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Abstract

In this work we study the problem of collecting protected data in ad-hoc sensor network using a mobile
entity called MULE. The objective is to increase information survivability in the network. Sensors from
all over the network, route their sensing data through a data gathering tree, towards a particular node,
called the sink. In case of a failed sensor, all the aggregated data from the sensor and from its children is
lost. In order to retrieve the lost data, the MULE is required to travel among all the children of the failed
sensor and to re-collect the data. There is a cost to travel between two points in the plane. We aim to
minimize the MULE traveling cost, given that any sensor can fail. In order to reduce the traveling cost,
it is necessary to find the optimal data gathering tree and the MULE location. We are considering the
problem for the unit disk graphs (UDG) and Euclidean distance cost function. We propose a primal-dual
algorithm that produces a (20 + ε)-approximate solution for the problem, where ε → 0 as the sensor
network spreads over a larger area. The algorithm requires O

(
n3 ·∆ (G)

)
time to construct a gathering

tree and to place the MULE, where ∆ (G) is the maximum degree in the graph and n is the number of
nodes.

Keywords: WSN · MULE · MWCDS · Primal-Dual · UDG

1 Introduction
Consider an Ad-Hoc sensor network randomly embedded in the plane. An example application is the use
of sensors scattered in forests using aircraft, to give an indication when a fire starts. The main problem
in WSN is long-term survivability. Because of the limited energy of the sensor, its lifetime depends on its
energy consumption. A standard solution for efficient utilization of energy is to build a data gathering tree
in the network. In this method, the data is aggregated in order to reduce the number of messages each sensor
transmits. The sensors create a logical construction of a tree in the network, and all the data routed to the
sink according to that tree. The basic principle of the data aggregation is that each sensor waits to aggregate
the data from all its children before it sends its own message to its father. When a sensor failure occurs, all
the aggregated data from the sensor and its children are lost. Also, if the sensor is not a leaf in the tree, its
entire subtree is disconnected. It takes a long time to recognize the fault, and for the network to reconstruct
a new gathering tree. Here comes the use of data MULE to retrieve the lost data. Data MULE is a mobile
unit provided with extended computing and storage capabilities, and short-range wireless communication.

In order to gather data from the children of a failed sensor, the MULE should travel and approach each
child. After visiting all of the children, the MULE returns to its starting point. There is a cost to travel
between two points. Given a graph of gathering sensors network, we would like to find the data gathering
tree and the position of the MULE, which minimizes the traveling cost, while each sensor could fail. It
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is common to model wireless sensor networks as a Unit Disk Graph (UDG), where the transmission range
of the sensors is defined as one unit. The sensors are the nodes, and between each pair of sensors that
can communicate directly with each other, there will be an edge in the graph. The MULE problem was
previously defined by Crowcroft et al. [3] and Yedidsion et al. [14].

In this work, we focused primarily on the study of the problem on general unit disk graphs for Euclidean
distance cost function, and only one sensor can fail at a time.

The paper is organized as follows. In the next section we present the previous related work. In Section
3 we define our problem and model, and introduce the main subjects that our method is based on. In
Section 4 we show reductions of the problem which we use later. We present our algorithm and analyze
its performance, in Section 5. In Section 6 we present simulation results of our algorithm, and conclude in
Section 7.

2 Related work
In the last years, some research has been started to evaluate how Data MULEs can benefit the performance
of wireless sensor networks. Two major approaches have developed in this area. The first approach is the
regular use of data MULEs in order to pass data between remote components in the network [10, 8, 11].
The second approach is using data MULEs in order to increase information survivability in the network.
The main idea is to use MULEs to amend failures in the network. This is where our work takes place.
Crowcroft et al. [3] use this approach to deal with the problem of efficient data recovery using the data
MULEs approach. They consider a sensor network that uses a data gathering tree. The main idea is to use
MULEs in order to retrieve lost data caused by failed sensors by visiting the children of the failed sensors.
They define the problem as “(α, β)−Mule”, when α is the amount of simultaneously failed sensors and β is
the number of MULEs in the network. They study several aspects of the problem and suggest a variety of
solutions to the problem on the following graph topologies: complete graph and UDG (line, random line, and
grid). Yedidsion et al. [14] also study the same problem of data gathering in sensor networks using MULE.
They consider the problem when there is one MULE in the network, and only one sensor can fail at the same
time. They study the problem for several topologies, such as UDG on a line and general UDG. Further, they
also consider a failure probability for each sensor and study the problem for a complete graph. For the UDG
on a line, they present an O (n) time algorithm that solves the problem. For a general UDG graph, they
present an algorithm and two approaches to analyze its approximation ratio, with a tradeoff between runtime
and approximation. The first approach achieves (57 + ε) approximation and takes O

(
n3 log n

)
time, where

ε comes from a TSP calculation (according to [9]) for the approximation ratio. The second approach reduces
operations and achieves O

(
n2 log n

)
time. However, it pays with a worse approximation of (114 + ε). Ashur

[1] continued their study on a general UDG, and came up with a very large constant-factor approximation
algorithm for the problem, which requires O (n log n) runtime.

