
The Complexity of Tree Partitioning

Zhao An1 Qilong Feng1 Iyad Kanj2 Ge Xia3

1 School of Information Science and Engineering, Central South University, China.
anzhao1990@126.com, csufeng@csu.edu.cn

2 School of Computing, DePaul University, Chicago, IL. ikanj@cs.depaul.edu
3 Dept. of Computer Science, Lafayette College, Easton, PA. xiag@lafayette.edu

Abstract. Given a tree T on n vertices, and k, b, s1, . . . , sb ∈ N, the
Tree Partitioning problem asks if at most k edges can be removed
from T so that the resulting components can be grouped into b groups
such that the number of vertices in group i is si, for i = 1, . . . , b. The
case when s1 = · · · = sb = n/b, referred to as the Balanced Tree
Partitioning problem, was shown to be NP-complete for trees of max-
imum degree at most 5, and the complexity of the problem for trees of
maximum degree 4 and 3 was posed as an open question. The parame-
terized complexity of Balanced Tree Partitioning was also posed as
an open question in another work.
In this paper, we answer both open questions negatively. We show that
Balanced Tree Partitioning (and hence, Tree Partitioning) is
NP-complete for trees of maximum degree 3, thus closing the door on
the complexity of Balanced Tree Partitioning, as the simple case
when T is a path is in P. In terms of the parameterized complexity of
the problems, we show that both Balanced Tree Partitioning and
Tree Partitioning are W [1]-complete. Finally, using a compact repre-
sentation of the solution space for an instance of the problem, we present
a dynamic programming algorithm for Tree Partitioning (and hence,
for Balanced Tree Partitioning) that runs in subexponential-time
2O(

√
n), adding a natural problem to the list of problems that can be

solved in subexponential time.

1 Introduction

Problem Definition and Motivation. We consider the Tree Partition-
ing problem defined as follows:

Tree Partitioning
Given: A tree T ; k, b, s1, . . . , sb ∈ N
Parameter: k
Question: Does there exist a subset E′ ⊆ E(T) of at most k edges such that
the components of T −E′ can be grouped into b groups, where group i contains
si vertices, for i = 1, . . . , b?

ar
X

iv
:1

70
4.

05
89

6v
1

 [
cs

.C
C

]
 1

9
A

pr
 2

01
7

The special case of the problem when s1 = · · · = sb = |V (T)|/b (i.e.,
when all the groups have the same size) is referred to as Balanced Tree
Partitioning1.

The two problems are special cases of the Balanced Graph Partitioning
problem, which has applications in the areas of parallel computing [2], com-
puter vision [2], VLSI circuit design [3], route planning [8], and image pro-
cessing [24, 26]. In such applications, the problem that arises is to schedule
n objects (modeled as graph vertices) into b groups such that the intercom-
munication between the objects (modeled as graph edges) is minimized. The
special case of Balanced Graph Partitioning, corresponding to b = 2, is
the well-known NP-complete problem Bisection [17]. The Balanced Graph
Partitioning problem has received a lot of attention from the area of approx-
imation theory (for instance, see [1, 11, 23]). Moreover, the complexity and the
approximability of the problem restricted to special graph classes, such as grids,
trees, and bounded degree trees [11–13, 21], have been studied.

Our Results. We study the complexity and the parameterized complexity of
Tree Partitioning and Balanced Tree Partitioning, and design subex-
ponential time algorithms for these problems. Our results are:

(A) We prove that Balanced Tree Partitioning, and hence Tree Parti-
tioning, is NP-complete for trees with maximum degree at most 3. This
answers an open question in [12] about the complexity of Balanced Tree
Partitioning for trees of maximum degree 4 and 3, after they had shown
the NP-completeness of the problem for trees of maximum degree at most
5. This also closes the door on the complexity of these problems on trees, as
the simple case when the tree is a path is in P.

(B) We prove that both Tree Partitioning and Balanced Tree Parti-
tioning are W [1]-complete. This answers an open question in [25]. We ob-
serve that, for trees, the removal of k edges results in k + 1 components.
Since the number of groups b is at most k+ 1 (an upper bound on the num-
ber of components), the W [1]-hardness results with respect to parameter
k imply the W [1]-hardness of the problems with respect to the parameter-
combination (b, k).We also prove the membership of the problems in the class
W [1], using the characterization of W [1] given by Chen et al. [6].

(C) We present an exact subexponential-time algorithm for Tree Partition-
ing, and hence for Balanced Tree Partitioning, that runs in time
2O(
√

n), where n is the number of vertices in the tree.

For the lack of space, many details and proofs in this paper have been omitted.

Related Work and Our Contributions. Feldmann and Foschini [12] stud-
ied Balanced Tree Partitioning. They showed that the problem is NP-
complete for trees of maximum degree at most 5, and left the question about
1 In a variant of the Balanced Tree Partitioning problem, the group sizes in the
solution are allowed to differ by 1. All the results in this paper still hold for this
variant of the problem.

2

the complexity of the problem for maximum degree 4 and 3 open. Whereas the
reduction used in the current paper to prove the NP-hardness of Balanced
Tree Partitioning on trees of maximum degree at most 3 starts from the
same problem (3-Partition) as in [12], and is inspired by their construction,
the reduction in this paper is much more involved in terms of the gadgets em-
ployed and the correctness proofs. Feldmann and Foschini [12] also showed that
Balanced Tree Partitioning is APX-hard, with respect to the size of the
cut (i.e., the number of edges cut), for trees of maximum degree at most 7. They
also considered the problem where one seeks a partitioning that approximates
a balanced partitioning to within factor (1 + ε) (i.e., the size of each group is
within a factor of (1+ε) from the size n/b of a balanced partitioning), and showed
that this problem admits a PTAS with respect to this notion of approximation.
MacGregor, in his Ph.D. thesis [21] in 1978, proposed a greedy algorithm that
approximates Balanced Tree Partitioning on trees of constant maximum
degree to within factor O(lgn/b) from the optimal solution. Refer to the Ph.D.
thesis of Feldmann [11] for more information on polynomial-time algorithms and
approximation algorithms for Balanced Tree Partitioning on special graph
classes.

Bevern et al. [25] showed that the parameterized complexity of Balanced
Graph Partitioning is W [1]-hard when parameterized by the combined pa-
rameters (k, µ), where k is (an upper bound on) the cut size, and µ is (an upper
bound on) the number of resulting components after the cut. It was observed
in [25], however, that the employed FPT -reduction yields graphs of unbounded
treewidth, which motivated the authors to ask about the parameterized com-
plexity of the problem for graphs of bounded treewidth, and in particular for
trees. We answer their question by showing that the problem is W [1]-complete.

Bevern et al. [25] also showed that Balanced Graph Partitioning is
W [1]-hard on forests by a reduction from the Unary Bin Packing problem,
which was shown to be W [1]-hard in [19]. We note that the disconnectedness of
the forest is crucial to their reduction, as they represent each number x in an
instance of Bin Packing as a separate path of x vertices. For Balanced Tree
Partitioning, in contrast to Unary Bin Packing (and hence, to Balanced
Graph Partitioning on forests), the difficulty is not in grouping the compo-
nents into groups (bins) because enumerating all possible distributions of k + 1
components (resulting from cutting k edges) into b ≤ k + 1 groups can be done
in FPT -time; the difficulty, however, stems from not knowing which tree edges
to cut. The FPT -reduction we use to show the W [1]-hardness is substantially
different from both of those in [19, 25], even though we use the idea of non-
averaging sets in our construction—a well-studied notion in the literature (e.g.,
see [4]), which was used for the W [1]-hardness result of Unary Bin Packing
in [19].

Many results in the literature have shown that certain NP-hard graph prob-
lems are solvable in subexponential time. Some of these rely on topological
properties of the underlying graph that guarantee the existence of a balanced
graph-separator of sub-linear size, which can then be exploited in a divide-and-

3

conquer approach (e.g., see [5, 9]). There are certain problems on restricted
graph classes that resist such approaches due to the the problem specifications;
designing subexponential-time algorithms for such problems usually require ex-
ploiting certain properties of the solution itself, in addition to properties of the
graph class (see [16, 20] for such recent results). In the case of Tree Parti-
tioning and Balanced Tree Partitioning, since every tree has a balanced
separator consisting of a single vertex, yet the two problems remain NP-hard
on trees, clearly a divide-and-conquer approach based solely on balanced sep-
arators does not yield subexponential-time algorithms for these problems. To
design subexponential-time algorithms for them, we rely on the observation that
the number of possible partitions of an integer n ∈ N is subexponential in n; this
allows for a “compact representation” of all solutions using a solution space of
size 2O(

√
n), enabling a dynamic programming approach that solves the problems

within the same time upper bound.

2 Preliminaries

Graphs, Trees and Stars. A tree T is an undirected acyclic graph. A forest is
a disjoint union of trees. We write V (T) and E(T) for the vertex-set and edge-set
of T , respectively. By |T | we denote the order of T , which is |V (T)|. A subtree
of T is a tree induced by a subset of V (T). For a set of edges E′ in T , by T −E′
we denote the forest whose vertex-set is V (T) and edge-set is E(T) \ E′. For
two forests F and F ′, we write F − F ′ for the forest induced by the vertex-set
V (F) \ V (F ′).

