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Abstract
We continue building up the information theory of non-sequential data structures 
such as trees, sets, and graphs. In this paper, we consider dynamic graphs gener-
ated by a full duplication model in which a new vertex selects an existing vertex 
and copies all of its neighbors. We ask how many bits are needed to describe the 
labeled and unlabeled versions of such graphs. We first estimate entropies of both 
versions and then present asymptotically optimal compression algorithms up to two 
bits. Interestingly, for the full duplication model the labeled version needs Θ(n) bits 
while its unlabeled version (structure) can be described by Θ(log n) bits due to sig-
nificant amount of symmetry (i.e. large average size of the automorphism group of 
sample graphs).

Keywords  Random graphs · Structural entropy · Graph compression · Duplication 
model

1  Introduction

Complex systems can often be modeled as dynamic graphs. In these systems, pat-
terns of interactions evolve in time, determining emergent properties, associated 
function, robustness, and security of the system. There are several broad questions 
whose answers shed light on the evolution of such dynamic networks: (i) how many 
bits are required to best describe such a network and its structure (i.e., unlabeled 

This work was supported by NSF Center for Science of Information (CSoI) Grant CCF-0939370, 
and in addition by NSF Grant CCF-1524312, and National Science Center, Poland, under Grant 
UMO-2016/21/B/ST6/03146.

 *	 Krzysztof Turowski 
	 krzysztof.szymon.turowski@gmail.com

1	 Center for Science of Information, Purdue University, West Lafayette, IN, USA
2	 Department of Computer Science, University at Albany, SUNY, Albany, NY, USA
3	 Theoretical Computer Science Department, Jagiellonian University, Krakow, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00699-2&domain=pdf


2688	 Algorithmica (2020) 82:2687–2707

1 3

underlying graph); (ii) how to infer underlying dynamic processes governing net-
work evolution; (iii) how to infer information about previous states of the network; 
and (iv) how to predict the forward evolution of the network state. In this paper we 
deal with the first question (i.e., labeled and unlabeled graph compression).

To better understand the evolution of network structural properties, several prob-
abilistic models have been proposed, including, e.g., the preferential attachment, 
duplication-divergence, Cooper-Frieze, and fit-get richer models [2, 6, 10, 24].

Clearly, some models are more suitable to certain types of data than others. For 
example, it has been claimed that the preferential attachment mechanism [2] plays 
a strong role in the formation of citation networks [23]. However, due to the high 
power law exponent of their degree sequence (greater than 2) and lack of community 
structure [6], preferential attachment graphs are not likely to describe well biologi-
cal networks such as protein interaction networks or gene regulatory networks [19]. 
For such networks another model, known as the vertex-copying model, or simply 
the duplication model, has been claimed as a better fit [25]. In the vertex-copying 
model, one picks an existing vertex and inserts its clone, possibly with some random 
modifications, depending on the exact variation of the model [6, 14, 20]. Experi-
mental results show that these variations on the duplication model better capture 
salient features of protein interaction networks than does the preferential attachment 
model [22].

In this paper we present comprehensive information-theoretic results for the full 
duplication model in which every new vertex is a copy of some older vertex. We 
establish precisely (that is, within a o(1) additive error) the entropy for both unla-
beled and labeled graphs generated by this model and design asymptotically opti-
mal compression algorithms that match the entropies up to a constant additive term. 
Interestingly, we shall see that the entropy of labeled graphs is H(Gn) = Θ(n) , while 
the structural entropy (the entropy of the isomorphism class of a random graph from 
the model, denoted by S(Gn) ) is significantly smaller: H(S(Gn)) = Θ(log n) . Thus, 
the vast majority of information of the labeled graphs in this model is present in the 
labeling itself, not in the underlying graph structure. In contrast, the entropy of the 
labeled and  generated by, e.g., the preferential attachment model is Θ(n log n) [17].

Clearly, given its simplicity, this model should be regarded as a stepping stone 
toward a better understanding of more advanced models of this type. The extensions 
are typically defined by a fixed-probability mix of the full duplication model and 
other rules, such as no-duplication or uniform attachment. We shall deal with such 
models in a forthcoming paper.

Graph compression has enjoyed a surge in popularity in recent years, as the 
recent survey [3] shows. However, rigorous information-theoretic results are still 
lacking, with a few notable exceptions. The rigorous information-theoretic analy-
sis of graph compression (particularly in the unlabeled case) was initiated by Choi 
and Szpankowski [5], who analyzed structural compression of Erdős-Rényi graphs 
(see also [1]). The authors of [5] presented a compression algorithm that provably 
achieves asymptotically the first two terms of the structural entropy. In Łuczak 
et  al. [17] the authors precisely analyzed the labeled and structural entropies and 
gave asymptotically optimal compression algorithms for preferential attachment 
graphs. There has been recent work on universal compression schemes, including 
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in a distributed scenario, by Delgosha and Anantharam [8, 9]. Additionally, several 
works deal with compression of trees [11, 12, 18, 26].