Like Yedidsion et al. [14] and Ashur [1], we will also focus on the MULE problem for a general UDG
graph, when there is one MULE, and only one sensor can fail at a time. We use a different approach to solve
the problem, and propose a primal-dual algorithm that achieves a (20 + ε)-approximation for the MULE
problem but has a higher runtime of O

(
n3 ·∆ (G)

)
. We note that ∆ (G) is the maximum degree in the

graph, n is the number of nodes, and ε→ 0 as the sensor network spreads over a larger area.

3 Preliminaries and Model

3.1 Problem definition
Definition 1 (Data gathering tree). Data gathering tree T = (V,ET ) is a directed spanning tree in graph
G = (V,E). Consider a spanning tree in G and a root node r, T is the rooted directed version of the spanning
tree, where from each node in the tree there is a directed path to r.
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In this work, we study the MULE problem for UDG, where there is one MULE and only one sensor
failure at a time, in the network. We will refer to this problem as “(1, 1)−MULE−UDG”, and it is defined
as follows: Consider a network of sensors embedded in the plane with the same transmission range. Let
G = (V,E) be a connected UDG that models the WSN, when the sensors are nodes, and an edge is defined
between a pair of nodes only if they are within the transmission range of each other. Let T be a data
gathering tree which spans all the nodes in G. T is rooted at node r, and sensing data propagates from leaf
nodes to the root. One MULE is located at some node on the graph. Let m be the MULE location. The
MULE can travel between a set of nodes, where the cost function of a tour t (referred to as c (t)) is its total
Euclidean distances. Let δ (v, T ) be the set of children that v has in tree T . When sensor vf fails, all data
gathered from its children is lost, and the MULE must travel through all of its children, in order to retrieve
the lost data. The MULE performs a circular tour that goes through all the nodes δ (vf , T ) and at the end
returns to the starting position m. Let t (m, δ (vf , T )) be the shortest circular tour through all the nodes
in {m} ∪ δ (vf , T ), that the MULE has to take. The objective will be to minimize the overall MULE tour,
regardless of which sensor fails. Formally, the problem is defined as follows:

Definition 2 ((1, 1)−MULE−UDG problem). Given a connected UDG graph denoted by G = (V,E), our
goal is to find the MULE location m and the data gathering tree T , which minimizes the objective function:

min
m,T

∑
vf∈V

[c (t (m, δ (vf , T )))]

 .

3.2 The primal-dual method
The field of combinatorial optimization problems has been heavily influenced by the field of Linear Pro-
gramming (LP) since many combinatorial problems can be described as linear programming problems. The
primal-dual method was first introduced by Dantzig, Ford, and Fulkerson [4] in 1956, in order to find an
exact solution for linear programming problems. The principle of the primal-dual method can also be useful
for finding an approximate solution in polynomial time for NP-hard optimization problems, and this method
is called “The Primal-Dual Method for Approximation Algorithms”. The main idea is to construct a feasible
solution for the LP problem (referred as the “Primal LP Problem”) from scratch, using a related LP problem
(referred as the “Dual LP Problem”) that guides us during the construction of the feasible solution. In our
case, the relationship between the primal and the dual problems is such that, the primal solution serves
as an upper bound, while the dual solution serves as a lower bound for the optimal solution OPT. The
performance of a primal-dual approximation algorithm is measured by the ratio between the primal and the
dual solutions it finds. In 1995, Goemans and Williamson [6] proposed a general technique for designing
approximation algorithms based on this method. Their technique produces 2-approximation algorithms for
a broad set of graph problems that run in O

(
n2 log n

)
time. Their technique had a significant impact on our

research. For more details about the primal-dual method, we will refer the reader to the papers [6, 12, 7].

3.3 Minimum-weighted connected dominating set problem
For a later use, we want to define the term MIS and the problem of MWCDS.

Given a graph G = (V,E), a set S ⊆ V will be called an Independent Set (IS), if for each pair of nodes
u, v ∈ S there is no edge (u, v) ∈ E. The set will also be called a Maximal Independent Set (MIS), if it is an
IS and there is no node v ∈ V \ S which can be added to the set while it will still remain independent.

