression writes down
a sequence (Ci,n)

n0
i=1

 associated with our Gn as log n-bit numbers. This always requires
n0 log n bits, so �LSU(n) = n0 log n , where LSU denotes the code length of our proposed
scheme. By Theorem 1 this achieves the fundamental limit to within a multiplicative
factor of 1 + 1

n0−1
.

However, it is easy to design an optimal algorithm up to a constant additive error,
provided we have already compressed G0 or S(G0) (anyway, a graph of fixed size). The
pseudocode of an optimal algorithm, called CompressUnlabeledOpt, based on arith-
metic coding, is as follows:

The next finding proves that CompressUnlabeledOpt is nearly optimal.

Theorem 4  Algorithm CompressUnlabeledOpt is optimal up to a two bits for unla-
beled graphs compression, when the graph is generated by the full duplication
model.

Proof  It is sufficient to observe that

2699

1 3

Algorithmica (2020) 82:2687–2707	

The last equality follows from the fact that the marginal distribution of the Dirichlet
multinomial distribution is the beta-binomial distribution, given by Eq. 1. Moreover,
if we fix value of the last coordinate of (Ci,n)

n0
i=1

 to k + 1 , then the resulting distribu-
tion is also (shifted) Dirichlet multinomial, but with n0 − 1 coordinates and all val-
ues summing up to n + n0 − k − 1.

We repeat this process until we have 2-dimensional distribution:

By the properties of arithmetic coding (see e.g. [7]),
�LO(S(Gn) | G0) ≤ H((Ci,n)

n0
i=0

) + 2 = H(S(Gn) | G0) + 2 , where LO denotes the code
length. This completes the proof. 	� ◻

4.3 � Labeled Graphs

We note that the labeled graph Gn is equivalent to a sequence (A(vi))ni=1 for a given
(labeled) G0 , which obviously can be encoded separately using a constant number of
bits.

A trivial algorithm CompressLabeledSimple just writes all A(vi) as log n0-bit
numbers. Clearly, this always gives us a codeword with length exactly
�LSL(n) = n log n0 . From Theorem 2 it is known that this algorithm is asymptoti-
cally (1 + 1−�

log n0
)-approximately optimal, where � is Euler-Mascheroni constant.

It is easy to design an asymptotically optimal algorithm up to a constant error.
Indeed, the sequence of A(vi) is random with Pr(A(vi) = uj) =

Cj,i−1

n0+i−1
 for 1 ≤ i ≤ n ,

1 ≤ j ≤ n0 . Therefore, given Gi−1 we know the conditional probabilities of Gi and we
may construct another algorithm based on arithmetic coding.

The pseudocode of the optimal algorithm is as follows:

Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

)

= Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

| Cn0,n
= kn0 + 1)Pr(Cn0,n

= kn0 + 1)

= Pr((Ci,n)
n0−1

i=1
= (ki + 1)

n0−1

i=1
| Cn0,n

= kn0 + 1)Pr(Cn0,n
= kn0 + 1)

= Pr

(
(Ci,n)

n0−1

i=1
= (ki + 1)

n0−1

i=1

|||

n0−1∑

i=0

Ci,n = n + n0 − kn0 − 1

)

Pr(Cn0,n
= kn0 + 1)

= Pr((Ci,n−kn0
)
n0−1

i=1
= (ki + 1)

n0−1

i=1
)

(
n

kn0

)
(n0 − 1)B(kn0 + 1, n + n0 − kn0 − 1),

Pr((Ci,n)
2
i=1

= (ki + 1)2
i=1

)

= Pr(C1,n = k1 + 1 | C1,n = k1 + 1)Pr(C2,n = k1 + 1)

=

(
k1 + k2
k2

)
B(k2 + 1, k1 + 1).

2700	 Algorithmica (2020) 82:2687–2707

1 3

The next theorem proves that CompressLabeledOpt is almost optimal up to a
known additive constant.

Theorem 5  Algorithm CompressLabeledOpt is optimal up to a two bits for labeled
graph compression, when the graph is generated by the full duplication model.

