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Abstract

The stable matching problem is one of the central problems of algorith-

mic game theory. If participants are allowed to have ties, the problem of

finding a stable matching of maximum cardinality is an NP-hard prob-

lem, even when the ties are of size two. Moreover, in this setting it is

UGC-hard to provide an approximation with a constant factor smaller

than 4/3. In this paper, we give a tight analysis of an approximation

algorithm given by Huang and Kavitha for the maximum cardinality sta-

ble matching problem with ties of size two, demonstrating an improved

4/3-approximation factor.

1 Introduction

The stable matching problem is of crucial importance for the game theory. In
an instance of a maximum cardinality stable matching problem we are given
a bipartite graph G = (A ∪ B,E) with bipartition A and B. Following the
standard terminology, we refer to A as men and B as women. For a ∈ A, we
define N(a) to be the subset of nodes in B adjacent to a in G; analogously we
define N(b) for b ∈ B.

Each person c ∈ A ∪ B has strict preferences over N(c). A matching M
is called a stable matching if there are no a ∈ A and b ∈ B such that a is
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either unmatched or prefers b to the woman he is matched to by M and b is
either unmatched or prefers a to the man she is matched to by M . Clearly, if a
matching M is not stable, then it contains a pair (a, b), a ∈ A, b ∈ B satisfying
the above conditions; such a pair (a, b) is called a blocking pair for M .

In their seminal work, Gale and Shapley developed a polynomial running
time algorithm to find a stable matching [2]. Moreover, since all stable match-
ings have the same cardinality [3], the algorithm of Gale and Shapley finds a
maximum cardinality stable matching in polynomial running time. The situa-
tion changes when the people are allowed to have ties. In the case of ties, stable
matchings for the same instance of a problem can have different cardinalities.
Moreover, it is NP-hard to find a maximum cardinality stable matching even
when there are ties of size two only [10]. In this case, it is NP-hard to ap-
proximate the maximum cardinality of a stable matching with a constant factor
smaller than 21/19 and UGC (Unique Game Conjecture)-hard to approximate
with a constant factor smaller than 4/3 [13]. We would like to say that the
maximum cardinality stable matching problem with ties appears in diverse sit-
uations and thus approximation algorithms for different variants of this problem
were extensively studied [1, 4, 5, 6, 7, 8, 9, 11, 12].

To the best of our knowledge, the algorithm with a currently best approxi-
mation factor for the maximum cardinality stable matching problem with ties
of size two is due to Huang and Kavitha [4]. In their paper, Huang and Kavitha
provided an approximation algorithm for this problem and showed that the
approximation factor of their algorithm is at most 10/7.

Our Contribution

In this paper, we give a tight analysis of the approximation algorithm given by
Huang and Kavitha [4] for the maximum cardinality stable matching problem
with ties of size two, demonstrating an improved 4/3-approximation bound.
Notably, any polynomial running time algorithm with a smaller approximation
factor than 4/3 would automatically lead to refutation of the Unique Game
Conjecture [13].

To obtain our result we use a new charging scheme. In contrast to the
charging scheme in [4], our charging scheme is “local”. In particular, the charg-
ing scheme in [4] creates charges from paths and distributes the charges along
paths (using so called “good paths”), distributing the charges “globally”. The
charging scheme in [4] for the algorithm for the problem with ties of size two
closely follows the original charging scheme in [4] for the algorithm for the prob-
lem with one-sided ties. Recently, the charging scheme for the problem with
one-sided ties was substantially modified by Bauckholt, Pashkovich and Sanità
in [1], where the modified charging scheme still has a “global” nature and dis-
tributes the charges along paths but in a more nuanced way (using so called
“path jumps”, “matching jumps” and “matching jumps with exception”) than
the original charging scheme in [4]. However, it is not clear whether the original
charging scheme in [4] or new ideas coming from the modified charging scheme
in [1] could lead to a better analysis of the algorithm for the problem with ties
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of size two. Our charging scheme is different from the two charging schemes
above, in particular it is local and therefore it is much simpler to work with. To
implement our charging scheme, we need to know only the local structure of the
output matching, local structure of an optimal matching, and local structure
of accepted proposals at the end of the algorithm. To sum up, in our charging
scheme nodes get charges only from the proposals involving them, while in the
charging schemes in [1] and [4] the charges come from paths and are distributed
to nodes along paths. A detailed comparison of our approach with approaches
from [1] and [4] can be found in Appendix.

2 Algorithm by Huang and Kavitha

First, let us describe the algorithm by Huang and Kavitha [4]. The description
of the algorithm closely follows the description of the algorithm by Huang and
Kavitha [4] for the maximum cardinality stable matching problem with one-
sided ties from [1].

A stable matching is computed in two phases. In the first phase, which is
the proposal phase, men (in arbitrary order) make proposals to women, while
women accept, bounce, forward, or reject proposals. In the second phase, we
consider a graph based on the proposals at the end of the first phase, which in
its turn leads to an output stable matching.

Before we describe the algorithm by Huang and Kavitha [4], let us introduce
the following notions related to preferences. Let a ∈ A and a′ ∈ A be on the
preference list of b ∈ B; i.e., a and a′ are in N(b). Then we can compare a
and a′ from the perspective of b. If a and a′ are tied on the list of b, we say b
is indifferent between them, denoted by a ≃b a′. Further, if b ranks a strictly
higher than a′ on her preference list, then we say that b (strongly) prefers a to
a′, denoted by a >b a

′; otherwise, we say that b weakly prefers a′ to a, denoted
by a′ ≥b a. In other words, if b weakly prefers a′ to a then b is either indifferent
between a and a′ or strongly prefers a′ to a. Analogously, we define indifference
b′ ≃a b, weak preference b′ ≥a b, and (strong) preference b′ >a b for men over
women.