Consider the graph G = (V,E), a set of nodes S ⊆ V will be called a Dominating Set (DS), if each node
v ∈ V is either in the set or is a neighbor of any node in the set. The DS with the minimum cardinality is
called a Minimum Dominating Set (MDS). A set of nodes S ⊆ V will be called Connected Set (CS) if its
induced graph in G is connected. A set of nodes S ⊆ V will be called Connected Dominating Set (CDS)
if S is both dominating set and connected. The CDS with the minimum cardinality is called a Minimum
Connected Dominating Set (MCDS). Consider a weight function for each node in graph G, the DS with the
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minimum total node weights is called a Minimum-Weighted Dominating Set (MWDS) and the CDS with
the minimum total node weights is called a Minimum-Weighted Connected Dominating Set (MWCDS).

Definition 3 (MWCDS problem). Given a connected graph denoted by G = (V,E) and a node weight
function w (v) : V → R+, our goal is to find a subset of nodes S ⊆ V , which is CDS in G and minimizes the
objective function:

min
S⊆V

{∑
v∈S

w (v)

}
.

Finding MCDS is an NP-complete problem for UDG ([2]). Hence the more general case of MWCDS is
also an NP-complete problem. In 2010 Erlebach and Matus [5] presented a polynomial-time algorithm that
achieves approximation of (4 + ε) for MWDS, and they combine it with a known algorithm for node-weighted
Steiner trees to achieve a 7.875-approximation for MWCDS in UDG graphs. In addition, independently, in
2011 Zou et al. [15] also introduced a polynomial-time algorithm that achieves (4 + ε)-approximation to
the MWDS problem on UDG. Due to the method they were based on, there is a trade-off between the
approximation performance ratio and the runtime. So they only proved that the runtime was polynomial,
but they did not analyze it accurately.

We wanted to put more emphasis on a reasonable runtime, and therefore in this work, we chose to use a
different method than the others: we will use the Primal-Dual method.

4 Reduction of The Problem

4.1 Reduction to an approximate MWCDS problem
The MULE problem we study seems to be an NP-hard problem, although it has not yet been proven. It
is interesting to note that with some reasonable assumptions, the (1, 1) − MULE − UDG problem can
be reduced to the problem of finding a MWCDS, when the node weight is proportional to its Euclidean
distance from the MULE. We assume that the MULE has a fixed transmission range of RM , within the
range 0 < RM < 0.3 · R, where R is the sensor’s transmission range. In our case, for UDG, R = 1 and the
range will be 0 < RM < 0.3. In other words, the MULE does not need to reach the exact location of the
sensor, but it needs to get close enough to communicate with it.

Let m be any location of the MULE, and T be some gathering tree. The MULE’s tour for a failure
t (m, δ (v, T )) of node v can be represented as a series of nodes according to their order

{
m,u1, u2, u3, . . . , u|δ(v,T )|,m

}
.

We will consider the tour as three separate parts. LWF (v, T ) (“Long Walk Forward”) is the cost of the
MULE’s walk from node m to node u1, for the failure of node v in gathering tree T . LWB (v, T ) (“Long
Walk Backward”) is the cost of the MULE’s walk from node u|δ(v,T )| to node m. WAC (v, T ) (“Walking
Among Children”) is the cost of the MULE’s walk from node u1 to node u|δ(v,T )|, through the rest of v’s
children u2, u3, . . . , u|δ(v,T )|−1 in tree T .

Let Cost (T,m) be the total tours cost
∑
vf∈V c (t (m, δ (vf , T ))) for a MULE located at m and for

gathering tree T . Let us denote the BackBone (BB) of gathering tree T to be the induced undirected
subgraph of T , which contains all the non-leaf nodes, that is, all nodes with degree greater than one. The
BackBone is denoted by TBB = (VBB , EBB), where VBB is the set of the BackBone’s nodes and EBB is its
set of edges. Let OPTT∗ be the cost of the optimal solution for the (1, 1) −MULE − UDG problem, and
m∗ be the optimal MULE location, where T ∗ = (V,E∗T ) is the data gathering tree of the solution. That is,
OPTT∗ = Cost (T ∗,m∗). Let V ∗BB be the BackBone nodes of T ∗. We denote by dist {m, v} the Euclidean
distance between node v and the MULE location m.

Proposition 4. If we consider the MULE’s transmission range as a constant in the range 0 < RM < 0.3,
then for any data gathering tree T and for each node v ∈ V , we can bound WAC (v, T ) ≤ C1, where
C1 = (1 +RM ) (1 + π (1 + d(1−RM )/2RMe)).