The full duplication model was almost exclusively analyzed in the context of 
the typical properties such as degree distribution [6]. It was shown that the aver-
age degree depends strongly on the initial conditions [16]. It was also proved that 
the asymptotic degree distribution fails to converge, yet it exhibits power-law behav-
ior with exponent dependent on the lowest nonzero degree in the initial graph [21]. 
Other parameters studied in the context of duplication models are the number of 
small cliques [13] or degree-degree correlations [4]. To the best of our knowledge 
the entropy and compression of duplication models were not discussed previously in 
any available literature.

The rest of the paper is organized as follows: In Sect. 2 we define the full duplica-
tion model and present its basic properties. In Sect. 3 we establish main results con-
cerning the entropy of the unlabeled and labeled graphs with Sect. 4 being devoted 
to the construction of algorithms that achieve these bounds within a constant addi-
tive term.

2 � Full Duplication Model

In this section we define the full duplication model and present some of its 
properties.

2.1 � Definitions

The full duplication model is defined as follows: let us denote by G0 a given graph 
on n0 vertices for some fixed constant n0 . Then, for any 1 ≤ i ≤ n we obtain Gi from 
Gi−1 by choosing one of the vertices of Gi−1 (denoted by v) uniformly at random, 
attaching to the graph a new vertex vi and adding edges between vi and all vertices 
adjacent to v. Note that v and vi are not connected – although if one wants to achieve 
higher clustering, the results in this paper can be straightforwardly applied to the 
model in which we add not only edges between vi and the neighbors of v, but also 
between vi and v. Observe that Gn has n + n0 vertices. Also, properties of Gn heavily 
depend on G0 and its structure, which we assume to be fixed.

Throughout this paper, we will refer to the vertices of the starting graph G0 as 
{u1,… , un0} and to all other vertices from Gn as {v1,… , vn} . We denote by V(G) and 
E(G) the set of vertices and the set of edges of a graph G, respectively. Moreover, 
we denote by Nn(v) the neighborhood of the vertex v, that is, all vertices that are 
adjacent to v in Gn . Sometimes we drop the subscript, if the size of the graph is clear 
from the context.

An example of the duplication process is presented in Fig. 1. On the top, we show 
the original G0 on 6 vertices, and on the bottom we plot G3 with new vertices such 
that v1 is a copy of u2 , v2 is a copy of u1 , and v3 is a copy of v1.

Here, due to the limited space, we restrict our analysis to asymmetric G0 (i.e., 
the underlying automorphism group is of size 1); however, extensions to general 
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G0 are rather straightforward. We observe that typically even moderate-sized 
graphs are likely to be asymmetric.

2.2 � Basic Properties

Let us introduce the concept of a parent and an ancestor of a vertex. We say that 
w is the parent of v (denoted by w = P(v) ), when v was copied from w at some 
time 1 ≤ i ≤ n . We say that w ∈ U is the ancestor of v (denoted by w = A(v) ), 
when there exist vertices vi1 ,… , vik such that w = P(vi1 ) , vij = P(vij+1) for 
1 ≤ j ≤ k − 1 , and vik = v . For convenience we write that if u ∈ U , then P(u) = u 
and A(u) = u . Note that the ancestor of any given vertex is unique. In our example 
from Fig. 1 u2 is the ancestor of both v1 and v3 , but only a parent of v1 and not v3.

Let now define the set of descendants of ui ∈ U : Ci,n ∶= {w ∈ Gn ∶ A(w) = ui} 
for 1 ≤ i ≤ n0 . The neighborhood of a vertex is closely tied to its ancestor, as the 
following lemma shows:

Lemma 1  Let us fix any 1 ≤ i ≤ n0 . For all n ≥ 0 and any v ∈ Ci,n we have

Proof  We prove this by induction. For n = 0 we have Ci,0 = {ui} and the claim holds.
Now suppose that the claim holds for some n ≥ 0 and that P(vn+1) = w . If 

A(w) = uk , then A(vn+1) = uk . Moreover,

We split the remaining part of the proof into several cases: 

Nn(v) =
⋃

uiuj∈E(G0)

Cj,n.

Ck,n+1 = Ck,n ∪ {vn+1}

Ci,n+1 = Ci,n for i ≠ k.

u1 u2 u3 u4

u5u6

(a) Initial G0

u1 u2 u3 u4

u5u6v1v2

v3

(b)G3

Fig. 1   Example graph growth in the full duplication model
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Case 1, i = k , v = vn+1:	� by induction hypothesis we have 

Case 2, i = k , v ≠ vn+1:	� similarly, 

Case 3, i ≠ k , uiuk ∈ E(G0):	� for any v ∈ Ci,n+1 = Ci,n we have 

Case 4, i ≠ k , uiuk ∉ E(G0):	� for any v ∈ Ci,n+1 = Ci,n we have 

 Therefore, the proof is completed. 	� ◻

This means that effectively Gn is composed of clusters such that every vertex of 
i-th cluster is connected to every vertex of j-th cluster if and only if uiuj ∈ E(G0) . 
For example, for a graph in Fig. 1b we may identify (marked with ellipses in the fig-
ure) the following classes of vertices with identical neighborhoods: C1,n = {u1, v2} , 
C2,n = {u2, v1, v3} , C3,n = {u3} , C4,n = {u4} and C5,n = {u5}.