Proposals

Each man a ∈ A has two proposals p1a and p2a. Initially, both p1a and p2a are
offered to the first woman on a’s list. At each moment of the algorithm every
man has one of the following three statuses : basic, 1-promoted, and 2-promoted.
Each man keeps a rejection history to record the women who have rejected him
in his current status.

If a proposal pia, i = 1, 2 is rejected by a woman b on a’s list, then the
proposal pia goes to a most preferred woman on a’s list who has not rejected a
in his current status. In the case when there is no woman on a’s list who has
not rejected a in his current status, the man a changes his status as described
below or stops making proposals. If the man a changes his status, his rejection

3



history is emptied and a starts making proposals again by proposing to a most
preferred woman on his list. Note that in the case where there are two most
preferred women on a’s list who have not rejected him in his current status, the
man a breaks the tie arbitrarily.

Each man a ∈ A starts as a basic man. If every woman in N(a) rejects
a proposal of a at least once, the man a becomes 1-promoted. If afterwards
every woman in N(a) again rejects a proposal of a as a 1-promoted man at least
once, the man a becomes 2-promoted. Finally, if every woman in N(a) rejects
a proposal of a as a 2-promoted man at least once, the man a stops making
proposals.

Proposals’ Acceptance

A woman b, who gets a proposal pia from a man a, always accepts it if at the
moment b holds at most one proposal excluding pia. Otherwise, b tries to make
a bounce step, and if the bounce step is not successful, b tries to make a forward
step.

• Bounce step: So the woman b at the moment holds two proposals, pi
′

a′ and

pi
′′

a′′ , and receives a third proposal pia. If for some α ∈ {a, a′, a′′} there
exists a woman β such that b ≃α β and at the moment β holds at most
one proposal, then a proposal from α to b is bounced to β and the bounce
step is called successful.

• Forward step: So the woman b at the moment holds two proposals, pi
′

a′

pi
′′

a′′ , and receives a proposal pia. If two of the proposals in {pia, p
i
′

a′ , pi
′′

a′′}
are from the same man α and there exists a woman β distinct from b such
that b ≃α β and β has not rejected α in his current status, then a proposal
p1α from α to b is forwarded to β and the forward step is called successful.

If b holds proposals pi
′

a′ and pi
′′

a′′ and receives a different proposal pia, but
both the bounce and forward steps are not successful, then b rejects any of the
least desirable proposals as defined below, breaking ties arbitrarily. Note that a
proposal of a man which is bounced or forwarded is not considered as rejected, so
there is no update of the rejection history for any of the men during the bounce
or forward steps.

For a woman b, proposal pia is superior to pi
′

a′ if one of the following is true

• b prefers a to a′.

• b is indifferent between a and a′; a is currently 2-promoted while a′ is not
2-promoted.

• b is indifferent between a and a′; a is currently 1-promoted while a′ is
basic.

A proposal pia is a least desirable proposal among a set of proposals that a woman
b has if it is not superior to any of the proposals from which the woman b selects
two proposals to keep.
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There is also a special case for the rejection step. Assume that b holds two
proposals pi

′

a′ , pi
′′

a′′ and receives a different proposal pia, where a ≃b a
′ ≃b a

′′ and
the promotion statuses of a, a′, and a′′ are the same. Clearly, since the ties are
of size 2, we have that two of the three proposals pia, p

i
′

a′ , and pi
′′

a′′ are from the
same man. In this special case, b rejects one of the proposals from this man.

The output matching

Let G′ be the bipartite graph with the node set A ∪ B and the edge set E′,
where E′ consists of the edges (a, b), a ∈ A, and b ∈ B such that at the end of
the algorithm b holds a proposal from a. Note for the sake of exposition that
we allow G′ to contain two parallel edges of the form (a, b), a ∈ A and b ∈ B,
when at the end of the algorithm b holds two proposals from a. Clearly, the
degree of a node in G′ is at most two, since each man has at most two proposals
and each woman is holding at most two proposals at any point in time. Let M
be a maximum cardinality matching in G′ where all degree two nodes of G′ are
matched. In [4], it was shown that the matching M is a stable matching in the
graph G.

Theorem 1 ([4]). The total number of proposals made during the algorithm
is O(|E|) and the output matching is a stable matching in G = (A ∪B,E).

3 Tight Analysis

Let OPT be a stable matching with the maximum cardinality, and let M be a
stable matching output by the algorithm. If b ∈ B is matched with a ∈ A in
OPT, we use the following notation: OPT(b) := a and OPT(a) := b. Similarly,
if b ∈ B is matched with a ∈ A in M , we use the notation M(b) := a and
M(a) := b. For the sake of exposition we also define M(a) := ∅, M(b) := ∅,
OPT(a) := ∅, and OPT(b) := ∅ when a is not matched by M , b is not matched
by M , a is not matched by OPT, and b is not matched by OPT, respectively.
Recall that for every a ∈ A and b ∈ N(a) we have b >a ∅. Similarly, for every
b ∈ B and a ∈ N(b) we have a >b ∅.

A woman b ∈ B is called successful if she holds two proposals at the end
of the algorithm, i.e., b is successful if the degree of b in G′ is two. Similarly,
a man a ∈ A is successful if both of his proposals are accepted at the end
of the algorithm, i.e., a is successful if the degree of a in G′ is two. We call
a person unsuccessful if that person is not successful. Further, if during the
algorithm a woman rejected a proposal, we call her popular ; otherwise, we call
her unpopular.