Proof. Note that all the children of any node are scattered over a fixed area due to the UDG property, a disk
area of radius 1 (i.e. the node transmission area). One extreme possibility for the MULE’s tour will be to
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Figure 1: Bounded walk among children of a failed sensor.

reach a failed node with precisely one child. In this case, the MULE has no need to walk in the transmission
area around the node, and therefore we have WAC (v, T ) = 0. As the nodes density increases in the graph,
the children of a node are increasingly filling the transmission area around it, and the MULE will have to
walk a lot more to reach all of them. Therefore, the extreme case on the other side will be when the MULE
has to walk all over the transmission area of the failed node, in order to reach all of its children. Since
we assumed that the MULE has a fixed transmission range RM , we want to show that there is a fixed-length
walk during which the MULE approaches each child at a distance of RM .

The description of the walk is as follows. First, the MULE reaches the center of the area, where the
failed node is located. From there, it moves in increasing circles, until full coverage of the area (as described
in Figure 1). The first circle is with radius 2RM , and for all the rest, each circle has a radius that grows by
2RM from its predecessor. Each time the MULE completes an entire circle, it moves 2RM units away in the
direction of the radius and starts the walk of the next circle. In order to cover the whole transmission area,
the amount of circles required is d(R−RM )/2RMe.

Calculating the total length of the MULE walk consists of walking in circles
∑d(R−RM )/2RMe
i=1 2π · (i · 2RM )

and walking between circuits d(R−RM )/2RMe · 2RM . Let us define NR , d(R−RM )/2RMe, we get:

WAC (v, T ) ≤ NR · 2RM +
∑NR

i=1 2π · (i · 2RM )
= NR · 2RM + NR

2 (2π · 2RM + 2π ·NR · 2RM )
= 2RM ·NR (1 + π (1 +NR))
= 2RM · d(R−RM )/2RMe (1 + π (1 + d(R−RM )/2RMe))
≤ (1 +RM ) (1 + π (1 + d(1−RM )/2RMe))
= C1 .

The second inequality derives from the rounding up operation and since R = 1.

Lemma 5. Let (2 · dist {m, v}+ C) be the weight of node v, where C is a positive constant dependent on
RM . Then Cost (T,m) can be bounded from above by the total weight of T ′s BackBone nodes.

Proof. Since a leaf node has no children in the tree T , the MULE does not go on tour for the failure of
a leaf node. Therefore, the only nodes for which the tour cost c (t (m, δ (vf , T ))) is greater than 0 are the
BackBone nodes of T . So, we can write:

Cost (T,m) ,
∑
vf∈V

c (t (m, δ (vf , T ))) =
∑

v∈VBB

c (t (m, δ (v, T ))) . (1)

The MULE’s tour consists of 3 different walks, LWF (v, T ), LWB (v, T ) and WAC (v, T ). Note that
from the triangle inequality, and since a child of node v can be at most one unit away from v, we get:
LWF (v, T ) ≤ dist {m, v}+ 1 and LWB (v, T ) ≤ dist {m, v}+ 1. Combining this with Proposition 4, we
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Figure 2: Constant C as a function of RM .

will get:
c (t (m, δ (v, T ))) = LWF (v, T ) +WAC (v, T ) + LWB (v, T )

≤ (dist {m, v}+ 1) + C1 + (dist {m, v}+ 1)
= 2 · dist {m, v}+ 2 + C1 .

(2)

Let us define C , 2 + C1. Thus, in conclusion:

Cost (T,m)
(1)
=

∑
v∈VBB

c (t (m, δ (v, T )))
(2)

≤
∑
v∈VBB

(2 · dist {m, v}+ C) ,
(3)

where, C = 3 +RM + π (1 +RM ) (1 + d(1−RM )/2RMe) (Figure 2).

Lemma 6. Let (2 · dist {m, v} − 2.6) be the weight of node v. Then Cost (T,m) can be bounded from below
by the total weight of T ′s BackBone nodes.

Proof. Note that the shortest tour to a particular failed node v is in case the node has exactly one child in T ,
which is located as close as possible to the MULE. Since this is only one child, thenWAC (v, T ) = 0. We will
distinguish between two possible cases: when the MULE is located within the transmission area of the failed
node v, and when it is located outside it. In the first case, dist {m, v} ≤ 1 and the shortest possible tour
will have a cost of 0 (in case the MULE is located such that the only child is within its transmission range).
So we have LWF (v, T ) = LWB (v, T ) = 0 ≥ dist {m, v} − 1.3. In the second case, where dist {m, v} > 1,
the location of the child that minimizes its distance from the MULE will be directly between the node v
and the MULE, at the edge of v’s transmission range (exactly one unit away from v). This implies that
LWF (v, T ) = LWB (v, T ) = dist {m, v} − 1−RM . Recall that RM < 0.3. Therefore we can bound the
MULE’s tour from below, as follows:

c (t (m, δ (v, T ))) = LWF (v, T ) +WAC (v, T ) + LWB (v, T ) > 2 · (dist {m, v} − 1.3) . (4)

Combine it with Equation 1 of Lemma 5, we get:

Cost (T,m)
(1)
=

∑
v∈VBB

c (t (m, δ (v, T )))
(4)
>

∑
v∈VBB

(2 · dist {m, v} − 2.6) .

