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Abstract
In this paper, we study games with continuous action spaces and non-linear pay-
off functions. Our key insight is that Lipschitz continuity of the payoff function 
allows us to provide algorithms for finding approximate equilibria in these games. 
We begin by studying Lipschitz games, which encompass, for example, all concave 
games with Lipschitz continuous payoff functions. We provide an efficient algorithm 
for computing approximate equilibria in these games. Then we turn our attention 
to penalty games, which encompass biased games and games in which players take 
risk into account. Here we show that if the penalty function is Lipschitz continu-
ous, then we can provide a quasi-polynomial time approximation scheme. Finally, 
we study distance biased games, where we present simple strongly polynomial time 
algorithms for finding best responses in L

1
 and L2

2
 biased games, and then use these 

algorithms to provide strongly polynomial algorithms that find 2/3 and 5/7 approxi-
mate equilibria for these norms, respectively.
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1  Introduction

Nash equilibria [29] are the central solution concept in game theory. However, 
recent advances have shown that computing an exact Nash equilibrium is ����
-complete [8, 10], and so there are unlikely to be polynomial time algorithms for 
this problem. The hardness of computing exact equilibria has lead to the study of 
approximate equilibria: while an exact equilibrium requires that all players have 
no incentive to deviate from their current strategy, an �-approximate equilibrium 
requires only that their incentive to deviate is less than �.

A fruitful line of work has developed studying the best approximations that 
can be found in polynomial-time for bimatrix games, which are two-player stra-
tegic form games. There, after a number of papers [5, 11, 12], the best known 
algorithm was given by Tsaknakis and Spirakis [32], who provide a polynomial 
time algorithm that finds a 0.3393-equilibrium. The existence of an FPTAS was 
ruled out by Chen et  al. [8] unless ���� = � . Recently, Rubinstein [31] proved 
that there is no PTAS for the problem, assuming the Exponential Time Hypoth-
esis for ���� . However, there is a quasi-polynomial approximation scheme given 
by Lipton et al. [27].

In a strategic form game, the game is specified by giving each player a finite 
number of strategies, and then specifying a table of payoffs that contains one 
entry for every possible combination of strategies that the players might pick. The 
players are allowed to use mixed strategies, and so ultimately the payoff function 
is a convex combination of the payoffs given in the table. However, some games 
can only be modelled in a more general setting where the action spaces are con-
tinuous, or the payoff functions are non-linear.

For example, Rosen’s seminal work [30] considered concave games, where 
each player picks a vector from a convex set. The payoff to each player is speci-
fied by a function that satisfies the following condition: if every other player’s 
strategy is fixed, then the payoff to a player is a concave function over his strategy 
space. Rosen proved that concave games always have an equilibrium. A natural 
subclass of concave games, studied by Caragiannis et al. [6], is the class of biased 
games. A biased game is defined by a strategic form game, a base strategy and a 
penalty function. The players play the strategic form game as normal, but they all 
suffer a penalty for deviating from their base strategy. This penalty can be a non-
linear function, such as the L2

2
 norm.

In this paper, we study the computation of approximate equilibria in such 
games. Our main observation is that Lipschitz continuity of the players’ payoff 
functions (with respect to changes in the strategy space) allows us to provide 
algorithms that find approximate equilibria. Several papers have studied how 
the Lipschitz continuity of the players’ payoff functions affects the existence, 
the quality, and the complexity of the equilibria of the underlying game. Azrieli 
and Shmaya [1] studied many player games and derived bounds for the Lipschitz 
constant of the payoff functions for the players that guarantees the existence of 
pure approximate equilibria for the game. We have to note though, that the games 
Azrieli and Shmaya study are significantly different from our games. In [1] the 
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Lipschitz coefficient refers to the payoff function of player i as a function of �−i , 
the strategy profile for the rest of the players. This means that the Lipschitz coef-
ficient for each player i is defined as the Lipschitz constant of his utility function 
when xi is fixed and �−i is a variable. In this paper, the Lipschitz coefficient refers 
to the payoff function of player i as a function of xi when the �−i is fixed. We 
used this definition of the Lipschitz continuity in order to follow Rosen’s defi-
nition of concave games that requires the payoff function of player i to be con-
cave for every fixed strategy profile for the rest of the players. Daskalakis and 
Papadimitriou [13] proved that anonymous games posses pure approximate equi-
libria whose quality depends on the Lipschitz constant of the payoff functions 
and the number of pure strategies the players have and proved that these approxi-
mate equilibria can be computed in polynomial time. Furthermore, they gave a 
polynomial-time approximation scheme for anonymous games with many players 
and constant number of pure strategies. Babichenko [2] presented a best-reply 
dynamic for n-player binary-action Lipschitz anonymous games which reaches an 
approximate pure equilibrium in O(n log n) steps. Deb and Kalai [14] studied how 
some variants of the Lipschitz continuity of the utility functions are sufficient to 
guarantee hindsight stability of equilibria.

1.1 � Our Contribution

�p-Lipschitz Games We begin by studying a very general class of games, where each 
player’s strategy space is continuous, and represented by a convex set of vectors, and 
where the only restriction is that the payoff function is �p-Lipschitz continuous, that 
is to be Lipschitz continunous with respect to the Lp norm. This class is so general 
that exact equilibria, and even approximate equilibria may not exist. Nevertheless, 
we give an efficient algorithm that either outputs an �-equilibrium, or determines 
that the game has no exact equilibria. More precisely, for M player games with a 
strategy space defined as the convex hull of n vectors, that have �p-Lipschitz contin-
uous payoff functions in the Lp norm, for p ≥ 2 , we either compute an �-equilibrium 
or determine that no exact equilibrium exists in time O

(
MnMk+l

)
 , where 

k = O
(

�2Mp�2

�2

)
 and l = O

(
�2p�2

�2

)
 , where � = max ‖�‖p over all � in the strategy 

space. Observe that this is a polynomial time algorithm when � , p, � , M, and � are 
constant.

To prove this result, we utilize a recent result of Barman [4], which states that 
for every vector in a convex set, there is another vector that is � close to the original 
in the Lp norm, and is a convex combination of b points on the convex hull, where 
b depends on p and � , but does not depend on the dimension. Using this result, and 
the Lipschitz continuity of the payoffs, allows us to reduce the task of finding an �
-equilibrium to checking only a small number of strategy profiles, and thus we get a 
brute-force algorithm that is reminiscent of the QPTAS given by Lipton et al. [27] 
for bimatrix games and by the QPTAS of Babichenko et  al. [3] for many player 
games.

However, life is not so simple for us. Since we study a very general class of 
games, verifying whether a given strategy profile is an �-equilibrium is a non-trivial 
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task. It requires us to compute a regret for each player, which is the difference 
between the player’s best response payoff and their actual payoff. Computing a best 
response in a bimatrix game is trivial, but for �p-Lipschitz games, it may be a hard 
problem. We get around this problem by instead giving an algorithm to compute 
approximate best responses. Hence we find approximate regrets, and it turns out that 
this is sufficient for our algorithm to work.

Penalty Games We then turn our attention to two-player penalty games. In these 
games, the players play a strategic form game, and their utility is the payoff achieved 
in the game minus a penalty. The penalty function can be an arbitrary function that 
depends on the player’s strategy. This is a general class of games that encompasses a 
number of games that have been studied before. The biased games studied by Cara-
giannis et al. [6] are penalty games where the penalty is determined by the amount 
that a player deviates from a specified base strategy. The biased model was studied 
in the past by psychologists [33] and it is close to what they call anchoring [7, 24]. 
Anchoring is common in poker1 and in fact there are several papers on poker that 
are reminiscent of anchoring [21–23]. In their seminal paper, Fiat and Papadimitriou 
[20] introduced a model for risk prone games, which resemble penalty games since 
the risk component can be encoded as a penalty. Mavronicolas and Monien [28] 
followed this line of research and provided results on the complexity of deciding if 
such games posses or not an equilibrium.

