
On the Approximate Compressibility of Connected
Vertex Cover∗

Diptapriyo Majumdar†1, M. S. Ramanujan2, and Saket Saurabh3

1Royal Holloway, University of London, United Kingdom diptapriyo.majumdar@rhul.ac.uk
2University of Warwick, United Kingdom R.Maadapuzhi-Sridharan@warwick.ac.uk
3The Institute of Mathematical Sciences, HBNI, Chennai, India saket@imsc.res.in

Abstract

The Connected Vertex Cover problem, where the goal is to compute a
minimum set of vertices in a given graph which forms a vertex cover and induces
a connected subgraph, is a fundamental combinatorial problem and has received
extensive attention in various subdomains of algorithmics. In the area of kerneliza-
tion, it is known that this problem is unlikely to have a polynomial kernelization
algorithm. However, it has been shown in a recent work of Lokshtanov et al. [STOC
2017] that if one considered an appropriate notion of approximate kernelization,
then this problem parameterized by the solution size does admit an approximate
polynomial kernelization. In fact, Lokshtanov et al. were able to obtain a polynomial
size approximate kernelization scheme (PSAKS) for Connected Vertex Cover
parameterized by the solution size. A PSAKS is essentially a preprocessing algorithm
whose error can be made arbitrarily close to 0.

In this paper we revisit this problem, and consider parameters that are strictly
smaller than the size of the solution and obtain the first polynomial size approx-
imate kernelization schemes for the Connected Vertex Cover problem when
parameterized by the deletion distance of the input graph to the class of cographs,
the class of bounded treewidth graphs, and the class of all chordal graphs.

1 Introduction

Polynomial-time preprocessing is one of the widely used methods to tackle NP-hardness in
practice, and kernelization has been extremely successful in laying down a mathematical
framework for the design and rigorous analysis of preprocessing algorithms for decision
problems. The central notion in kernelization is that of a kernelization, which is a
preprocessing algorithm that takes as input a parameterized problem, which is a pair
(I, k), where I is the problem instance and k is an integer called the parameter. A
kernelization is required to run in polynomial-time and convert a potentially large input

∗A part of this work was done when the first author was affiliated to The Institute of Mathematical
Sciences, HBNI, Chennai, India.
†Corresponding author.

1

ar
X

iv
:1

90
5.

03
37

9v
3 

 [
cs

.D
S]

  2
8 

A
pr

 2
02

0



(I, k) into an equivalent instance (I ′, k′) such that |I ′| and k′ are both bounded by a
function of the parameter k. Over the last decade, the area of kernelization has seen
the development of a wide range of tools to design preprocessing algorithms and a
rich theory of lower bounds has been developed based on assumptions from complexity
theory [1,2,10–12,14,17,19,21,22]. We refer the reader to the survey articles by Kratsch [26]
or Lokshtanov et al. [31] for relatively recent developments, or the textbooks [8,13], for an
introduction to the field.

An ‘efficient preprocessing algorithm’ in this setting is referred to as a polynomial
kernelization and is simply a kernelization whose output has size polynomially upper
bounded in the value of the parameter of the input. The central classification task in the
area is to classify each NP-hard problem as one which has a polynomial kernel, or as one
that does not.

The Vertex Cover problem is one of the most frequently studied problems from
the point of view of kernelization and buoyed by the rich literature on kernelization
for Vertex Cover parameterized by the solution size, researchers have more recently
turned their attention to the design of kernelization algorithms for Vertex Cover
parameterized by smaller parameters. The results most relevant to us in this line of
enquiry are the polynomial kernelization given by Jansen and Bodlaender [24] for Vertex
Cover parameterized by the size of the feedback vertex set and the result of Cygan
et al. [9], in which they showed that Vertex cover is unlikely to have a polynomial
kernelization when parameterized by the deletion distance of the given graph to the class
of graphs of treewidth at most η, for any η > 1. Here, the deletion distance of the given
graph G to any graph class G is the size of the smallest set S ⊆ V (G) such that G−S ∈ G.

On the other hand, the Connected Vertex Cover problem, where the solution
is also required to induce a connected subgraph of the input graph, is known to exclude
a polynomial kernelization already when parameterized by the solution size, under stan-
dard complexity-theoretic hypotheses [12]. However, the study of preprocessing for this
problem was handed a new lease of life by the recent work of Lokshtanov et al. [32], who
aimed to facilitate the rigorous analysis of preprocessing algorithms in conjunction with
approximation algorithms via the introduction of α-approximate kernels.

Informally speaking, an α-approximate kernel is a polynomial-time algorithm
that, given an instance (I, k) of a parameterized problem, outputs an instance
(I ′, k′) such that |I ′| + k′ ≤ g(k) for some computable function g and any
c-approximate solution to the instance (I ′, k′) can be turned in polynomial-time
into a (c · α)-approximate solution to the original instance (I, k).

As earlier, the notion of ‘efficiency’ in this context is captured by the function g being
polynomially upper bounded, in which case we call this algorithm an α-approximate
polynomial kernelization. We refer the reader to Section 2 for a formal definition of all
terms related to (approximate) kernelization.

In their work, Lokshtanov et al. [32] considered several problems which are known to
exclude polynomial kernels and presented an α-approximate polynomial kernel for these
problems for every fixed α > 1, also called a polynomial size approximate kernelization
scheme (PSAKS, see Section 2 for formal definition). This implies that allowing for an
arbitrarily small amount of error while preprocessing can drastically improve the extent
to which the input instance can be reduced, even when dealing with problems for which
polynomial kernels have been ruled out under the existing theory of lower bounds.

2



Connected

Vertex Cover

Vertex

Cover

Split
Deletion Set

Cluster
Deletion Set

Clique
Deletion Set

Chordal
Deletion Set

para-NP-hard
<latexit sha1_base64="+gTWQ4PgRHjCJFyo6HDxwHgKep8=">AAACF3icbVDLSsNAFJ3UV42vqks3g0Vw05LUha6k4MaVVLAPaEqZTG7aoZNJmJkIJfQv3Pgrblwo4lZ3/o3TNoK2Hhg4nHMPd+7xE86Udpwvq7Cyura+Udy0t7Z3dvdK+wctFaeSQpPGPJYdnyjgTEBTM82hk0ggkc+h7Y+upn77HqRisbjT4wR6ERkIFjJKtJH6parnw4CJjILQICd2QiSpZJ4K8U1jUhkSGdgeiODH75fKTtWZAS8TNydllKPRL316QUzTyMQpJ0p1XSfRvYxIzSiHie2lChJCR2QAXUMFiUD1stldE3xilACHsTRPaDxTfycyEik1jnwzGRE9VIveVPzP66Y6vOhlTCSpBkHni8KUYx3jaUk4YBKo5mNDCJXM/BVT0wWhpgNlmxLcxZOXSatWdc+qtdtauX6Z11FER+gYnSIXnaM6ukYN1EQUPaAn9IJerUfr2Xqz3uejBSvPHKI/sD6+AUO+n/c=</latexit>

FPT
<latexit sha1_base64="DYuzK1jjzw0149FrcI6dr1svwbk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96EkKgnis2C9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwbZpKgH9Gh5CFn1Fjp8a7e6JfKbsWdg6wSLydlyFHvl756g5ilEUrDBNW667mJ8TOqDGcCp8VeqjGhbEyH2LVU0gi1n81PnZJzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0ijYEb/nlVdKqVrzLSvWhWq7d5HEU4BTO4AI8uIIa3EMdmsBgCM/wCm+OcF6cd+dj0brm5DMn8AfO5w/dMI2A</latexit>

Degree-2
Modulator

Degree-i(i � 3)
Modulator

Feedback
Vertex Set

FPT and admits
time e�cient PSAKS

<latexit sha1_base64="Go2qrB5HyfFvzdnTtmzCG5V5SoQ=">AAACKnicbVDLSgMxFM34rONr1KWbYBFclZm60JW0CCK4qdS2QqeUTOZODSaZIckIZej3uPFX3HShFLd+iGmt4OtA4HDOPeTeE2WcaeP7E2dhcWl5ZbW05q5vbG5tezu7bZ3mikKLpjxVtxHRwJmElmGGw22mgIiIQye6P5/6nQdQmqXyxgwz6AkykCxhlBgr9b16GMGAyYKCNKBG7kXjBhMZYxILZnQYuoYJwJDYBLMjuNGsXzXdEGT8Fel7Zb/iz4D/kmBOymiORt8bh3FKc2HjlBOtu4GfmV5BlGGUw8gNcw0ZofdkAF1LJRGge8Xs1BE+tEqMk1TZZ9eZqd8TBRFaD0VkJwUxd/q3NxX/87q5SU57BZNZbkDSz4+SnGOT4mlvOGYKqOFDSwhVzO6K6R1RhNoOtGtLCH6f/Je0q5XguFK9rpZrZ/M6SmgfHaAjFKATVEOXqIFaiKJH9Ixe0Kvz5IydifP2ObrgzDN76Aec9w/j9Kbs</latexit>