A rooted tree is a tree with a vertex designated as the root. For a rooted
tree T , we can define the parent-child and ancestor-descendant relations on the
vertex-set of T in a natural way. For a rooted tree T and a vertex v ∈ V (T), we
write Tv for the subtree of T rooted at v.

A binary tree is a rooted tree in which each vertex has at most two children.
A nice binary tree T is a binary tree defined recursively as follows. If |V (T)| ≤ 1
then T is a nice binary tree. If V (T) > 1, then T is nice if (1) each of the left-
subtree and right-subtree of T is nice and (2) the sizes of the left-subtree and
the right-subtree differ by at most 1. It is clear that for any n ∈ N, there is a
nice binary tree of order n.

Let T be a rooted tree. For an edge e = uv in T such that u is the parent of
v, by the subtree of T below e we mean the subtree Tv of T rooted at v. For two
edges e, e′ in T , e is said to be below e′ if e in an edge of the subtree of T below
e′.

A star S is a tree consisting of a single vertex r, referred to as the root of
the star, attached to degree-1 vertices, referred to each as a star-leaf; we refer
to an edge between r and a leaf in S as a star-edge; we refer to a subtree of S
containing r as a substar of S.

Tree Partitioning and Its Related Terminologies. A solution P to an
instance (T, k, b, s1, . . . , sb) of Tree Partitioning is a pair (EP , λP), where

4

EP is a set of k edges in T , and λP is an assignment that maps the connected
components in T−EP into b groups so that the total number of vertices assigned
to group i is si, for i ∈ [b]. We call a connected component in T − EP a P -
component, and denote by CP the set of all P -components in T − EP .

By a cut in a tree T we mean the removal of an edge from T . We say that
a solution P = (EP , λP) to an instance (T, k, b, s1, . . . , sb) of Tree Partition-
ing cuts an edge e in T if e ∈ EP . For a subtree T ′ of T such that P cuts at least
one edge in T ′, by a lowest P -component in T ′ we mean a subtree T ′′ below an
edge e of T ′ such that T ′′ is a P -component (i.e., P does not cut any edge below
e in T ′).

The restriction of Tree Partitioning to instances in which s1 = · · · =
sb = |T |/b is denoted Balanced Tree Partitioning; an instance of Bal-
anced Tree Partitioning is specified as a triplet (T, k, b). The restriction of
Tree Partitioning and Balanced Tree Partitioning to trees of maximum
degree at most 3 are denoted Degree-3 Tree Partitioning and Balanced
Degree-3 Tree Partitioning, respectively.

Parameterized Complexity. A parameterized problem is a set of instances
of the form (x, k), where x ∈ Σ∗ for a finite alphabet set Σ, and k ∈ N is the
parameter. A parameterized problem Q is fixed parameter tractable (FPT), if
there exists an algorithm that on input (x, k) decides if (x, k) is a yes-instance
of Q in time f(k)|x|O(1), where f is a computable function; we will denote by
FPT -time a running time of the form f(k)|x|O(1). A parameterized problem Q
is FPT -reducible to a parameterized problem Q′, written Q �fpt Q

′, if there is
an algorithm that transforms each instance (x, k) of Q into an instance (x′, g(k))
of Q′ in FPT -time, where g is a computable function, and such that (x, k) ∈ Q
if and only if (x′, g(k)) ∈ Q′. A parameterized complexity hierarchy, the W -
hierarchy

⋃
t≥0 W [t], was introduced based on the notion of FPT -reduction,

in which the 0-th level W [0] is the class FPT . It is commonly believed that
W [1] 6= FPT . For more information about parameterized complexity, we refer
the reader to [10, 15, 22].

For ` ∈ N, we write [`] for the set {1, . . . , `}.

3 Balanced Degree-3 Tree Partitioning and Degree-3
Tree Partitioning are N P-complete

In this section, we show that Balanced Degree-3 Tree Partitioning, and
hence Degree-3 Tree Partitioning, is NP-complete. Without loss of gener-
ality, we will consider the version of Balanced Degree-3 Tree Partitioning
in which we ask for a cut of size exactly k, as opposed to at most k; it is easy to
see that the two problems are polynomial-time reducible to one another.

To prove that Balanced Degree-3 Tree Partitioning is NP-hard, we
will show that the strong NP-hard problem 3-Partition [17] is polynomial-
time reducible to it. Our reduction is inspired by the construction of Feldmann
and Foschini [12]. Whereas the construction in [12] uses gadgets each consisting

5

of five chains joined at a vertex, the construction in this paper uses gadgets
consisting of nearly-complete binary trees, that we refer to as nice binary trees.
The idea behind using nice binary trees is that we can combine them to construct
a degree-3 tree in which the cuts must happen at specific edges in order to
produce components of certain sizes.

An instance of the 3-Partition problem consists of an integer s > 0 and
a collection S = 〈a1, . . . , a3k〉 of 3k positive integers, where each ai satisfies
s/4 < ai < s/2, for i ∈ [3k]. The problem is to decide whether S can be
partitioned into k groups S1, . . . , Sk, each of cardinality 3, such that the sum of
the elements in each Si is s, for i ∈ [k].

Let (S = 〈a1, . . . , a3k〉, s) be an instance of 3-Partition. If we multiply s
and each ai ∈ S, i ∈ [3k], by any fixed x ∈ Z+, we obtain an equivalent instance
of 3-Partition. For the purpose of this reduction, we will apply the following
(polynomial-time) transformation that either rejects the instance, or transforms
it into an equivalent instance of 3-Partition:

1. Multiply s and each element in S by 4. As a consequence, for each element
ai in S, we now have s/4 + 1 ≤ ai ≤ s/2− 1 because s/4 < ai < s/2 (by the
problem definition) and s is divisible by 4.

2. If there is an element ai = s/2−1, then reject the instance because ai cannot
be grouped with two other elements in S to make a group of size s (because
every element in S is at least s/4 + 1). If there is an element ai = s/2 − 2,
then the only way that ai can be grouped with two elements in S to give
a total sum of s, is to group ai with two elements each of size s/4 + 1.
If there are two other elements each of value s/4 + 1, then remove ai and
these two elements; otherwise reject the instance. Now we have s > 4 and
s/4 + 1 ≤ ai ≤ s/2− 3, for i ∈ [3k].

3. Multiply s and each element in S by 6k. Now we have s > 24k and s/4+6k ≤
ai ≤ s/2− 18k, for i ∈ [3k].

For later use, we summarize all the above in an assumption below:

Assumption 1 We assume that: (1) s is a multiple of 4; (2) s > 24k; and (3)
s/4 + 6k ≤ ai ≤ s/2− 18k, for i ∈ [3k].

For the reduction, we construct a degree-3 tree T as follows. For each ai ∈ S,
we create a binary tree Ti, whose left subtree Li is a nice binary tree of size
ai, and whose right subtree Ri is a nice binary tree of size s− 2. We denote by
Rl

i and Rr
i the left and right subtrees of Ri, respectively. Let H = (p1, . . . , p3k)

be a path on 3k vertices. The tree T is constructed by adding an edge between
each pi in H and the root of Ti, for i ∈ [3k]. See Figure 1 for illustration. It
is clear from the construction that T is a degree-3 tree of 4k · s vertices, since
each Ti has size ai + s − 1 and P has 3k vertices. We will show that (S, s) is a
yes-instance of 3-Partition if and only if the instance I = (T, 6k − 1, b = 4k)
is a yes-instance of Balanced Degree-3 Tree Partitioning. We will prove
the aforementioned statement by proving a sequence of lemmas.

6

......

H

3k

p1 p3k
pi

T1 Ti
T3k

a1 ai a3k

s
2 -1

s
2 -2 s

2 -1
s
2 -2

s
2 -1

s
2 -2

RiLi

Rl
i Rr

i

Fig. 1. Illustration of the construction of the tree T .

Note that the size of T is 4k ·s, and hence, if the vertices in T can be grouped
into 4k groups of equal size, then each group must contain s vertices. From the
aforementioned statement, it follows that at least one cut is required in each tree
Ti because the size of each Ti is ai + s− 1 > s.

Suppose that the instance I has a solution P that cuts 6k − 1 edges in T .
Let C ′P ⊆ CP be such that each P -component in C ′P is contained in some Ti.
We call the forest resulting after all P -components in C ′P are removed from T a
partial-T , and the remaining portion of each Ti (respectively Ri) in a partial-T
a partial-Ti (respectively partial-Ri).

Lemma 1. Let m ∈ N, and let T ′ be a partial-T . Then T ′ cannot satisfy all of
the following conditions:

1. |T | = m, where T is the set of partial-Ti’s in T ′, each of size at least s−1 +
ai − 6k and its partial-Ri is not a P -component.

2. T ′ contains 2m P -components.
3. T ′ contains a partial-Ti0 /∈ T , i0 ∈ [3k], of size at least ai0 + 1− 6k.

Proof. Suppose that T ′ satisfies all the above conditions. We will show that at
least one P -component has size greater than s.

First observe that each partial-Ti in T has at least one P -component because
its size is at least s − 1 + ai − 6k > s. Let T1 be the set of partial-Ti’s in T
each containing exactly one P -component. Let T2 be set of partial-Ti in T each
containing two or more P -components. Remove all the P -components contained
in T from T ′. At least |T1| + 2|T2| P -components are removed from T ′, and
hence at most 2m − |T1| − 2|T2| = |T1| P -components remain in T ′, because
m = |T1|+ |T2|.