We again show that Lipschitz continuity helps us to find approximate equilibria. 
The only assumption that we make is that the penalty function is Lipschitz continu-
ous in an Lp norm with p ≥ 2 . Again, this is a weak restriction, and it does not guar-
antee that exact equilibria exist. Even so, we give a quasi-polynomial time algorithm 
that either finds an �-equilibrium, or verifies that the game has no exact equilibrium.

Our result can be seen as a generalisation of the QPTAS given by Lipton et al. 
[27] for bimatrix games. Their approach is to show the existence of an approxi-
mate equilibrium with a logarithmic support. They proved this via the probabilistic 
method: if we know an exact equilibrium of a bimatrix game, then we can take loga-
rithmically many samples from the strategies, and playing the sampled strategies 
uniformly will be an approximate equilibrium with positive probability. We take a 
similar approach, but since our games are more complicated, our proof is necessar-
ily more involved. In particular, for Lipton et al. proving that the sampled strategies 
are an approximate equilibrium only requires showing that the expected payoff is 
close to the best response payoff. In penalty games, best response strategies are not 
necessarily pure, and so the events that we must consider are more complex.

Distance Biased Games Finally, we consider distance biased games, which form a 
subclass of penalty games that have been studied recently by Caragiannis et al. [6]. 
They showed that, under very mild assumptions on the bias function, biased games 
always have an exact equilibrium. Furthermore, for the case where the bias function 
is either the L1 norm, or the L2

2
 norm, they give an exponential time algorithm for 

finding an exact equilibrium.

1  http://www.poker​ology​.com/artic​les/ancho​ring-bias/.

http://www.pokerology.com/articles/anchoring-bias/


2931

1 3

Algorithmica (2020) 82:2927–2954	

Our results for penalty games already give a QPTAS for biased games, but we 
are also interested in whether there are polynomial-time algorithms that can find 
non-trivial approximations. We give a positive answer to this question for games 
where the bias is the L1 norm, or the L2

2
 norm. We follow the well-known approach 

of Daskalakis et al. [12], who gave a simple algorithm for finding a 0.5-approximate 
equilibrium in a bimatrix game.

We show that this algorithm also works for biased games, although the generali-
sation is not entirely trivial. Again, this is because best responses cannot be trivially 
computed in biased games. For the L1 norm, best responses can be computed via 
linear programming, and for the L2

2
 norm, best responses can be formulated as a 

quadratic program, and it turns out that this particular QP can be solved in polyno-
mial time by the ellipsoid method. However, none of these algorithms are strongly 
polynomial. We show that, for each of the norms, best responses can be found by 
a simple strongly-polynomial combinatorial algorithm. We then analyse the quality 
of approximation provided by the technique of Daskalakis et al. [12]. We obtain a 
strongly polynomial algorithm for finding a 2/3 approximation in L1 biased games, 
and a strongly polynomial algorithm for finding a 5/7 approximation in L2

2
 biased 

games.

2 � Preliminaries

We start by fixing some notation. For each positive integer n we use [n] to denote 
the set {1, 2,… , n} , we use �n to denote the (n − 1)-dimensional simplex, and ‖x‖qp to 
denote the (p, q)-norm of a vector x ∈ ℝ

d , i.e. ‖x‖qp = (
∑

i∈[d] �xi�p)q∕p . When q = 1 , 
then we will omit it for notation simplicity. Given a set X = {x1, x2,… , xn} ⊂ ℝ

d , 
we use conv(X) to denote the convex hull of X. A vector y ∈ conv(X) is said to 
be k-uniform with respect to X if there exists a size k multiset S of [n] such that 
y =

1

k

∑
i∈S xi . When X is clear from the context we will simply say that a vector is 

k-uniform without mentioning that uniformity is with respect to X. We will use the 
notion of the �p-Lipschitz continuity.

Definition 1  (�p-Lipschitz) A function f ∶ A → ℝ , is �p-Lipschitz continuous if for 
every x and y in A, it is true that �f (x) − f (y)� ≤ � ⋅ ‖x − y‖p.

Games and Strategies A game with M players can be described by a set of avail-
able actions for each player and a utility function for each player that depends both 
on his chosen action and the actions the rest of the players chose. For each player 
i ∈ [M] we use Si to denote his set of available actions and we call it his strategy 
space. We will use xi ∈ Si to denote a specific action chosen by player i and we will 
call it the strategy of player i, we use � = (x1,… , xM) to denote a strategy profile 
of the game, and we will use �−i to denote the strategy profile where the player i is 
excluded, i.e. �−i = (x1,… , xi−1, xi+1,… , xM) . We use Ti(xi, �−i) to denote the utility 
of player i when he plays the strategy xi and the rest of the players play according 
to the strategy profile �−i . We make the standard assumption that the utilities for the 
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players are in [0, 1], i.e. Ti(xi, �−i) ∈ [0, 1] for every i and every possible combina-
tion of xi and �−i . A strategy x̂i is a best response against the strategy profile �−i , if 
Ti(x̂i, �−i) ≥ Ti(xi, �−i) for all xi ∈ Si . The regret player i suffers under a strategy pro-
file � is the difference between the utility of his best response and his utility under � , 
i.e. Ti(x̂i, �−i) − Ti(xi, �−i).

An n × n bimatrix game is a pair (R, C) of two n × n matrices: R gives payoffs for 
the row player and C gives the payoffs for the column player. We make the standard 
assumption that all payoffs lie in the range [0, 1]. If � and � are mixed strategies for 
the row and the column player, respectively, then the expected payoff for the row 
player under strategy profile (�, �) is given by �TR� and for the column player by 
�
TC�.

2.1 � Game Classes

In this section we define the classes of games studied in this paper. We will study �p
-Lipschitz games, penalty games, biased games and distance biased games.

�p-Lipschitz Games This is a very general class of games, where each player’s 
strategy space is continuous, and represented by a convex set of vectors, and where 
the only restriction is that the payoff function is �p-Lipschitz continuous for some 
p ≥ 2 . This class is so general that exact equilibria, and even approximate equilibria 
may not exist.

Formally, an M-player �p-Lipschitz game � can be defined by the tuple 
(M, n, �, p, � , T) where:

•	 the strategy space Si of player i is the convex hull of at most n vectors y1,… , yn 
in ℝd;

•	 T  is a set of �p-Lipschitz continuous functions and each Ti(�) ∈ T ;
•	 � is a parameter that intuitively shows how large the strategy space of the players 

is, formally maxxi∈Si ‖xi‖p ≤ � for every i ∈ [M].

In what follows, we will assume that the Lipschitz continuity of a game, �p , is 
bounded by a number polylogarithmic in the size of the game � . Observe that in 
general this does not hold for normal form games, since there exist bimatrix games 
that are not constant Lipschitz continuous.

Two-Player Penalty Games A two-player penalty game P is defined by a tuple (
R,C, �r(�), �c(�)

)
 , where (R, C) is an n × n bimatrix game and �r(�) and �c(�) are the 

penalty functions for the row and the column player respectively. The utilities for the 
players under a strategy profile (�, �) , denoted by Tr(�, �) and Tc(�, �) , are given by

where �r(�) and �c(�) are non negative functions.
We will use P�p

 to denote the set of two-player penalty games with �p-Lipschitz 
penalty functions. A special class of penalty games is obtained when �r(�) = �

T
� 

and �c(�) = �
T
� . We call these games as inner product penalty games.

Tr(�, �) = �
TR� − �r(�) and Tc(�, �) = �

TC� − �c(�)
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Two-Player Biased Games This is a subclass of penalty games, where extra con-
straints are added to the penalty functions �r(�) and �c(�) of the players. In this class 
of games there is a base strategy and for each player and the penalty they receive is 
increasing with the distance between the strategy they choose and their base strat-
egy. Formally, the row player has a base strategy � ∈ �n , the column player has a 
base strategy � ∈ �n and their strictly increasing penalty functions are defined as 
�r(‖� − �‖s

t
) and �c(‖� − �‖l

m
) respectively.