Interval
Deletion Set

⌘-Transversal
Set

Vertex
Clique Cover

Pseudo-Forest
Deletion Set

Mock-Forest
Deletion Set

Odd Cycle
Transversal

Perfect Graph
Deletion Set

Treewidth

W[1]-hard, but
admits EPSAKS

<latexit sha1_base64="QqmCkjzBn5NHWb84YJphUSKTqw4=">AAACKnicbVDLSsNAFJ34rPFVdelmsAgutCR1oStRRBDcVLRWSEKZTG7q0MkkzEyEEvI9bvwVN10oxa0f4vQh+DowcDjnHu7cE2acKe04Q2tmdm5+YbGyZC+vrK6tVzc271SaSwotmvJU3odEAWcCWpppDveZBJKEHNph73zktx9BKpaKW93PIEhIV7CYUaKN1Kme+SF0mSgoCA2ytAtfxbjtuUF58EBktI/DXGPft0mUMK3wRfPm7OrG9kFEX5FOtebUnTHwX+JOSQ1N0exUB36U0jwxccqJUp7rZDooiNSMcihtP1eQEdojXfAMFSQBFRTjU0u8a5QIx6k0T2g8Vr8nCpIo1U9CM5kQ/aB+eyPxP8/LdXwcFExkuQZBJ4vinGOd4lFvOGISqOZ9QwiVzPwVU9MQoaYDZZsS3N8n/yV3jbp7WG9cN2qnJ9M6Kmgb7aA95KIjdIouURO1EEVP6AW9ojfr2RpYQ+t9MjpjTTNb6Aesj08S5aZo</latexit>

?<latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit>

?<latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit>

FPT and admits time as
well as size e�cient PSAKS

<latexit sha1_base64="AJCzD2CZSB6yVMBZ+jPVkAj8uxc=">AAACOnicbVBNSyNBEO1x16/xK7sevTQbBE9hJh70JIqwLHhJiFEhE0JNT01s7O4ZunuUOOR3efFX7M2DFw+KePUH2IkR/HrQ8HhVr7rqxbngxgbBjTf14+f0zOzcvL+wuLS8Uvn1+8hkhWbYZpnI9EkMBgVX2LbcCjzJNYKMBR7HZ/uj+vE5asMzdWgHOXYl9BVPOQPrpF6lGcXY56pkqCzqof+3cUhBJRQSya2hlkukYKLIv0AhHKOGXyLF1E3gzkIbrb2Dlh+hSt5G9CrVoBaMQb+ScEKqZIJGr/I/SjJWSGdnAozphEFuuyVoy5nAoR8VBnNgZ9DHjqMKJJpuOT59SNedktA00+65dcbqe0cJ0piBjF2nBHtqPtdG4ne1TmHT7W7JVV5YVOz1o7QQ1GZ0lCNNuEZmxcARYJq7XSk7BQ3MZWB8F0L4+eSv5KheCzdr9Wa9ursziWOOrJE/ZIOEZIvskn+kQdqEkStyS+7Jg3ft3XmP3tNr65Q38aySD/CeXwBTzq0j</latexit>

Cograph
Deletion Set

<latexit sha1_base64="7U5zrwEN+G76jEkYsTLKY178AnY=">AAACG3icbVDLSgMxFM34rOOr6tJNsAiuykw3upJCXbisaB/QKSWTudOGZpIhyQhl6H+48VfcuFDEleDCvzF9CNp6IHA451xu7glTzrTxvC9nZXVtfWOzsOVu7+zu7RcPDptaZopCg0ouVTskGjgT0DDMcGinCkgScmiFw9rEb92D0kyKOzNKoZuQvmAxo8RYqVesBCH0mcgpCANq7NZkX5F0EATuFXCYZPAtGDcAEf1kesWSV/amwMvEn5MSmqPeK34EkaRZYscpJ1p3fC813ZwowyiHsRtkGlJCh6QPHUsFSUB38+ltY3xqlQjHUtknDJ6qvydykmg9SkKbTIgZ6EVvIv7ndTITX3RzJtLMgKCzRXHGsZF4UhSOmAJq+MgSQhWzf8V0QBShtgPt2hL8xZOXSbNS9i2/qZSql/M6CugYnaAz5KNzVEXXqI4aiKIH9IRe0Kvz6Dw7b877LLrizGeO0B84n99iNKGZ</latexit><latexit sha1_base64="7U5zrwEN+G76jEkYsTLKY178AnY=">AAACG3icbVDLSgMxFM34rOOr6tJNsAiuykw3upJCXbisaB/QKSWTudOGZpIhyQhl6H+48VfcuFDEleDCvzF9CNp6IHA451xu7glTzrTxvC9nZXVtfWOzsOVu7+zu7RcPDptaZopCg0ouVTskGjgT0DDMcGinCkgScmiFw9rEb92D0kyKOzNKoZuQvmAxo8RYqVesBCH0mcgpCANq7NZkX5F0EATuFXCYZPAtGDcAEf1kesWSV/amwMvEn5MSmqPeK34EkaRZYscpJ1p3fC813ZwowyiHsRtkGlJCh6QPHUsFSUB38+ltY3xqlQjHUtknDJ6qvydykmg9SkKbTIgZ6EVvIv7ndTITX3RzJtLMgKCzRXHGsZF4UhSOmAJq+MgSQhWzf8V0QBShtgPt2hL8xZOXSbNS9i2/qZSql/M6CugYnaAz5KNzVEXXqI4aiKIH9IRe0Kvz6Dw7b877LLrizGeO0B84n99iNKGZ</latexit><latexit sha1_base64="7U5zrwEN+G76jEkYsTLKY178AnY=">AAACG3icbVDLSgMxFM34rOOr6tJNsAiuykw3upJCXbisaB/QKSWTudOGZpIhyQhl6H+48VfcuFDEleDCvzF9CNp6IHA451xu7glTzrTxvC9nZXVtfWOzsOVu7+zu7RcPDptaZopCg0ouVTskGjgT0DDMcGinCkgScmiFw9rEb92D0kyKOzNKoZuQvmAxo8RYqVesBCH0mcgpCANq7NZkX5F0EATuFXCYZPAtGDcAEf1kesWSV/amwMvEn5MSmqPeK34EkaRZYscpJ1p3fC813ZwowyiHsRtkGlJCh6QPHUsFSUB38+ltY3xqlQjHUtknDJ6qvydykmg9SkKbTIgZ6EVvIv7ndTITX3RzJtLMgKCzRXHGsZF4UhSOmAJq+MgSQhWzf8V0QBShtgPt2hL8xZOXSbNS9i2/qZSql/M6CugYnaAz5KNzVEXXqI4aiKIH9IRe0Kvz6Dw7b877LLrizGeO0B84n99iNKGZ</latexit><latexit sha1_base64="7U5zrwEN+G76jEkYsTLKY178AnY=">AAACG3icbVDLSgMxFM34rOOr6tJNsAiuykw3upJCXbisaB/QKSWTudOGZpIhyQhl6H+48VfcuFDEleDCvzF9CNp6IHA451xu7glTzrTxvC9nZXVtfWOzsOVu7+zu7RcPDptaZopCg0ouVTskGjgT0DDMcGinCkgScmiFw9rEb92D0kyKOzNKoZuQvmAxo8RYqVesBCH0mcgpCANq7NZkX5F0EATuFXCYZPAtGDcAEf1kesWSV/amwMvEn5MSmqPeK34EkaRZYscpJ1p3fC813ZwowyiHsRtkGlJCh6QPHUsFSUB38+ltY3xqlQjHUtknDJ6qvydykmg9SkKbTIgZ6EVvIv7ndTITX3RzJtLMgKCzRXHGsZF4UhSOmAJq+MgSQhWzf8V0QBShtgPt2hL8xZOXSbNS9i2/qZSql/M6CugYnaAz5KNzVEXXqI4aiKIH9IRe0Kvz6Dw7b877LLrizGeO0B84n99iNKGZ</latexit>

?<latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit><latexit sha1_base64="eBz0exNQPphvfItZsDr3q0Q/R7E=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF71VMG2hDWWz3bRLN5uwOxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwlQKg6777ZQ2Nre2d8q7lb39g8Oj6vFJ2ySZZtxniUx0N6SGS6G4jwIl76aa0ziUvBNObud+54lrIxL1iNOUBzEdKREJRtFKft8g1YNqza27C5B14hWkBgVag+pXf5iwLOYKmaTG9Dw3xSCnGgWTfFbpZ4anlE3oiPcsVTTmJsgXx87IhVWGJEq0LYVkof6eyGlszDQObWdMcWxWvbn4n9fLMLoJcqHSDLliy0VRJgkmZP45GQrNGcqpJZRpYW8lbEw1ZWjzqdgQvNWX10n7qu65de/huta8L+IowxmcwyV40IAm3EELfGAg4Ble4c1Rzovz7nwsW0tOMXMKf+B8/gDzp47J</latexit>

??<latexit sha1_base64="UonWapfrmC5fLh/Fj0giOWtu/kk=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbTbt0swm7E6GE/gwvHhTx6q/x5r9xm+agrQ92ebw3w8y8IJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKvb5Bqkn+D6o1t+7mIKvEK0gNCjQH1a/+MGZpxBUySY3peW6CfkY1Cib5rNJPDU8om9AR71mqaMSNn+Urz8iZVYYkjLV9Ckmu/u7IaGTMNApsZURxbJa9ufif10sxvPEzoZIUuWKLQWEqCcZkfj8ZCs0ZyqkllGlhdyVsTDVlaFOq2BC85ZNXSfui7l3WvYerWuO2iKMMJ3AK5+DBNTTgHprQAgYxPMMrvDnovDjvzseitOQUPcfwB87nDzuHkTc=</latexit>