The next remark follows directly from the algorithm of Huang and Kavitha [4]
and helps to understand the bouncing step better.

Remark 1. Let a ∈ A and b, b′ ∈ B be such that at the end of the algorithm b
holds a proposal from a, b′ is unsuccessful, and b′ ≃a b. Then b is unpopular.

5



Proof. If at some point during the algorithm b rejected a proposal, then at that
point b had no proposal for a successful bouncing step. Thus, at any later time
point if b received a new proposal that could be successfully bounced, then
this new proposal would have been bounced. This contradicts the fact that at
the end of the algorithm b has a proposal from a, which can be successfully
bounced.

3.1 Inputs and Outputs

Inputs and outputs are central objects for our charging scheme, i.e. for defining
a cost of a node in G.

Given a woman b ∈ B, we say that an edge e incident to b in G′ is an input
to b if e is not in OPT and not in M . Given a man a ∈ A, an output from a is
an edge e incident to a in G′ such that e is not in OPT and not in M . In other
words, an edge (a, b) in G′ is an input to b ∈ B and an output from a ∈ A if
(a, b) is not in OPT+M , otherwise the edge (a, b) is neither input nor output.

Note that if in G′ there are two parallel edges e1 and e2 of the form (a, b),
then M must contain the edge (a, b). In this case, one of the parallel edges
{e1, e2} is associated with M , while the other is counted as an input and an
output unless OPT also contains (a, b), in which case it is associated with OPT.

An input (a, b) to b ∈ B is called a bad input if one of the following is true:

• b is popular and a >b OPT(b).

• b is popular and a ≃b OPT(b), but OPT(b) is unsuccessful.

An input (a, b) to b ∈ B is a good input to b if it is not a bad input. In other
words, an input (a, b) to b ∈ B is a good input if one of the following is true:

• b is unpopular.

• b is popular and OPT(b) >b a.

• b is popular and OPT(b) ≃b a, and OPT(b) is successful.

An output (a, b) from a man a is called a bad output if one of the following is
true:

• b >a OPT(a) and a is not 2-promoted.

• b ≃a OPT(a), but OPT(a) is unsuccessful.

A good output from a man a is an output (a, b) that is not a bad output. In
other words, an output (a, b) from a ∈ A is a good output if one of the following
is true:

• b >a OPT(a) and a is 2-promoted.

• b ≃a OPT(a) and OPT(a) is successful.

• b <a OPT(a).
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Lemma 1. There is no edge which is both a bad input and a bad output.

Proof. Assume that an edge (a, b), a ∈ A, b ∈ B is both a bad input to b and
a bad output from a. From the definitions of bad inputs and bad outputs, we
have that one of the following is true

i. a >b OPT(b); b >a OPT(a).

ii. a ≃b OPT(b) and OPT(b) is unsuccessful; b >a OPT(a) and a is not
2-promoted.

iii. b ≃a OPT(a) and OPT(a) is unsuccessful; b is popular.

In Case (i.), the edge (a, b) is a blocking pair for OPT, contradicting the
stability of OPT.

In Case (ii.), since OPT(b) is unsuccessful, OPT(b) is 2-promoted and was re-
jected by b in that status. On the other hand, a ≃b OPT(b), a is not 2-promoted,
and at the end of the algorithm b holds a proposal from a, contradicting the
fact that b rejected a proposal from OPT(b) when he was 2-promoted.

In Case (iii.), we have a contradiction to Remark 1 where b′ := OPT(a).

Corollary 1. The number of good inputs is not smaller than the number of bad
outputs.

Proof. Let us assume the contrary, i.e., let us assume that the number of bad
outputs is larger than the number of good inputs. Then there is an edge in G′

which is a bad input and is not a good output. In other words, there is an edge
which is both a bad input and a bad output, contradicting Lemma 1.

3.2 Cost, Effectiveness

For a man a ∈ A, we define his cost as follows:

cost(a) :=

{

deg(a) + 1 if a has a bad output

deg(a) otherwise
,

For a woman b ∈ B, we define her cost as follows

cost(b) :=

{

deg(b)− 1 if b has a good input

deg(b) otherwise
,

where deg denotes the degree of the corresponding node in G′. Note that if G′

has two parallel edges (a, b), then we have deg(a) = deg(b) = 2. For a node set
S ⊆ A∪B, we define the cost of S as the sum of costs of all the nodes in S, i.e.,

cost(S) :=
∑

v∈S

cost(v) ,
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and the effectiveness of S as the number of good inputs to the nodes in S minus
the number of bad outputs from the nodes in S, i.e.,

effect(S) :=
∑

v∈S

deg(v)− cost(S) .

Lemma 2. Let a ∈ A and b ∈ B be such that OPT(a) = b. Then cost({a, b}) ≥ 2
holds. Moreover, if deg(a) ≥ 1, then cost({a, b}) ≥ 3 holds.

Proof. One of the following is true:

i. deg(a) = 0.

ii. deg(a) ≤ 1 and deg(b) ≤ 1.

iii. deg(a) = 2 and deg(b) = 0.

iv. deg(a) = 2 and deg(b) ≥ 1.

v. deg(a) = 1, deg(b) = 2 and b has a bad input or no input.

vi. deg(a) = 1, deg(b) = 2 and b has a good input.

In Case (i.), a is unsuccessful. Since (a, b) is an edge in G, b rejected a
proposal from a at least once and so b is popular. Thus, there are two distinct
edges (a′, b), (a′′, b) in G′ such that a ≤b a

′ and a ≤b a
′′. It is straightforward to

check that neither (a′, b) nor (a′′, b) is a good input. Thus we have cost(b) = 2,
implying the desired inequality of cost({a, b}) ≥ cost(b) = 2.