Two-Player Distance Biased Games This is a special class of biased games where 
the penalty function is a fraction of the distance between the base strategy of the 
player and his chosen strategy. Formally, a two player distance biased game B is 
defined by a tuple 

(
R,C, �r(�, �), �c(�, �), dr, dc

)
 , where (R, C) is a bimatrix game, 

� ∈ �n is a base strategy for the row player, � ∈ �n is a base strategy for the column 
player, �r(�,�) = ‖� − �‖s

t
 and �c(�, �) = ‖� − �‖l

m
 are the penalty functions for the 

row and the column player respectively. The utilities for the players under a strategy 
profile (�, �) , denoted by Tr(�, �) and Tc(�, �) , are given by

where dr and dc are non negative constants.

Solution Concepts A strategy profile is an equilibrium if no player can increase his 
utility by unilaterally changing his strategy. A relaxed version of this concept is the 
approximate equilibrium, or �-equilibrium, in which no player can increase his util-
ity more than � by unilaterally changing his strategy. Formally, a strategy profile � is 
an �-equilibrium in a game � if for every player i ∈ [M] it holds that

2.2 � Comparison Between the Classes of Games

Before we present our algorithms for computing approximate equilibria for Lipschitz 
games it would be useful to describe the differences between the classes of games 
and to state what the current status of the equilibrium existence for each class. Fig-
ure 1 shows the relation between the games’ classes. It is well known that normal-
form games possess an equilibrium [29], known as Nash equilibrium. On the other 
hand, Fiat and Papadimitriou [20] and Mavronicolas and Monien [28] studied games 
with penalty functions that capture risk. They showed that there exist games with no 
equilibrium and they proved that it is NP-complete to decide whether a game pos-
sess an equilibrium or not. Caragiannis et al. [6] studied biased games and proved 
that a large family of biased games possess an equilirbium. Distance biased games 
fall in this family and thus always possess an equilibrium. Finally, for �p-Lipschitz 
games it is an interesting open question whether they always possess an equilibrium, 
or if there are cases that do not possess an equilibrium.

The main difference between �p-Lipschitz games and penalty games is on the 
Lipschitz coefficient of the payoff functions. Our algorithm for �p-Lipschitz games 

Tr(�, �) = �
TR� − dr ⋅ �r(�, �) and Tc(�, �) = �

TC� − dc ⋅ �c(�, �),

Ti(xi, �−i) ≥ Ti(x
�
i
, �−i) − � for all x�

i
∈ Si.
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are efficient for “small” values of the Lipschitz coefficient, where small means a 
constant or polylogarithimc in the size of the game. Note however that normal form 
games and bimatrix games might have large Lipschitz coefficient, linear on the size 
of the game. So, our algorithm for �p-Lipschitz games cannot directly apply on pen-
alty games, since the normal-form part of the game can have large Lipschitz coef-
ficient. For that reason we present our second algorithm that tackles penalty games.

3 � Approximate Equilibria in �p‑Lipschitz Games

In this section, we give an algorithm for computing approximate equilibria in �p
-Lipschitz games. Note that our definition of a �p-Lipschitz game does not guar-
antee that an equilibrium always exists. Our technique can be applied irrespective 
of whether an exact equilibrium exists. If an exact equilibrium does exist, then our 
technique will always find an �-equilibrium. If an exact equilibrium does not exist, 
then our algorithm either finds an �-equilibrium or reports that the game does not 
have an exact equilibrium.

In order to derive our algorithm we will utilize the following theorem of Barman 
[4]. Intuitively, Barman’s theorem states that we can approximate any point � in the 
convex hull of n points using a uniform point �′ that needs only “few” samples from 
� to construct it.

Theorem  2  (Barman [4]) Given a set of vectors Z = {z1, z2,… , zn} ⊂ ℝ
d , let 

conv(Z) denote the convex hull of Z. Furthermore, let � ∶= maxz∈Z ‖z‖p for some 
2 ≤ p < ∞ . For every 𝜖 > 0 and every � ∈ conv(Z) , there exists a 4p�

2

�2
-uniform vec-

tor �� ∈ conv(Z) such that ‖� − ��‖p ≤ �.

Penalty Games

Biased Games

Distance Biased Games

λp-Lipschitz Games Normal-form Games

No equilibrium Guaranteed equilibrium

Fig. 1   A map that depicts the relations between the games studied in this paper and our current knowl-
edge for the equilibrium existence for each class
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Combining Theorem 2 with the Definition 1 we get the following lemma.

Lemma 3  Let Z = {z1, z2,… , zn} ⊂ ℝ
d , let f ∶ conv(Z) → ℝ be a �p-Lipschitz 

continuous function for some 2 ≤ p < ∞ , let 𝜖 > 0 and let k = 4�2p�2

�2
 , where 

� ∶= maxz∈Z ‖z‖p . Furthermore, let f (�∗) be the optimum value of f. Then we can 
compute a k-uniform point �� ∈ conv(Z) in time O(nk) , such that |f (�∗) − f (��)| < 𝜖.

Proof  From Theorem 2 we know that for the chosen value of k there exists a k-uni-
form point �′ such that ‖�� − �

∗‖p < 𝜖∕𝜆 . Since the function f (�) is �p-Lipschitz con-
tinuous, we get that |f (��) − f (�∗)| < 𝜖 . In order to compute this point we have to 
exhaustively evaluate the function f in all k-uniform points and choose the point with 
the maximum value. Since there are 

(
n+k−1

k

)
= O(nk) possible k-uniform points, the 

lemma follows. � □

We now prove our result about �p-Lipschitz games. In what follows we will 
study a �p-Lipschitz game � ∶= (M, n, �, p, � , T) . Assuming the existence of an 
exact equilibrium, we establish the existence of a k-uniform approximate equilib-
rium in the game � , where k depends on M, �, p and � . Note that � depends heav-
ily on p and the utility functions for the players.

Since by the definition of �p-Lipschitz games the strategy space Si for every 
player i is the convex hull of n vectors y1,… , yn in ℝd , any xi ∈ Si can be writ-
ten as a convex combination of yj s. Hence, xi =

∑n

j=1
�jyj , where �j ≥ 0 for every 

j ∈ [n] and 
∑n

j=1
�j = 1 . Then, � = (�1,… , �n) is a probability distribution over the 

vectors y1,… , yn , i.e. vector yj is drawn with probability �j . Thus, we can sample 
a strategy xi by the probability distribution �.

So, let �∗ be an equilibrium for � and let �′ be a sampled uniform strategy pro-
file from �∗ . For each player i we define the following events

Notice that if all the events �i occur at the same time, then the sampled profile �′ is 
an �-equilibrium. We will show that if for a player i the events �i and 

⋂
j �j hold, 

then the event �i is also true.

Lemma 4  For all i ∈ [M] it holds that 
⋂

j∈[M] 𝜓j ∩ 𝜙i ⊆ 𝜋i.

Proof  Suppose that both events �i and 
⋂

j �j∈[M] hold. We will show that the event �i 
must be true too. Let xi be an arbitrary strategy, let �∗

−i
 be a strategy profile for the 

rest of the players, and let ��
−i

 be a sampled strategy profile from �∗
−i

 . Since we 
assume that the events �j are true for all j and since ‖��

−i
− �

∗
−i
‖p ≤

∑
j≠i ‖x�j − x∗

j
‖p 

we get that

𝜙i =
{|||Ti

(
x�
i
, ��

−i

)
− Ti

(
x∗
i
, �∗

−i

)||| < 𝜖∕2
}
,

𝜋i =
{
Ti
(
xi, �

�
−i

)
< Ti

(
x�
i
, ��

−i

)
+ 𝜖

}
, for all possible xi

𝜓i =
{
‖‖x

�
i
− x∗

i
‖‖p <

𝜖

2M𝜆

}
for some p > 1.
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Furthermore, since by assumption the utility functions for the players are �p-Lip-
schitz continuous we have that

This means that

since the strategy profile (x∗
i
, �∗

−i
) is an equilibrium of the game. Furthermore, since 

by assumption the event �i is true, we get that

Hence, if we combine the inequalities  (1) and  (2) we get that 
Ti(xi, �

�
−i
) < Ti(x

�
i
, ��

−i
) + 𝜖 for all possible xi . Thus, if the events �i and �j for every 

j ∈ [M] hold, then the event �i holds too. � □

We are ready to prove the main result of the section.