Theorem 7. Consider the optimal solution for the MWCDS problem [3] for node weights (2 · dist {m∗, v}+ C),
where C is a positive constant dependent on RM and m∗ is the optimal MULE location for the (1, 1) −
MULE − UDG problem. Let V ∗BB be the BackBone nodes of the optimal gathering tree. If the condition
Average
v∈V ∗BB

[dist {m∗, v}] > 1.3 is met, then a data gathering tree whose BackBone consists of the optimal solu-

tion to this specific MWCDS problem is an (1 + ε)-approximate solution for the (1, 1)−MULE − UDG prob-
lem, where as the area of the BackBone increases, the smaller the ε (i.e. ε→ 0 for Average

v∈V ∗BB

[dist {m∗, v}]→∞).
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Proof. We will denote OPTcds∗ to be the total weight of the optimal solution for the MWCDS problem, where
cds∗ is the optimal CDS itself, which achieves this weight. If the nodes weights are (2 · dist {m∗, v}+ C),
then according to the problem definition [3], we have:

OPTcds∗ =
∑

v∈cds∗
(2 · dist {m∗, v}+ C) . (5)

From the other side, of the (1, 1)−MULE − UDG problem, let us define the weight of a gathering tree
T (referred as WeightBB (T )), to be the total weight of its BackBone nodes.

We want to claim that the BackBone of T is a CDS. Therefore we are required to show that the BackBone
is both dominating and connected. T is a spanning tree in G by definition [1]. Thus, it is connected and
contains all the nodes. Since T is connected, each node in T is either a leaf or a BackBone node, and if it
is a leaf, then it has a neighbor in the BackBone. So, the BackBone is a DS. T is connected by definition
[1]. Therefore, if we will prune all of its leaves it will still remain connected. Hence, the BackBone nodes are
also a CDS.

We assume that the root node is not a leaf. Otherwise, we can always replace T ∗ with such a tree, without
affecting the approximation ratio. Let r and v be the root node and one of its neighbors, respectively.
If r is a leaf, we can replace v to be the root instead. Thus we will create a new tree T ′, for which
LWF (v, T ′) = LWB (v, T ′) = 0 and WAC (v, T ′) ≤ WAC (v, T ∗) + 4. The worst case of adding 4 to the
total tour cost of T ′ does not affect the approximation ratio.

The BackBone nodes of T is a CDS, and the root is one of these nodes. If the total weight of the BackBone
is the weight of the tree, then it can be said that, finding a tree with the lowest weight is equivalent to finding
a MWCDS in the graph. Formally, the following equality holds:

min
T
{WeightBB (T )} = min

T

{ ∑
v∈VBB

(2 · dist {m∗, v}+ C)

}
= min

S⊆V
{Weight (S)}

s.t S is a CDS
=

∑
v∈cds∗

(2 · dist {m∗, v}+ C) .

(6)

A gathering tree with the lowest weight has a lower weight than any other tree, in particular T ∗. Note
that these are not necessarily the same gathering trees. Therefore:

min
T
{WeightBB (T )} = min

T

{ ∑
v∈VBB

(2 · dist {m∗, v}+ C)

}
≤ WeightBB (T ∗)
=

∑
v∈V ∗BB

(2 · dist {m∗, v}+ C) .

(7)

From Lemma 5 and Lemma 6 we have seen that OPTT∗ can be bounded as follows:∑
v∈V ∗BB

(2 · dist {m∗, v} − 2.6) < OPTT∗ ≤
∑

v∈V ∗BB

(2 · dist {m∗, v}+ C) .

Now, we will calculate how much the upper bound is greater than the optimal solution.∑
v∈V ∗

BB
(2·dist{m∗,v}+C)

OPTT∗
<

∑
v∈V ∗

BB
(2·dist{m∗,v}+C)∑

v∈V ∗
BB

(2·dist{m∗,v}−2.6)

=

∑
v∈V ∗

BB
2·dist{m∗,v}+|V ∗BB |C∑

v∈V ∗
BB

2·dist{m∗,v}−|V ∗BB|2.6
= 1 + 1

2
(C+2.6)

·
(∑

v∈V ∗
BB

dist{m∗,v}

|V ∗BB|
−1.3

)
= 1 + 1

2
(C+2.6)

·

Average
v∈V ∗

BB

[dist{m∗,v}]−1.3


= 1 + ε ,

(8)
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where, ε ,

(
2

(C+2.6) ·

(
Average
v∈V ∗BB

[dist {m∗, v}]− 1.3

))−1

, and hence ε→ 0 for Average
v∈V ∗BB

[dist {m∗, v}]→∞.