In Case (ii.), a is unsuccessful. Since (a, b) is an edge in G, b rejected a
proposal from a at least once and so b is popular. However, deg(b) ≤ 1 and so
b is not popular, contradiction.

In Case (iii.), a did not ever propose to b during the algorithm. Thus in
G′ there are two distinct edges (a, b′) and (a, b′′) with b ≤a b′, b ≤a b′′. Since
deg(b) = 0, one of the edges (a, b′), (a, b′′) is neither in M nor in OPT, giving
rise to a bad output from a. Thus, we have cost(a) = 3, implying cost({a, b}) =
3 ≥ 3.

In Case (iv.), we have

cost({a, b}) = cost(a)
︸ ︷︷ ︸

≥deg(a)=2

+ cost(b)
︸ ︷︷ ︸

≥1

≥ 2 + 1 = 3 ,

providing the desired inequality.
In Case (v.), we have

cost({a, b}) = cost(a)
︸ ︷︷ ︸

≥deg(a)=1

+ cost(b)
︸ ︷︷ ︸

=deg(b)=2

≥ 1 + 2 = 3 ,

providing the desired inequality.
In Case (vi.), a is unsuccessful. Since (a, b) is an edge in G, b rejected a

proposal from a at least once and so b is popular. Let (a′, b) be the good input
to b. Since b rejected a proposal from a, we have that a′ ≥b a. Thus b is popular,
OPT(b) = a is unsuccessful, and a′ ≥b a, showing that the input (a′, b) is a bad
input, contradiction.
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3.3 Connected components in OPT+M

In this section, we start to relate the ratio between |OPT| and |M | to the ratios
between |OPT ∩ C| and cost(C) for connected components in OPT + M . For
simplicity of exposition, isolated nodes in OPT + M are considered by us as
connected components in OPT+M .

Lemma 3. If |OPT|/|M | > 4/3, then there exists a connected component C in
OPT+M with cost(C) < 3|OPT ∩ C|.

Proof. Assume for contradiction that |OPT|/|M | > 4/3 and that cost(C) ≥
3|OPT ∩ C| for all components C. Then, we have

∑

C∈OPT+M

cost(C) ≥ 3|OPT| ,

where the summation goes over the connected components in OPT+M .
On the other side, M is a maximum cardinality matching in the graph

G′ = (A ∪B,E′), where each node in G′ has degree at most 2. Hence,

|M | ≥ |E′|/2 =
∑

v∈A∪B

deg(v)/4 .

Moreover, we have

∑

C∈OPT+M

effect(C) = effect(A ∪B) ≥ 0 ,

where the inequality is due to Corollary 1. Combining the inequalities above,
we obtain

4|M | ≥
∑

v∈A∪B

deg(v)− effect(A ∪B) = cost(A ∪B) =
∑

C∈OPT+M

cost(C)

≥ 3|OPT| ,

contradiction.

Remark 2. Let C be a connected component of M + OPT which consists of a
single node. Then we have cost(C) ≥ 3|OPT ∩ C|.

3.3.1 Alternating Paths, Alternating Cycles and OPT-Augmenting

Paths

The following corollary of Lemma 2 establishes an upper bound on the number
of OPT edges in a connected component of M + OPT in terms of the com-
ponent’s cost, applying only to alternating paths, alternating cycles, and OPT-
augmenting paths. Note that an edge which is in both M and OPT is considered
by us to be a trivial alternating cycle if it corresponds to two parallel edges in G′.
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Corollary 2. Let C be a connected component of M+OPT that is an alternating
path, alternating cycle, or OPT-augmenting path. Then we have cost(C) ≥
3|OPT ∩ C|.

Proof. Let C be a connected component of M + OPT which is an alternating
path, alternating cycle, or OPT-augmenting path. Then one of the following is
true:

i. C is an OPT-augmenting path of the form a0 − b1 − . . .− ak − bk+1.

ii. C is an alternating cycle of the form a1 − b1 − . . . − ak − bk − a1, where
(a1, b1) ∈ OPT.

iii. C is an alternating path of the form b1 − a1 − . . .− bk − ak − bk+1, where
a1 ∈ A and (a1, b1) ∈ OPT.

iv. C is an alternating path of the form a1 − b1 − . . .− ak − bk − ak+1, where
a1 ∈ A and (a1, b1) ∈ OPT.

In Cases (i.), (ii.) and (iii.), by Lemma 2, for each i = 1, . . . , k we have
cost({ai, bi}) ≥ 3. Thus, we have the desired inequality:

cost(C) ≥
k∑

i=1

cost({ai, bi})
︸ ︷︷ ︸

≥3

≥ 3k = 3|OPT ∩C| .

In Case (iv.), by Lemma 2, for each i = 2, . . . , k we have cost({ai, bi}) ≥ 3
and also cost({a1, b1}) ≥ 2. Since cost(ak+1) ≥ 1, we have the desired inequality:

cost(C) = cost(ak+1)
︸ ︷︷ ︸

≥1

+ cost({a1, b1})
︸ ︷︷ ︸

≥2

+

k∑

i=2

cost({ai, bi})
︸ ︷︷ ︸

≥3

≥ 3k = 3|OPT ∩ C| .

The next remark is an immediate consequence of Lemma 2.

Remark 3. An edge (a, b) that exists in both M and OPT defines a connected
component C in M + OPT. If (a, b) does not correspond to a parallel edge in
G′, then cost(C) ≥ 3 = 3|C ∩ OPT|.