Let now Ci,n = |Ci,n| , that is, the number of vertices from Gn that are ultimately 
copies of ui (including ui itself).

It is not hard to see that the sequence of variables (Ci,n)
n0
i=1

 can be described as a 
ball and urn model with n0 urns. At time n = 0 each urn contains exactly one ball. 
Each iteration consists of picking an urn at random, proportionally to the number of 
balls in each bin – that is, with probability Ci,n∑n0

j=1
Cj,n

 – and adding a new ball to this 

urn. It is known [15] that the joint distribution of (Ci,n)
n0
i=1

 is directly related to the 
Dirichlet multinomial distribution denoted as Dir(n, �1,… , �K) , with K = n0 and 
�i = 1 for 1 ≤ i ≤ n0:

where B(x, y) is the Euler beta function.

Nn+1(vn+1) = Nn+1(P(vn+1)) =
⋃

j∶ukuj∈E(G0)

Cj,n =
⋃

j∶ukuj∈E(G0)

Cj,n+1.

Nn+1(v) = Nn(v) =
⋃

j∶ukuj∈E(G0)

Cj,n =
⋃

j∶ukuj∈E(G0)

Cj,n+1.

Nn+1(v) = Nn(v) ∪ {vn+1} =
⋃

j∶uiuj∈E(G0)

Cj,n ∪ {vn+1}

=
⋃

j ∶ uiuj ∈ E(G0)

j ≠ k

Cj,n ∪ Ck,n ∪ {vn+1}

=
⋃

j ∶ uiuj ∈ E(G0)

j ≠ k

Cj,n+1 ∪ Ck,n+1 =
⋃

j∶uiuj∈E(G0)

Cj,n+1.

Nn+1(v) = Nn(v) =
⋃

j∶uiuj∈E(G0)

Cj,n =
⋃

j∶uiuj∈E(G0)

Cj,n+1.

Pr
�
(Ci,n)

n0
i=1

= (ki + 1)
n0
i=1

�
=

�
nB(n, n0) if

∑n0
i=1

ki = n,∀1≤i≤n0ki ∈ ℕ+,

0 otherwise.
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Each variable Ci,n is identically distributed – though not independent, as we know 
that 

∑n0
i=1

Ci,n = n – so we may analyze the properties of Cn ∼ Ci,n for every 1 ≤ i ≤ n0 . 
Actually, Cn − 1 has the beta-binomial distribution BBin(n, �, �) with parameters 
� = 1 , � = n0 − 1 . That is, for any k ≥ 0:

Chung et al. claimed in [6] that the distribution of Cn can be approximated by a den-
sity function f (x) = exp

(
−

x

�Cn

)
 . Instead, here we have an exact formula.

Moreover, since Cn ∼ BBin(n, 1, n0 − 1) + 1 we know immediately that 
�Cn =

n

n0
+ 1 . For further results we will also need further properties of the beta bino-

mial distribution (with proofs provided in the appendices).
Note that all the logarithms used in subsequent theorems (unless explicitly noted as 

ln ) have base 2.

Lemma 2  If X ∼ BBin(n, �, �) , then it is true that 
�[log(X + 1)] = log n + (�(�) − �(� + �)) log e + o(1) where �(x) =

Γ�(x)

Γ(x)
 is the 

Euler digamma function.

Since for all integers r, s we have �(r) − �(s) = Hr−1 − Hs−1 (where Hj denotes the 
j-th harmonic number), it follows that

Corollary 1 �[logCn] = log n − Hn0−1
log e + o(1) for large n.

Similarly, we may prove that:

Lemma 3  If X ∼ BBin(n, �, �) , then

From the above lemma it is straightforward that:

(1)Pr(Cn = k + 1) =

(
n

k

)
B(k + 1, n + n0 − k − 1)

B(1, n0 − 1)

(2)= (n0 − 1)

(
n

k

)
B(k + 1, n + n0 − k − 1).

�[(X + 1) log(X + 1)] = n log n
�

� + �
+ n

�(�(� + 1) − �(� + � + 1)) log e

� + �

+ log n +

(
�(�) − �(� + �) + 1 +

�

2(� + �)

)
log e + o(1).
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Corollary 2  Asymptotically

3 � Main Theoretical Results

As discussed in the introduction, our goal is to present results for the duplication 
graphs on structural parameters which are fundamental to statistical and informa-
tion-theoretic problems involving the information shared between the labels and the 
structure of a random graph. In graph structure compression the goal is to remove 
label information to produce a compact description of a graph structure.