For each partial-Ti in T1, its partial-Ri cannot be removed as a P -component
because, by condition (1) its partial-Ri is not a P -component. Therefore, the
maximum possible size of the P -component removed from Ti is s/2 − 1 (the
left subtree of Ri). This means that the size of the remaining portion of each
partial-Ti in T1 is at least s− 1 + ai − 6k − (s/2− 1) = s/2 + ai − 6k.

7

Therefore, T ′ still has |T1|-many partial-Ti’s, each of size at last s/2+ai−6k,
and no P -component is contained in any of these partial-Ti’s; otherwise they
would belong to T2. Since there are |T1|-many P -components left in T ′, each
P -component must contain exactly one partial-Ti from T1 because leaving any
two of them connected would result in a P -component of size more than s. One
of these |T1|-many P -components must also contain a partial-Ti0 of size ai0 + 1
by condition (3). This P -component’s size will be at least s/2 + ai− 6k+ (ai0 +
1− 6k) > s because, by Assumption 1, ai ≥ s/4 + 6k, for i ∈ [3k]. ut

Lemma 2. For i ∈ [3k], Ri is not a P -component in CP .

Proof. Suppose that CP contains h-many Ri’s as P -components, where h ≥ 1.
Since |Ri| = s − 2, for each such Ri, there must exist at least one other P -
component Xi in CP , where |Xi| ≤ 2, that is assigned to the same group as
Ri; call such an Xi a tiny P -component. Let T ′ be the partial-T resulting from
T after all such Ri’s and Xi’s have been removed from T . We will show that
T ′ satisfies all three conditions of Lemma 1, which implies that at least one P -
component in CP would have size greater than s, thus deriving a contradiction.

First, for each Ti whose Ri is not removed above, at most h-many tiny P -
components could be removed from Ti. Since h ≤ 3k and each tiny P -component
has size at most 2, the resulting partial-Ti in T ′ has size at least s − 1 + ai −
6k. Therefore, there are (3k − h)-many partial-Ti’s satisfying condition (1) of
Lemma 1. Second, T ′ contains 6k− 2h P -components satisfying condition (2) of
Lemma 1, because h-many Ri’s and h-many Xi’s are removed from T to produce
T ′. Finally, for each Ti whose Ri is removed above, the resulting partial-Ti in
T ′ has size at least ai + 1− 6k, because in addition to Ri, at most h-many tiny
P -components, each of size at most 2, could be removed from Ti and h ≤ 3k.
Since h ≥ 1, T ′ satisfies condition (3) of Lemma 1. ut

Lemma 3. For i ∈ [3k], Ti does not contain a lowest P -component of size less
than s/4.

Proof. Suppose that a Ti contains a lowest P -component C1 of size less than s/4.
Remove C1 from Ti. The resulting partial-Ti has size at least s−1+ai−(s/4−1) =
3s/4 + ai > s. Therefore, there is at least one more P -component contained in
the partial-Ti. Remove another lowest P -component C2 from this partial-Ti. If
C1 is in Li, then sine C2 6= Ri by Lemma 2, the largest P -component C2 can
be is the left subtree of Ri of size s/2 − 1. If C1 is contained in Ri, then the
largest P -component C2 can be is the remaining portion of Ri, which has size
s − 2 − |C1|. In either case, the partial-Ti resulting after removing C1 and C2
has size at least ai + 1. Let T ′ be the partial-T after C1 and C2 are removed.

It is clear that (1) T ′ has (3k − 1)-many Ti’s of size at least s − 1 + ai and
by Lemma 2 the Ri in each of these Ti’s is not a P -component; (2) T ′ contains
6k− 2 P -components (because 2 P -components are removed from T to produce
T ′), and (3) T ′ has a partial-Ti0 of size at least ai0 + 1. By Lemma 1, at least
one component in CP has size greater than s—a contradiction. ut

8

Lemma 4. For i ∈ [3k], Li is the only P -component contained in Ti, and the
subtree of T induced by (V (Ti)− V (Li)) ∪ {pi} is a P -component of size s.

Proof. Since |Ti| > s, any Ti must contain at least one P -component. Since
CP has 6k P -components, at least one of the 3k Ti’s contains at most one P -
component, because otherwise the P -components containing vertices in H are
not accounted for. Therefore, at least one Ti contains exactly one P -component
C, which must be a lowest P -component in Ti. By Lemma 2, C 6= Ri. By
Lemma 3, |C| ≥ s/4, and hence C cannot be any proper subtree of Li, Rl

i, or
Rl

i. This leaves Li, Rl
i, and Rl

i as the only possible choices for C.
Suppose that C = Rl

i. After removing C, the partial-Ti, denoted T−i , has
size s − 1 + ai − (s/2 − 1) = s/2 + ai, and contains no P -components. Let D
be the set of vertices that are not in T−i , and are grouped together with T−i .
Observe that for any j 6= i, j ∈ [3k], if a vertex in Lj is in D then all vertices
in Lj are in D. This is true because, by Lemma 3, all vertices in Lj belong
to the same P -component; otherwise Lj would have a lowest P -component of
size less than s/4. This means that the P -component containing T−i has size
|T−i |+ |D| ≥ s/2 + ai + aj > s. Therefore, D does not include any vertex in Lj .
similarly, D does not include any vertex in Rl

j or Rr
j . It follows that D consists

only of vertices in H, the roots of the Ti’s, and the roots of the Ri’s, i ∈ [3k].
However, there are only 9k such vertices, which means that the P -component
containing T−i has size |T−i |+ |D| ≤ s/2+ai +9k < s. The last inequality is true
because, by Assumption 1, ai ≤ s/2− 18k (assuming, without loss of generality,
that k > 0), for i ∈ [k].

Therefore, C 6= Rl
i. By a similar argument, C 6= Rr

i . It follows that C = Li.
After Li is removed, the resulting partial-Ti along with pi in H induces a subtree
Ci of size exactly s, and hence must be a P -component by itself.

After both Li and Ci are removed, there are (3k−1)-many Ti’s and 6k−2 P -
components remaining in T . Thus, there is at least one Tj containing exactly one
P -component. By the same argument above, the only P -component contained
in Tj is Lj . Repeating this argument 3k times in total proves the lemma. ut

Theorem 1. Balanced Degree-3 Tree Partitioning is NP-complete.

Proof. It is easy to see that Balanced Degree-3 Tree Partitioning is in
NP.

To show NP-hardness, we reduce from 3-Partition. It is well known that 3-
Partition is NP-hard in the strong sense [17]. So we can restrict our attention
to the instances of 3-Partition in which the numbers in the instance are all
bounded by a polynomial in the instance length. Consider the reduction from
3-Partition to Balanced Degree-3 Tree Partitioning that maps each
instance (S = 〈a1, . . . , a3k〉, s) of 3-Partition to the instance (T, 6k−1, b = 4k).
This reduction is computable in polynomial time.

Clearly, if (S = 〈a1, . . . , a3k〉, s) is a yes-instance of 3-Partition then we
can construct a solution P of (T, 6k − 1, 4k) by cutting each Li, i ∈ [3k], plus
the 3k − 1 edges of the path H, for a total of 6k − 1 edges. A grouping of
the resulting P -components follows trivially from the 3-partitioning of the ai’s.

9

To prove the converse, let P be a solution to the instance (T, 6k − 1, 4k). By
Lemma 4, CP consists of {L1, . . . , L3k} and 3k additional P -components, each
of size s. Since each group has size s, each of the 3k P -components must occupy
a group by itself, and the remaining L1, . . . , L3k components of sizes a1, . . . , a3k,
respectively, must be assigned to the remaining k groups. Since each number
in a1, . . . , a3k satisfies s/4 < ai < s/2, each group is assigned exactly three
numbers, and {a1, . . . , a3k} is a yes-instance of 3-Partition. This completes
the proof. ut

4 Tree Partitioning and Balanced Tree
Partitioning are W [1]-complete

In this section, we show that Tree Partitioning and Balanced Tree Par-
titioning are W [1]-complete. To show their membership in W [1], we use a
characterization of the class W [1] given in [6]. We start by showing that Tree
Partitioning isW [1]-hard. We then show that Tree Partitioning and Bal-
anced Tree Partitioning are equivalent modulo FPT -reducibility, which
implies the W [1]-hardness of Balanced Tree Partitioning.

To show that Tree Partitioning isW [1]-hard, we provide an FPT -reduction
from the W [1]-complete k-Multi-Colored Clique (k-MCC) problem ([10,
14]) defined as follows: Given a graph M = (V (M), E(M)) and a proper k-
coloring of the vertices f : V (M) −→ C, where C = {1, 2, ..., k} and each color
class has the same cardinality, decide whether there exists a clique Q ⊆ V (M)
of size k such that, ∀u, v ∈ Q, f(u) 6= f(v). For i ∈ [k], we define Ci = {v ∈
M | f(v) = i} to be the color class consisting of all vertices whose color is i. Let
n = |Ci|, i ∈ [k], and let N = k · n. We label the vertices in Ci arbitrarily as
vi

1, . . . , v
i
n. We first introduce some terminologies.

For a finite set X ⊆ N and ` ∈ Z+, we say that X is `-non-averaging if for
any ` numbers x1, . . . , x` ∈ X, and for any number x ∈ X, the following holds:
if x1 + · · ·+ x` = ` · x then x1 = · · · = x` = x.