3.3.2 M-Augmenting Path

In this section, we study connected components in M + OPT which are M -
augmenting paths. First, we state the result of Huang and Kavitha [4], showing
that there exists no M -augmenting path of length 1 or of length 3 in M +OPT.

Lemma 4 ([4]). There is no M -augmenting path in M + OPT of length 1 or
of length 3.
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Now let us consider M -augmenting paths in M + OPT of length at least 5.
Given an M -augmenting path of the form a0 − b0 − a1 − . . . − ak − bk with
a0 ∈ A, for i = 0, . . . , k − 1 we say that bi points right if one of the following is
true:

• ai+1 >bi ai.

• ai+1 ≃bi ai and at the end of the algorithm ai+1 is not basic.

Lemma 5. Let a0−b0−a1− . . .−ak−bk be an M -augmenting path in M+OPT

of length 2k + 1, k ≥ 2, where a0 ∈ A. Then for every i = 1, . . . , k − 1, at least
one of the following is true:

1. cost({ai, bi}) ≥ 4.

2. bi rejected a proposal from ai during the algorithm and bi points right.

3. bi−1 did not reject any proposals from ai−1 during the algorithm.

4. at the end of the algorithm, ai is basic and bi−1 >ai
bi.

Proof. Clearly, the edges (ai, bi−1) and (ai+1, bi) exist in G′ since these edges
exist in M . Thus we have deg(ai) ≥ 1 and deg(bi) ≥ 1. Moreover, since the
edge (ai, bi) exists in G, at least one of the following is true: deg(ai) ≥ 2 or
deg(bi) ≥ 2. Hence, it is enough to consider the following cases:

i. deg(ai) = 1 and deg(bi) = 2.

ii. deg(ai) = 2.

ii.i. bi rejected a proposal from ai during the algorithm.

ii.i.i. bi has no good input.

ii.i.ii. bi has a good input.

ii.ii. there is an edge (ai, bi) in G′.

ii.iii. ai has a bad output.

ii.iv. ai has a good output; bi did not reject any proposals from ai during
the algorithm.

We would like to note that while the above cases are not mutually exclusive,
they cover all the possibilities.

In Case (i.), ai is unsuccessful. Thus, bi rejected a proposal from ai as a
2-promoted man. On the other hand, at the end of the algorithm bi has a
proposal from ai+1, implying (2).

In Case (ii.i.i.), we have deg(bi) = 2, since bi rejected a proposal from ai
during the algorithm. Since bi has no good input, we have cost(bi) = deg(bi) = 2.
Thus, we have

cost({ai, bi}) = cost(ai)
︸ ︷︷ ︸

≥deg(ai)=2

+ cost(bi)
︸ ︷︷ ︸

=2

≥ 4 ,
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implying (1).
In Case (ii.i.ii.), bi is popular, since bi rejected a proposal during the algo-

rithm. Let (a′, bi) be a good input to bi. Since (a′, bi) is a good input to bi, we
have ai ≥bi a′ and a′ 6= ai. Since during the algorithm bi rejected a proposal
from ai, but at the end of the algorithm has proposals from ai+1 and a′, we have
ai ≤bi ai+1 and ai ≤bi a

′. Because ai ≥bi a
′ and ai ≤bi a

′, we have ai ≃bi a
′.

Since ai ≤bi ai+1, ai ≃bi a′, a′ 6= ai and ties are of size 2, we either have
ai <bi ai+1 or a′ = ai+1. If we have ai <bi ai+1, then (2) holds. If a′ = ai+1

then at some point bi rejected a proposal of ai while at the end of the algorithm
bi holds two proposals of ai+1. If ai+1 is basic, this contradicts the special case
for the rejection step, because ai ≃bi ai+1. Then ai+1 is not basic, implying
that bi points right and thus (2).

In Case (ii.ii.), cost(ai) = 2 and cost(bi) = 2, so cost({ai, bi}) = 4, imply-
ing (1).

In Case (ii.iii.), we have cost(bi) ≥ 1, since bi is matched by M and hence
deg(bi) ≥ 1. We also have cost(ai) = deg(ai)+1 = 3, since ai has a bad output.
Thus, cost({ai, bi}) = cost(ai) + cost(bi) ≥ 4, showing (1).

In Case (ii.iv.), let (ai, b
′) be the good output from ai. Since bi did not reject

any proposals from ai during the algorithm, we have that ai is basic and also
that bi ≤ai

bi−1 and bi ≤ai
b′ hold. Since ai is basic and (ai, b

′) is a good output
from ai, we have that b′ 6= bi and bi ≥ai

b′, and thus bi ≃ai
b′. Since b′ 6= bi,

bi ≃ai
b′, bi ≤ai

bi−1, and ties are of size two, we have bi <ai
bi−1, implying (4).

Corollary 3. Let a0−b0−a1−. . .−ak−bk be an M -augmenting path in M+OPT

of length 2k + 1, k ≥ 2, where a0 ∈ A. Then, for every i = 1, . . . , k − 1 such
that cost({ai, bi}) = 3, we have that if bi−1 rejected a proposal from ai−1 during
the algorithm and bi−1 points right, then bi rejected a proposal from ai during
the algorithm and bi points right.

Proof. By Lemma 5, we have that at least one of the following statements is
true:

i. cost({ai, bi}) ≥ 4.

ii. bi rejected a proposal from ai during the algorithm and bi points right.

iii. bi−1 did not reject any proposal from ai−1 during the algorithm.

iv. at the end of the algorithm ai is basic and bi−1 >ai
bi.