⌦
<latexit sha1_base64="sY7HfQrqHVb59Lm2UkOpE5N9Nt4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDy2rwcFWp3eZxFOEETuEcAriGGtxDHRrAYATP8ApvXuq9eO/ex6K14OUzx/AH3ucPhuePsA==</latexit>

⌦
<latexit sha1_base64="sY7HfQrqHVb59Lm2UkOpE5N9Nt4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoMegF48RzAOSJcxOZpMhszPLTK8QQj7CiwdFvPo93vwbJ8keNLGgoajqprsrSqWw6PvfXmFtfWNzq7hd2tnd2z8oHx41rc4M4w2mpTbtiFouheINFCh5OzWcJpHkrWh0N/NbT9xYodUjjlMeJnSgRCwYRSe1uhpFwm2vXPGr/hxklQQ5qUCOeq/81e1rliVcIZPU2k7gpxhOqEHBJJ+WupnlKWUjOuAdRxV1S8LJ/NwpOXNKn8TauFJI5urviQlNrB0nketMKA7tsjcT//M6GcY34USoNEOu2GJRnEmCmsx+J31hOEM5doQyI9ythA2poQxdQiUXQrD88ippXlSDy2rwcFWp3eZxFOEETuEcAriGGtxDHRrAYATP8ApvXuq9eO/ex6K14OUzx/AH3ucPhuePsA==</latexit>

Figure 1: Hierarchy of Parameters. An arrow from parameter x to parameter y means
y ≤ f(x) for some polynomial f . Results marked ? indicates the ones considered in this
paper. Results marked ?? appeared in [32], and marked ⊗ appeared in [30]. See Section 2
and [32] for definitions.

In particular, they showed that the Connected Vertex Cover problem admits an
α-approximate polynomial kernel for every α > 1. We believe that their result provides a
promising starting point towards a comprehensive study on approximate kernelizations
for Connected Vertex Cover, with the aim being the replication of the success
enjoyed by Vertex Cover in the domain of kernelization. Consequently, we consider
the question of designing α-approximate kernelizations for Connected Vertex Cover
in a systematic manner by considering as our parameter, the deletion distance of the given
graph to well understood super classes of edgeless graphs. We point out that we are not
the first to attempt this. Krithika et al. [30] obtained a PSAKS for this problem when
parameterized by the deletion distance of the input graph to the class of split graphs. Our
results generalize their result and also provide unified approximate kernelizations for this
problem with respect to several parameters, including the deletion distance of the input
graph to the class of split graphs and cographs.

3



1.1 Our results and significance of the chosen parameterizations

The parameters we consider in this paper are the deletion distances of the input graph
to (a) bounded treewidth graphs, (b) split graphs or cographs, and (c) chordal graphs.
Since an edgeless graph is contained in all of these graph classes, it follows that all
of our parameters are upper bounded by the minimum vertex cover (note the removal
of the connectivity requirement) in any given graph. Clearly, the size of the smallest
vertex cover is in turn upper bounded by the size of the smallest connected vertex cover.
Consequently, all our parameters are upper bounded by the standard parameter for
Connected Vertex Cover, the solution size. Moreover, since the classes of bounded
treewidth graphs, cographs, and chordal graphs are all pairwise incomparable, it follows
that our parameters are also pairwise incomparable. See Figure 1 for a hierarchy of the
parameters.

Parameterization by deletion distance to bounded treewidth graphs. One of our
first two results concerns PSAKS for Connected Vertex Cover parameterized by the
deletion distance to graphs with treewidth η (Section 2 contains the formal definitions
of a PSAKS). In our first result, we demonstrate the existence of something stronger –
a time efficient PSAKS for a more general problem which we call CVC(G-Deletion),
defined as below. Here, G is a fixed hereditary graph class.

Input: A graph G, a vertex set S of size k such that G− S ∈ G, integer p.
Parameter: k
Problem: Does G have a connected vertex cover of size at most p?

CVC parameterized by G-Deletion (CVC(G-Deletion))

Theorem 1. Suppose that a graph class G is polynomial-time recognizable. For every
0 < ε < 1, CVC(G-Deletion) admits a PSAKS with kO(1/ε) vertices if Connected
Vertex Cover has a PTAS on the graph class G + 1 · v. Moreover, if this PTAS is an
Efficient PTAS, then the PSAKS is a time efficient PSAKS.

The class G + 1 · v is simply the class of all graphs from which a single vertex can be
removed to obtain a graph in G. We refer the reader to [37] for the definitions of PTAS
and Efficient PTAS. Now, as a consequence of Theorem 1 and the fact that Connected
Vertex Cover has a linear time algorithm on graphs of constant treewidth, we have
our second result.

Corollary 1. For every fixed η, CVC(η-transversal) has a time efficient PSAKS
with kO(1/ε) vertices.

This result provides an interesting contrast to the result of Cygan et al. [9] which rules
out polynomial kernelizations even for Vertex Cover (with no connectivity requirements)
parameterized by the deletion distance to treewidth η graphs (for η > 1).

Parameterization by deletion distance to chordal graphs. For our third result, we
consider the parameterization by the deletion distance of the input graph to another class
of graphs which is incomparable with both bounded treewidth and bounded diameter
graphs. This is the class of chordal graphs. The central idea driving this result is a new
reduction rule for Connected Vertex Cover, the exhaustive application of which

4



leaves us with an equivalent instance of CVC(η-transversal) for an appropriate η
depending only on ε. By combining this reduction rule with Corollary 1, we obtain the
following result.

Theorem 2. CVC(Chordal-Del) has a time efficient PSAKS with kO(1/ε) vertices.

Parameterization by deletion distance to split graphs or cographs. After our
result on CVC(Chordal-Del), we obtain a PSAKS for Connected Vertex Cover
parameterized by the deletion distance of the input graph to the class of split graphs and
cographs. More specifically, we consider the parameter |S| such that every connected
component of G− S is either a split graph or a cograph.

Corollary 2. Connected Vertex Cover admits a time efficient PSAKS when pa-
rameterized by deletion distance to a graph whose connected components are either split
graph or cograph.

While the result in the case of split graphs provides an alternate proof to the one given
by Krithika et al. [30], our PSAKS for Connected Vertex Cover parameterized by
the deletion distance to cographs is the first such result. Finally, we prove that our three
main results can in fact be unified under a single even stronger parameterization which
is the deletion distance of the input graph to the class of graphs where every connected
component is either a treewidth-η graph or a chordal graph or a cograph.

Theorem 3. For every fixed η ∈ N, Connected Vertex Cover parameterized by the
size k of a modulator to the class of graphs where each connected component is a cograph
or a chordal graph or a graph of treewidth at most η admits a time efficient PSAKS with
kO(1/ε) vertices.

When this deletion set is part of the input we can directly utilize our framework to
also encapsulate graph classes which are significantly more general than classes comprising
graphs which have a small deletion distance to only one of {tw-η,Chordal,Cograph}. For
instance, one can easily observe the existence of graphs from which an unbounded number of
vertices must be deleted in order to move them into any one of {tw-η,Chordal,Cograph} but
at the same time only a constant number of vertices need to be deleted from them in order
to obtain a graph where each connected component lies in one of {tw-η,Chordal,Cograph}.
We refer the reader to Section 5 for a more detailed discussion.

Related work on kernelizations for Vertex Cover with respect to parameters
smaller than solution size. Kratsch and Wahlström [28] gave the first (randomized)
polynomial kernelization for Vertex Cover parameterized above the optimum value
of the standard LP relaxation. This result was later strengthened by Kratsch [27] who
parameterized above an even stronger lower bound on the solution, 2LP −MM, where
LP denotes the optimum value of the standard LP relaxation and MM denotes the size
of the maximum matching in the input graph. Majumdar et al. [33] considered as their
parameter the deletion distance to graphs of degree 2 and to cluster graphs where each
clique has bounded size. Fomin and Strømme [18] considered the deletion distance to
pseudo-forests, which are graphs where every connected component has at most one cycle.
They also showed that parameterizing Vertex Cover by the deletion distance even
to cactus graphs is unlikely to lead to a polynomial kernel. More recently, Kratsch and
Hols [23] generalized the positive results of [18, 33] by choosing as their parameter the

5



deletion distance of the input graph to d-quasi-forests, which are graphs where every
connected component has a set of at most d vertices whose deletion leaves a forest. Finally,
Bougeret and Sau [3] focussed on the deletion distance to graphs of treedepth c, for any
fixed constant c, and obtained a polynomial kernel for Vertex Cover.

2 Preliminaries

We use [r] to denote the set {1, 2, . . . , r}.
Graph theoretic preliminaries. For ` ∈ N, we denote by P` the path on ` vertices.
All graphs studied in this paper are undirected. A graph is a cluster graph if each of its
connected components is a clique. A graph is a co-cluster graph if its complement is a
cluster graph. A graph is a split graph if its vertex set can be partitioned into two sets one
inducing a clique and the other inducing an independent set. A graph is called a cograph
if it has no induced P4. A graph is called chordal if it has no induced cycle of length more
than 3. Given an undirected connected graph, for every pair of vertices u, v ∈ V (G), we
use dist(u, v) to denote the length of a shortest path from u to v. The diameter of G is
max{u,v}∈(V (G)

2 ) dist(u, v). In other words, the diameter of a graph is the largest among all

shortest distances between any pair of vertices. Given a graph G and vertex set X, we
define the operation of identifying the set X as the construction of the following graph
G′. The vertex set of G′ is V (G′) = V (G) \X ∪ {x̂}, where x̂ is a new vertex not in G.
The edges of G′ are defined as follows. For every u, v ∈ V (G) \X, if uv ∈ E(G), then
uv ∈ E(G′) as well. For every u ∈ V (G) \X and v ∈ X, if uv ∈ E(G), then ux̂ ∈ E(G′).
We ignore all edges of G with both endpoints in X. We introduce and define the following
notation that we will use throughout the rest of the paper. We use cw(G) to denote the
cliquewidth of the graph G (see [5] for the definition of cliquewidth).