Formally, the labeled graph compression problem can be phrased as follows: 
one is given a probability distribution Gn on graphs on n vertices, and the task is 
to exhibit a pair of mappings (i.e., a source code) (E, D), where E maps graphs to 
binary strings satisfying the standard prefix code condition, and D maps binary 
strings back to graphs, such that, for all graphs G, D(E(G)) = G , and the expected 
code length �[|E(G)|] , with G ∼ Gn , is minimized. The standard source coding 
theorem tells us that the fundamental limit for this quantity is H(G), the Shannon 
entropy, defined as:

where G is a functional of the distribution, not a fixed graph.
The unlabeled version of this problem relaxes the invertibility constraint on the 

encoder and decoder. In particular, we only require D(E(G)) ≅ G ; i.e., the decoder 
only outputs a graph isomorphic to G. Again, the optimization objective is to mini-
mize the expected code length. Thus, in effect, the source code efficiently describes 
the isomorphism type of its input. Denoting by S(G) the isomorphism type of G, 
the fundamental limit for the expected code length is the structural entropy of the 
model, which is given by H(S(G)).

There is a relation between the labeled entropy H(G) and structural entropy 
H(S(G)). To express it succinctly for a broad class of graph models we need the 
automorphism group1 Aut(G) , and the set Γ(G) of feasible permutations of G; i.e., 
the set of permutations of G that yield a graph that has positive probability under the 
random graph model in question. See [5, 17] for more details.

Now, we are ready to present a relation between H(G) and H(S(G)). The follow-
ing lemma was proved in [17]:

�[Cn logCn] =
1

n0
n log n + n

(1 − Hn0
) log e

n0
+ log n

+

(
3

2
−

1

2n0
− Hn0−1

)
log e + o(1).

(3)H(G) = −
∑

G∈Gn

P(G) logP(G),

1  An automorphism of a graph is a permutation that preserves edge relations. In other words, it is a per-
mutation which, when applied to the graph, yields the same graph (note that, in mathematical literature, a 
graph is by default labeled).



2694	 Algorithmica (2020) 82:2687–2707

1 3

Lemma 4  We have, for any graph model Gn in which all positive-probability labeled 
graphs that are isomorphic have the same probability,

Now we prove the following results regarding the expected logarithms of the 
sizes of the automorphism group and feasible permutation set for samples Gn 
from the full duplication model.

Lemma 5  We have

for large n.

Proof  Under the assumption that |Aut(G0)| = 1 we have 
�[log �Aut(Gn)�] = �

�
log

∏n0
i=1

Ci,n!
�
 . To prove it, it is sufficient to notice that all ver-

tices v, w such that A(v) = A(w) can be mapped on one another arbitrarily (since 
by Lemma 1 they have equal neighborhoods)—but if A(v) ≠ A(w) , there does not 
exist any automorphism � for which v and w are in the same orbit. Precisely, this is 
because, if such a � did exist, then one may show that it induces an automorphism 
of G0.

Thus,

We use Stirling’s approximation together with Corollarys 1 and 2 to obtain

Finally,

H(Gn) − H(S(Gn)) = �[log |Γ(Gn)|] − �[log |Aut(Gn)|].

�[log |Aut(Gn)|] = n log n − nHn0
log e +

3n0

2
log n

+

(
n0

2
−

1

2
−

3n0

2
Hn0−1

)
log e +

n0

2
log(2�) + o(1)

�[log |Aut(Gn)|] = �

[
log

n0∏

i=1

Ci,n!

]
=

n0∑

i=1

�[logCi,n!] = n0�[logCn!].

�[logCn!] = �[Cn logCn] − �Cn log e +
1

2
�[logCn] +

1

2
log(2�) + o(1)

= �[Cn logCn] − n
log e

n0
− log e +

1

2
�[logCn] +

1

2
log(2�) + o(1)

= n log n
1

n0
− n

Hn0
log e

n0
+

3

2
log n

+

(
1

2
−

1

2n0
−

3

2
Hn0−1

)
log e +

1

2
log(2�) + o(1).
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The proof is completed. 	�  ◻

Observe that Gn has n + n0 vertices; therefore, the trivial upper bound on |Γ(Gn)| 
is (n + n0)! . We can do the exact computation of Γ(Gn) using the following lemma:

Lemma 6  For a permutation � of all vertices in Gn , the following two claims are 
equivalent: 

1.	 � is a relabeling of Gn which produces a positive-probability graph under the full 
duplication model,

2.	 � is a permutation such that for every 1 ≤ i ≤ n0 there exists v ∈ Ci,n such that 
�(v) = ui.

Proof  In the whole proof we denote by u�
1
,… , u�

n0
 the vertices that are mapped by � 

to the starting graph vertices u1,… , un0 . That is, u�
i
= �−1(ui) for each 

i ∈ {1, 2,… , n0}.
(⇒ ) Let � produce a graph under the considered model with positive probability.
Suppose now that there exists 1 ≤ k ≤ n0 such that u�

k
∉ Ck,n , but u�

k
∈ Cl,n for 

some l ≠ k . Then, by Lemma 1 we know that Nn(uk) =
⋃

ukuj∈E(G0)
Cj,n and 

Nn(u
�
k
) = Nn(ul) =

⋃
uluj∈E(G0)

Cj,n.
Since |Aut(G0)| = 1 by assumption, N0(uk) ≠ N0(ul) and therefore

which proves that Nn(u
�
k
) ≠ Nn(uk) and therefore G′

0
 cannot be identical to G0.