In Case (i.), we have a contradiction to cost({ai, bi}) = 3. In Case (iii.), we
have a contradiction to the fact that bi−1 rejected a proposal from ai−1 during
the algorithm. Let us consider Case (iv.). Since ai is basic and bi−1 points right,
we have ai >bi−1

ai−1. Thus, we have ai >bi−1
ai−1 and bi−1 >ai

bi, showing
that (ai, bi−1) is a blocking pair for OPT, contradicting the stability of OPT.

In Case (ii.), we obtain the desired statement immediately.

12



Lemma 6. Let a0−b0−a1−. . .−ak−bk be an M -augmenting path in M+OPT of
length 2k+1, k ≥ 2, where a0 ∈ A. Then, we have cost({a0, b0}) ≥ 2. Moreover,
b0 rejected a proposal from a0 during the algorithm and b0 points right.

Proof. Clearly, a0 is not matched by M and so a0 is unsuccessful. Thus, b0
rejected a proposal from a0 as a 2-promoted man. Hence, b0 is popular and if
(a, b0) is an edge in G′ then a ≥b0 a0 = OPT(b0). This demonstrates that b0
has no good input, and so cost({a0, b0}) ≥ cost(b0) = 2.

Now, at some point during the algorithm b0 rejected a proposal from a0 as
a 2-promoted man, but at the end of the algorithm b0 has a proposal from a1,
showing that b0 points right and finishing the proof.

Remark 4. Let a0−b0−a1−. . .−ak−bk be an M -augmenting path in M+OPT

of length 2k + 1, k ≥ 2, where a0 ∈ A. Then, we have cost({ak, bk}) ≥ 3.

Proof. Clearly, bk is not matched by M and so bk is unsuccessful. Hence, ak is
basic and ak is successful.

If at the end of the algorithm bk holds a proposal from ak, then bk has no
input. Thus, cost(bk) = deg(bk) = 1 and cost(ak) = deg(ak) = 2, showing that
cost({ak, bk}) ≥ 3.

If at the end of the algorithm bk holds no proposal from ak, then ak has
an output (ak, b

′) with b′ ≥ak
bk. Thus, (ak, b

′) is a bad output, implying that
cost(ak) = deg(ak) + 1 = 3.

Lemma 7. Let a0−b0−a1− . . .−ak−bk be an M -augmenting path in M+OPT

of length 2k + 1, k ≥ 2, where a0 ∈ A. If bk−2 rejected a proposal from ak−2

during the algorithm and bk−2 points right, then cost({ak−1, bk−1, ak, bk}) ≥ 7.

Proof. For the proof of the lemma it is enough to consider following cases

i. bk−1 did not reject any proposals from ak−1 during the algorithm.

ii. bk−1 rejected a proposal from ak−1 during the algorithm.

ii.i. there are two parallel edges (ak, bk−1) in G′.

ii.ii. there is an edge (ak−1, bk−1) in G′.

ii.iii. there is an edge (a′, bk−1) in G′ such that a′ 6= ak−1 and a′ 6= ak.

In Case (i.), since bk−1 did not reject any proposal from ak−1 during the
algorithm, we have that ak−1 is basic and M(ak−1) = bk−2 ≥ak−1

bk−1. Since
ak−1 is basic and bk−2 points right, we have ak−1 >bk−2

ak−2.
Moreover, we have bk−2 ≤ak−1

bk−1, since otherwise (ak−1, bk−2) is a block-
ing pair for OPT, contradicting the stability of OPT. Because bk−2 ≥ak−1

bk−1

and bk−2 ≤ak−1
bk−1 hold, we have bk−2 ≃ak−1

bk−1.
The forwarding step excludes the possibility of bk−2 having two proposals

from ak−1 at the end of the algorithm while also having rejected a proposal
at some point during the algorithm. On the other hand, we have that ak−1 is
basic and by the statement of the lemma bk−2 rejected a proposal from ak−2
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during the algorithm, showing that there exists an edge (ak−1, b
′) in G′ such

that b′ 6= bk−2. Since bk−1 did not reject any proposal from ak−1 during the
algorithm, we have b′ ≥ak−1

bk−1.
Now, because b′ ≥ak−1

bk−1, bk−2 ≃ak−1
bk−1, b

′ 6= bk−2, and ties are of
size two, we have that either b′ = bk−1 or b′ >ak−1

bk−1. If b′ = bk−1, we
have cost(ak−1) = deg(ak−1) = 2 and cost(bk−1) = deg(bk−1) = 2, implying the
desired inequality

cost({ak−1, bk−1, ak, bk}) ≥ cost(ak−1)
︸ ︷︷ ︸

=2

+ cost(bk−1)
︸ ︷︷ ︸

=2

+ cost({ak, bk})
︸ ︷︷ ︸

≥3
by Remark 4

≥ 7 .

If b′ >ak−1
bk−1, then (ak−1, b

′) is a bad output from ak−1, because ak−1 is
basic. Hence, cost(ak−1) = deg(ak−1) + 1 = 3 and cost(bk−1) ≥ 1, since bk−1 is
matched by M . This also gives us the desired inequality

cost({ak−1, bk−1, ak, bk}) ≥ cost(ak−1)
︸ ︷︷ ︸

=3

+ cost(bk−1)
︸ ︷︷ ︸

≥1

+ cost({ak, bk})
︸ ︷︷ ︸

≥3
by Remark 4

≥ 7 .

In Case (ii.i.), since at the end of the algorithm bk−1 holds two proposals from
ak, who is basic, and at some point of the algorithm bk−1 rejected a proposal
from ak−1, we have that ak ≥bk−1

ak−1. The special case of the rejection step
excludes the possibility that ak ≃bk−1

ak−1, implying that ak >bk−1
ak−1.