Definition 1. Let G be a graph class. For r ∈ N, we denote by G + r · v the class of
graphs in which there is a set of at most r vertices whose deletion results in a graph from
G. We denote by CC(G) the class of all graphs whose connected components lie in G and
by CC(G) + r · v the class of graphs in which there is a set of at most r vertices whose
deletion results in a graph where every connected component is in G.

Let S ⊆ V (G) be a set of vertices such that G − S ∈ G. Then we say that S is a
G-deletion set of G.

Tree Decomposition and Treewidth. Let G be a graph. A tree decomposition of G is
a pair (T,X = {Xt}t∈V (T )) where T is a tree and X is a collection of subsets of V (G) such
that (a) ∀e = uv ∈ E(G),∃t ∈ V (T ) : {u, v} ⊆ Xt and (b) ∀v ∈ V (G), T [{t | v ∈ Xt}] is
a non-empty connected subtree of T . The width of (T,X ) is defined as max{|Xt| − 1 |
t ∈ V (T )} and the treewidth of G is the minimum width over all tree decompositions
of G and is denoted by tw(G). An η-transversal of a graph G is a subset X such that
tw(G−X) ≤ η. To perform dynamic programming over tree decomposition, we consider
nice tree decomposition that is a tree decomposition satisfying some specific properties. Due
to Cygan et al. [8], given a tree decomposition of width η, there exists a polynomial-time
algorithm that converts the given tree decomposition into a nice tree decomposition of
width η in polynomial-time.

6



Definition 2. [Nice Tree Decomposition] Let G be a graph. A tree decomposition T =
(T,X = {Xt}t∈V (T )) is said to be a nice tree decomposition if it is rooted, every node has
at most two children, and each of its nodes are of one of the following types.

• Root node: If r is the root node of T , then Xr = ∅. Informally, the bags
corresponding to the root node is an empty bag.

• Leaf node: If t ∈ V (T ) is a leaf node of T , then Xt = ∅. Informally, the bag
corresponding to leaf nodes are also empty bags.

• Introduce node: Suppose that t2 is the only child of t1 in T . Then, t1 is called
an introduce node when there exists u /∈ Xt2 such that Xt1 = Xt2 ∪ {u}. Informally
speaking, an introduce node adds a new vertex.

• Forget node: Suppose that t2 is the only child of t1 in T . Then, t1 is called a forget
node when there exists u ∈ Xt2 such that Xt1 = Xt2 \ {u}. Informally speaking, a
forget node removes a vertex.

• Join node: Let t has two children t1 and t2. Then, t is called a join node if
Xt = Xt1 = Xt2. Informally, a join node joins two bags with equal contents.

We also provide the definition of clique tree decomposition that we use later in our
paper.

Definition 3. [Clique Tree Decomposition] A tree decomposition T = (T,X = {Xt}t∈V (T ))
of a graph G is called a clique tree decomposition of G if it is a valid tree decomposition
of G, and for all t ∈ V (T ), G[Xt] induces a clique in G. Informally, a clique tree
decomposition of a graph is a valid tree decomposition every bag of which induces a clique.

Theorem 4 ( [20]). The number of maximal cliques of a chordal graph is upper bounded
by a polynomial in the size of the graph, and can be enumerated in polynomial-time. These
maximal cliques form a clique tree decomposition of a chordal graph. Furthermore, this
clique tree decomposition of a chordal graph can also be obtained in polynomial-time.

Parameterized algorithms and kernels. A parameterized problem Π is a subset of
Γ∗×N for some finite alphabet Γ. An instance of a parameterized problem is a pair (x, k),
where k is called the parameter and x is the input. We assume that k is given in unary
and without loss of generality, k ≤ |x|. The notion of kernelization is formally defined as
follows.

Definition 4. [Kernelization] Let Π ⊆ Γ∗ × N be a parameterized problem and g be a
computable function. We say that Π admits a kernel of size g if there exists an algorithm,
referred to as a kernelization (or a kernel) that, given (x, k) ∈ Γ∗ × N, outputs in time
polynomial in |x|+ k, a pair (x′, k′) ∈ Γ∗ × N such that

(a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

(b) max{|x′|, k′} ≤ g(k).

When g(k) = kO(1), we say that Π admits a polynomial kernel.

Parameterized optimization problems and approximate kernels.

7



Definition 5. [32] A parameterized optimization (minimization or maximization) problem
is a computable function Π : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem Π are pairs (I, k) ∈ Σ∗ × N,
and a solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of the
solution s is Π(I, k, s).

Since the problems we deal with in this paper are all minimization problems, we state
some of the definitions only in terms of minimization problems when the definition for
maximization problems is analogous. As an illustrative example, we provide the definition
of the parameterized optimization version of Connected Vertex Cover parameterized
by the solution size (see [32]). This is a minimization problem, where the optimization
function CV C : Σ∗ × N× Σ∗ → R ∪ {∞} is defined as follows.

CV C(G, k, S) =

{
∞ if S is not a connected vertex cover of G,

min{|S|, k + 1} otherwise.

Definition 6. [32] For a parameterized minimization problem Π, the optimum value of
an instance (I, k) ∈ Σ∗ × N is OPTΠ(I, k) = min s∈Σ∗

|s|≤|I|+k
Π(I, k, s).

Consequently, in the case of Connected Vertex Cover above, we define OPT(G, k) =
minS⊆V (G) CV C(G, k, S). We now recall other relevant definitions from [32] regarding
approximate kernels.

Definition 7. [32] Let α ≥ 1 be a real number and Π be a parameterized minimization
problem. An α-approximate-polynomial-time preprocessing algorithm A for Π is a pair of
polynomial-time algorithms. The first one is called the reduction algorithm, and computes
a map RA : Σ∗ × N → Σ∗ × N. Given as input an instance (I, k) of Π the reduction
algorithm outputs another instance (I ′, k′) = RA(I, k).

The second algorithm is called the solution lifting algorithm. This algorithm takes
as input an instance (I, k) ∈ Σ∗ × N of Π, the output instance (I ′, k′) of the reduction
algorithm, and a solution s′ to the instance (I ′, k′). The solution lifting algorithm works
in time polynomial in |I|,k,|I ′|,k′ and |s′|, and outputs a solution s to (I, k) such that the
following holds.

Π(I, k, s)

OPT (I, k)
≤ α · Π(I ′, k′, s′)

OPT (I ′, k′)
.

The size of a polynomial-time preprocessing algorithm A is a function sizeA : N→ N
defined as sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k), I ∈ Σ∗}.
Definition 8. [32] [Approximate Kernelization] An α-approximate kernelization (or α-
approximate kernel) for a parameterized optimization problem Π, and real α ≥ 1, is
an α-approximate-polynomial-time preprocessing algorithm A for Π such that sizeA is
upper bounded by a computable function g : N→ N. We say that A is an α-approximate
polynomial kernelization if g is a polynomial function.

Definition 9. [32] [Approximate Kernelization Schemes] A polynomial size approximate
kernelization scheme (PSAKS) for a parameterized optimization problem Π is a family
of α-approximate polynomial kernelization algorithms, with one such algorithm for every
α > 1.

8



Now, an approximate kernelization scheme can be of different types. We describe them
as follows.

Definition 10. [Time Efficient PSAKS] A PSAKS is said to be time efficient when both
the followings hold.

• The running time of the reduction algorithm is upper bounded by f(α) · |I|c for a
function f on α and some constant c independent of |I|, k and α.

• The running time of the solution lifting algorithm is upper bounded by g(α) · |I|c for
a function g on α and some constant c independent of |I|, k and α.

Definition 11. [Size Efficient PSAKS] A size efficient PSAKS or simply an efficient PSAKS
(EPSAKS) is a PSAKS such that the size of the output instance when run on (I, k) with
approximation parameter α can be upper bounded by f(α)kc for a function f on α and a
constant c independent of |I|, k and α.

For further details on approximate kernelizations, we refer the reader to [32].

3 Connected Vertex Cover parameterized by G-Deletion

Number

This section is devoted to the proof of our main theorem, Theorem 1. Recall that the
decision version of CVC(G-Deletion) is formally defined as follows.

Input: A graph G, a vertex set S of size k such that G− S ∈ G, integer p.
Parameter: k
Problem: Does G have a connected vertex cover of size at most p?

CVC parameterized by G-Deletion (CVC(G-Deletion))

Note that in our problem description, we explicitly require a G-deletion set to be given
with the input. The formal definition of the parameterized optimization version of this
problem is as follows, where the input is the tuple (G,S, k).