(⇐ ) Denote by v′
1
 , ..., v′

n
 the vertices �−1(v1) , ..., �−1(vn) ; i.e., these vertices are 

mapped by � to vertices outside the seed graph.
By assumption, for every v′

i
 , 1 ≤ i ≤ n , there exists some u�

j
= �−1(uj) , 1 ≤ j ≤ n0 , 

such that v�
i
, u�

j
∈ Cj,n . Now, in i-th step we may just copy v′

i
 from its respective u′

j
 . It 

is easy to check that for the neighborhoods N�(v�
i
) in the graph created in this way for 

every 1 ≤ k ≤ n0 and every v�
i
∈ Ck,n we have

�[log |Aut(Gn)|] = n log n − nHn0
log e +

3n0

2
log n

+

(
n0

2
−

1

2
−

3n0

2
Hn0−1

)
log e +

n0

2
log(2�) + o(1).

Nn(u
�

k
) ⧵ Nn(uk) =

⋃

uluj∈E(G0)

Cj,n ⧵
⋃

ukuj∈E(G0)

Cj,n

⊇
⋃

uluj∈E(G0)

Cj,0 ⧵
⋃

ukuj∈E(G0)

Cj,0

= N0(ul) ⧵ N0(uk) ≠ �

N�

n
(v�

i
) = N�

n
(u�

k
) =

⋃

j∶ukuj∈E(G0)

Cj,n = Nn(uk) = Nn(v
�

i
),
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which concludes the proof. 	�  ◻

Lemma 7  Asymptotically

Proof  From Lemma 6, we may construct all admissible permutations by choosing 
for each Ci,n exactly one vertex which would be mapped to ui and then arranging 
remaining n vertices in any order. Therefore:

Then

and the final result follows from the Stirling approximation. 	�  ◻

We now proceed to estimate the structural entropy.

Theorem 1  For large n we have

Proof  Recalling that we assume throughout that the initial graph G0 is asymmetric, 
it may be seen that the isomorphism type of Gn is entirely specified by the vector 
(Ci,n)

n0
i=1

 . We know that (Ci,n)
n0
i=1

 has the Dirichlet multinomial distribution with �i = 1 
for 1 ≤ i ≤ n0.

Therefore

The last two lines follow respectively from the Stirling approximation and the Taylor 
expansion of logB(n, n0) , which completes the proof. 	� ◻

�[log |Γ(Gn)|] = n log n − n log e +
(
n0 +

1

2

)
log n

− Hn0−1
log e +

1

2
log(2�) + o(1).

|Γ(Gn)| = n!

n0∏

i=1

(
Ci,n

1

)
= n!

n0∏

i=1

Ci,n.

�[log |Γ(Gn)|] = log n! +

n0∑

i=1

�[logCi,n] = log n! + n0�[logCn]

= log n! + n0 log n − Hn0−1
log e + o(1),

H(S(Gn) | G0) = (n0 − 1) log n − log(n0 − 1)! + o(1).

H(S(Gn) | G0) = H
(
(Ci,n)

n0
i=1

)

= −
∑

(ki)

Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

) log Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

)

= − log(nB(n, n0))
∑

(ki)

Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

)

= − log n − logB(n, n0) = (n0 − 1) log n − log(n0 − 1)! + o(1).
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To compute the graph entropy H(G) we can use Lemmas 4, 5 and 7 together 
with Theorem 1, therefore obtaining the following result.

Theorem 2  For large n

Clearly, to compress the whole Gn we would have to encode G0 as well, but 
since n0 is fixed, this does only affect the constant term. Moreover, by the condi-
tional entropy property, any optimal G0 compression algorithm yields an asymp-
totically optimal compression for Gn.

4 � Algorithmic Results

In this section we present asymptotically optimal algorithms for compression of 
labeled and  generated according to the full duplication model.

4.1 � Retrieval of Parameters from G
n

In order to present efficient compression algorithms for the duplication model, 
we must first reconstruct G0 from Gn and find values of n0 and n. This is relatively 
easy to accomplish, as the proof of the next theorem shows.

Theorem 3  For a given labeled Gn or its unlabeled version S(Gn) , we can retrieve its 
n, n0 and G0 (in the case of structure up to isomorphisms of G0 ) in polynomial times 
in terms of n.

Proof  For a labeled Gn let (w1,w2,… ,wn+n0
) be its vertices in the order of appear-

ance. Since (w1,… ,wn0
) = (u1,… , un0 ) and (wn0+1

,… ,wn0+n
) = (v1,… , vn) , it is 

sufficient to find the smallest k such that Nn(wk) = Nn(wi) for some 1 ≤ i < k . Then 
n0 = k − 1 and G0 is induced by the sequence (w1,… ,wk−1).

The case for  is similar: we know (for details see Lemma 6) that the sequence of 
the first n0 vertices of the graph (that is, G0 ) contains exactly one vertex from each 
set Ci,n.