However, bk is unsuccessful and there is an edge (ak, bk−1) in G′, hence ak
is basic and bk−1 ≥ak

bk. If bk−1 >ak
bk, then (ak, bk−1) is a blocking pair

for OPT, contradicting the stability of OPT. Thus, we have bk−1 ≃ak
bk. But

by Remark 1, bk−1 ≃ak
bk and deg(bk) = 1 together with the bouncing step

excludes the possibility that bk−1 rejects any proposal during the algorithm and
also holds two proposals from ak at the end, contradiction.

In Case (ii.ii.), we have cost(ak−1) = deg(ak−1) = 2 and cost(bk−1) =
deg(bk−1) = 2, implying the desired inequality

cost({ak−1, bk−1, ak, bk}) ≥ cost(ak−1)
︸ ︷︷ ︸

=2

+ cost(bk−1)
︸ ︷︷ ︸

=2

+ cost({ak, bk})
︸ ︷︷ ︸

≥3
by Remark 4

≥ 7 .

In Case (ii.iii.), since at the end of the algorithm bk−1 has proposals from a′

and ak and at some point of the algorithm bk−1 rejected a proposal from ak−1,
we have ak ≥bk−1

ak−1 and a′ ≥bk−1
ak−1. Since a

′ 6= ak−1 and a′ 6= ak and ties
are of size two, we have either ak >bk−1

ak−1 or a′ >bk−1
ak−1.

If ak >bk−1
ak−1, then we have bk−1 ≤ak

bk, since otherwise (ak, bk−1) is a
blocking pair for OPT, contradicting the stability of OPT. On the other side,
bk is unsuccessful and an edge (ak, bk−1) exists in G′, so we have bk−1 ≥ak

bk.
Thus, we have bk−1 ≃ak

bk. However, by Remark 1, bk−1 ≃ak
bk and deg(bk) = 1

together with the bouncing step exclude the possibility that bk−1 rejects any
proposal during the algorithm but at the end of the algorithm has a proposal
from ak, contradiction.
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Let us now consider the case when a′ >bk−1
ak−1 and ak ≃bk−1

ak−1. Then
(a′, bk−1) is a bad input to bk−1, because a′ 6= ak−1, a

′ 6= ak, a
′ >bk−1

ak−1 and
bk−1 rejected a proposal during the algorithm. Hence, we have cost(bk−1) =
deg(bk−1) = 2. Also due to the fact that ak ≃bk−1

ak−1 and the fact that at the
end of the algorithm bk−1 has a proposal from ak as a basic man, we have that
ak−1 is successful. Since ak−1 is successful, we have cost(ak−1) ≥ deg(ak−1) = 2,
implying the desired inequality

cost({ak−1, bk−1, ak, bk}) ≥ cost(ak−1)
︸ ︷︷ ︸

≥2

+ cost(bk−1)
︸ ︷︷ ︸

=2

+ cost({ak, bk})
︸ ︷︷ ︸

≥3
by Remark 4

≥ 7 .

Lemma 8. Let C be a connected component of M + OPT which is an M -
augmenting path of length at least 5. Then, we have cost(C) ≥ 3|OPT ∩ C|.

Proof. Let C be of the form a0 − b0 − a1 − . . .− ak − bk be an M -augmenting
path in M + OPT of length 2k + 1, k ≥ 2, where a0 ∈ A. Then, we have

cost(C) = cost({a0, b0})
︸ ︷︷ ︸

≥2
by Lemma 6

+

k−1∑

i=1

cost({ai, bi})
︸ ︷︷ ︸

≥3
by Lemma 2

+ cost({ak, bk})
︸ ︷︷ ︸

≥3
by Remark 4

≥ 2 + 3(k − 2) + 3

= 3k − 1 = 3|OPT| − 1 .

By Lemma 6 and Corollary 3, the above inequality is tight only if for each
i = 0, . . . , k−2 we have that bi rejected a proposal from ai during the algorithm
and bi points right. However, in that case, we have cost({ak−1, bk−1, ak, ak}) ≥ 7
by Lemma 7, implying the desired inequality

cost(C) = cost({a0, b0})
︸ ︷︷ ︸

≥2
by Lemma 6

+

k−2∑

i=1

cost({ai, bi})
︸ ︷︷ ︸

≥3
by Lemma 2

+ cost({ak−1, bk−1, ak, ak})
︸ ︷︷ ︸

≥7

≥

2 + 3(k − 3) + 7 = 3k = 3|OPT|

and finishing the proof.

Our main theorem directly follows from Remark 2, Corollary 2, Lemma 3,
Lemma 4 and Lemma 8.

Theorem 2. |OPT|/|M | ≤ 4/3.

The next example demonstrates that the bound in Theorem 2 is tight. In
the description of this example we closely follow the description style from [1].
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a0 a1 a2 a3

b0 b1 b2 b3

Figure 1: An instance for which the algorithm in [4] outputs a stable matching
M with |OPT|/|M | = 4/3.

Example 1. In Figure 1, the circle nodes represent men and the square nodes
represent women. The solid lines represent the edges in G′. The arrow tips
indicate the preferences of each person. For example, b0 has double-tipped arrows
pointing to a1 and a3 and a single-tipped arrow pointing to a0, so b0 is indifferent
between a1 and a3 and prefers both to a0.