CV C-G-Del(G,S, k, T ) =


−∞ if |S| > k or G− S /∈ G,

∞ if T is not a connected vertex cover of G,

|T | otherwise.
We use −∞ to denote the malformed input instances and ∞ to denote the infeasible

solutions. We need to assume that the recognition problem for the graph class G is
polynomial-time solvable in order to identify any malformed input instance. We let
OPT(G) denote the size of a smallest connected vertex cover of a connected graph G.
When G is clear from the context, we simply write OPT. The following observation is a
property of optimal connected vertex covers we will use throughout the paper.

Observation 1. Let G be a connected graph and S ⊆ V (G). Let Ĝ be the graph obtained
from G by identifying the vertex set S into û. Then, OPT(Ĝ) ≤ OPT(G).

9



Proof. Let X? be an optimal connected vertex cover of the connected graph G. By
construction of Ĝ, we know that NG(S) = NĜ(û). If X? ∩ S = ∅, then we know that

NG(S) ⊆ X? and X? is still a connected vertex cover of Ĝ. On the other hand, if
X? ∩ S 6= ∅, then we construct X̂ = (X? \ S) ∪ û. Clearly, all edges of G incident
to S are incident to û. Furthermore, identifying a set of vertices into a single vertex
preserves connectivity and |X̂| ≤ |X?|. So, X̂ is still a connected vertex cover of Ĝ. Hence,
OPT(Ĝ) ≤ |X̂| ≤ |X?| = OPT(G).

The above observation guarantees that the identification of a set of vertices does not
increase the optimal solution size. Using Observation 1, we prove the following lemma
that will be crucial for the main theorem of this section, i.e. Theorem 1. The following
lemma guarantees that whenever the deletion set S (this means that G − S ∈ G) is
known to be sufficiently small compared to a 2-approximate connected vertex cover of
G, we can compute a (1 + ε)-approximate connected vertex cover of G containing S in
polynomial-time for every fixed ε > 0. Note that α = 1 + ε and throughout the paper, we
use α and (1 + ε) interchangeably.

Lemma 1. Let 0 < ε < 1 and G be a connected graph and S ⊆ V (G) such that G−S ∈ G.
If |S| ≤ ε

6
|L| where L is a 2-approximate connected vertex cover of G, then there exists

a polynomial-time algorithm B which takes as input G and S and satisfies the following
properties.

1. If Connected Vertex Cover admits a PTAS on the graph class G + 1 · v, then
Algorithm B runs in time f(1/ε)ng(1/ε) for some computable functions f and g and
outputs a connected vertex cover of G that contains S and whose size is at most
(1 + ε) OPT(G).

2. If Connected Vertex Cover admits an EPTAS on the graph class G + 1 · v,
then Algorithm B runs in time f(1/ε)nO(1) for some computable function f and
outputs a connected vertex cover of G that contains S and whose size is at most
(1 + ε) OPT(G).

Proof. As |S| ≤ ε
6
|L| where L is a 2-approximate connected vertex cover of G, we have

that |S| ≤ ε
3
OPT(G). Let Ĝ be the graph obtained by identifying the vertex set S into a

single vertex û.
If Connected Vertex Cover admits an EPTAS in Ĝ (Condition 2 holds true),

then we know that given 0 < ε < 1, there exists an algorithm B that runs in time
f(1/ε)nO(1) and outputs a connected vertex cover X? of size at most (1 + ε

3
)OPT(Ĝ).

If Connected Vertex Cover admits a PTAS in Ĝ (Condition 1 holds true), then
we know that given 0 < ε < 1, there exists an algorithm B that runs in time f(1/ε)ng(1/ε)

and outputs a connected vertex cover X? of size at most (1 + ε
3
)OPT(Ĝ).

We know by Observation 1 that OPT(Ĝ) ≤ OPT(G). Let us consider the set X =
(X? \ {û}) ∪ S. As NĜ(û) = NG(S), we know that the set of edges of G incident on S are
covered by X. So, irrespective of whether û ∈ X? or û /∈ X?, we have the fact that X is a
vertex cover of G. But G[X] need not be a connected subgraph of G. First, we have to
ensure that there are at most |S|+ 1 connected components in G[X]. There are two cases.

10



1. First, we consider the case when û ∈ X? and |X?| ≥ 2, we know that û has at least
one neighbor in X?. So, at least one vertex of S has at least one neighbor in X?\{û}.
Otherwise, X? = {û} and in such situation, we have X = S. Hence, irrespective of
|X| = 1 or |X| ≥ 2, the graph G[X] has at most |S| connected components.

2. Now, we consider the case when û /∈ X?. Then, we know that X = (X? \ {û})∪S =
X? ∪ S. So, G[X] has at most |S|+ 1 connected components as G[X?] is already
connected.

Now, we have that G[X] has at most |S|+1 connected components. In order to convert
X into a connected subgraph of G, we now add some additional vertices from G − X.
We know that G−X is an independent set and G is connected. If G[X] has more than
one connected component, there exists a vertex v ∈ V (G−X) such that v is adjacent to
at least two different connected components of G−X. We find such a vertex and add
it to X. We continue this process until we have that X induces a connected subgraph.
As there are at most |S|+ 1 connected components in G[X], we will need to repeat this
step at most |S| times. So, the size of the final connected vertex cover we generate is at
most |X|+ |S| ≤ |X?|+ 2|S| ≤ (1 + ε

3
)OPT(Ĝ) + 2|S| ≤ (1 + ε

3
)OPT(G) + 2ε

3
OPT(G) =

(1 + ε)OPT(G).
Now note that if Condition 2 holds true, then the running time of the algorithm to

compute X? is f(1/ε)nO(1) + nO(1). On the other hand if Condition 1 holds true, then
the running time of the algorithm to compute X? is f(1/ε)ng(1/ε) + nO(1). All subsequent
steps of our algorithm run in polynomial-time. As a result, this proves our claimed bounds
on the running times and completes the proof of the lemma.

Now, we consider the case when |S| > (ε/6)|L|, where L is a 2-approximate connected
vertex cover of G. In this case, we have that |S| > (ε/6)OPT(G). So, we know that
OPT(G) < d6k/εe. In that case, we can modify the PSAKS provided by Lokshtanov et
al. [32], but with parameter value d6k/εe. We give a proof of this in the following lemma.

Lemma 2. Let (G,S, k) be the given instance of CVC(G-Deletion). Given a 2-
approximate connected vertex cover of G, say L, if |S| > (ε/6)|L|, then one can compute
a graph G′ in polynomial-time such that the following statements hold.

1. |V (G′)| = kO(1/ε),

2. G′ has a connected vertex cover of size at most (1 + ε)OPT.

3. Every inclusion-wise minimal connected vertex cover of G′ is a connected vertex
cover of G.

Proof. If |S| > ε
6
|L|, then it follows that |S| > ε

6
OPT. That is, OPT < d6k/εe. The graph

G′ is the output of a slightly modified version of the PSAKS for Connected Vertex
Cover parameterized by solution size [32] but with the slightly different parameter value
k′ = d6k/εe. Since, k′ is linearly bounded in k, we will be able to conclude that |V (G′)| is
kO(1/ε). We present a brief sketch of the construction of G′ for the sake of completeness.

Let H denote the set of vertices of G whose degree is at least k′ + 1. Observe that
every vertex cover of G of size at most k′ must contain every vertex in H. Moreover, since
G has a vertex cover of size OPT and OPT is upper bounded by k′, we conclude that
|H| ≤ k′.

11



Let R denote the set of vertices in V (G) \H which have at least one neighbor which
is not in H. Since all such vertices have degree at most k′ and G has a vertex cover of
size at most k′, we conclude that |R| ≤ (k′)2.

Let I = V (G) \ (H ∪ R). By definition, G[I] is an independent set. The PSAKS of
Lokshtanov et al. [32] uses as a subroutine an efficient algorithm that computes a set
I ′ ⊆ I of size (k′)O(1/ε) such that G′ = G[I ′ ∪H ∪R] satisfies the properties required by
the lemma. This subroutine essentially does the following. First of all, for every h ∈ H,
if h has at most k′ + 1 neighbors in I, then it marks all of these neighbors. Otherwise,
it marks an arbitrarily chosen set of k′ + 1 neighbors of h in I. This is done simply to
preserve the status of vertices in H as vertices of degree at least k′ + 1. It then repeatedly
executes the following step as long as possible. If there is an unmarked vertex v ∈ I such
that v is neighbor to at least 1/ε distinct connected components of G[H], then mark this
vertex, contract all edges incident on v, and add the resulting new vertex to H. Observe
that this will reduce the number of connected components of G[H] by at least 1/ε− 1 and
so this step will not be repeated more than ε · |H| times. When this procedure terminates,
we go over the remaining unmarked vertices in I and for every set of vertices with the same
neighborhood in H, mark one of these vertices and remove all others. Since any surviving
vertex has degree at most 1/ε into the (modified) set H, the number of vertices marked
in this procedure is (k′)O(1/ε) these vertices form the set I ′. Finally, we add pendants to
every vertex in H to force them into every connected vertex cover of G′. It follows from
the definition of I ′ that a connected vertex cover Z of G of size OPT can be converted
to one of size at most (1 + ε)|Z| for G′ and consequently, every inclusion-wise minimal
connected vertex cover of G′ (which must be disjoint from the pendant vertices added in
the end) is also a connected vertex cover of G. This completes the proof of the lemma.

We are now ready to combine Lemma 1 and Lemma 2 to obtain Theorem 1.