Let X = {x1, . . . , xn} be a (k−1)-non-averaging set. It is known that we can
construct such a set X such that each element xi ∈ X, i ∈ [n], is polynomial in n
(for instance, see [4]). Jensen et al. [19] showed that a (k−1)-non-averaging set of
cardinality n, in which each number is at most k2n2 ≤ n4, can be constructed in
polynomial time in n; we will assume that X is such a set. Let k′ = k+

(
k
2
)
, and

let z = k′2n5. Choose 2k numbers b1, . . . , bk, c1, . . . , ck ∈ N such that bj = k′2j ·z
for j ∈ [k], and cj = k′2(k+j) · z for j ∈ [k]. Observe that each number in the
sequence b1, . . . , bk, c1, . . . , ck is equal to the preceding number multiplied by
k′2, and that the smallest number b1 in this sequence is k′2 · z ≥ k′4n5. For
each j, j′ ∈ [k], j < j′, we choose a number cj′

j = ck · k′2((j−1)k−j(j−1)/2+j′−j).
That is, each number in the sequence c2

1, . . . , c
k
1 , c

3
2, . . . , c

k
2 , . . . , c

k
k−1 is equal to

the preceding one multiplied by k′2, and the smallest number c2
1 in this sequence

is equal to k′2 · ck.

10

We construct a tree T rooted at a vertex r as follows. For a vertex vj
i ,

i ∈ [n], j ∈ [k], we correspond a vertex-gadget (for vertex vj
i) that is a star Svj

i

with cj− (k−1)bj− (k−1)xi−1 leaves, and hence with cj− (k−1)bj− (k−1)xi

vertices; we label the root of the star rvj
i
, and add the edge rrvj

i
to T . See Figure 2

for illustration. For each edge e in M between two vertices vj
i and vq

p, i, p ∈
[n], j, q ∈ [k], j < q, we create two stars S′

vj
i

and S′
vq

p
, with bj +xi−1 and bq+xp−1

leaves, respectively, and of roots r′
vj

i

and r′
vq

p
, respectively. We introduce a star Se

with root re and cq
j−1 leaves, and connect re to r′

vj
i

and r′
vq

p
to form a tree Te with

root re that we call an edge-gadget (for edge e). We connect re to r. See Figure 3
for illustration. Note that the number of vertices in Te that are not in S′

vj
i

∪S′
vq

p
is

exactly cq
j . Finally, we create k′+1 copies of a star Sfix consisting of ck

k−1 +k′+1
many vertices, and connect the root r of T to the root of each of these copies.
This completes the construction of T . Let t = |T |. We define the reduction from
k-Multi-Colored Clique to Tree Partitioning to be the map that takes
an instance I = (M,f) of k-Multi-Colored Clique and produces the instance
I ′ = (T, k′, b = k +

(
k
2
)
, c1, . . . , ck, c

2
1, . . . , c

k
1 , c

3
2, . . . , c

k
2 . . . , c

k
k−1, t

′), where k′ =
k + 3

(
k
2
)
and t′ = t −

∑k
j=1 cj −

∑
j,q∈[k],j<q c

q
j . Clearly, this reduction is an

FPT -reduction. Next, we describe the intuition behind this reduction.

...

......

r

S
v

j
i

cj − (k − 1)bj − (k − 1)xi − 1

Fig. 2. Illustration of the vertex-
gadget for vj

i .

 ...

...

...

...

...

r

Se

re

cq
j − 1

S′
v

j
i

r′
v

j
i

r′
v

q
p

S′
v

q
p

bj + xi − 1 bq + xp − 1

Fig. 3. Illustration of the edge-gadget for e =
vj

i vq
p.

Each number cj , j ∈ [k], chosen above, will serve as a “signature” for class
Cj , in the sense that it will ensure that in any solution to the instance, a vertex-
gadget corresponding to a vertex in class Cj is “cut” and placed in the group
of size cj . Each number cj′

j , j, j′ ∈ [k], j < j′, will serve as a “signature” for
the class-pair (Cj , Cj′), in the sense it will ensure that in a solution exactly one
edge-gadget corresponding to an edge e between classes Cj and C ′j is cut and

11

the star Se is placed in the group whose size is cj′

j . Each number bj , j ∈ [k], will
serve as a “signature” for any edge such that one of its endpoints is in Cj (i.e.,
a signature for an arbitrary vertex in Cj), ensuring that in a solution, k − 1 of
these edges are cut. Finally, the choice of the xi’s, for i ∈ [n], to be elements of
a (k − 1)-non-averaging set, will ensure that all the edges cut that are incident
to vertices in the same class Cj , j ∈ [k], are incident to the same vertex in Cj .

Next, we prove the correctness of the reduction. One direction is easy:

Lemma 5. If (M,f) is a yes-instance of k-Multi-Colored Clique then I ′

is a yes-instance of Tree Partitioning.

Proof. If (M,f) has a clique Q of size k, then we can form a solution P =
(EP , λP) for Tree Partitioning as follows. For every vertex vj

i ∈ Q, EP

contains the edge between r and the root rvj
i
of the vertex-gadget (star) Svj

i
; λP

assigns the vertex-gadget Svj
i
to group Gj . For each edge e = vj

i v
q
p, j, q ∈ [k], j <

q, between two vertices in Q, P cuts the edge between the root re of Te and r,
and cuts the two edges between re and its two children r′

vj
i

and r′
vq

p
; λP assigns

the star S′
vj

i

to group Gj , the star S′
vq

p
to group Gq, and the rest of Te (i.e., Se)

to group Gq
j . The remainder of T is assigned to the last group Grest. It is easy

to verify that P cuts exactly k′ edges in T . Moreover, the number of vertices
assigned by λP to each group Gj , j ∈ [k], is exactly cj ; the number of vertices
assigned to each group Gq

j , j, q ∈ [k], j < q, is exactly cq
j ; and the number of

vertices assigned to Grest is exactly t′ = t−
∑k

j=1 cj −
∑

j,q∈[k],j<q c
q
j . It follows

that P is a solution to I ′. ut

Next, we prove the converse. Let P = (EP , λP) be a solution to the instance
I ′ = (T, k′, b = k+

(
k
2
)
, c1, . . . , ck, c

2
1, . . . , c

k
1 , c

3
2, . . . , c

k
2 . . . , c

k
k−1, t

′) of Tree Par-
titioning. Let Gj , j ∈ [k], denote the group of size cj , Gq

j , j, q ∈ [k], j < q,
denote the group of size cq

j , and Grest denote the group of size t′. First, observe
the following:

Observation 1 If P = (EP , λP) is a solution for I ′, then λP assigns the root
r of T to group Grest.

Proof. Since P cuts at most k′ edges, at least one substar of a copy of the star
Sfix must be connected to r in T − EP . Since the number of vertices in Sfix is
ck

k−1 + k′ + 1, the substar of Sfix that is connected to r must have size greater
that ck

k−1, where ck
k−1 is the size of the largest group other than Grest. Therefore,

this substar, and hence r, must be assigned to group Grest by λP . ut

Lemma 6. For each j ∈ [k], P cuts exactly one edge between the root r of T
and the root of a vertex-gadget corresponding to a vertex from class Cj in M .
Moreover, λP assigns this substar to group Gj.

Proof. Let j ∈ [k]. We first claim that one of the components in T −EP assigned
to group Gj by λP must be a substar of a vertex-gadget Svj

i
, for some i ∈ [n].

12

To prove the statement of the lemma, we show that the only way that the sizes
of the components placed in Gj could add up to cj is that if a substar of Svj

i
is

assigned to Gj by λP .
First, observe that no substar of Svq

i′
, i′ ∈ [n], q > j, could be placed in Gj

for the following reason. The star Svq

i′
has size cq − (k − 1)bq − (k − 1)xi′ . By

cutting at most k′ star-edges of Svq

i′
, the size of Svq

i′
can be reduced by at most

k′, and hence, the size of any substar of Svq

i′
assigned to group Gj is at least:

cq − (k − 1)bq − (k − 1)xi′ − k′ > cq − kbq − kxi′ − k′. Since xi′ ≤ n4 < b1 ≤ bq

and since k′ < b1 ≤ bq, the size of any substar of Svq

i′
assigned to group Gj is at

least cq − 3kbq > cq − k′bq > cj because j < q and cq − cj ≥ k′bq by the choice
of the c1, . . . , ck.

Second, observe that, by the same argument as above, no subtree of an edge-
gadget Te that contains the root re of Te can belong to Gj simply because such a
tree contains at least cq

p− k′ many vertices, and this number exceeds cj , for any
j, p, q ∈ [k], p < q by the choice of the numbers cj and cq

p. Similarly, no substar
of a copy of the star Sfix can be in Gj .

It follows from above that, if no substar of a vertex-gadget Svj
i
is in Gj , then

the largest number of vertices that can be placed in Gj is obtained by placing
k′ vertex-gadgets corresponding to vertices in group j − 1, which would result
in a number of vertices in Gj that is at most k′cj−1 < cj , by the choice of the
numbers c1, . . . , ck.

Therefore, a substar of Svj
i
must be assigned by λP to group Gj . Since by

Observation 1 the root r of T is assigned to Grest by λP , the edge rrvj
i
must be

cut by P . This completes the proof. ut

Lemma 7. For each j, q ∈ [k], j < q, P cuts exactly one edge rre, between the
root r of T and the root re of an edge-gadget Te corresponding to an edge between
a vertex in color class Cj and a vertex in color class Cq. Moreover, λP assigns
a substar of Se (in Te) to group Gq

j .