From Lemma 1 it follows that A(v) = A(w) iff Nn(v) = Nn(w) for every 
v,w ∈ V(Gn) , so it is sufficient to scan all vertices of Gn and split them into sets such 
that v and w belongs to the same set iff Nn(v) = Nn(w) . Then, we pick one vertex 
from each set to from G0 . Obviously, n0 and n may be extracted from the sizes of G0 
and Gn . 	�  ◻

H(Gn | G0) = n(Hn0
− 1) log e + log n

n0 − 1

2
− log(n0 − 1)!

+

(
1 − n0

2
+

3n0 − 2

2
Hn0−1

)
log e +

n0

2
log(2�) + o(1).
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Recall for example that in Fig.  1b we identified the clusters {u1, v2} , {u2, v1, v3} , 
{u3} , {u4} and {u5} . Therefore, we know that n0 = 6 , n = 3 and the G0 is isomorphic to 
a graph induced, for example, by the set {v2, v3, u3, u4, u5}.

4.2 � Unlabeled Graphs

A trivial algorithm CompressUnlabeledSimple for unlabeled compression writes down 
a sequence (Ci,n)

n0
i=1

 associated with our Gn as log n-bit numbers. This always requires 
n0 log n bits, so �LSU(n) = n0 log n , where LSU denotes the code length of our proposed 
scheme. By Theorem 1 this achieves the fundamental limit to within a multiplicative 
factor of 1 + 1

n0−1
.

However, it is easy to design an optimal algorithm up to a constant additive error, 
provided we have already compressed G0 or S(G0) (anyway, a graph of fixed size). The 
pseudocode of an optimal algorithm, called CompressUnlabeledOpt, based on arith-
metic coding, is as follows: 

The next finding proves that CompressUnlabeledOpt is nearly optimal.

Theorem 4  Algorithm CompressUnlabeledOpt is optimal up to a two bits for unla-
beled graphs compression, when the graph is generated by the full duplication 
model.

Proof  It is sufficient to observe that
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The last equality follows from the fact that the marginal distribution of the Dirichlet 
multinomial distribution is the beta-binomial distribution, given by Eq. 1. Moreover, 
if we fix value of the last coordinate of (Ci,n)

n0
i=1

 to k + 1 , then the resulting distribu-
tion is also (shifted) Dirichlet multinomial, but with n0 − 1 coordinates and all val-
ues summing up to n + n0 − k − 1.

We repeat this process until we have 2-dimensional distribution:

By the properties of arithmetic coding (see e.g. [7]), 
�LO(S(Gn) | G0) ≤ H((Ci,n)

n0
i=0

) + 2 = H(S(Gn) | G0) + 2 , where LO denotes the code 
length. This completes the proof. 	�  ◻

4.3 � Labeled Graphs

We note that the labeled graph Gn is equivalent to a sequence (A(vi))ni=1 for a given 
(labeled) G0 , which obviously can be encoded separately using a constant number of 
bits.

A trivial algorithm CompressLabeledSimple just writes all A(vi) as log n0-bit 
numbers. Clearly, this always gives us a codeword with length exactly 
�LSL(n) = n log n0 . From Theorem  2 it is known that this algorithm is asymptoti-
cally (1 + 1−�

log n0
)-approximately optimal, where � is Euler-Mascheroni constant.

It is easy to design an asymptotically optimal algorithm up to a constant error. 
Indeed, the sequence of A(vi) is random with Pr(A(vi) = uj) =

Cj,i−1

n0+i−1
 for 1 ≤ i ≤ n , 

1 ≤ j ≤ n0 . Therefore, given Gi−1 we know the conditional probabilities of Gi and we 
may construct another algorithm based on arithmetic coding.

The pseudocode of the optimal algorithm is as follows: 

Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

)

= Pr((Ci,n)
n0
i=1

= (ki + 1)
n0
i=1

| Cn0,n
= kn0 + 1)Pr(Cn0,n

= kn0 + 1)

= Pr((Ci,n)
n0−1

i=1
= (ki + 1)

n0−1

i=1
| Cn0,n

= kn0 + 1)Pr(Cn0,n
= kn0 + 1)

= Pr

(
(Ci,n)

n0−1

i=1
= (ki + 1)

n0−1

i=1

|||

n0−1∑

i=0

Ci,n = n + n0 − kn0 − 1

)

Pr(Cn0,n
= kn0 + 1)

= Pr((Ci,n−kn0
)
n0−1

i=1
= (ki + 1)

n0−1

i=1
)

(
n

kn0

)
(n0 − 1)B(kn0 + 1, n + n0 − kn0 − 1),

Pr((Ci,n)
2
i=1

= (ki + 1)2
i=1

)

= Pr(C1,n = k1 + 1 | C1,n = k1 + 1)Pr(C2,n = k1 + 1)

=

(
k1 + k2
k2

)
B(k2 + 1, k1 + 1).
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The next theorem proves that CompressLabeledOpt is almost optimal up to a 
known additive constant.

Theorem 5  Algorithm  CompressLabeledOpt is optimal up to a two bits for labeled 
graph compression, when the graph is generated by the full duplication model.