Theorem 5  In any �p-Lipschitz game � = (M, n, �, p, � , T) that possesses an equi-
librium and any 𝜖 > 0 , there is a k-uniform strategy profile, with k = 16M2�2p�2

�2
 that is 

an �-equilibrium.

Proof  In order to prove the claim, it suffices to show that there is a strategy profile 
where every player plays a k-uniform strategy, for the chosen value of k, such that 
the events �i hold for all i ∈ [M] . Since the utility functions in � are �p-Lipschitz 
continuous it holds that 

⋂
i∈[n] 𝜓i ⊆

⋂
i∈[n] 𝜙i . Furthermore, combining this with 

Lemma  4 we get that 
⋂

i∈[n] 𝜓i ⊆
⋂

i∈[n] 𝜋i . Thus, if the event �i is true for every 
i ∈ [n] , then the event 

⋂
i∈[n] �i is true as well.

Then, from Theorem 2 we get that for each i ∈ [M] there is a 16M
2�2p�2

�2
-uniform 

point x′
i
 such that the event �i occurs with positive probability. The claim follows. �□

Theorem 5 establishes the existence of a k-uniform approximate equilibrium, but 
this does not immediately give us our algorithm. The obvious approach is to perform 
a brute force check of all k-uniform strategies, and then output the one that provides 
the best approximation. There is a problem with this, however, since computing the 

‖‖�
�
−i
− �

∗
−i
‖‖p ≤

∑

j≠i

‖‖‖x
�
j
− x∗

j

‖‖‖p

≤
∑

j≠i

�

2M�

≤
�

2�
.

|||Ti
(
xi, �

�
−i

)
− Ti

(
xi, �

∗
−i

)||| ≤
�

2
.

(1)
Ti
(
xi, �

�
−i

)
≤ Ti

(
xi, �

∗
−i

)
+

�

2

≤ Ti
(
x∗
i
, �∗

−i

)
+

�

2

(2)Ti
(
x∗
i
, �∗

−i

)
< Ti

(
x�
i
, ��

−i

)
+

𝜖

2
.
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quality of approximation requires us to compute the regret for each player, which in 
turn requires us to compute a best response for each player. Computing an exact best 
response in a Lipschitz game is a hard problem in general, since we make no assump-
tions about the utility functions of the players. Fortunately, it is sufficient to instead 
compute an approximate best response for each player, and Lemma 3 can be used to do 
this. So we can get the following corollary

Corollary 6  Let � be a strategy profile for a �p-Lipschitz game � = (M, n, �, p, � , T) , 
and let x̂i be a best response for player i against the profile �−i . There is a 4�

2p�2

�2
-uni-

form strategy x′
i
 that is an �-best response against �−i.

Our goal is to approximate the approximation guarantee for a given strategy profile. 
More formally, given a strategy profile � that is an �-equilibrium, and a constant 𝛿 > 0 , 
we want an algorithm that outputs a number within the range [� − �, � + �] . Corollary 6 
allows us to do this. For a given strategy profile � , we first compute �-approximate best 
responses for each player, then we can use these to compute �-approximate regrets for 
each player. The maximum over the �-approximate regrets then gives us an approxima-
tion of � with a tolerance of � . This is formalised in the following algorithm. 

Utilising the above algorithm by setting � = � , we can now produce an algorithm 
that finds an approximate equilibrium in Lipschitz games; hence, in what follows in 
this section we assume that � = � . The algorithm checks all k-uniform strategy pro-
files, using the value of k given by Theorem 5, and for each one, evaluates the quality 
approximation using the algorithm given above. 
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If the algorithm returns a strategy profile � , then it must be a 3�-equilibrium. This 
is because we check that an �-approximation of �(�) is less than 2� , and therefore 
�(�) ≤ 3� . Secondly, we argue that if the game has an exact equilibrium, then this pro-
cedure will always output a 3�-approximate equilibrium. From Theorem 5 we know 
that if k > 16𝜆2Mp𝛾2

𝜖2
 , then there is a k-uniform strategy profile � that is an �-equilibrium 

for � . When we apply our approximate regret algorithm to � , to find an �-approxima-
tion of �(�) , the algorithm will return a number that is less than 2� , hence � will be 
returned by the algorithm.

To analyse the running time, observe that there are 
(
n+k−1

k

)
= O(nk) possible k-uni-

form strategies for each player, thus O(nMk) k-uniform strategy profiles. Furthermore, 
our regret approximation algorithm runs in time O(Mnl) , where l = 4�2p�2

�2
 . Hence, we 

get the next theorem.

Theorem 7  Given a �p-Lipschitz game � = (M, n, �, p, � , T) that possesses an equi-
librium and any constant 𝜖 > 0 , a 3 �-equilibrium can be computed in time 
O
(
MnMk+l

)
 , where k = O

(
�2Mp�2

�2

)
 and l = O

(
�2p�2

�2

)
.

Although it might be hard to decide whether a game has an equilibrium, our algo-
rithm can be applied in any �p-Lipschitz game. If the game does not posses an exact 
equilibrium then our algorithm may find an approximate equilibrium, but if it fails to 
do so, then the contrapositive of Theorem 7 implies that the game does not posses an 
exact equilibrium.

Theorem 8  For any �p-Lipschitz game � = (M, n, �, p, � , T) and any 𝜖 > 0 in time 
O
(
MnMk+l

)
 , we can either compute a 3�-equilibrium, or decide that � does not pos-

ses an exact equilibrium, where k = O
(

�2Mp�2

�2

)
 and l = O

(
�2p�2

�2

)
.
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4 � A Quasi‑polynomial Algorithm for Two‑Player Penalty Games

In this section we present an algorithm that, for any 𝜖 > 0 , can compute an �-equilib-
rium for any penalty game in P�p

 (penalty games with �p-Lipschitz penalty func-
tions) that posses an exact equilibrium in quasi-polynomial time. For the algorithm, 
we take the same approach as we did in the previous section for �p-Lipschitz games: 
we show that if an exact equilibrium exists, then a k-uniform approximate equilib-
rium always exists too, and provide a brute-force search algorithm for finding it. 
Once again, since best response computation may be hard for this class of games, we 
must provide an approximation algorithm for finding the quality of an approximate 
equilibrium.

We first focus on penalty games that posses an exact equilibrium. In what follows 
we will follow the literature and we will assume that the payoffs of the players are 
in [0, 1] So, let (�∗, �∗) be an equilibrium of the game and let (��, ��) be a k-uniform 
strategy profile sampled from this equilibrium. We define the following four events:

The goal is to derive a value for k such that all the four events above are true, or 
equivalently Pr(𝜙r ∩ 𝜋r ∩ 𝜙c ∩ 𝜋r) > 0.

Note that in order to prove that (��, ��) is an �-equilibrium we only have to con-
sider the events �r and �c . Nevertheless, as we show in Lemma  9, the events �r 
and �c are crucial in our analysis. The proof of the main theorem boils down to the 
events �r and �c.

We will focus only on the row player, since the same analysis can be applied to 
the column player. Firstly we study the event �r.

Lemma 9  For all penalty games it holds that Pr(�c
r
) ≤ n ⋅ e

−
k�2

2 + Pr(�c
r
).

Proof  We begin by introducing the following auxiliary events for all i ∈ [n]

We prove how the events �ri and the event �r are related with the event �r . Assume 
that the event �r and the events �ri for all i ∈ [n] are true . Let � be any mixed strategy 
for the row player. Since by assumption Ri�

� < Ri�
∗ +

𝜖

2
 and since � is a probability 

distribution, it holds that �TR�� < �
TR�∗ +

𝜖

2
 . If we subtract �r(�) from each side we 

get that �TR�� − �r(�) < �
TR�∗ − �r(�) +

𝜖

2
 . This means that Tr(�, ��) < Tr(�, �

∗) +
𝜖

2
 

for all � . But we know that Tr(�, �∗) ≤ Tr(�
∗, �∗) for all � ∈ �n , since (�∗, �∗) is an 

equilibrium. Thus, we get that Tr(�, ��) < Tr(�
∗, �∗) +

𝜖

2
 for all possible � . Further-

more, since the event �r is true too, we get that Tr(�, ��) < Tr(�
�, ��) + 𝜖 . Thus, if the 

𝜙r =
{
|Tr

(
�
�, ��

)
− Tr(�

∗, �∗)| < 𝜖∕2
}

𝜋r =
{
Tr
(
�, ��

)
< Tr

(
�
�, ��

)
+ 𝜖

}
for all �

𝜙c =
{|||Tc

(
�
�, ��

)
− Tc(�

∗, �∗)
||| < 𝜖∕2

}

𝜋c =
{
Tc
(
�
�, �

)
< Tc

(
�
�, ��

)
+ 𝜖

}
for all �.