That is, the ε error decreases as the average distance of the BackBone nodes from the MULE, increases.
Also, as the graph will be deployed over a wider area. We should note that for correct approximation, the
condition Average

v∈V ∗BB

[dist {m∗, v}] > 1.3 must be met.

Finally, we will summarize everything in one equation:

OPTcds∗
(5)
=

∑
v∈cds∗ (2 · dist {m∗, v}+ C)

(6)
= min

T

{∑
v∈VBB

(2 · dist {m∗, v}+ C)
}

(7)

≤
∑
v∈V ∗BB

(2 · dist {m∗, v}+ C)
(8)
< (1 + ε)OPTT∗ .

(9)

4.2 The primal-dual method for MWCDS problem
In this section, we will see how the Primal−Dual method can assist us in finding an approximate solution
to the MWCDS problem with which we are dealing.

Consider the following Integer Program (IP) problem:

min
x̄

∑
v∈V

w (v) · xv

s.t.
∑

v∈N(S)

xv ≥ f (S) ∀S : S ⊆ V, S 6= ∅

xv ∈ {0, 1}

(MWCDS − IP ) .

Let x̄ be a vector of size |V |, where xv are its components, and let w (v) be some weight function w (·) : V → R+.
We denote byN (S) the set of nodes which neighbors to set S ⊆ V . Formally: N (S) , {u : ∃ eu,v ∈ E : v ∈ S, u ∈ V \ S}.
f (S) is an indicator function which returns 0 if set S ⊆ V is a DS. Formally:

f (S) ,

{
0 for N (S) ∪ S = V

1 otherwise .
(10)

This IP optimization problem, denoted by MWCDS − IP , is to find a feasible vector x̄ which minimizes
the sum Wx̄ ,

∑
v∈V w (v) · xv.

We will denote by MWCDS −LP the Linear Program (LP) relaxation of the MWCDS − IP problem,
where we relax the integrality constraint xv ∈ {0, 1} to be xv ≥ 0. This is our primal problem.

The dual problem for MWCDS − LP will be referred to as MWCDS −D, and is defined as follows:

max
ȳ

∑
S⊆V :S 6=∅

f (S) · yS

s.t.
∑

S⊆V :S 6=∅,v∈N(S)

yS ≤ w (v) ∀v ∈ V

yS ≥ 0

(MWCDS −D) .

yS is the components of vector ȳ. The MWCDS−D problem is to find a feasible vector ȳ which maximizes
the sum Fȳ ,

∑
S⊆V :S 6=∅ f (S) · yS . For more details about the Primal−Dual relaxation, we will refer the

reader to [7].
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Let x̄ be some feasible solution to MWCDS − IP , and x̄∗ is the optimal solution. Consider that x̄∗LP is
the optimal solution to MWCDS − LP . Also, let ȳ be some feasible dual solution to MWCDS −D, and
ȳ∗ is the optimal solution. From the weak duality theorem we can state that

Wx̄ ≥Wx̄∗ ≥Wx̄∗LP
= Fȳ∗ ≥ Fȳ . (11)

Now, we argue that MWCDS and MWCDS − IP are equivalent problems. Let σ̄ be the equivalent
solution of cds∗ to MWCDS − IP , i.e. a binary vector with ones for each v ∈ cds∗. Symmetrically, let
χ be the equivalent solution of x̄∗ to MWCDS problem, i.e. the set of nodes with value 1 in x̄∗. Note
that OPTcds∗ ,Weight (cds∗) = Wσ̄ and Weight (χ) = Wx̄∗ . We denote by S the collection of all subsets
S , {S : S ⊆ V, S 6= ∅}. We will show that σ̄ is an optimal solution for MWCDS − IP .

Lemma 8. σ̄ is a feasible solution to the MWCDS − IP problem.

Proof. We have to show that σ̄ complies with the constraints
∑
v∈N(S) σv ≥ f (S) ∀S ∈ S of the problem.