Proof. The proof follows similar arguments to that of Lemma 6, by analyzing
the components in T − EP assigned to group Gq

j .
First, observe that Gq

j must contain a subtree from some edge-gadget. This
is because the largest vertex-gadget has size smaller than ck, and ck < k′2c2

1,
where c2

1 is the smallest size of any group Gq
j , j, q ∈ [k], j < q. Therefore, cutting

k′ vertex-gadgets and placing them all in a group Gq
j cannot result in Gq

j having
size cq

j . Moreover, no substar of a copy of Sfix can be placed in Gq
j because

the size of Sfix is ck
k−1 + k′ + 1. Therefore, Gq

j must contain a subtree of an
edge-gadget.

Second, observe that if no substar of a star Se′ , contained in an edge gadget
Te′ , is placed in Gq

j , then the components placed in Gq
j consist only of substars

of vertex-gadgets and of substars of stars S′
vj′

i′
that are contained in edge-gadgets

(plus isolated vertices). Each substar of a vertex gadget has size at most ck and

13

each substar of a star S′
vj′

i′
has size at most bk + n4 < ck. Therefore, k′ such

substars have size at most k′ · ck < cq
j .

Third, Gq
j cannot contain a substar of a star Se′ , contained in an edge-gadget

Te′ , such that e′ has an endpoint vq′

j′ in a class Cq′ , where either q′ > q or q′ = q
and j′ > j. This is because such a substar, even after cutting k′ of its edges,
will have size at least cq′

j′ − k′ > k′2 · cq
j − k′ > cq

j , by the choice of the numbers
c2

1, . . . , c
k
k−1.

Finally, the substars of stars Se′ of edge-gadgets Te′ contained in Gq
j cannot

all correspond to edges e′ both of whose endpoints are in classes Cj′ , Cq′ where
j′ < q′ satisfy q′ < q or q′ = q and j′ < j. This is because k′ such substars will
have size at most k′ · cq′

j′ < cq
j , by the choice of c2

1, . . . , c
k
k−1.

It follows from above that Gq
j must contain a substar of a star Se such that

e = vj
i v

q
p, where vertex vj

i corresponds to a vertex from class Cj , and vertex vq
p

corresponds to a vertex from class Cq. Since by Observation 1 the root r of T is
assigned to Grest by λP , the edge rre must be cut by P . ut

Lemma 8. For each j, q ∈ [k], j < q, there is a solution P that such that λP

assigns group Gq
j a single component in T −EP , consisting of a (whole) star Se

in edge-gadget Te that corresponds to an edge e between a vertex in color class
Cj and a vertex in color class Cq.

Proof. By Lemma 7, we know that there is a solution P such that λP assigns
to each group Gq

j , j, q ∈ [k], j < q, a substar of a star Se contained in an edge-
gadget Te corresponding to an edge e = vj

i v
q
p, between a vertex vj

i ∈ Cj and a
vertex vq

p ∈ Cq. Choose a solution P that minimizes the number of edges it cuts
from the stars Se′ , contained in edge-gadgets Te′ , and placed in the groups Gq

j ,
j, q ∈ [k], j < q. We claim that P satisfies the statement of the lemma.

Suppose not, and let Gq
j , for some j, q ∈ [k], j < q, be a group that is assigned

a proper substar of Se, where e = vj
i v

q
p, i, p ∈ [n]. Then P must cut a star-edge

rew of Se. First, observe that Gq
j cannot contain a component K that is not

contained in some substar of a star Se′ (of an edge-gadget Te′) that is assigned
by λP to some group Gq′

j′ , for some j′, q′ ∈ [k], {j′, q′} 6= {j, q}. Otherwise, we can
modify P so that P does not cut the edge rew, and cuts instead an edge incident
to a leaf x in K, if K itself is not a leaf (otherwise, we do not cut anything), and
modify λP to swap w with u. By modifying P as such, we would obtain another
solution that cuts fewer edges from the stars Se’s, whose substars are assigned
to the groups, contradicting the choice of P . It follows from above that each
group Gq

j consists of a substar of Se, for some edge e = vj
i v

q
p, plus components

that are contained in stars Se′ of edge-gadgets Se′ , such that a substar of Se′

is assigned to some group Gq′

j′ , for some j′, q′ ∈ [k], {j′, q′} 6= {j, q}. Moreover,
no such component that is contained in a star Se′ can contain the root re′ of
Se′ . Otherwise, the size of that component would exceed k′, and hence, this
component, together with the substar of Se (whose size is at least cjq−k′ would
result in a total size that exceeds the size cq

j of group Gq
j . It follows that group

14

Gq
j consists of a proper substar of Se, plus isolated vertices, where each is a leaf

in some Se′ (of an edge-gadget Te′), such that a proper star of Se′ is assigned by
λP to some other group Gq′

j′ .
Now construct the following auxiliary graph, each of whose vertices corre-

sponds to a group Gq
j that contains a proper substar of some Se in an edge-gadget

Te, and in which there is a directed edge from Gq
j to Gq′

j′ if the proper substar of
Se assigned to Gq

j contains a leaf of a star Se′ such that a proper substar of Se′

is in Gq′

j′ . By the definition of the vertex-set of this auxiliary graph, and from
the above discussion, each vertex in this auxiliary graph must have out-degree
at least 1. Therefore, there must exist a cycle in this auxiliary graph. Such a cy-
cle, however, would clearly contradict the choice of P , as we can define another
solution that restores an edge from each of the proper substars contained in the
groups of this cycle, without affecting the size of each group in this cycle. ut

Corollary 1. There is a solution P that cuts exactly k′ = k+3
(

k
2
)
edges from T

as follows. For each j ∈ [k], P cuts exactly one edge between the root r of T and
the root of a vertex-gadget corresponding to a vertex in color class Cj; moreover,
λP assigns the resulting vertex-gadget to group Gj. For each j, q ∈ [k], j < q, P
cuts exactly 3 edges from one edge-gadget Te, corresponding to an edge e between
a vertex vj

i , i ∈ [n], in color classes Cj, and a vertex vq
p, p ∈ [n], in color class

Cq; those 3 edges are the edges rre, rer
′
vj

i

, and rer
′
vq

p
, where re is the root of star

Se in Te, and r′vj
i

, r′
vq

p
are the roots of stars S′

vj
i

, S′
vq

p
in Te, respectively; moreover,

λP assigns Se to group Gq
j .

Proof. By Lemma 6, any solution P satisfies that, for each j ∈ [k], P cuts exactly
one edge rrvj

i
between the root r of T and the root rvj

i
of a vertex-gadget Svj

i

corresponding to a vertex from class Cj in M , and λP assigns a substar of Svj
i

to group Gj . By Lemma 8, we can assume that, for each j, q ∈ [k], j < q, λP

assigns group Gq
j a single component consisting of a star Se of an edge-gadget

Te, corresponding to an edge e = vj
i v

q
p. Because the size of G

q
j is exactly the size

of Se, P must cut the 3 edges rre, rer
′
vj

i

, and rer
′
vq

p
to separate Se from the rest

of Te. Since |EP | is at most k′ = k+ 3
(

k
2
)
, it follows that the above edges are all

the edges of T that are cut by P , and hence, the substar of Svj
i
assigned by λP

to group Gj , is indeed the whole star Svj
i
. ut

We are now ready to prove the converse of Lemma 5:

Lemma 9. If I ′ is a yes-instance of Tree Partitioning then (M,f) is a yes-
instance of k-MCC.

Proof. By Corollary 1, we can assume that I ′ has a solution P = (EP , λP)
that cuts k + 3

(
k
2
)
edges, and that satisfies the properties in the corollary. Let

rrv1
i1
, . . . , rrvk

ik

, i1, . . . , ik ∈ [n], be the edges between the root r of T and the
roots of the vertex-gadgets Sv1

i1
, . . . , Svk

i1
that P cuts. We claim that the set of

15

vertices Q = {v1
i1
, . . . , vk

ik
} induce a multi-colored clique in M . To show that, it

suffices to show that each of the
(

k
2
)
edges rre cut by P , between r and the root

of an edge-gadget Te, where e = vj
i v

q
p, i, p ∈ [n], p, q ∈ [k], p < q, satisfies that

vj
i , v

q
p ∈ Q.
Consider an arbitrary group Gj , j ∈ [k]. The size of Gj is cj , and by Corol-

lary 1, λP assigns the star Svj
ij

of size cj− (k−1)bj− (k−1)xij to Gj . Each star
Se is assigned to some group Gq

p whose size is exactly |Se|. Therefore, each group
Gj contains a vertex-gadget and some of the stars S′

vj′
i′
, i′ ∈ [n], j′ ∈ [k]. Observe

that group Gj , j < k, cannot contain a star S′
vj′

i′
such that j′ > j because the

size of such a star is at least bj′ > k′2bj , and hence the size of such a star plus
the size of Svj

ij

would exceed the size of Gj . Since there are exactly k − 1 stars,
of the form S′vk

∗
contained in edge-gadgets corresponding to edges incident to

class Ck, it follows that all these stars must be assigned by λP to group Gk.
Moreover, no other star S′

vj
∗
, j < k, can be assigned to Gk, as the size of such a

star would be at least b1 > (k − 1)xi for any i ∈ [n]; hence, Gk would contain
vertex gadget Svk

ik

of size ck− (k−1)bk− (k−1)xik
, plus k−1 stars S′vk

∗
of total

size greater than (k − 1)bk, plus a star of size at least b1 > (k − 1)xik
, and the

size of Gk would exceed ck.
Similarly, all the k − 1 stars of the form S′

vk−1
∗

contained in edge-gadgets
corresponding to edges incident to class Ck−1 are assigned to group Gk−1, and
following this argument, we obtain that for each j ∈ [k], the (k − 1) stars of
the form S′

vj
∗
must be assigned to group Gj . We claim that all these stars must

correspond to the same vertex vj
ij
. Observe that this will prove that Q is a clique,

since it will imply that each vertex in Q is incident to exactly k − 1 of the
(

k
2
)

many edges between the color classes.
Let S′

vj

i′1

, . . . , S′
vj

i′
k−1

be the k − 1 stars placed in Gj . The sizes of these stars

are bj + xi′1
, . . . , bj + xi′

k−1
, respectively. The size cj of Gj is equal to the sum of

the sizes of these k − 1 stars, plus that of Svj
ij

. Therefore: cj = cj − (k − 1)b −
(k−1)xij +(k−1)b+xi′1

+ · · ·+xi′
k−1

, and hence, (k−1) ·xij = xi′1
+ · · ·+xi′

k−1
.