It is straightforward to verify that there exists a unique maximum cardinality
stable matching, namely OPT = {(a0, b0), (a1, b1), (a2, b2), (a3, b3)}. We can
prove that there exists an execution of the algorithm with the above intermediate
graph G′. Hence, for this execution one of the possible outputs is the matching
M = {(a1, b0), (a2, b1), (a3, b3)}, leading to the ratio |OPT|/|M | = 4/3.

Proof. Let us provide an execution of the algorithm leading to the above inter-
mediate graph G′.

• a3 proposes to b3; b3 accepts.

• a3 proposes to b0; b0 accepts.

• a2 proposes to b3; b3 accepts.

• a2 proposes to b1; b1 accepts.

• a1 proposes to b1; b1 accepts.

• a1 proposes to b0; b0 accepts.

• a0 starts to propose to b0, but each time a0 makes a proposal, the proposal
is rejected. a0 gives up.
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Appendix

Comparison with Related Works

The original paper [4] by Huang and Kavitha contained two algorithms: one
for the problem with one-sided ties and one for the problem with ties of size
two. Both algorithms consist of a series of proposals; and an output matching is
constructed from the proposals accepted at the end of the algorithm. Recently,
Bauckholt, Pashkovich and Sanità [1] provided a tight analysis of the algorithm
from [4] for the case of one-sided ties. In our paper and in both [1] and [4],
the analysis is based on charging schemes: first giving original charge to some
objects and then redistributing this charge to nodes. The charging scheme for
the problem with one-sided ties from [4] was substantially modified in [1]. We
give a new charging scheme which leads to a tight analysis for the problem with
ties of size two.

Below we compare our charging scheme to those from the papers [1] and [4].

Charging Scheme: Origin of Charges

In analyzing the approximation ratio, we first fix an optimal matching. In
both [1] and [4], the charges are created by 5-augmenting paths for the output
matching with respect to the fixed optimal matching. In [1], the original charge
is given to one man (the man in a “y-node”) on each 5-augmenting path (see [1],
Section 4, page 11). In [4], the original charge is also given to each 5-augmenting
path (see [4], Section 2, page 366 and Section 3, page 377). In our charging
scheme, the original charges are given to proposals. In particular, two charges
are given to each of the proposals accepted at the of the algorithm (one for the
man and one for the woman participating in this proposal), except some special
cases (if a proposal corresponds to a “bad output” it is given an extra charge for
the man, if it corresponds to a “good input” it is given no charge for the woman).
Because, the total number of “bad outputs” is at most the number of “good
inputs”, the total number of charges in our approach is bounded from above by
two times the number of proposals accepted at the end of the algorithm. Hence,
our charging scheme unlike charging schemes in [1] and [4] does not provide a
mapping from 5-augmenting paths. As a result, the total number of charges
generated in [1] and [4] is equal to the number of 5-augmenting paths, while in
our paper we know only that the total number of charges is bounded from above
by two times the number of the proposals accepted at the end of the algorithm
(that is why the total number of charges generated in our scheme is at most
four times the size of the output matching).

Charging Scheme: Distribution of Charges

In both [1] and [4], the original charges are distributed “globally”. In [4], the
original charges are first distributed to so called “good paths”, and then are
redistributed from “good paths” to nodes (see [4], Section 2, page 366 and
Section 3, page 377). In [1], the original charges are also distributed globally.
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First, each original charge received by a man is distributed to some woman
locally, but then the charges are redistributed globally using “path jumps”,
“matching jumps” and “matching jumps with exceptions” (see [1], Section 4,
page 11). “Good paths”, “path jumps”, “matching jumps” and “matching
jumps with exceptions” transfer the charges globally; i.e. they can transfer
charges from one part of the graph generated by the fixed optimal matching
and the proposals, which are accepted at the end of the algorithm, to another
part of this graph. In our charging scheme, the original charges received by
proposals are distributed locally. In particular, in our charging scheme each
original charge of a proposal is distributed only to nodes participating in this
proposal.

Our origin of charges together with our distribution of charges form a “local”
charging scheme. In other words, the charges are generated by such objects as
proposal (edges in the graph generated by the accepted proposals) and are dis-
tributed to nodes participating in these proposals (incident nodes). This makes
our charging scheme easy to work with.

Charging Scheme: Charges at the Beginning and at the End

In order to compare the size of the output matching and the fixed optimal
matching, it is natural to analyze the connected components in the union of
these matchings. The approaches in [1] and [4] were based on the following
logic: the total number of generated charges was equal to the number of 5-
augmenting paths and then the charges were distributed to other connected
components, so that the total charge of each connected component was not too
large with respect to the component’s size. In other words, the approaches of [1]
and [4] were based on the idea that large connected components can “fix the
damages” caused by 5-augmenting paths. Our approach is based on a different
and a more direct idea. We show that every connected component receives a
total charge of at least three times the number of the edges from the fixed
optimal matching in this component. Together with the fact that the total
number of charges generated in our algorithm is at most four times the size of
the output matching, we immediately infer the desired approximation ratio.

Central Notions

In [1], the notion of “popularity” was introduced for women. Roughly speaking,
a woman is called popular with respect to some man, if this woman holds two
proposals at the end of the algorithm and both these proposals are not worse
than the proposals that this man could offer (see [1], Section 3, page 6). This
notion was important for the tight analysis provided in [1]. We use a different
notion of “popularity” in the current paper. For us, a woman is popular if this
woman rejected a proposal during the algorithm. We also introduce further
notions, for example “successful”. We call a woman (a man) “successful” if this
woman (this man) has two proposals (accepted) at the end of the algorithm. For
working with connected components, we use the notion of “pointing” similar to
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the notion of “pointing” in [1] (see [1], Section 4, page 14).
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