Theorem 1. Suppose that a graph class G is polynomial-time recognizable. For every
0 < ε < 1, CVC(G-Deletion) admits a PSAKS with kO(1/ε) vertices if Connected
Vertex Cover has a PTAS on the graph class G + 1 · v. Moreover, if this PTAS is an
Efficient PTAS, then the PSAKS is a time efficient PSAKS.

Proof. Let (G,S, k) be the given instance of CVC(G-Deletion), where G − S ∈ G.
We first state the approximate kernelization algorithm. Recall that the approximate
kernelization algorithm must have two parts. The first part is the Reduction Algorithm
and the second is the Solution Lifting Algorithm.

• Reduction Algorithm: We use the algorithm by Savage [35] to compute a 2-
approximate connected vertex cover of G, call it L. If |S| ≤ ε

6
· |L|, then we return a

trivial instance (of constant size) (G′, S, k′) of CVC(G-Deletion) and otherwise,
we invoke Lemma 2 to compute the subgraph G′ and return the instance (G′, S, k′),
where k′ = d6k/εe. Note that if S is not completely contained in G′, then we may
simply add it back to G′. Since G′ is a subgraph of G and G is hereditary, we
know that S is also a G-deletion set of G′. Clearly, the size of the output satisfies
the required bound. It only remains to prove the correctness of the reduction by
providing a solution lifting algorithm.

• Solution Lifting Algorithm: Recall that the solution lifting algorithm has access
to G. We may also assume without loss of generality that it has access to the set L,

12



which was computed by the reduction algorithm. Let Q be the given c-approximate
solution for the instance output by the reduction algorithm. We may assume without
loss of generality that Q is inclusion-wise minimal.

If |S| ≤ ε
6
· |L|, then we ignore the set Q and invoke Lemma 1 to compute and

return a (1 + ε)-approximate connected vertex cover of G. On the other hand, if
|S| > ε

6
· |L| we simply return Q and use Lemma 2 (2) and Lemma 2 (3) to conclude

that |Q| ≤ c(1 + ε) ·OPT.

There are two cases, one where Connected Vertex Cover admits a PTAS
and the other where Connected Vertex Cover admits an EPTAS on every graph
G ∈ G + 1 · v. In each case, we have managed to convert a c-approximate solution of G′ to
a c(1 + ε)-approximate solution of G. Now, we prove the items in the given order.

1. Suppose that Connected Vertex Cover admits a PTAS on G ∈ G + 1 · v
(Condition 1 holds). If |S| ≤ ε

6
|L|, then by Lemma 1, we can find a connected vertex

cover of size at most (1 + ε)OPT(G) in f(1/ε)ng(1/ε) time. So, based on that we
have a PSAKS running in f(1/ε)ng(1/ε) time.

2. On the other hand, suppose that Connected Vertex Cover admits an EPTAS
on G ∈ G + 1 · v. If |S| ≤ ε

6
|L|, we know by Lemma 1 that there exists an algorithm

that runs in time f(1/ε)nO(1) that computes a (1 + ε)-approximate connected vertex
cover of G. So, in this case, the reduction algorithms and solution lifting algorithms
run in f(1/ε)nO(1) time. Hence, we have a time efficient PSAKS.

This completes the proof of the theorem.

3.1 Connected Vertex Cover parameterized by η-Transversal
Number

Now, we consider the problem CVC(η-transversal) whose decision version is as follows.

Input: A graph G, an η-transversal S of size k, integer p.
Parameter: k
Problem: Does G have a connected vertex cover of size at most p?

CVC parameterized by η-transversal (CVC(η-transversal))

The optimization version of CVC(η-transversal) is as follows.

CV C-η-tvl(G,S, k, T ) =


−∞ if |S| > k or tw(G− S) > η,

∞ if T is not a connected vertex cover of G,

|T | otherwise.
We know that Connected Vertex Cover is polynomial-time solvable on graphs of

bounded treewidth. Let (G,S, k) be a given instance where |S| ≤ k and tw(G− S) ≤ η
for some constant η. So, we have Corollary 1 as a consequence of Theorem 1.

Corollary 1. For every fixed η, CVC(η-transversal) has a time efficient PSAKS
with kO(1/ε) vertices.

13



Proof. It is known due to Flum and Grohe [16] that there exists a polynomial-time
algorithm that can check if a graph has constant treewidth. From the assumption,
tw(G − S) ≤ η. Let F = G − S and consider the graph F + 1 · v. We know that
tw(F + 1 · v) ≤ η + 1. We know from Courcelle’s Theorem [6] that there exists a linear
time algorithm that outputs a minimum connected vertex cover of F + 1 · v. Now, using
Theorem 1, we see that CVC(η-transversal) admits a time efficient PSAKS with
kO(1/ε) vertices.

3.2 Connected Vertex Cover parameterized by Chordal Dele-
tion Number

Now, we consider the following problem CVC(Chordal-Del) whose decision version is
stated as follows.

Input: A graph G, a chordal vertex deletion set S of size k, integer p.
Parameter: k
Problem: Does G have a connected vertex cover of size at most p?

CVC parameterized by chordal deletion number (CVC(Chordal-Del))

Note that as in the case of CVC(G-Deletion), we explicitly require a chordal vertex
deletion set to be provided as part of the input. However, this requirement can be removed
and replaced with an execution of the polynomial-time factor-OPTO(1) approximation
algorithm for Chordal Vertex Deletion of Jansen and Pilipczuk [25].

The formal definition of the parameterized optimization version of this problem is as
follows:

CV C-chordal(G,S, k, T ) =


−∞ if |S| > k or some component of G− S /∈ Chordal,

∞ if T is not a connected vertex cover of G,

|T | otherwise.

Let η = 2 + d1
ε
e. We apply the following reduction rule.

Reduction Rule 1. Let (G,S, k) be the given instance of CVC(Chordal-Del), where
G− S is a chordal graph. Let C ⊆ V (G \ S) such that |C| ≥ η and G[C] is a maximal
clique. Contract the edges of G[C] to obtain a new vertex uC and add a pendant vertex vC
adjacent to uC. Let G′ denote the graph resulting from this operation.

The intuition behind this reduction rule comes from the fact that since any vertex cover
must contain all but at most one vertex of this clique, we can also force the remaining
vertex of the clique (if one exists) into the solution at the cost of a small but manageable
error without violating the connectivity requirement.

Lemma 3. Let G′ be the resulting graph after applying Reduction Rule 1 on G. Then,
there is a polynomial-time algorithm that, given a c-approximate connected vertex cover
of G′, returns a connected vertex cover of G whose size is at most β · OPT(G) where
β = max{c, (1 + ε)}.

Proof. Let D′ be the given connected vertex cover of G′ and let OPT′ denote the size of
a smallest connected vertex cover of G′. Recall that OPT = OPT(G) denotes the size

14



of a smallest connected vertex cover of G. Note that uC ∈ D′ because it has a pendant
neighbor vC . In addition, since uC is the unique neighbor of vC , we may assume without
loss of generality that vC /∈ D′. We now argue that D = (D′ \ {uC}) ∪ C is the required
connected vertex cover of G. It is straightforward to see that D is a connected vertex
cover of G.

It remains to prove that |D| ≤ β ·OPT. Since any vertex cover of G must contain at
least |C|− 1 vertices of the clique C, we infer that OPT ≥ OPT′+ |C|− 2 = OPT′+ η− 2.
And by definition, |D| ≤ |D′|+ η − 1. Combining these two inequalities, we obtain the
following.

|D|
OPT

≤ |D′|+ η − 1

OPT′ + η − 2
≤ max

{
|D′|

OPT′
,
η − 1

η − 2

}
≤ max

{
c, (1 + ε)

}
= β

Hence we conclude that |D| ≤ β ·OPT. This completes the proof of the lemma.

When Reduction Rule 1 is not applicable, it must be the case that all the maximal
cliques of G− S are of size at most η = 2 + d1/εe. This gives us the following lemma.

Lemma 4. (See [20, 36]) If G has a set Z such that G− Z is chordal and G− Z has no
cliques of size η, then Z is also an (η − 2)-transversal for G.

Proof. The lemma follows from the fact that the treewidth of the chordal graph G− Z is
upper bounded by the size of the maximum clique in G− Z (see [20]), which is at most
η − 2. As a result, Z is also an (η − 2)-transversal of G.

Now, combining Corollary 1, Lemma 3 and Lemma 4, we are ready to prove Theorem 2.

Theorem 2. CVC(Chordal-Del) has a time efficient PSAKS with kO(1/ε) vertices.

Proof. Let (G,S, k) be the given instance of the optimization version of CVC(Chordal-
Del). Recall that η = 2 + d1

ε
e. We apply Reduction Rule 1 exhaustively on G − S to

obtain a graph G′ such that S is a chordal vertex deletion set of G′ and G′ − S has no
cliques of size η. Moreover, it follows from the description of the rule that if G is connected,
so is G′. Observe that Reduction Rule 1 is approximation preserving. Hence, by Lemma 3,
it follows that any given c-approximate connected vertex cover of G′ can be converted to a
connected vertex cover of G whose size is at most β ·OPT(G) in polynomial-time, where
β = max{c, (1 + ε)}. In addition, from Lemma 4, we know that tw(G− S) ≤ η, implying
that we may now treat (G′, S, k) as a meaningful instance of CVC(η-transversal). Also
from Theorem 4, the number of maximal cliques in a chordal graph is polynomially upper
bounded. Furthermore, the clique tree decomposition can also be found in polynomial-time.
Hence, all these procedures now run in polynomial-time.