Since the set X is (k− 1)-non-averaging, it follows that xij
= xi′1

= · · · = xi′
k−1

,
and hence, the (k − 1) stars S′

vj
∗
must correspond to vertex vj

ij
. ut

Theorem 2. Tree Partitioning is W [1]-complete.

Proof. TheW [1]-hardness result follows from Lemma 10, Lemma 5 and Lemma 9.
To prove membership inW [1], we use the characterization of the classW [1] given
by Chen et al. [6]:

A parameterized problemQ is inW [1] if and only if there is a computable
function h and a nondeterministic FPT algorithm P for a nondeterministic-
RAM machine deciding Q, such that, for each instance (x, k) of Q (k is

16

the parameter), all nondeterministic steps of P take place during the last
h(k) steps of the computation.

Therefore, to show that Tree Partitioning is inW [1], it suffices to exhibit
such a nondeterministic FPT algorithm P.

Given an instance I = (T, k, b, s1, . . . , sb) of Tree Partitioning, where T
is assumed to be rooted at an arbitrary vertex r ∈ T , the algorithm P starts by
performing a pre-processing phase. This phase consists of performing a depth-
first search on T to compute (and store) descendancy information that allows
us to answer, for any two vertices u, v ∈ T , whether or not u is a descendant
of v in T . (For instance, for each vertex w ∈ V (T), we can compute a pair of
time stamps (d(w), f(w)), where d(w) is the discovery time of w, and f(w) is
the finishing time for w, during the depth first search process. It is well known
that, for any two vertices u, v ∈ V (T), u is a descendant of v in T if and only
if d(v) < d(u) < f(u) < f(v); for instance, see [7].) Moreover, during this pre-
processing phase, we compute (and store), for each vertex v, the number of
vertices in the subtree Tv of T rooted at v.

After the above pre-processing phase is complete, P (nondeterministically)
guesses a set E′ of k edges e1, . . . , ek from T to be cut; let ei = viui, for i ∈ [k],
where vi is the parent of ui. Next, P determines the number of vertices in each
of the k+1 components in T −E′ as follows. Using the descendancy information
computed in the pre-processing phase, and noting that the descendancy relation
is a partial order relation on the vertices of T , P constructs a Hasse diagram
for this relation (excluding transitive relationships in the representation) whose
vertices are r, plus the k vertices ui, for i ∈ [k] (i.e., a Hasse diagram for the
descendancy relation restricted to these vertices). The size of the components in
T −E′ can now be computed by going over the Hasse diagram bottom-up, and
for each vertex u in the Hasse diagram, computing the size of the component
containing u by subtracting from the number of vertices in Tu (computed and
stored during the pre-processing phase) the number of vertices in each of the
subtrees of T rooted at the children of u in the Hasse diagram. Finally, after
computing the size of each component in T −E′, P tries each of the FPT -many
possible assignments of these components to the groups, or nondeterministically
guesses such an assignment (note that the number of groups is at most k+1), and
accepts if and only if one of these assignments results in groups of sizes s1, . . . , sb.
Clearly, all the computation done by P after the pre-processing phase, including
the nondeterministic steps, are upper bounded by h(k), where h is a computable
function, and hence, P meets the required conditions in the characterization of
W [1] stated above. ut

Next, we show that Tree Partitioning and Balanced Tree Parti-
tioning are equivalent modulo FPT -reducibility. It is clear that Balanced
Tree Partitioning �fpt Tree Partitioning via an FPT -reduction that
maps an instance (T, k, b) of Balanced Tree Partitioning to the instance
(T, k, b, s1 = s2 = · · · = sb = |V (T)|/b). The following lemma proves the con-
verse:

17

Lemma 10. Tree Partitioning �fpt Balanced Tree Partitioning.

Proof. Let I = (T, k, b, s1, . . . , sb) be an instance of Tree Partitioning, let
n = |T |, and note that s1 + · · ·+ sb = n (otherwise the instance is a no-instance,
and we can map it in constant time to a trivial no-instance of Balanced Tree
Partitioning). Note also that since removing at most k edges from a tree
results in at most k + 1 components, we can assume, without loss of generality,
that b ≤ k + 1.

For each i ∈ [b], we define xi = 5n− si, and we create a star Si with root ri

and xi−1 leaves. Let T ′ be the tree obtained from T by rooting T at any vertex
r, and adding an edge between each root ri of a star Si and r, for i ∈ [b]. We
map the instance I of Tree Partitioning to the instance I ′ = (T ′, k+b−1, b).
Since b ≤ k + 1, this reduction is clearly an FPT -reduction. Next, we prove its
correctness.

One direction is easy: suppose that I is a yes-instance of Tree Parti-
tioning and we show that I ′ is a yes-instance of Balanced Tree Parti-
tioning. Since I is a yes-instance of Tree Partitioning, there is a solution
P = (EP , λP) to I, where λP assigns the components in T−EP , where |EP | ≤ k,
to b groups G1, . . . , Gb, such that the size of Gi is si. Let Gj , where j ∈ [b], be
the group that contains the root r of T . We define the solution P ′ = (E′P , λ′P) to
I ′ as follows. E′P consists of the set of edges EP plus each of the b− 1 edges rri,
where i 6= j. The assignment λ′P is defined as follows. The assignment agrees
with λP on mapping all components, with the difference that the component
that contains r, though placed in the same group by λ′P as by λP , now contains
the additional subtree Sj + rjr of T ′. For the other stars, λ′P maps each star
Si, i 6= j, to group Gi. Since group Gi has size si in I, group Gi in I ′ has size
si + |Si| = si + xi = 5n, for i ∈ [b].

To prove the converse, suppose that I ′ is a yes-instance of Balanced Tree
Partitioning, and let P ′ = (E′P , λ′P) be a solution to I ′. Note that, by con-
structions, |T ′| = 5b · n, and hence each of the b groups is assigned exactly 5n
vertices by λ′P . We first prove that P ′ cuts at least b− 1 of the edges rri, i ∈ [b].
Suppose not, then two substars Si and Sj remain connected in T ′ − E′P , and
since the number of edges cut by P ′ is at most k+b−1 ≤ n+n+1−1 = 2n, the
total size of the two substars is at least xi + xj − 2n = 10n− si − sj − 2n > 5n
(since each of sj , sj ≤ n). Since the two substars will be placed in the same group
whose size is exactly 5n, this is a contradiction. It follows from above that at
least b−1 of the edges rri are cut by P ′, and by the same arguments made above,
each substar resulting from an Si, i ∈ [b], after removing the edges of E′P (i.e.,
Si−E′P) must be placed in a distinct group from any other substar Sj , i 6= j. Let
EP = E′P \{rri | i ∈ [b]}. It follows from above that |EP | ≤ b+k−1−(b−1) ≤ k.

Next, we prove that we can assume that P ′ cuts no star-edge from any Si,
for i ∈ [b]. Note that proving the aforementioned statement completes the proof
since it will imply that each group Gi containing Si must contain components in
T −EP of total size 5n− xi = si, and those components must constitute all the
components of T −EP ; this will show that I has a solution EP that cuts at most
k edges. Suppose that a group Gi, for i ∈ [b], contains a (proper) component

18

of Sj , for some j 6= i. Since a substar of Sj is in Gj , it follows that the proper
part of Sj contained in Gi consists of leaves from Sj , whose edges were cut by
P ′. We claim that there must exist a group Gq, q ∈ [b], containing a substar Sq

such that P ′ cuts at least one edge from star Sq, and such that Gq contains a
component of T − EP . If this is not the case, then each component of T − EP

must appear with a complete star Si, i ∈ [b]. Since the sum of the sizes of all
components of T −EP is |T | = n, each Si has size 5n− si, and no two substars
appear in the same group, it follows that no edge from any Si is cut, which is a
contradiction to our assumption that P ′ cuts star-edges.