Proof  By the well-known properties of arithmetic encoding (see [7]), we know that
�LO(Gn | G0) ≤ H(Gn | G0) + 2 , where LO denotes the code length. 	� ◻

Note that these two algorithms for the labeled graphs differ only in that the opti-
mal one updates the probabilities at each step and the second fixes them to a con-
stant value of 1

n0
.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Appendix

Proof of Lemma 2

We can write �[ln(X + 1)] as follows:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2701

1 3

Algorithmica (2020) 82:2687–2707	

as X ∼ BBin(n, �, �) can be defined as a compound distribution X ∼ Bin(n, p) for
p ∼ Beta(n, �, �) . Here �(p, �, �) = p�−1(1−p)�−1

B(�,�)
 is the beta probability distribution

function.
We proceed by defining an event A = [|X − np| ≤ �np] for some fixed 𝜖 > 0 and

then splitting the remaining part into two regions: M1 = [0, n−2∕3] and M2 = [n−2∕3, 1].
First, we use Taylor expansion around �[X | p] = np and get:

where c is a random variable with values within the range of X.
We know that

For M1 it holds that

Conditioned on A, it is true that np(1 − �) ≤ c ≤ np(1 + �) . Moreover,
Pr(A | p)�[(X − np)2 | p,A] ≤ �[(X − np)2 | p] = np(1 − p) , therefore:

(4)�[ln(X + 1)] = ∫
1

0

�(p, �, �)�[ln(X + 1) | p]dp

(5)
�[ln(X + 1) | p] = ln(np + 1) − �

[
(X − np)2

2(c + 1)2
||| p

]

= ln n + ln p + ln

(
1 +

1

np

)
− �

[
(X − np)2

2(c + 1)2
||| p

]
,

�
1

0

�(p, �, �) ln ndp = ln n

�
1

0

�(p, �, �) ln pdp = �(�) − �(� + �)

�
1

0

�(p, �, �) ln

(
1 +

1

np

)
dp ≤ 1

B(�, �) �
1

0

ln

(
1 +

1

np

)
dp

=
1

B(�, �)

[
p ln

(
1 +

1

np

)
+

1

n
ln (np + 1)

]1

0

= O
(
ln n

n

)
.

�M1

�(p, �, �)�

[
(X − np)2

2(c + 1)2
||| p

]
dp ≤ �M1

�(p, �, �)
np(1 − p)

2
dp

≤ �M1

�(p, �, �)
np

2
dp ≤ n

2B(�, �) �M1

pdp = O
(
n−1∕3

)
.

2702	 Algorithmica (2020) 82:2687–2707

1 3

Furthermore, for M2 conditioned on ¬A , we use the Chernoff bound:

for a fixed constant 𝜖 > 0 together with the obvious fact that (X − np)2 ≤ n2 to bound
the remaining error

The proof follows from using all the bounds presented above and combining them
with Eqs. 4 and 5. 	� ◻

Proof of Lemma 3

We proceed as before by writing �[(X + 1) ln(X + 1)] as follows:

Once again we define an event A = [|X − np| ≤ �np] for some fixed 𝜖 > 0 and using
Taylor expansion around �[X | p] = np:

�M2

�(p, �, �)Pr(A | p)�
[
(X − np)2

2(c + 1)2
||| p,A

]
dp

≤ �M2

�(p, �, �)
np(1 − p)

2(np(1 − �) + 1)2
dp

≤ �M2

�(p, �, �)
np

2n2p2(1 − � +
1

np
)2
dp

≤ n−1 �M2

�(p, �, �)
1

2p(1 − � +
1

np
)2
dp

≤ n−1
1

2B(�, �)(1 − �)2 �M2

1

p
dp = O

(
ln n

n

)
.

Pr(¬A | p) = Pr(|X − np| > 𝜖np | p) ≤ 2 exp

(
−
𝜖2np

3

)

�M2

�(p, �, �)Pr(¬A | p)�
[
(X − np)2

2(c + 1)2
||| p,¬A

]
dp

≤ �M2

�(p, �, �) exp

(
−
�2np

3

)
n2

2
dp

≤ n2

2B(�, �) �M2

exp

(
−
�2np

3

)
dp

≤ 3n

2B(�, �)�2
exp

(
−
�2n−1∕3

3

)
= o(1).