𝜓ri =
{
Ri�

� < Ri�
∗ +

𝜖

2

}
.
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events �r and �ri for all i ∈ [n] are true, then the event �r must be true as well. For-
mally, 𝜙r

⋂
i∈[n] 𝜓ri ⊆ 𝜋r . Thus, Pr(�c

r
) ≤ Pr(�c

r
) +

∑
i �

c
ri
 . Observe, Ri�

′ is a sum of 
k independent random variables of expected value Ri�

∗ . Each one of these random 
variables can take value in [0, 1]. Hence, we can use the Hoeffding bound to get that 
Pr(�c

ri
) ≤ e

−
k�2

2  for all i ∈ [n] . Our claim follows. � □

With Lemma  9 in hand, we can see that in order to compute a value for 
k it is sufficient to study the event �r . We introduce the following auxiliary 
events that we will study separately: 𝜙ru =

{
|��TR�� − �

∗TR�∗| < 𝜖∕4
}
 and 

𝜙r� =
{
|�r(��) − �r(�

∗)| < 𝜖∕4
}
 . It is easy to see that if both �r� and �ru are true, 

then the event �r must be true too. So we have 𝜙r� ∩ 𝜙ru ⊆ 𝜙r . The following lemma 
was essentially proven in [27], but we include it for reasons of completeness of our 
paper.

Lemma 10  Pr(�c
ru
) ≤ 4e

−
k�2

32 .

Proof  Recall, 𝜙ru =
{
|��TR�� − �

∗TR�∗| < 𝜖∕4
}
 . We define the events

Note that if both events �1 and �2 are true, then �ru holds as well. Since �′ is sampled 
from �∗ , ��TR�∗ can be seen as the sum of k independent random variables each with 
expected value �∗TR�∗ . In addition, each random variable can take values in [0, 1]. 

Hence, we can apply the Hoeffding bound and get that Pr(�c
1
) ≤ 2e

−
k�2

32  . With similar 

arguments we can prove that Pr(�c
2
) ≤ 2e

−
k�2

32  , therefore Pr(�c
ru
) ≤ 4e

−
k�2

32  � □

In addition, we must prove an upper bound on the event �c
r�

 . To do so, we will use 
the following lemma which was proven by Barman [4].2

Lemma 11  (Barman [4]) Given a set of vectors Z = {z1, z2,… , zn} ⊂ ℝ
d , let 

conv(Z) denote the convex hull of Z, and let 2 ≤ p < ∞ . Furthermore, let 
� ∈ conv(Z) and let �′ be a k-uniform vector sampled from � . Then, 
E[‖�� − �∗‖p] ≤

2
√
p

√
k

.

We are ready to prove the last crucial lemma for our theorem.

Lemma 12  Pr(�c
r�
) ≤

8�
√
p

�
√
k

.

Proof  Since we assume that the penalty function �r(��) is �p-Lipschitz continuous 
the event �r� can be replaced by the event 𝜙r�� =

�
‖�� − �

∗‖p < 𝜖∕4𝜆
�
 . It is easy to 

𝜓1 =
{|||�

�TR�∗ − �
∗TR�∗

||| < 𝜖∕8
}

𝜓2 =
{|||�

�TR�� − �
�TR�∗

||| < 𝜖∕8
}
.

2  This was part of the proof of Theorem 2 in [4].
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see that 𝜙r� ⊆ 𝜙r�′ . Then, from Lemma 11 we get that E[‖�� − �
∗‖p] ≤

2
√
p

√
k

 . Thus, 
using Markov’s inequality we get that

� □

Let us define the event GOOD = �r ∩ �c ∩ �r ∩ �c . To prove our theorem 
it suffices to prove that Pr(GOOD) > 0 . Notice that for the events �c and �c the 
same analysis as for �r and �r can be used. Then, using Lemmas 9, 12 and 10 we 
get that Pr(GOODc) < 1 for the chosen value of k.

Theorem 13  For any equilibrium (�∗, �∗) of a penalty game from the class P�p
 , any 

𝜖 > 0 , and any k ∈ �(�2 log n)

�2
 , there exists a k-uniform strategy profile (��, ��) that:

1.	 (��, ��) is an �-equilibrium for the game,
2.	 |Tr(��, ��) − Tr(�

∗, �∗)| < 𝜖∕2,
3.	 |Tc(��, ��) − Tc(�

∗, �∗)| < 𝜖∕2.

Proof 

Hence, Pr(GOOD) > 0 and our claim follows. � □

Pr
�
���

� − �
∗��p ≥

�

4�

�
≤

E[‖�� − �
∗‖p]

�

4�

≤
8�

√
p

�
√
k
.

Pr(GOODc) ≤ Pr
�
𝜙c
r

�
+ Pr

�
𝜋c
r

�
+ Pr

�
𝜙c
c

�
+ Pr

�
𝜋c
c

�

≤ 2
�
Pr

�
𝜙c
r

�
+ Pr

�
𝜋c
r

��

≤ 2

�
2Pr

�
𝜙c
r

�
+ n ⋅ e

−
k𝜖2

2

�
(from Lemma 9)

≤ 2

�
2Pr

�
𝜙c
ru

�
+ 2Pr

�
𝜙c
r��

�
+ n ⋅ e

−
k𝜖2

2

�

≤ 2

�
4e

−
k𝜖2

32 +
16𝜆

√
p

𝜖
√
k

+ n ⋅ e
−

k𝜖2

2

�
(from Lemma 12)

< 1 for k =
c ⋅ 𝜆2 ⋅ log n

𝜖2
and c ⋅ 𝜆2 < 2.
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Theorem  13 establishes the existence of a k-uniform strategy profile (��, ��) 
that is an �-equilibrium, but as before, we must provide an efficient method for 
approximating the quality of approximation provided by a given strategy profile. 
To do so, we first give the following lemma, which shows that approximate best 
responses can be computed in quasi-polynomial time for penalty games.

Lemma 14  Let (�, �) be a strategy profile for a penalty game P�p
 , and let �̂ be a best 

response against � . There is an l-uniform strategy �′ , with l = �(�2
√
p)

�2
 , that is an �-

best response against � , i.e. Tr(�̂, �) < Tr(�
�, �) + 𝜖.

Proof  We will prove that |Tr(�̂, �) − Tr(�
�, �)| < 𝜖 which implies our claim. Let 

𝜙1 = {|�̂TR� − �
�TR�| ≤ 𝜖∕2} and 𝜙2 = {|�r(�̂) − �r(�

�)| < 𝜖∕2} Notice that 
Lemma 12 does not use anywhere the fact that �∗ is an equilibrium strategy, thus it 
holds even if �∗ is replaced by �̂ . Thus, Pr(�c

2
) ≤

4�
√
p

�
√
k

 . Furthermore, using similar 
analysis as in Lemma 10, we can prove that Pr(�c

1
) ≤ 4e

−
k�2

32  and using similar argu-
ments as in the proof of Theorem 13 it can be easily proved that for the chosen value 
of l it holds that Pr(𝜙c

1
) + Pr(𝜙c

2
) < 1 , thus the events �1 and �2 occur with positive 

probability and our claim follows. � □

Given this lemma, we can reuse Algorithm 1, but with l = �(�2
√
p)

�2
 , to provide an 

algorithm that approximates the quality of approximation of a given strategy profile. 
Then, we can reuse Algorithm  2 with k = �(�2 log n)

�2
 to provide a quasi-polynomial 

time algorithm that finds approximate equilibria in penalty games. Notice again that 
our algorithm can be applied in games in which it is computationally hard to verify 
whether an exact equilibrium exists. Our algorithm either will compute an approximate 
equilibrium or it will fail to find one, in which case the game does not posses an exact 
equilibrium.