Now let Gq be a group containing a substar Sq and a component C from
T −EP . We modify P ′ as follows. Since T is a tree, C must contain a leaf u; let
π(u) be the parent (if |C| 6= 1) of u in C. We modify E′P by removing an edge,
say wrq that it cuts from Sq, and adding to E′P the edge uπ(u) if π(u) exists,
thus cutting the edge uπ(u) in P ′. We then modify λ′P by placing u in the group
that contained w (note that w is now attached to Sq in the modified solution).
This results in anther solution of I ′ that cuts no more than the number of edges
in EP . Repeating this argument, we end up with a solution to I ′ that does not
cut any edge from any star Si, for i ∈ [b]. The above argument shows that it can
be assumed that P ′ cuts no star-edge from any Si, for i ∈ [b], and completes the
proof. ut

Corollary 2. Balanced Tree Partitioning is W [1]-complete.

Proof. The W [1]-hardness follows from the W [1]-hardness of Tree Partition-
ing proved in Theorem 2 and Lemma 10. Membership in W [1] follows from that
of Tree Partitioning, proved in Theorem 2, and the fact that Balanced
Tree Partitioning is a restriction of Tree Partitioning, as observed above.

ut

5 Subexponential-time Algorithms for Tree
Partitioning and Balanced Tree Partitioning

Let n ∈ Z+. A partition of n is a collection X of positive integers such that∑
x∈X x = n. Let p(n) denote the total number of (distinct) partitions of n.

It is well known that p(n) = 2O(
√

n) [18]. It follows that the total number of
partitions of all integers n′, where 0 < n′ ≤ n, is

∑
0<n′≤n p(n′) = 2O(

√
n).

Let L be a list of numbers in N that are not necessarily distinct. (Note that
a list may contain zeros.)We denote by L(i) the ith number in L, and by Li the
sublist of L consisting of the first i numbers. The length of L, denoted |L|, is the
number of elements in L.

Let (T, k, b, s1, . . . , sb) be an instance of Tree Partitioning. Let n = |T |.
Consider a partial assignment of n′ ≤ n vertices of T to the b groups, with the
possibility of some groups being empty. Since the groups are indistinguishable,
such an assignment corresponds to a partition of the n′ vertices into at most b
parts, and can be represented by a sorted list L of b numbers in N whose sum

19

is n′, where L(i) ≤ n′ for i ∈ [b], is the number of vertices assigned to group
i; we call such a representation of the groups, under a partial assignment, a
size representation, denoted as σ-representation. Note that the zeroes in a σ-
representation appear at the beginning. Since each σ-representation corresponds
uniquely to a partition of a number n′ ≤ n prefixed by less than b ≤ n zeroes, it
follows that the total number of σ-representations is n · 2O(

√
n) = 2O(

√
n).

Let X,Y, Z be three lists of the same length. We write X = Y ♦Z if there is
a list Y ′ obtained via a permutation of the numbers in Y , and a list Z ′ obtained
via a permutation of the numbers in Z, such that X(i) = Y ′(i)+Z ′(i), for every
i ∈ [|X|]; that is, in the context when the lists are σ-representations, X = Y ♦Z
if each group-size in X can be obtained, in a one-to-one fashion, by adding a
group-size in Y to a group-size in Z (including group-sizes zero).

Let n ∈ N, and let X,Y, Z be three σ-representations. We wish to decide if
X = Y ♦Z. To do so, we apply the subroutine Check-Realizability(X,Y, Z)
described in the next section.

5.1 The Subroutine Check-Realizability

The subroutine Check-Realizability(X,Y, Z), for σ-representations X,Y, Z,
uses dynamic programming. It constructs a table Λ, where for each i ∈ [b], and
each pair of σ-representations V , W , we have an entry Λ(Xi, Vi,Wi), where
Λ(Xi, Vi,Wi) is true if and only if Xi = Vi♦Wi; if Λ(Xi, Vi,Wi) is true,
we also store a witness to the decomposition of Xi into Vi and Wi that we
compute during the dynamic programming process. To construct Λ, we iterate
over all values i = 1, . . . , b. For each value i, we iterate through all pairs of σ-
representations V,W . It is clear how to populate the table for i = 1, and each
pair of σ-representations V,W , as in this case Λ(X1, V1,W1) is true if and only
if X1(1) = V1(1) + W1(1). Suppose, inductively, that we have populated the
table Λ, for every 1 ≤ j < i, and every pair of σ-representations V and W .
To populate the entry Λ(Xi, Vi,Wi), for a fixed pair of σ-representations V and
W , enumerated from among all possible pairs of σ-representations, we do the
following. We iterate through every pair of integers j, k satisfying 1 ≤ j, k ≤ i.
If for a pair j, k we have (1) Xi(i) = Vi(j) +Wi(k) and (2) Λ(X ′i−1, V

′
i−1,W

′
i−1)

is true, where X ′i−1 is the list obtained by removing Xi(i) from Xi, and V ′i−1
and W ′i−1 are the lists obtained by removing Vi(j) and Wi(k) from Vi and Wi

(without changing the respective sorted order of the remaining elements in Vi

and Wi), respectively, then we set Λ(Xi, Vi,Wi) to true; otherwise, if no such
pair of numbers j, k exists, we set Λ(Xi, Vi,Wi) to false.

Proposition 1. Let X,Y, Z be three σ-representations. The subroutine Check-
Realizability(X,Y, Z) determines if X = Y ♦Z in time 2O(

√
n).

Proof. The correctness of Check-Realizability(X,Y, Z) follows by a straight-
forward induction on |X|. To analyze its running time, observe that in Check-
Realizability(X,Y, Z), we iterate b ≤ n times. In iteration i, i ∈ [b], we enu-
merate every pair of σ-representations V,W , and for each pair V,W , we iterate

20

through every pair of integers j, k satisfying 1 ≤ j, k ≤ i. The total number
of pairs of σ-representations is 2O(

√
n) · 2O(

√
n) = 2O(

√
n), and the total num-

ber of pairs of integers j, k satisfying 1 ≤ j, k ≤ i is O(n2). For a fixed pair of
σ-representations V,W , and a fixed pair of integers i, j, all the operations per-
formed in the dynamic programming process can be implemented in nO(1) time.
The running time of Check-Realizability(X,Y, Z) is thus upper bounded by
2O(
√

n) · nO(1) = 2O(
√

n). ut

5.2 The Exact Algorithm

In this section, we present a subexponential-time algorithm for Tree Parti-
tioning, and hence for Balanced Tree Partitioning, that runs in 2O(

√
n)

time, where n = |V (T)|. Let (T, k, b, s1, . . . , sb) be an instance of Tree Par-
titioning. The key observation that leads to a subexponential-time algorithm
is that the b groups are indistinguishable. Therefore, all assignments of the n
vertices in T to the b groups can be compactly represented by lists of numbers,
where each list corresponds to a partition of n into b parts. This simple, yet
crucial, observation allows for a “compact representation” of all solutions using
a solution space of size 2O(

√
n). Intuitively speaking, this solution space consists

of solutions corresponding to all possible partitions of n, whose number is p(n).
We start by giving an intuitive description of the algorithm, then proceed to the
details.

Suppose that T is rooted at an arbitrary vertex r. The algorithm uses dy-
namic programming, starting from the leaves of T , and climbing T up to its root
r. At each vertex v in T , we construct a table Γv that contains the following
information. For each σ-representation X, for each k′ = 0, . . . , n, and for each
s ∈ [n], Γv(k′, X, s) is true if and only if there is a cut C of k′ edges in Tv (the
subtree of T rooted at v) such that the component Pv containing v in Tv−C has
size s , and such that there is an assignment to the components in Tv −C − Pv

to the b groups whose σ-representation is X; otherwise, Γv(k′, X, s) is false. If
Γv(k′, X, s) is true, we store a witness that realizes such a partial solution(i.e.,
we store a set C of k′ edges in Tv such that the component Pv containing v in
Tv−C has size s, and we store an assignment to the components in Tv−C−Pv

to the b groups whose σ-representation is X). To compute Γv, we consider the
children of v one by one. After a child ui of v is considered, we have computed
a partial table Γi containing partial solutions up to child ui; this is done by
considering the two possibilities of whether or not the edge vui is in the cut C.
Although the above may seem like we are enumerating all possibilities for the
edges between v and its children to be cut or not, the crucial ingredient for this
approach to achieve the desired running time is that the table Γv—at vertex
v—can be computed based on the tables corresponding to the children of v in
2O(
√

n) time. This analysis works similarly to iterative compression, as the table
Γi , computed after child ui has been considered,is a compressed table, storing
2O(
√

n) many entries, regardless of the status of the edges between v and its
children considered so far. We proceed to the details.