We now invoke Corollary 1 and return as our output, the output of the associated
PSAKS when given the instance (G′, S, k) as input. The correctness as well as the upper
bound on the size of the returned output follow from those of Corollary 1. We note that
even if k is the size of a smallest chordal vertex deletion set of the original input graph
G and S is only a factor-OPTO(1) approximation, it follows that the size of the output
is still bounded polynomially in k, since |S| would be upper bounded polynomially in k.
This completes the proof of the theorem.

15



4 Connected Vertex Cover parameterized by the

deletion distance to split graphs or cographs

In this section we present a PSAKS for Connected Vertex Cover parameterized by
the size of a minimum deletion set into a disjoint union of split graphs and cographs.

Lemma 5. Let G be a graph such that there exists a vertex u such that every connected
component of G− {u} is either a split graph or a cograph. Then, Connected Vertex
Cover is polynomial-time solvable on G. Furthermore, there exists a polynomial-time
algorithm that outputs a smallest connected vertex cover containing u.

Proof. It is sufficient for us to provide a polynomial-time algorithm to solve inputs of
Connected Vertex Cover on the class CC(G) + 1 · v such that G = Split ∪ Cograph.
Recall that the inputs (G, u?) we are interested in, have the property that G− u? ∈ CC(G)
and we are only interested in smallest connected vertex covers of G.

Case 1: G = Split. Consider a graph G in the class G + 1 · v and let u? denote a vertex in
G such that G− u? is a split graph. The proof idea is similar to the way presented
by Krithika et al. [30], but we provide it here for completeness. Let (G, u?) be the
given instance of Connected Vertex Cover and let (C, I) denote the partition
of V (G) \ {u?} into a clique and independent set respectively. We will now construct
a connected vertex cover Z ′ by making a constant number of non-deterministic
choices as follows. Initialize Z ′ := {u?} when we include u? in the vertex cover, and
otherwise we initialize Z ′ = ∅ (when we consider not to include u? in the vertex
cover). Since any vertex cover must pick at least |C| − 1 vertices from C, we guess
whether or not Z contains all of C and in the latter case, we guess the unique
vertex q ∈ C \ Z. In case, we decide not to pick u? in the vertex cover, we pick its
neighbors present in C and I. If the current set Z ′ is a connected vertex cover of G,
then we simply return it. Otherwise, it must be the case that it has two different
components. They can be connected by using the only possible remaining vertex in
C that we might not have picked. So, we add that vertex to Z ′ and check if that
forms a connected vertex cover. If that forms a connected vertex cover, then we
return Z = Z ′, or otherwise we simply return ⊥ to indicate that the graph has no
connected vertex cover.

When G− {u?} has more than one connected component, then u? must always be
there in any connected vertex cover. In such case, let C be a connected component
of G − {u?}. Consider any minimum connected vertex cover A of G. Consider
AC = A ∩ (V (C) ∪ {u?}). AC must also be a vertex cover of G[V (C) ∪ {u?}].
Furthermore, AC also must be connected as well since u? is a cut vertex in G[A]
also. In such case, we compute a minimum connected vertex cover AC of each
G[V (C) ∪ {u?}], and finally we put together to get a minimum connected vertex
cover of G.

Case 2: G = Cograph. For the case of cographs, note that they are a subclass of distance-
hereditary graphs and hence have rankwidth 1 [34]. Therefore, Connected Vertex
Cover is polynomial-time solvable on the class CC(G) + 1 · v when G = Cograph, is a
direct consequence of the fact that this problem is expressible in MSO1, the result of

16



Courcelle, Makowsky, and Rotics [7], and the fact that adding a constant number of
vertices to a graph of constant rankwidth keeps the rankwidth of the resulting graph
constant [7, 34]. In fact, by the same result of Courcelle, Makowsky, and Rotics [7],
we can find a smallest connected vertex cover containing u? in polynomial-time. We
note that this argument cannot be used in the previous case since split graphs can
have arbitrarily large rankwidth [7, 34].

Suppose that G− {u?} has one connected component being a split graph and another
connected component being a cograph. Since G is connected, without loss of generality,
we can assume that there are at least two connected components C1 and C2 of G− {u?}
such that there is an edge in G[{u?} ∪ V (C1)] as well as in G[{u?} ∪ V (C2)]. Then any
(smallest) connected vertex cover of G must contain u?. In that case, for each connected
component C, we first compute a minimum connected vertex cover of G[{u?} ∪ V (C)]
containing u?. Then, we compute their union to get a minimum connected vertex cover of
G. This completes the proof of the lemma.

Input: A graph G, a set S ⊆ V (G) of size k such that every connected component
of G− S is either a split graph or a cograph and an integer p.

Parameter: k
Problem: Does G have a connected vertex cover of size at most p?

CVC-Split-Cograph-Deletion

For this problem, we assume the deletion set is provided in the input. The formal
definition of the parameterized optimization version of this problem is as follows:

CV C(G,S, k, T ) =


−∞ if |S| > k or G− S /∈ Split ∪ Cograph,

∞ if T is not a connected vertex cover of G,

|T | otherwise.

Let (G,S, k) be an instance of CVC-Split-Cograph-Deletion. Let Ĝ be the
graph constructed by identifying the vertex set S into a single vertex ŝ. We know from
Lemma 5 that Connected Vertex Cover is polynomial-time solvable on Ĝ. Now,
using Theorem 1 and Lemma 5, we prove Corollary 2.

Corollary 2. Connected Vertex Cover admits a time efficient PSAKS when pa-
rameterized by deletion distance to a graph whose connected components are either split
graph or cograph.

We have designed our kernelization algorithms in Sections 3 and 4 in such a way, that
our lossy kernels can be unified under a single parameterization. Hence, we consider a
single parameterization, the deletion distance of the input graph to the class of graph
where every connected component is either a treewidth-η graph, or a chordal graph, or a
cograph. So, essentially we consider Connected Vertex Cover on CC(G) + k · v when
G = Treewidth-η-Graph ∪ Chordal-Graph ∪ Cographs. We assume that the deletion set S
is given with the input. This assumption is important as no OPTO(1) polynomial-time
approximation algorithm is known to find such a deletion set.

We know that the rankwidth and the cliquewidth of a graph are equivalent. It means
that, if a graph has bounded cliquewidth, then it also has bounded rankwidth and vice

17



versa. Therefore, we first prove the following lemma, which we will use in the proof of
Theorem 3.

Lemma 6. Let η be a constant and G be a connected graph having a vertex u such that
every connected component of G−{u} is either a chordal graph, or a graph with cliquewidth
η. Then, Connected Vertex Cover is polynomial-time solvable on G.

Proof. First, we partition the set of connected components of G− {u} as follows. Let

• D1 be those connected components of G− u that are chordal graphs, and

• D2 be those connected components of G− u that have cliquewidth at most η but
are not in D1.

For every i ∈ {1, 2}, we denote by Gi the graph induced by the vertex set spanned
by the connected components in Di plus the vertex u. As G is connected, without loss
of generality, we can assume that both the graphs G1 and G2 have an edge. So, u is
part of any (optimal) connected vertex cover of G. For every i = {1, 2}, let Bi be a
smallest connected vertex cover of Gi that contains u. We define H by the class of all
connected graphs that contain a vertex whose removal results in a chordal graph. Note
that G1 ∈ H. Suppose that a new vertex w, and an edge wv such that v ∈ V (G1) are
added to G1 (called pendant addition by Escoffier et al. [15]). Even then also G1 − {u}
is a chordal graph. So, H is closed under pendant addition. So, each of the biconnected
components of G1 also has one vertex whose deletion results in a chordal graph. Hence,
all the biconnected components of G1 are also in the graph class H. It is known due to
Lemma 4 of Escoffier et al. [15] that finding a minimum a connected vertex cover and
finding smallest connected vertex cover containing u are polynomially equivalent in G1.
Now, we explain how Connected Vertex Cover is polynomial-time solvable on G1.
The idea is standard and goes along the line of the proof of Theorem 23 by Krithika et
al. [29]. It is known due to Theorem 4 that every chordal graph admits a clique tree
decomposition that can be obtained in polynomial-time. Now, adding u to every bag gives
a valid tree decomposition of G1. Now, we convert this into a nice tree decomposition
of G1. Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of G1. Every bag of this
nice tree decomposition T has at most one vertex whose deletion results in a clique.
Consider a standard dynamic programming over a rooted nice tree decomposition T of
G1. For a node t of T , let Tt be the subtree rooted at t and Vt denotes the union of
all bags rooted at t. Furthermore, let Ht be the subgraph of G1 induced by the vertex
set Vt. For a node t of T , and X ⊆ Xt, and a partition P = {P1, . . . , Pq} of X into
at most |X| parts, let V C[t,X,P] denote a minimum vertex cover Y of Ht such that
Y ∩ Xt = X, and Ht[Y ] has exactly q connected components C1, . . . , Cq where for all
i ∈ [q], Pi = V (Ci) ∩ Xt. Moreover, if X = ∅, then Y is required to be connected in
Ht. So, consider the root node r of a nice tree decomposition. We know that Xr = ∅.
Now, V C[r, ∅, {∅}] is a minimum connected vertex cover of G1. But, every bag has one
vertex whose deletion results in a clique. So, any connected vertex cover of G1 can avoid
at most two vertices from Xt where t ∈ V (T ) (from every bag of T ). Hence, the total
number of valid states per node is |V (G1)| · |Xt|O(1). So, each entry can be computed
in polynomial-time. Hence, Connected Vertex Cover is polynomial-time solvable
on G1. As Connected Vertex Cover and finding a smallest connected vertex cover
containing u are polynomially equivalent in G1, we can find B1 in polynomial-time.