Proof  By the well-known properties of arithmetic encoding (see [7]), we know that 
�LO(Gn | G0) ≤ H(Gn | G0) + 2 , where LO denotes the code length. 	�  ◻

Note that these two algorithms for the labeled graphs differ only in that the opti-
mal one updates the probabilities at each step and the second fixes them to a con-
stant value of 1

n0
.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

Appendix

Proof of Lemma 2

We can write �[ln(X + 1)] as follows:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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as X ∼ BBin(n, �, �) can be defined as a compound distribution X ∼ Bin(n, p) for 
p ∼ Beta(n, �, �) . Here �(p, �, �) = p�−1(1−p)�−1

B(�,�)
 is the beta probability distribution 

function.
We proceed by defining an event A = [|X − np| ≤ �np] for some fixed 𝜖 > 0 and 

then splitting the remaining part into two regions: M1 = [0, n−2∕3] and M2 = [n−2∕3, 1].
First, we use Taylor expansion around �[X | p] = np and get:

where c is a random variable with values within the range of X.
We know that

For M1 it holds that

Conditioned on A, it is true that np(1 − �) ≤ c ≤ np(1 + �) . Moreover, 
Pr(A | p)�[(X − np)2 | p,A] ≤ �[(X − np)2 | p] = np(1 − p) , therefore:

(4)�[ln(X + 1)] = ∫
1

0

�(p, �, �)�[ln(X + 1) | p]dp

(5)
�[ln(X + 1) | p] = ln(np + 1) − �

[
(X − np)2

2(c + 1)2
||| p

]

= ln n + ln p + ln

(
1 +

1

np

)
− �

[
(X − np)2

2(c + 1)2
||| p

]
,

�
1

0

�(p, �, �) ln ndp = ln n

�
1

0

�(p, �, �) ln pdp = �(�) − �(� + �)

�
1

0

�(p, �, �) ln

(
1 +

1

np

)
dp ≤ 1

B(�, �) �
1

0

ln

(
1 +

1

np

)
dp

=
1

B(�, �)

[
p ln

(
1 +

1

np

)
+

1

n
ln (np + 1)

]1

0

= O
(
ln n

n

)
.

�M1

�(p, �, �)�

[
(X − np)2

2(c + 1)2
||| p

]
dp ≤ �M1

�(p, �, �)
np(1 − p)

2
dp

≤ �M1

�(p, �, �)
np

2
dp ≤ n

2B(�, �) �M1

pdp = O
(
n−1∕3

)
.
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Furthermore, for M2 conditioned on ¬A , we use the Chernoff bound:

for a fixed constant 𝜖 > 0 together with the obvious fact that (X − np)2 ≤ n2 to bound 
the remaining error

The proof follows from using all the bounds presented above and combining them 
with Eqs. 4 and 5. 	�  ◻

Proof of Lemma 3

We proceed as before by writing �[(X + 1) ln(X + 1)] as follows:

Once again we define an event A = [|X − np| ≤ �np] for some fixed 𝜖 > 0 and using 
Taylor expansion around �[X | p] = np:

�M2

�(p, �, �)Pr(A | p)�
[
(X − np)2

2(c + 1)2
||| p,A

]
dp

≤ �M2

�(p, �, �)
np(1 − p)

2(np(1 − �) + 1)2
dp

≤ �M2

�(p, �, �)
np

2n2p2(1 − � +
1

np
)2
dp

≤ n−1 �M2

�(p, �, �)
1

2p(1 − � +
1

np
)2
dp

≤ n−1
1

2B(�, �)(1 − �)2 �M2

1

p
dp = O

(
ln n

n

)
.

Pr(¬A | p) = Pr(|X − np| > 𝜖np | p) ≤ 2 exp

(
−
𝜖2np

3

)

�M2

�(p, �, �)Pr(¬A | p)�
[
(X − np)2

2(c + 1)2
||| p,¬A

]
dp

≤ �M2

�(p, �, �) exp

(
−
�2np

3

)
n2

2
dp

≤ n2

2B(�, �) �M2

exp

(
−
�2np

3

)
dp

≤ 3n

2B(�, �)�2
exp

(
−
�2n−1∕3

3

)
= o(1).

(6)�[(X + 1) ln(X + 1)] = ∫
1

0

�(p, �, �)�[(X + 1) ln(X + 1) | p]dp.
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where c is a random variable with values within the range of X.
Moreover,

The term np ln
(
1 +

1

np

)
 can be computed as following:

with

and

(7)

�[(X + 1) ln(X + 1) | p]

= (np + 1) ln(np + 1) +
np(1 − p)

2(np + 1)
− �

[
(X − np)3

6(c + 1)2
||| p

]

= np ln n + np ln p + np ln

(
1 +

1

np

)
+ ln n + ln p + ln

(
1 +

1

np

)

+
np(1 − p)

2(np + 1)
− �

[
(X − np)3

2(c + 1)2
||| p

]
,

�
1

0

�(p, �, �)np ln ndp =
�

� + �
n ln n

�
1

0

�(p, �, �)np ln pdp =
�(�(� + 1) − �(� + � + 1))

� + �
n

�
1

0

�(p, �, �)
1

np + 1
dp ≤ 1

B(�, �) �
1

0

1

np + 1
dp = o(1)

�
1

0

�(p, �, �)
p

np + 1
dp =

1

n �
1

0

�(p, �, �)

(
1 −

1

np + 1

)
dp = o(1)

�
1

0

�(p, �, �)
np(1 − p)

2(np + 1)
dp = �

1

0

�(p, �, �)

(
1 − p

2
+

1 − p

2(np + 1)

)
dp

=
�

2(� + �)
+ o(1).