In order to prove so, we partition the collection S into three possible cases. First, S contains cds∗; Second,
S does not contain cds∗ and f (S) = 0; And third, S does not contain cds∗ and f (S) = 1. If S contains a
DS, then also f (S) = 0. Hence, the first two cases are trivial. As for the third case, we claim that there is at
least one node v ∈ N (S) which σv = 1. Recall that σv = 1 if and only if v ∈ cds∗. If S and cds∗ are disjoint
sets, then cds∗ dominates all S nodes. Therefore, each node u ∈ S has a neighbor v ∈ cds∗ (i.e. v ∈ N (S)).
If S and cds∗ are not disjoint sets, then at least one node u ∈ S ∩ cds∗ must have a neighbor v ∈ cds∗ \ S
(i.e. v ∈ N (S)), since cds∗ is connected. To conclude, σ̄ is a binary vector that satisfies all the constraints,
thus it is a feasible solution to MWCDS − IP .

Lemma 9. χ is a feasible solution to the MWCDS problem.

Proof. We first prove that χ is a DS. Since its equivalent, x̄∗, is a solution to MWCDS − IP , it must
comply with the constraints

∑
v∈N(S) x

∗
v ≥ f (S) ∀S ∈ S . Let us assume in contradiction that χ is not a

DS. Then, according to the definition f (χ) = 1. For all nodes v ∈ V \ χ holds x∗v = 0, so
∑
v∈N(χ) x

∗
v = 0.

This is in contradiction to the assumption that x̄∗ satisfies the constraint
∑
v∈N(χ) x

∗
v ≥ f (χ). Therefore, χ

must be a DS.
Now we prove that χ is a CDS. Since its equivalent, x̄∗, is an optimal solution to MWCDS − IP , it
must comply with all the constraints

∑
v∈N(S) x

∗
v ≥ f (S) ∀S ∈ S and has the minimum total weight.

Let us assume in contradiction that χ is not connected. Hence, there are at least two maximal connected
components in the induced subgraph of χ in G. Let us consider one of them as C1

χ = (VC , EC). In the
case where f (VC) = 0, VC is a CDS, and therefore from Lemma 8 its equivalent vector satisfies all the
constraints of MWCDS − IP . But, it has a smaller total weight than x̄∗, and this is in contradiction to
the minimality of x̄∗. In the case where f (VC) = 1, since C1

χ is maximal, then it must be N (VC) ∩ χ = ∅.
Therefore holds

∑
v∈N(VC) x

∗
v = 0. This is in contradiction to the assumption that x̄∗ satisfies the constraint∑

v∈N(VC) x
∗
v ≥ f (VC). Hence χ must be connected. To conclude, χ is dominating and connected then it

must be a CDS.

Theorem 10. MWCDS and MWCDS − IP are equivalent problems.

Proof. From Lemma 8 Wσ̄ ≥ Wx̄∗ and from Lemma 9 Wσ̄ = OPTcds∗ ≤Weight (χ) = Wx̄∗ , therefore must
be hold that OPTcds∗ = Wσ̄ = Wx̄∗ . Since also σ̄ is a feasible solution forMWCDS−IP , then the statement
is true.

To conclude, let cds be some CDS in G. From Theorem 10 and Equation 11 we can state that:

Weight (cds) ≥ OPTcds∗ = Wx̄∗ ≥ Fȳ . (12)

So, if we find a CDS and a feasible dual solution, we can determine the approximation ratio between cds
and cds∗.
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Algorithm 1 Constructs an independent dominating set
Input: A connected UDG G = (V,E) with |V | ≥ 2, a node weight function w (·) : V → R+

Ensure: An independent dominating set ds and a lower bound LB1
1: ds← ∅ , A← ∅ , S ← {{v} : v ∈ V } , cv , 1

100 · w (v)
2: y ({v})← 0 ∀v ∈ V , g ({v})← 1 ∀v ∈ V
3: repeat // The algorithm steps
4: Find node v ∈ V that minimizes ε← ε (v)
5: A← A ∪ {v}
6: if v /∈ N (ds) ∪ ds then ds← ds ∪ {v}
7: for each S ∈ S do
8: y (S)← y (S) + g (S) ε
9: if v ∈ N (S) then g (S)← 0

10: end for
11: for each u ∈ V \A do
12: if

∑
S∈S :u∈N(S) g (S) = 0 then

13: S′ ← V \ {u}
14: S ← S ∪ {S′} , y (S′)← 0 , g (S′)← 1
15: end if
16: end for
17: until (N (ds) ∪ ds = V )
18: return

{
ds , LB1←

∑
v∈V y ({v})

}
Definition 11 (Approximation ratio α). A feasible approximation ratio is based on a feasible CDS (cds)
and a feasible dual solution (ȳ), and is defined as follows:

α ,
Weight (cds)

Fȳ
≥ Weight (cds)

OPTcds∗
.