(6)�[(X + 1) ln(X + 1)] = ∫
1

0

�(p, �, �)�[(X + 1) ln(X + 1) | p]dp.

2703

1 3

Algorithmica (2020) 82:2687–2707	

where c is a random variable with values within the range of X.
Moreover,

The term np ln
(
1 +

1

np

)
 can be computed as following:

with

and

(7)

�[(X + 1) ln(X + 1) | p]

= (np + 1) ln(np + 1) +
np(1 − p)

2(np + 1)
− �

[
(X − np)3

6(c + 1)2
||| p

]

= np ln n + np ln p + np ln

(
1 +

1

np

)
+ ln n + ln p + ln

(
1 +

1

np

)

+
np(1 − p)

2(np + 1)
− �

[
(X − np)3

2(c + 1)2
||| p

]
,

�
1

0

�(p, �, �)np ln ndp =
�

� + �
n ln n

�
1

0

�(p, �, �)np ln pdp =
�(�(� + 1) − �(� + � + 1))

� + �
n

�
1

0

�(p, �, �)
1

np + 1
dp ≤ 1

B(�, �) �
1

0

1

np + 1
dp = o(1)

�
1

0

�(p, �, �)
p

np + 1
dp =

1

n �
1

0

�(p, �, �)

(
1 −

1

np + 1

)
dp = o(1)

�
1

0

�(p, �, �)
np(1 − p)

2(np + 1)
dp = �

1

0

�(p, �, �)

(
1 − p

2
+

1 − p

2(np + 1)

)
dp

=
�

2(� + �)
+ o(1).

∫
1

0

�(p, �, �)np ln

(
1 +

1

np

)
dp

= 1 + ∫
2∕n

0

�(p, �, �)

(
np ln

(
1 +

1

np

)
− 1

)
dp

+ ∫
1

2∕n

�(p, �, �)

(
np ln

(
1 +

1

np

)
− 1

)
dp

�
1

2∕n

�(p, �, �)np

(
ln

(
1 +

1

np

)
− 1

)
dp ≤ �

1

2∕n

�(p, �, �)
−1

np
dp

≤ 1

nB(�, �) �
1

2∕n

−
1

p
dp = o(1)

2704	 Algorithmica (2020) 82:2687–2707

1 3

Finally, we estimate the remainder term for two regions: M1 = [0, n−2∕3] and
M2 = [n−2∕3, 1].

For M1 it is true that

Furthermore, for A defined as above we have

and therefore

Now we proceed similarly as in the previous proof, using the fact that condition-
ing on A guarantees that np(1 − �) ≤ c ≤ np(1 + �) . As we may safely assume that
n ≥ 3 , we need to consider two subregions separately:

�
2∕n

0

�(p, �, �)np

(
ln

(
1 +

1

np

)
− 1

)
dp

≤ 1

B(�, �) �
2∕n

0

np

(
ln

(
1 +

1

np

)
− 1

)
dp

≤ 1

nB(�, �) �
2

0

x
(
ln
(
1 +

1

x

)
− 1

)
dx

≤ 1

2nB(�, �)

[
x2 ln

(
1 +

1

x

)
+ x − ln(x + 1) − x2

]2

0
= o(1).

�M1

�(p, �, �)�

[
(X − np)3

6(c + 1)2
||| p

]
dp

≤ �M1

�(p, �, �)
np(1 − p)(1 − 2p)

6
dp

≤ �M1

�(p, �, �)
np

6
dp

≤ n

6B(�, �) �M1

pdp = O
(
n−1∕3

)
.

Pr(A | p)�[(X − np)3 | p,A] + Pr(¬A | p)�[(X − np)3 | p,¬A]
= �[(X − np)3 | p]

�[(X − np)3 | p,¬A] ≥ −n3p3 Pr(¬A | p) = Pr(|X − np| ≥ �np | p)

≤ 2 exp

(
−
�2np

3

)
.

Pr(A | p)�[(X − np)3 | p,A]
= �[(X − np)3 | p] − Pr(¬A | p)�[(X − np)3 | p,¬A]

≤ �[(X − np)3 | p] + 2n3p3 exp

(
−
�2np

3

)

≤ np(1 − p)(1 − 2p) + o(1).