∫
1

0

�(p, �, �)np ln

(
1 +

1

np

)
dp

= 1 + ∫
2∕n

0

�(p, �, �)

(
np ln

(
1 +

1

np

)
− 1

)
dp

+ ∫
1

2∕n

�(p, �, �)

(
np ln

(
1 +

1

np

)
− 1

)
dp

�
1

2∕n

�(p, �, �)np

(
ln

(
1 +

1

np

)
− 1

)
dp ≤ �

1

2∕n

�(p, �, �)
−1

np
dp

≤ 1

nB(�, �) �
1

2∕n

−
1

p
dp = o(1)
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Finally, we estimate the remainder term for two regions: M1 = [0, n−2∕3] and 
M2 = [n−2∕3, 1].

For M1 it is true that

Furthermore, for A defined as above we have

and therefore

Now we proceed similarly as in the previous proof, using the fact that condition-
ing on A guarantees that np(1 − �) ≤ c ≤ np(1 + �) . As we may safely assume that 
n ≥ 3 , we need to consider two subregions separately:

�
2∕n

0

�(p, �, �)np

(
ln

(
1 +

1

np

)
− 1

)
dp

≤ 1

B(�, �) �
2∕n

0

np

(
ln

(
1 +

1

np

)
− 1

)
dp

≤ 1

nB(�, �) �
2

0

x
(
ln
(
1 +

1

x

)
− 1

)
dx

≤ 1

2nB(�, �)

[
x2 ln

(
1 +

1

x

)
+ x − ln(x + 1) − x2

]2

0
= o(1).

�M1

�(p, �, �)�

[
(X − np)3

6(c + 1)2
||| p

]
dp

≤ �M1

�(p, �, �)
np(1 − p)(1 − 2p)

6
dp

≤ �M1

�(p, �, �)
np

6
dp

≤ n

6B(�, �) �M1

pdp = O
(
n−1∕3

)
.

Pr(A | p)�[(X − np)3 | p,A] + Pr(¬A | p)�[(X − np)3 | p,¬A]
= �[(X − np)3 | p]

�[(X − np)3 | p,¬A] ≥ −n3p3 Pr(¬A | p) = Pr(|X − np| ≥ �np | p)

≤ 2 exp

(
−
�2np

3

)
.

Pr(A | p)�[(X − np)3 | p,A]
= �[(X − np)3 | p] − Pr(¬A | p)�[(X − np)3 | p,¬A]

≤ �[(X − np)3 | p] + 2n3p3 exp

(
−
�2np

3

)

≤ np(1 − p)(1 − 2p) + o(1).
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and

Therefore for M2 conditioned on A we have

Finally, for M2 conditioned on ¬A we have

�
1∕2

1∕n2∕3
�(p, �, �)Pr(A | p)np(1 − p)(1 − 2p)

6(c + 1)2
dp

≤ �
1∕2

1∕n2∕3
�(p, �, �)

np

6(np(1 − �) + 1)2
dp

≤ 1

B(�, �) �
1∕2

1∕n2∕3

np

6n2p2
(
1 − � +

1

np

)2
dp

≤ 1

B(�, �) �
1∕2

1∕n2∕3

1

6np(1 − �)
2
dp = o(1)

�
1

1∕2

�(p, �, �)Pr(A | p)np(1 − p)(2p − 1)

6(c + 1)2
dp

≤ �
1

1∕2

�(p, �, �)
2np2

6(np(1 − �) + 1)2
dp

≤ 1

B(�, �) �
1

1∕2

2np2

6n2p2
(
1 − � +

1

np

)2
dp

≤ 1

B(�, �) �
1

1∕2

1

3n(1 − �)
2
dp = o(1).

�M2

�(p, �, �)Pr(A | p)�
[
(X − np)3

6(c + 1)2
||| p,A

]
dp

≤ �
1

1∕n2∕3
�(p, �, �)

np(1 − p)(1 − 2p) + o(1)

6(c + 1)2
dp = o(1).

�M2

�(p, �, �)Pr(¬A | p)�
[
(X − np)3

6(c + 1)2
||| p,¬A

]
dp

≤ �M2

�(p, �, �) exp

(
−
�2np

3

)
n3

6
dp

≤ n3

6B(�, �) �M2

exp

(
−
�2np

3

)
dp

≤ n2

2B(�, �)�2
exp

(
−
�2n−1∕3

3

)
= o(1).
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To finish the proof it is sufficient to apply all the bounds presented above to the 
Eqs. 6 and 7. 	�  ◻
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