21

Recall that, for each vertex v ∈ T , for each k′ = 0, . . . , n, for each s ∈ [n],
and for each σ-representation X, Γv(k′, X, s) is true if and only if there is a
cut C of k′ edges in Tv, and an assignment to the components in Tv − C − Pv,
with s being the size of the component Pv containing v in Tv−C (note that this
component, so far, is still attached to the rest of the tree above v), that realizes
the σ-representation X. The dynamic programming algorithm proceeds in a
bottom-up fashion, from the leaves of T to its root r. Suppose that the algorithm
is at vertex v whose children are u1, . . . , ud, and that the tables Γu1 , . . . , Γud

associated with u1, . . . , ud, respectively, have been constructed. To compute Γv,
we iterate through the edges vu1, . . . , vud. Let Tp, for p = 1, . . . , d, be the subtree
of T rooted at v that is induced by the vertex-set (

⋃p
j=1 V (Tuj

))∪{v}. Consider
edge vui, and assume inductively, that a table Γi−1 has been computed (based
on tables Γu1 , . . . , Γui−1) that contains the following information. For each k′ =
0, . . . , n, for each s ∈ [n], and for each σ-representation X, Γi−1(k′, X, s) is
true if and only if there is a cut C of k′ edges in Ti−1, with s being the size of
the component Pv containing v in Ti−1−C, and an assignment to the components
in Ti−1−C−Pv that realizes X; if Γi−1(k′, X, s) is true, we also store a witness
to the partial solution. After considering vui, we will compute a table Γi such
that, for each k′ = 0, . . . , n, for each s ∈ [n], and for each σ-representation X,
Γi(k′, X, s) is true if and only if there is a cut C of k′ edges in Ti, with s being
the size of the component Pv containing v in Ti − C, and an assignment to the
components in Ti −C −Pv that realizes X; if Γi(k′, X, s) is true, we also store
a witness to the partial solution. We explain how the Boolean value Γi(k′, X, s)
is computed, and omit how the witness can be stored, as this is straightforward.
After we are done computing Γd, we set Γv = Γd.

To compute Γi, we compute two tables Γ−i and Γ+
i , and set Γi = Γ−i ∪ Γ

−
i .

Table Γ−i contains the solutions that can be obtained by cutting edge uvi, and
Γ+

i contains those that can be obtained by not cutting edge vui. We explain
next how each of Γ−i and Γ+

i is computed.
1. To compute Γ−i , we enumerate each possible triplet (k′, X, s), where k′ =
0, . . . , n, s ∈ [n], andX is a σ-representation. Fix such a triplet (k′, X, s). To com-
pute Γ−i (k′, X, s), we iterate through every entry in Γui

containing (kui
, Y, sui

)
and every entry of Γi−1 containing (ki−1, Z, si−1) such that k′ = kui + ki−1 + 1
(because 1 more cut is introduced, corresponding to the edge vui), and s = si−1
because the component Pui

containing ui of size sui
becomes a separate compo-

nent after vui is cut. Since Pui
becomes a separate component, it will be placed

into one of the groups, and hence, it contributes its size to one of the numbers
in the σ-representation X. We enumerate each number in X as the number that
Pui contributes to. For each number j in X satisfying j ≥ |Pui |, we subtract
|Pui
| from j in X to obtain a new σ-representation X ′ from X, and then call

Check-Realizability(X ′, Y, Z); Γ−i (k′, X, s) is true iff for some number j in
X, Check-Realizability(X ′, Y, Z) returns true.
2. To compute Γ+

i , we enumerate each triplet (k′, X, s), where k′ = 0, . . . , n,
s ∈ [n], and X is a σ-representation. Fix such a triplet (k′, X, s). To compute
Γ+

i (k′, X, s), we iterate through every entry in Γui containing (kui , Y, sui), and

22

every entry in Γi−1 containing (ki−1, Z, si−1), such that k′ = kui
+ki−1, and s =

sui
+si−1 (because sui

is attached to v). We call Check-Realizability(X,Y, Z),
and set Γ+

i (k′, X, s) to true iff Check-Realizability(X,Y, Z) returns true.

When the table Γr, at the root r of T , has been computed, we iterate through
the entries in Γr to determine if for the desired value of k (or the minimum value
of k in case we are interested in solving the optimization version of the problem),
an entry Γr(k,X, s) is true, such that one of the sorted lists Y1, . . . , Yb, is
[s1, . . . , sb], where Yi, i ∈ [b], is the list obtained by adding s to X(i) and sorting
the resulting list (assuming, without loss of generality that s1 ≤ s2 · · · ≤ sb),
and return a witness to the solution (if the solution exists); otherwise, we return
false. Note that Balanced Tree Partitioning is the restriction to Tree
Partitioning to instances in which s1 = · · · = sb = |V (T)|/b, and hence can
be solved by the same algorithm.
Theorem 3. The dynamic programming algorithm described above solves Tree
Partitioning and Balanced Tree Partitioning in time 2O(

√
n).

Proof. The correctness of the algorithm follows by an inductive proof showing
that the invariant properties about the tables Γi, obtained during the computa-
tion at vertex v ∈ T , hold true, assuming that they hold true for table Γi−1 and
the tables at the children of v.

To analyze the running time of the algorithm, it suffices to show that the
computation of Γv, at any vertex v ∈ T , takes 2O(

√
n) time, as then the overall

running time of the algorithm is upper bounded by nO(1) · 2O(
√

n) = 2O(
√

n).
To compute Γv, at a vertex v ∈ T with d children u1, . . . , ud, the algorithm
iterates through each child ui of v, and computes the table Γi from the two
tables Γi−1 and Γui , the size of each is 2O(

√
n). To compute Γi, the algorithm

computes two tables Γ−i and Γ+
i , by distinguishing whether or not edge vui is

cut or not, and takes their union. The computation of each of these two tables
is done by enumerating all triplets (k′, X, s), where k′ = 0, . . . , n, X is a σ-
representation, and s ∈ [n]. Since the number of σ-representations is 2O(

√
n),

the total number of these triplets is O(n2) · 2O(
√

n) = 2O(
√

n). For each triplet
(k′, X, s), to compute Γ−i (k′, X, s) (resp. Γ+

i (k′, X, s)), the algorithm enumerates
all entries in each of Γi−1 and Γui ; there are 2O(

√
n) · 2O(

√
n) = 2O(

√
n) many

entries. The algorithm then performs some polynomial-time computation and
calls Check-Realizability(), which runs in time 2O(

√
n). Therefore, computing

each of the two tables Γ−i and Γ+1
i , and hence the table Γi, takes time nO(1) ·

2O(
√

n) = 2O(
√

n). It follows that computing Γv takes time d · 2O(
√

n) = 2O(
√

n).
Note that a crucial property to obtain this running time is that the size of each
table Γv, for v ∈ T , remains 2O(

√
n), because the number of σ-representations,

and hence triplets (k,X, s), is 2O(
√

n). ut

Bibliography

[1] K. Andreev and H. Räcke. Balanced graph partitioning. Theory of Com-
puting Systems, 39(6):929–939, 2006.

23

[2] P. Arbenz, G. van Lenthe, U. Mennel, R. Müller, and M. Sala. Multi-level
µ-finite element analysis for human bone structures. In PARA 2006, pages
240–250, 2006.

[3] S. Bhatt and F. Leighton. A framework for solving VLSI graph layout
problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.

[4] Á. Boscznay. On the lower estimation of non-averaging sets. Acta Mathe-
matica Hungariga, 53(1-1):155–157, 1989.

[5] J. Chen, I. Kanj, L. Perkovic, E. Sedgwick, and G. Xia. Genus characterizes
the complexity of certain graph problems: Some tight results. Journal of
Computer and System Sciences, 73(6):892–907, 2007.

[6] Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized
complexity theory. Theoretical Computer Science, 339(2-3):167–199, 2005.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 3rd edition, 2009.

[8] D. Delling, A. Goldberg, T. Pajor, and R. Werneck. Customizable route
planning. In SEA 2011, pages 376–387, 2011.

[9] E. Demaine, F. Fomin, M. Hajiaghayi, and D. Thilikos. Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs.
J. ACM, 52:866–893, 2005.

[10] R. Downey and M. Fellows. Fundamentals of Parameterized Complexity.
Springer, New York, 2013.

[11] A. Feldmann. Balanced partitions of grids and related graphs, 2012. Ph.D.
thesis, ETH, Zurich, Switzerland.

[12] A. Feldmann and L. Foschini. Balanced partitions of trees and applications.
Algorithmica, 71(2):354–376, 2015.

[13] A. Feldmann and P. Widmayer. An O(n4) time algorithm to compute the
bisection width of solid grid graphs. Algorithmica, 71(1):181–200, 2015.

[14] M. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the parameter-
ized complexity of multiple-interval graph problems. Theoretical Computer
Science, 410(1):53–61, 2009.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin,
2010.

[16] F. Fomin, S. Kolay, D. Lokshtanov, F. Panolan, and S. Saurabh. Subexpo-
nential algorithms for rectilinear steiner tree and arborescence problems. In
SoCG 2016, pages 39:1–39:15, 2016.

[17] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[18] G. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis.
Proceedings of the London Mathematical Society, 17(2):75–115, 1918.

[19] K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with
fixed number of bins revisited. Journal of Computer and System Sciences,
79(1):39–49, 2013.

[20] P. Klein and D. Marx. A subexponential parameterized algorithm for subset
TSP on planar graphs. In SODA 2014, pages 1812–1830, 2014.

[21] R. MacGregor. On partitioning a graph: a theoretical and empirical study,
1978. Ph.D. thesis, University of California at Berkeley, California, USA.

24

[22] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, USA, 2006.

[23] H. Räcke and R. Stotz. Improved approximation algorithms for balanced
partitioning problems. In STACS 2016, pages 58:1–58:14, 2016.

[24] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[25] R. van Bevern, A. Feldmann, M. Sorge, and O. Suchý. On the parame-
terized complexity of computing balanced partitions in graphs. Theory of
Computing Systems, 57(1):1–35, 2015.

[26] Z. Wu and R. Leahy. An optimal graph theoretic approach to data cluster-
ing: Theory and its application to image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(11):1101–1113, 1993.

25

	The Complexity of Tree Partitioning