2705

1 3

Algorithmica (2020) 82:2687–2707	

and

Therefore for M2 conditioned on A we have

Finally, for M2 conditioned on ¬A we have

�
1∕2

1∕n2∕3
�(p, �, �)Pr(A | p)np(1 − p)(1 − 2p)

6(c + 1)2
dp

≤ �
1∕2

1∕n2∕3
�(p, �, �)

np

6(np(1 − �) + 1)2
dp

≤ 1

B(�, �) �
1∕2

1∕n2∕3

np

6n2p2
(
1 − � +

1

np

)2
dp

≤ 1

B(�, �) �
1∕2

1∕n2∕3

1

6np(1 − �)
2
dp = o(1)

�
1

1∕2

�(p, �, �)Pr(A | p)np(1 − p)(2p − 1)

6(c + 1)2
dp

≤ �
1

1∕2

�(p, �, �)
2np2

6(np(1 − �) + 1)2
dp

≤ 1

B(�, �) �
1

1∕2

2np2

6n2p2
(
1 − � +

1

np

)2
dp

≤ 1

B(�, �) �
1

1∕2

1

3n(1 − �)
2
dp = o(1).

�M2

�(p, �, �)Pr(A | p)�
[
(X − np)3

6(c + 1)2
||| p,A

]
dp

≤ �
1

1∕n2∕3
�(p, �, �)

np(1 − p)(1 − 2p) + o(1)

6(c + 1)2
dp = o(1).

�M2

�(p, �, �)Pr(¬A | p)�
[
(X − np)3

6(c + 1)2
||| p,¬A

]
dp

≤ �M2

�(p, �, �) exp

(
−
�2np

3

)
n3

6
dp

≤ n3

6B(�, �) �M2

exp

(
−
�2np

3

)
dp

≤ n2

2B(�, �)�2
exp

(
−
�2n−1∕3

3

)
= o(1).

2706	 Algorithmica (2020) 82:2687–2707

1 3

To finish the proof it is sufficient to apply all the bounds presented above to the
Eqs. 6 and 7. 	� ◻

References

	 1.	 Abbe, E.: Graph compression: the effect of clusters. In: Proceedings of the Fifty-fourth Annual
Allerton Conference (2016)

	 2.	 Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys 74, 47–97
(2002)

	 3.	 Besta, M., Hoefler, T.: Survey and taxonomy of lossless graph compression and space-efficient
graph representations. Preprint (2018). https​://arxiv​.org/pdf/1806.01799​

	 4.	 Boccaletti, S., Hwang, D.U., Latora, V.: Growing hierarchical scale-free networks by means of non-
hierarchical processes. Int. J. Bifurc. Chaos 17, 2447–2452 (2007)

	 5.	 Choi, Y., Szpankowski, W.: Compression of graphical structures: fundamental limits, algo-
rithms, and experiments. IEEE Trans. Inf. Theor. 58(2), 620–638 (2012). https​://doi.org/10.1109/
TIT.2011.21737​10

	 6.	 Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. J. Comput.
Biol. 10(5), 677–687 (2003). https​://doi.org/10.1089/10665​27033​22539​024

	 7.	 Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley, London (2006)
	 8.	 Delgosha, P., Anantharam, V.: Distributed compression of graphical data. In: 2018 IEEE Interna-

tional Symposium on Information Theory (ISIT), pp. 2216–2220 (2018)
	 9.	 Delgosha, P., Anantharam, V.: Universal lossless compression of graphical data. In: 2017 IEEE

International Symposium on Information Theory (ISIT), pp. 1578–1582 (2017)
	10.	 Frieze, A., Karoński, M.: Introduction to Random Graphs. Cambridge University Press, Cambridge

(2016)
	11.	 Gołebiewski, Z., Magner, A., Szpankowski, W.: Entropy of some general plane trees. In: 2017

IEEE International Symposium on Information Theory (ISIT), pp. 301–305 (2017). https​://doi.
org/10.1109/ISIT.2017.80065​38