Theorem 15  In any penalty game in P�p
 and any 𝜖 > 0 , in quasi polynomial time 

we can either compute a 3�-equilibrium, or decide that it does not posses an exact 
equilibrium.

5 � Distance Biased Two‑Player Games

In this section, we focus on two particular classes of distance biased games, and we 
provide strongly polynomial-time algorithms for computing approximate equilibria for 
them. We focus on the following two penalty functions:

•	 L1 penalty: �r(�,�) = ‖� − �‖1 =
∑

i ��i − �i�.
•	 L2

2 penalty: �r(�, �) = ‖� − �‖2
2
=
∑

i(�i − �i)
2.
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Our approach is to follow the well-known technique of [12] that finds a 0.5-NE in a 
bimatrix game. The algorithm that we will use for all three penalty functions is given 
below. 

While this is a well-known technique for bimatrix games, note that it cannot 
immediately be applied to penalty games. This is because the algorithm requires 
us to compute two best response strategies, and while computing a best-response is 
trivial in bimatrix games, this is not the case for penalty games. Best responses for 
L1 penalties can be computed in polynomial time via linear programming, and for 
L2
2
 penalties, the ellipsoid algorithm can be applied. However, these methods do not 

provide strongly polynomial algorithms.
In this section, for each of the penalty functions, we develop a simple combinato-

rial algorithm for computing best response strategies. Our algorithms are strongly 
polynomial. Then, we determine the quality of the approximate equilibria given 
by the base algorithm when our best response techniques are used. In what follows 
we make the common assumption that the payoffs of the underlying bimatrix game 
(R, C) are in [0, 1]. Furthermore, we use Ri to denote the i-th row of the matrix R.

5.1 � A 2/3‑Approximation Algorithm for L
1
‑Biased Games

We start by considering L1-biased games. Suppose that we want to compute a best-
response for the row player against a fixed strategy � of the column player. We will 
show that best response strategies in L1-biased games have a very particular form: if 
b is the best response strategy in the (unbiased) bimatrix game (R, C), then the best-
response places all of its probability on b except for a certain set of rows S where it 
is too costly to shift probability away from � . The rows i ∈ S will be played with �i 
to avoid taking the penalty for deviating.

The characterisation for whether it is too expensive to shift away from � is given 
by the following lemma.

Lemma 16  Let j be a pure strategy, let k be a pure strategy with �k > 0 , and let � be 
a strategy with �k = �k and �j ≥ �j . The utility for the row player increases when we 
shift probability from k to j if and only if Rj� − Rk� − 2dr > 0.

Proof  Recall, the payoff the row player gets from pure strategy i when he plays 
� against strategy � is �i ⋅ Ri� − dr ⋅ |�i − �i| . Suppose now that we shift � 
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probability from k to j, where � ∈ (0,�k] . Then the utility for the row player is equal 
to Tr(�, �) + � ⋅ (Rj� − Rk� − 2dr) , where the final term is the penalty for shifting 
� probability from k and adding it this probability to j. Thus, the utility for the row 
player increases under this shift if and only if Rj� − Rk� − 2dr > 0 . � □

With Lemma  16 in hand, we can give an algorithm for computing a best 
response. 

Lemma 17  Algorithm 4 correctly computes a best response against �.

Proof  Assume that we start from the (mixed) strategy � . We will consider the cases 
depending whether � is a best response or not. If � is a best response, then the player 
cannot increase his payoff by changing his strategy. Hence, from Lemma  16 we 
know that for all pairs of pure strategies i and j, it holds that Rj� − Ri� − 2dr ≤ 0 . 
Observe that in this case, our algorithm will produce � due to Step 3(a).

If � is not a best response, then we can get a best response by shifting probability 
mass from � . We can partition the pure strategies of the player into two categories: 
those that shifting probability increases the payoff and those that do not; this parti-
tion can be computed via Lemma 16. Again, in Step 3(a) of the algorithm all strate-
gies that belong to the second category are identified and no probability is shifted. 
In additon, if we are able to shift probability away from a strategy k, then we should 
obviously shift it all of this probability mass to a best response strategy for the 
(unbiased) bimatrix game, since this strategy maximizes the increase in the payoff. 
Step 3(b) guarantees that all the probability mass is shifted away from any such pure 
strategy. Step 4 guarantees that all this probability is placed on the correct pure strat-
egy. Finally, since � is a probability distribution and we simply shift its probability 
mass, we get that � is indeed a probability distribution. � □

Our characterisation has a number of consequences. Firstly, it can be seen that 
if dr ≥ 1∕2 , then there is no profitable shift of probability between any two pure 
strategies, since 0 ≤ Ri� ≤ 1 for all i ∈ [n] . Thus, we get the following corollary.
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Corollary 18  If dr ≥ 1∕2 , then the row player always plays the strategy � irrespec-
tively from which strategy his opponent plays, i.e. � is a dominant strategy.

Moreover, since we can compute a best response in polynomial time we get the 
next theorem.

Theorem 19  In biased games with L1 penalty functions and max{dr, dc} ≥ 1∕2 , an 
equilibrium can be computed in polynomial time.

Proof  Assume that dr ≥ 1∕2 . From Corollary 18 we get that the row player will play 
his base strategy � . Then we can use Algorithm 4 to compute a best response against 
� for the column player. This profile will be an equilibrium for the game since no 
player can increase his payoff by unilaterally changing his strategy. � □

Finally, using the characterization of best responses we can see that there is a 
connection between the equilibria of the distance biased game and approximate 
well supported Nash equilibria (WSNE) of the underlying bimatrix game. An �-
WSNE of a bimatrix game (R, C) is a strategy profile (�, �) where every player 
plays with positive probability only pure strategies that are �-best responses; for-
mally, for every i such that �i > 0 it holds that Ri� ≥ maxk Rk� − � and for every j 
such that �j > 0 it holds that CT

j
� ≥ maxk C

T
k
� − �

Theorem  20  Let B =
(
R,C, �r(�, �), �c(�, �), dr, dc

)
 be a distance biased game 

with L1 penalties and let d ∶= max{dr, dc} . Any equilibrium of B is a 2d-WSNE for 
the bimatrix game (R, C).

Proof  Let (�∗, �∗) be an equilibrium for B . From the best response Algorithm for L1 
penalty games we can see that �∗

i
> 0 if and only if Rb ⋅ �

∗ − Ri ⋅ �
∗ − 2dr ≤ 0 , 

where b is a pure best response against �∗ . This means that for every i ∈ [n] with 
�
∗
i
> 0 , it holds that Ri ⋅ �

∗ ≥ maxj∈[n] Rj ⋅ �
∗ − 2d . Similarly, it holds that 

CT
i
⋅ �

∗ ≥ maxj∈[n] C
T
j
⋅ �

∗ − 2d for all i ∈ [n] with �∗
i
> 0 . This is the definition of a 

2d-WSNE for the bimatrix game (R, C). � □

Approximation algorithm We now analyse the approximation guarantee pro-
vided by the base algorithm for L1-biased games. So, let (�∗, �∗) be the strategy 
profile returned by the base algorithm. Since we have already shown that exact 
equilibria can be found in games with either dc ≥ 1∕2 or dr ≥ 1∕2 , we will assume 
that both dc and dr are less than 1/2, since this is the only interesting case.

We start by considering the regret of the row player. The following lemma will 
be used in the analysis of both our approximation algorithms.

Lemma 21  Under the strategy profile (�∗, �∗) the regret for the row player is at 
most �.