18



We know that cw(G2) ≤ η + 1, we know due to Courcelle’s Theorem [5, 6] that
Connected Vertex Cover is polynomial-time solvable on G2. In fact, due to the
same result by Courcelle [5, 6], a smallest connected vertex cover containing u can also be
computed in polynomial-time in G2. So, B2 can be found in polynomial-time.

Hence, B1 ∪ B2 is an optimal connected vertex cover of G. In this process, we can
solve Connected Vertex Cover in polynomial-time in G.

Note that a graph with treewidth η has cliquewidth at most 3 · 2η−1 [4]. Since cographs
have bounded rankwidth, it has bounded cliquewidth too. Lemma 6 gives a guarantee
that Connected Vertex Cover is polynomial-time solvable on any graph in the graph
class CC(G) + 1 · v with G = tw-η-Graph ∪ Chordal-Graph ∪ Cograph. Now, using the
above lemma (Lemma 6) and Theorem 1, we give a proof of Theorem 3.

Theorem 3. For every fixed η ∈ N, Connected Vertex Cover parameterized by the
size k of a modulator to the class of graphs where each connected component is a cograph
or a chordal graph or a graph of treewidth at most η admits a time efficient PSAKS with
kO(1/ε) vertices.

Proof. Let Ĝ be the graph constructed by identifying the vertex set S into a single vertex
û. Let C be an arbitrary connected component of G−S that has treewidth at most η. Due
to Cornell and Rotics [4], we know that if tw(C) ≤ η, then cw(C) ≤ 3 · 2η−1. So, we have
that every connected component of G− S is either a cograph or a graph with cliquewidth
at most 3 · 2η−1 or a chordal graph. Since cographs also have constant cliquewidth, we
know that every connected component of G− S is either a graph of bounded cliquewidth
or a chordal graph. We know from Lemma 6 that there exists a polynomial-time algorithm
that constructs an optimal connected vertex cover of Ĝ. Now, using Theorem 1, we know
that Connected Vertex Cover parameterized by k admits a time efficient PSAKS
with kO(1/ε) vertices. This completes the proof of our final result.

5 Conclusion

In this paper we obtained the first polynomial size approximate kernelization schemes for
the Connected Vertex Cover problem when parameterized by the deletion distance
of the input graph to the class of cographs, the class of bounded treewidth graphs, and the
class of chordal graphs. Moreover, they are in fact time efficient PSAKSes and this raises
the natural question of whether one can obtain a size efficient PSAKS for Connected
Vertex Cover even when parameterized by solution size. The output of a size efficient
PSAKS is required to be bounded by f(ε) kO(1) instead of kf(ε).

We designed our kernelizations in such a way as to ensure that our results have been
unified under a single parameterization, the deletion distance of the input graph to the
class of graphs where every connected component is either a treewidth-η graph or a
chordal graph or a cograph.

This has allowed our framework to capture graph classes which are significantly more
general than classes which have a small deletion distance to only one of {tw-η,Chordal,Cographs}.
For instance, consider the graph H obtained by taking the disjoint union of n/2 cycles
of length 5 each and n/2 cliques of size 4 each. Observe that the deletion distance of G
to any one of {tw-2,Chordal} is at least n/2. On the other hand, the deletion distance of

19



H to the class of graphs where every connected component is either a treewidth-2 graph
or a chordal graph is 0. Our framework thus allows one to obtain a (1 + ε)-approximate
kernel of constant size for Connected Vertex Cover on H since k = 0.

As a final remark, we point out that in order to generalize our results in this way
for parameterization by deletion distance to {tw-η,Chordal,Cograph} even in the absence
of the deletion set in the input, one must first design a polynomial-time factor-OPTO(1)

approximation algorithm to compute such a deletion set. We leave this as an interesting
problem for future research. Such an algorithm would have interesting implications in the
study of graph modification problems.

References

[1] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin.
On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

[2] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization Lower
Bounds by Cross-Composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

[3] Marin Bougeret and Ignasi Sau. How Much Does a Treedepth Modulator Help to
Obtain Polynomial Kernels Beyond Sparse Graphs? Algorithmica, 81(10):4043–4068,
2019.

[4] Derek G. Cornell and Udi Rotics. On the Relationship Between Clique-Width and
Treewidth. SIAM J. Comput., 34(4):825–847, 2005.

[5] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics, pages
193–242. Elsevier and MIT Press, 1990.

[6] Bruno Courcelle. The Monadic Second-Order Logic of Graphs I: Recognizable Sets
of Finite Graphs. Inform. and Comput., 85:12–75, 1990.

[7] Bruno Courcelle and Mamadou Moustapha Kanté. Graph operations characterizing
rank-width. Discret. Appl. Math., 157(4):627–640, 2009.

[8] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[9] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Micha l Pilipczuk, and Saket
Saurabh. On the Hardness of Losing Width. Theory Comput. Syst., 54(1):73–82,
2014.

[10] Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 68–81, 2012.

[11] Holger Dell and Dieter van Melkebeek. Satisfiability Allows No Nontrivial Sparsifi-
cation unless the Polynomial-Time Hierarchy Collapses. J. ACM, 61(4):23:1–23:27,
2014.

20



[12] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization Lower Bounds
Through Colors and IDs. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014.

[13] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer
Science & Business Media, 2012.

[14] Andrew Drucker. New Limits to Classical and Quantum Instance Compression. SIAM
J. Comput., 44(5):1443–1479, 2015.

[15] Bruno Escoffier, Laurent Gourvès, and Jérôme Monnot. Complexity and approxima-
tion results for the connected vertex cover problem in graphs and hypergraphs. J.
Discrete Algorithms, 8(1):36–49, 2010.

[16] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[17] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019.

[18] Fedor V. Fomin and Torstein J. F. Strømme. Vertex Cover Structural Parameterization
Revisited. In Graph-Theoretic Concepts in Computer Science - 42nd International
Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers,
pages 171–182, 2016.

[19] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and
succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

[20] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals
of Discrete Mathematics, Vol 57). North-Holland Publishing Co., Amsterdam, The
Netherlands, The Netherlands, 2004.

[21] Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A
Completeness Theory for Polynomial (Turing) Kernelization. Algorithmica, 71(3):702–
730, 2015.

[22] Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial
lower bounds for kernelization. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 104–113, 2012.

[23] Eva-Maria C. Hols and Stefan Kratsch. Smaller parameters for vertex cover kernel-
ization. In 12th International Symposium on Parameterized and Exact Computation,
IPEC 2017, September 6-8, 2017, Vienna, Austria, 2017.

[24] Bart M. P. Jansen and Hans L. Bodlaender. Vertex Cover Kernelization Revisited -
Upper and Lower Bounds for a Refined Parameter. Theory Comput. Syst., 53(2):263–
299, 2013.

[25] Bart M. P. Jansen and Marcin Pilipczuk. Approximation and Kernelization for
Chordal Vertex Deletion. SIAM J. Discrete Math., 32(3):2258–2301, 2018.

21



[26] Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the
EATCS, 113, 2014.

[27] Stefan Kratsch. A Randomized Polynomial Kernelization for Vertex Cover with a
Smaller Parameter. SIAM J. Discrete Math., 32(3):1806–1839, 2018.

[28] Stefan Kratsch and Magnus Wahlström. Representative Sets and Irrelevant Vertices:
New tools for Kernelization. Accepted to J. ACM, 2020.

[29] R. Krithika, Diptapriyo Majumdar, and Venkatesh Raman. Revisiting Connected
Vertex Cover: FPT Algorithms and Lossy Kernels. CoRR, abs/1711.07872, 2017.

[30] R. Krithika, Diptapriyo Majumdar, and Venkatesh Raman. Revisiting Connected
Vertex Cover: FPT Algorithms and Lossy Kernels. Theory Comput. Syst., 62(8):1690–
1714, 2018.

[31] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization - Prepro-
cessing with a Guarantee. In The Multivariate Algorithmic Revolution and Beyond -
Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, pages
129–161, 2012.

[32] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy
Kernelization. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
224–237, 2017.

[33] Diptapriyo Majumdar, Venkatesh Raman, and Saket Saurabh. Polynomial Kernels
for Vertex Cover Parameterized by Small Degree Modulators. Theory Comput. Syst.,
62(8):1910–1951, 2018.

[34] Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79–100,
2005.

[35] Carla D. Savage. Depth-first search and the vertex cover problem. Inf. Process. Lett.,
14:233–237, 1982.

[36] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-
Verlag Berlin Heidelberg, 2003.

[37] Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

22


	1 Introduction
	1.1 Our results and significance of the chosen parameterizations 

	2 Preliminaries
	3 Connected Vertex Cover parameterized by G-Deletion Number
	3.1 Connected Vertex Cover parameterized by -Transversal Number
	3.2 Connected Vertex Cover parameterized by Chordal Deletion Number

	4 Connected Vertex Cover parameterized by the deletion distance to split graphs or cographs
	5 Conclusion