	12.	 Hucke, D., Lohrey, M.: Universal tree source coding using grammar-based compression. In: 2017
IEEE International Symposium on Information Theory (ISIT), pp. 1753–1757 (2017). https​://doi.
org/10.1109/ISIT.2017.80068​30

	13.	 Ispolatov, I., Krapivsky, P., Mazo, I., Yuryev, A.: Cliques and duplication-divergence network
growth. New J. Phys. 7, 145 (2005)

	14.	 Ispolatov, I., Krapivsky, P.L., Yuryev, A.: Duplication-divergence model of protein interaction net-
work. Phys. Rev. E 71, 061911 (2005). https​://doi.org/10.1103/PhysR​evE.71.06191​1

	15.	 Johnson, N., Kemp, A., Kotz, S.: Univariate Discrete Distributions. Wiley, London (2005)
	16.	 Kim, J., Krapivsky, P.L., Kahng, B., Redner, S.: Infinite-order percolation and giant fluctuations

in a protein interaction network. Phys. Rev. E 66, 055101 (2002). https​://doi.org/10.1103/PhysR​
evE.66.05510​1

	17.	 Łuczak, T., Magner, A., Szpankowski, W.: Asymmetry and structural information in preferential
attachment graphs. Random Struct. Algorithms (2019)

	18.	 Magner, A., Turowski, K., Szpankowski, W.: Lossless compression of binary trees with correlated
vertex names. Trans. Inf. Theory 64 (2018)

	19.	 Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
	20.	 Pastor-Satorras, R., Smith, E., Solé, R.: Evolving protein interaction networks through gene duplica-

tion. J. Theor. Biol. 222(2), 199–210 (2003). https​://doi.org/10.1016/S0022​-5193(03)00028​-6
	21.	 Raval, A.: Some asymptotic properties of duplication graphs. Phys. Rev. E 68, 066119 (2003)
	22.	 Shao, M., Yang, Y., Guan, J., Zhou, S.: Choosing appropriate models for protein-protein interaction

networks: a comparison study. Brief. Bioinform. 15(5), 823–838 (2014). https​://doi.org/10.1093/
bib/bbt01​4

	23.	 Solla, P.D.D.: A general theory of bibliometric and other cumulative advantage processes. J. Am.
Soc. Inf. Sci. 27(5), 292–306 (1976). https​://doi.org/10.1002/asi.46302​70505​

	24.	 van der Hofstad, R.: Random Graphs and Complex Networks, vol. 1. Cambridge University Press,
Cambridge (2016)

https://arxiv.org/pdf/1806.01799
https://doi.org/10.1109/TIT.2011.2173710
https://doi.org/10.1109/TIT.2011.2173710
https://doi.org/10.1089/106652703322539024
https://doi.org/10.1109/ISIT.2017.8006538
https://doi.org/10.1109/ISIT.2017.8006538
https://doi.org/10.1109/ISIT.2017.8006830
https://doi.org/10.1109/ISIT.2017.8006830
https://doi.org/10.1103/PhysRevE.71.061911
https://doi.org/10.1103/PhysRevE.66.055101
https://doi.org/10.1103/PhysRevE.66.055101
https://doi.org/10.1016/S0022-5193(03)00028-6
https://doi.org/10.1093/bib/bbt014
https://doi.org/10.1093/bib/bbt014
https://doi.org/10.1002/asi.4630270505

2707

1 3

Algorithmica (2020) 82:2687–2707	

	25.	 Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein interaction networks.
Complexus 1(1), 38–44 (2003)

	26.	 Zhang, J., Yang, E.H., Kieffer, J.C.: A universal grammar-based code for lossless compres-
sion of binary trees. IEEE Trans. Inf. Theory 60(3), 1373–1386 (2014). https​://doi.org/10.1109/
TIT.2013.22953​92

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/TIT.2013.2295392
https://doi.org/10.1109/TIT.2013.2295392

	Compression of Dynamic Graphs Generated by a Duplication Model
	Abstract
	1 Introduction
	2 Full Duplication Model
	2.1 Definitions
	2.2 Basic Properties

	3 Main Theoretical Results
	4 Algorithmic Results
	4.1 Retrieval of Parameters from
	4.2 Unlabeled Graphs
	4.3 Labeled Graphs

	References