Proof  Notice that for all i ∈ [n] we have
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hence ‖�∗ − �‖
1
= (1 − �)‖� − �‖

1
 . Furthermore, notice that 

∑
i

�
(1 − �)�

i
 

+��
i
− �

i

�2
= (1 − �)2‖� − �‖2

2
 , thus ‖�∗ − �‖2

2
≤ (1 − �)‖� − �‖2

2
 . Hence, for the 

payoff for the row player it holds Tr(�∗, �∗) ≥ � ⋅ Tr(�, �
∗) + (1 − �) ⋅ Tr(�, �

∗) and 
his regret under the strategy profile (�∗, �∗) is

� □

Next, we consider the regret of the column player. Observe that the precon-
dition of dc ⋅ �c(�∗, �) ≤ 1 always holds, since we have ‖�∗ − �‖1 ≤ 2 , thus 
dc ⋅ �c(�

∗, �) ≤ 1 since we are only interested in the case where dc ≤ 1∕2.

Lemma 22  If dc ⋅ �c(�∗,�) ≤ 1 , then under strategy profile (�∗, �∗) the column 
player suffers at most 2 − 2� regret.

Proof  The regret of the column player under the strategy profile (�∗, �∗) is

� □

To complete the analysis, we must select a value for � that equalises the two 
regrets. It can easily be verified that setting � = 2∕3 ensures that � = 2 − 2� , and so 
we have the following theorem.

Theorem 23  In biased games with L1 penalties a 2/3-equilibrium can be computed 
in polynomial time.

|��i + (1 − �)�i − �i| = (1 − �)|�i − �i|,

R
r(�∗, �∗) = max

�̃

Tr(�̃, �
∗) − Tr(�

∗, �∗)

= Tr(�, �
∗) − Tr(�

∗, �∗) (since � is a best response against �∗)

≤ 𝛿
(
Tr(�, �

∗) − Tr(�, �
∗)
)

≤ 𝛿

(
since max

�

Tr(�, �
∗) ≤ 1 and Tr(�, �

∗) ≥ 0
)
.

R
c(�∗, �∗) = max

�

Tc(�
∗, �) − Tc(�

∗, �∗)

= max
�

{
(1 − �)Tc(�, �) + �Tc(�, �))

}
− (1 − �)Tc(�, �

∗) − �Tc(�, �
∗)

≤ (1 − �)

(
max
�

Tc(�
∗, �) − Tc(�, �

∗)

)
(since �

∗ is a best response against �)

≤ (1 − �)(1 + dc ⋅ �c(�
∗, �))

(
since max

�

Tc(�
∗, �) ≤ 1

)

≤ (1 − �) ⋅ 2
(
since dc ⋅ �c(�

∗, �) ≤ 1
)
.
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5.2 � A 5/7‑Approximation Algorithm for L2
2
‑Biased Games

We now turn our attention to biased games with an L2
2
 penalty. Again, we start by 

giving a combinatorial algorithm for finding a best response. Throughout this sec-
tion, we fix � as a column player strategy, and we will show how to compute a best 
response for the row player.

Best responses in L2
2
-biased games can be found by solving a quadratic program, 

and actually this particular quadratic program can be solved via the ellipsoid algo-
rithm [26]. We will give a simple combinatorial algorithm that produces a closed 
formula for the solution. Hence, we will obtain a strongly polynomial time algo-
rithm for finding best responses.

Our algorithm can be applied on L2
2
 penalty functions and any value dr , but for 

notation simplicity we describe our method for dr = 1 . Furthermore, we define 
�i ∶= Ri� + 2�i and we call �i as the payoff of pure strategy i. Then, the utility for 
the row player can be written as Tr(�, �) =

∑n

i=1
�i ⋅ �i −

∑n

i=1
�
2
i
− �

T
� . Notice that 

the term �T� is a constant and it does not affect the solution of the best response; so 
we can exclude it from our computations. Thus, a best response for the row player 
against strategy � is the solution of the following quadratic program

Observe that since 
∑

�
2
i
 is a strictly convex function, therefore the solution of the 

problem above is unique, hence there is a unique best response against any strategy.
In what follows, without loss of generality, we assume that �1 ≥ ⋯ ≥ �n . That 

is, the pure strategies are ordered according to their payoffs. In the next lemma we 
prove that in every best response, if a player plays pure strategy l with positive prob-
ability, then he must play every pure strategy k with k < l with positive probability.

Lemma 24  In every best response �∗ if �∗
l
> 0 then �∗

k
> 0 for all k < l . In addition, 

if k < l and �∗
l
> 0 , then �∗

k
= �

∗
l
+

�k−�l

2
.

Proof  For the sake of contradiction suppose that there is a best response �∗ and a 
k < l such that �∗

l
> 0 and �∗

k
= 0 . Let us denote M =

∑
i≠{l,k} �i ⋅ �

∗
i
−
∑

i≠{l,k} �
∗2

i
 . 

Suppose now that we shift some probability, denoted by � , from pure 
strategy l to pure strategy k. Then the utility for the row player is 
Tr(�

∗, �) = M + �l ⋅ (�
∗
l
− �) − (�∗

l
− �)2 + �k ⋅ � − �2 , which is maximized for 

� =
�k−�l+2�

∗
l

4
 . Notice that 𝛿 > 0 since �k ≥ �l and �∗

l
> 0 , thus the row player can 

increase his utility by assigning positive probability to pure strategy k which con-
tradicts the fact that �∗ is a best response. To prove the second claim, we observe 

maximize

n∑

i=1

�i ⋅ �i −

n∑

i=1

�
2
i

subject to

n∑

i=1

�i = 1

�i ≥ 0 for all i ∈ [n].
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that, using exactly the same arguments as above, the payoff of the row player will 
decrease if we try to shift probability between pure strategies k and l, when �∗

l
> 0 

and �∗
k
= �

∗
l
+

�k−�l

2
 . � □

Lemma 24 implies that there are only n possible supports that a best response can 
use. In addition, the second part of the lemma means that for all i ∈ [k] we get

So, our algorithm does the following. It loops through all n candidate supports for a 
best response. For each one, it uses Equation (3) to determine the probabilities, and 
then checks whether these form a probability distribution, and thus if this is a fea-
sible response. If it is, then it is saved in a list of feasible responses, otherwise it is 
discarded. After all n possibilities have been checked, the feasible response with the 
highest payoff is then returned. 

5.2.1 � Approximation Algorithm

We now show that the base algorithm gives a 5/7-approximation when applied to 
L2
2
-penalty games. For the row player’s regret, we can use Lemma 21 to show that 

the regret is bounded by � . However, for the column player’s regret, things are more 
involved. We will show that the regret of the column player is at most 2.5–2.5� . That 
analysis depends on the maximum entry of the base strategy � and more specifically 
on whether maxk �k ≤ 1∕2 or not.

Lemma 25  If maxk{�k} ≤ 1∕2 , then the regret the column player suffers under 
strategy profile (�∗, �∗) is at most 2.5 − 2.5�.

Proof  Note that when maxk{�k} ≤ 1∕2 , then �c = ‖� − �‖2
2
≤ 1.5 for all pos-

sible � . Then, using similar analysis as in Lemma  22, along with the fact that 
dc ⋅ �c(�

∗, �) ≤ 2 for L2
2
 penalties and the assumption that dc = 1 , we get that

(3)�i =
1

2

�
�i −

∑k

j=1
�j − 2

k

�
.
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� □

For the case where there is a k such that �k > 1∕2 a more involved analysis is 
needed. The first goal is to prove that under any strategy �∗ that is a best response 
against � the pure strategy k is played with positive probability. In order to prove 
that, first we show that there is a feasible response against strategy � where 
pure strategy k is played with positive probability. In what follows we denote 
�i ∶= CT

i
� + 2�i.

Lemma 26  Let �k > 1∕2 for some k ∈ [n] . Then there is a feasible response where 
pure strategy k is played with positive probability.

Proof  Note that 𝛽k > 1 since by assumption �k > 1∕2 . Recall from Equation (3) that 

in a feasible response � it holds that �i =
1

2

�
�i −

∑k

j=1
�j−2

k

�
.

In order to prove the claim it is sufficient to show that �k > 0 when we set �i > 0 
for all i ∈ [k] . Or equivalently, to show that 
𝛽k −

∑k

j=1
𝛽j−2

k
=

1

k

�
(k − 1)𝛽k + 2 −

∑k−1

j=1
𝛽j

�
> 0 . But,

The claim follows. � □

Next it is proven that the utility of the column player is increasing when he 
adds pure strategies in his support that yield payoff greater than 1, i.e. 𝛽i > 1.

R
c(�∗, �∗) = max

�

Tc(�
∗, �) − Tc(�

∗, �∗)

= max
�

{
(1 − �)Tc(�, �) + �Tc(�, �))

}
− (1 − �)Tc(�, �

∗) − �Tc(�, �
∗)

≤ (1 − �)

(
max
�

Tc(�
∗, �) − Tc(�, �

∗)

)
(since �

∗ is a best response against �)

≤ (1 − �)
(
1 + dc ⋅ �c(�

∗, �)
) (

since max
�

Tc(�
∗, �) ≤ 1

)

≤ (1 − �) ⋅ 2.5
(
since dc ⋅ �c(�

∗, �) ≤ 1
)
.

(k − 1)𝛽k + 2 −

k−1∑

j=1

𝛽j > k + 1 −

k−1∑

j=1

(
CT

� + 2�i
)

(since 𝛽k > 1)

≥ k + 1 − (k − 1) −

k−1∑

j=1

2�i

≥ 2�k (since � ∈ 𝛥n)

> 0.
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Lemma 27  Let �k and �k+1 be two feasible responses with support size k and k + 1 
respectively, where 𝛽k+1 > 1 . Then Tc(�, �k+1) > Tc(�, �

k).

Proof  Let �k be a feasible response with support size k for the column player against 
strategy � and let �(k) ∶=

∑k

j=1
�j−2

2k
 . Then the utility of the column player when he 

plays �k can be written as

The goal now is to prove that Tc(�, �k+1) − Tc(�, �
k) > 0 . By the previous analysis 

for Tc(�, �k) and if A ∶=
∑k

i=1
�i − 2 , then

� □

Notice that 𝛽k ≥ 2�k > 1 . Thus, the utility of the feasible response that assigns 
positive probability to pure strategy k is strictly greater than the utility of any feasible 
responses that does not assign probability to k. Thus strategy k is always played in a 
best response. Hence, the next lemma follows.

Lemma 28  If there is a k ∈ [n] such that �k > 1∕2 , then in every best response �∗ 
the pure strategy k is played with positive probability.

Using now Lemma  28 we can provide a better bound for the regret the column 
player suffers, since in every best response �∗ the pure strategy k is played with positive 
probability. In order to prove our claim we first prove the following lemma.

Lemma 29  �∗T�∗ − 2�∗
k
�k ≤ 1 − 2�k.

Proof  Notice from (3) that for all i we get �i = �k +
1

2
(�i − �k) . Using that we can 

write the term �T� =
∑

i �
2
i
 as follows for a when � has support size s

Tc(�, �
k) =

n∑

i=1

�
k
i
⋅ �i −

n∑

i=1

(
�
k
i

)2
− �

T
�

=
1

4

k∑

i=1

�2
i
− k ⋅ (�(k))2 − �

T
�.

Tc(�, �
k+1) − Tc(�, �

k) =
1

4

k+1∑

i=1

𝛽2
i
− (k + 1)(𝜆(k + 1))2 −

1

4

k∑

i=1

𝛽2
i
+ k ⋅ (𝜆(k))2

=
1

4(k + 1)

(
k𝛽2

k+1
+ A2 − 2A𝛽k+1

)

>
1

4(k + 1)

(
k + A2 − 2A

)
(since 1 < 𝛽k+1 ≤ 2 and A > k − 2)

>
1

4(k + 1)

(
k2 − 5k + 8

)
(since A > k − 2)

> 0.
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Then we can see that �∗T� − 2�∗T
k
�k is increasing as �∗

k
 increases, since we know 

from Lemma 28 that �∗
k
> 0 . This becomes clear if we take the partial derivative of 

�
∗T
�
∗ − 2�∗

k
�k with respect to �∗

k
 which is equal to

Thus, the value of �∗T�∗ − 2�∗
k
�k is maximized when �∗

k
= 1 and our claim follows. 

� □

Lemma 30  Let �∗ be a best response when there is a pure strategy k with �k > 1∕2 . 
Then the regret for the column player under strategy profile (�∗, �∗) is bounded by 
2 − 2�.

Proof  Observe that by the definition of Algorithm 3 we get that the regret for the 
column player under the produced strategy profile is

From Lemma  29 we get �∗T�∗ − 2�∗T� ≤ 1 − 2�k . Thus, from  (4) we get that 
R

c(�∗, �∗) ≤ 2 − 2� . � □

Recall now that the regret for the row player is bounded by � , so if we opti-
mize with respect to � the regrets are equal for � = 2∕3 . Thus, the next theorem 
follows, since when the there is a k with �k > 1∕2 the Algorithm  1 produces a 
2/3-equilibrium. Hence, combining this with Lemma 25 we have that Theorem 31 
follows for � = 5∕7.

s∑

i=1

�
2
i
= �

2
k
+
∑

i≠k

�
2
i

= �
2
k
+
∑

i≠k

(
�k +

1

2
(�i − �k)

)2

= s�2
k
+

(
∑

i≠k

(�i − �k)

)
�k +

1

4

∑

i≠k

(�k − �i)
2.

2s�∗
k
+
∑

i≠k

(𝛽i − 𝛽k) − 2�k = 2s�∗
k
+
∑

i≠k

2(�∗
i
− �

∗
k
) − 2�k

(
since �i = �k +

1

2
(𝛽i − 𝛽k)

)

= 2s�∗
k
+ 2

∑

i≠k

�
∗
i
− 2(s − 1)�∗

k
− 2�k

= 2

s∑

i=1

�
∗
i
− 2�k

= 2 − 2�k

≥ 0 (since �
∗
k
> 0).

(4)
R

c(�∗, �∗) ≤ (1 − 𝛿)

(
max
�̃∈𝛥

{�̂TC�̃} + 2�̃T�k − 2�∗T� + �
∗T
�
∗

)

≤ (1 − 𝛿)
(
1 + 2�k − 2�∗T� + �

∗T
�
∗
)
.
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Theorem 31  In biased games with L2
2
 penalties a 5/7-equilibrium can be computed 

in polynomial time.

6 � Conclusions

We have studied games with infinite action spaces, and non-linear payoff functions. 
We have shown that Lipschitz continuity of the payoff function can be exploited to 
provide approximation algorithms. For �p-Lipschitz games, Lipschitz continuity of 
the payoff function allows us to provide an efficient algorithm for finding approxi-
mate equilibria. For penalty games, Lipschitz continuity of the penalty function 
allows us to provide a QPTAS. Finally, we provided strongly polynomial approxima-
tion algorithms for L1 and L2

2
 distance biased games.

Several open questions stem from our paper. The most important one is to decide 
whether �p-Lipschitz games always posses an exact equilibrium. Another interesting 
feature is that we cannot verify efficiently in all penalty games whether a given strat-
egy profile is an equilibrium, and so it seems questionable whether ���� can capture 
the full complexity of penalty games. Is ���� [18] the correct class for these prob-
lems, or is it the newly-introduced class �� [16]? On the other side, for the distance 
biased games that we studied in this paper, we have shown that we can decide in pol-
ynomial time if a strategy profile is an equilibrium. Is the equilibrium computation 
problem ����-complete for the two classes of games we studied? Are there any sub-
classes of penalty games, e.g. when the underlying normal form game is zero sum, 
that are easy to solve? Can we utilize the recent result of [15] to derive QPTASs for 
other families of games?

Another obvious direction is to derive better polynomial time approximation 
guarantees under for biased games. We believe that the optimization approach intro-
duced by Tsaknakis and Spirakis [32] might tackle this problem. This approach has 
recently been successfully applied to polymatrix games [17]. A similar analysis 
might be applied to games with L1 penalties, which would lead to a constant approx-
imation guarantee similar to the bound of 0.5 that was established in that paper. The 
other known techniques that compute approximate Nash equilibria [5] and approxi-
mate well supported Nash equilibria [9, 19, 25] solve a zero sum bimatrix game in 
order to derive the approximate equilibrium, and there is no obvious way to general-
ise this approach in penalty games.
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