5 The Algorithm

5.1 Approximation algorithm
Here, we introduce our algorithm for constructing a data gathering tree which is based on the Primal−Dual
method, on Theorem 7 and on the conclusions of Subsection 4.2. The algorithm consists of three main stages
(Algorithm 1, Algorithm2 and Algorithm 3). Algorithm 1 finds an independent DS (IDS), while constructing
a feasible dual solution. Algorithm 2 creates a CDS based on the IDS from the previous stage, and update
the dual solution. Finally, Algorithm 3 builds a gathering tree and finds an ideal MULE location. The
BackBone of the gathering tree consists of the CDS from the previous stage.

Algorithm 1 Receives a connected UDG graph G = (V,E) with at least two nodes, and a positive node
weight function w (·) : V → R+. The algorithm returns ds which is an IDS of nodes, and LB1 which is a
lower bound value for the weight of the optimal solution to the MWCDS problem. The algorithm works in
steps to find ds, while constructing a feasible dual solution which will serve as the lower bound.

Initially, ds is an empty set, the node capacity cv is 1
100 ·w (v), and S consists only of the active subsets

{{v} : v ∈ V }. An active subset S is a subset of which the algorithm is willing to determine its yS value for
the dual solution. For all the other subsets in {S : S ⊆ V, S 6= ∅}, consider the value 0. y (S) is the yS value
determined by the algorithm to subset S at the current step, and is initialized to 0. Node v is said to be
“packed ” if it satisfies the following equality:

∑
S∈S : v∈N(S) y (S) = cv. Subset S is said to be “restricted ” if
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it has a packed neighbor node, and therefore its y (S) value can not be increased. g (S) is an indicator with
value 0 for restricted subsets. Formally, it is defined as follows:

g (S) =

{
0 if ∃v ∈ V : v ∈ N (S) ,

∑
S′∈S :v∈N(S′) y (S′) = cv

1 otherwise
.

g (S) is initialized to 1. The algorithm uses the potential function ε (·) to select nodes, and this function is
defined as follows:

ε (v) =

∞ for
∑
S∈S : v∈N(S) g (S) = 0

cv−
∑

S∈S : v∈N(S) y(S)∑
S∈S : v∈N(S) g(S) otherwise

. (13)

At each step, the algorithm selects the node with the minimum potential ε (·) (line 4). Let us say node v.
If the node is independent in ds then it is added to ds (line 6). The y (S) value is uniformly increased by ε (v)
for all active subsets that are not restricted (line 8). Later, we claim that the selected node is packed after
the uniform increase of y (S). Since node v is packed, the algorithm updates all subsets that are adjacent to
v to be restricted (line 9). For each node that is not yet selected (not packed) and all subsets adjacent to it
are restricted, the algorithm creates a new subset in S , which is adjacent only to it (lines 11 - 16).

The algorithm ends once ds becomes a DS (line 17). The algorithm returns ds and the sum
∑
v∈V y ({v})

as LB1 (line 18).

Proposition 12. Each node selected by Algorithm 1 is packed.

Proof. The algorithm adds ε (v) to y (S) of each un-restricted subset S that v ∈ N (S). So we can write the
following equation for the selected node v:∑

S∈S : v∈N(S)

(y (S) + g (S) ε (v)) =

∑
S∈S : v∈N(S)

y (S) +
cv −

∑
S∈S : v∈N(S) y (S)∑

S∈S : v∈N(S) g (S)

∑
S∈S : v∈N(S)

g (S) = cv .

Algorithm 2 Receives a connected UDG graph G = (V,E) with at least two nodes, a positive node weight
function w (·) : V → R+, and ds which is an IDS in G. The algorithm returns cds which is a CDS of nodes,
and LB2 which is a lower bound value on the weight of the optimal solution to the MWCDS problem. The
algorithm works in steps to find cds, while constructing a feasible dual solution which will serve as the lower
bound.

Initially, cds contains the ds nodes, the node capacity cv is 99
100 · w (v), and S consists only of the

active subsets {{v} : v ∈ ds}. y (S) is initialized to 99
500 · (w (v)− 2) for each subset {v} : v ∈ ds, and g (S) is

initialized to 1.
At each step, the algorithm selects the node with the minimum potential ε (·) (line 4). Let us consider

node v. If the node is adjacent to at least two un-restricted subsets, then it is added to cds (line 8). For
each subset adjacent to v that does not contain a node from N ({v}) ∩ cds, the algorithm also adds to
cds a neighbor from that subset (lines 10 - 11). See Figure 3 for illustration of adding nodes. Node v is
selected, green nodes from ds, blue from cds \ ds, and reds are the other nodes that have been packed. In
this situation, v and the red node are added to cds. Next, the y (S) value is uniformly increased by ε (v)
for all active subsets that are not restricted (line 15). We later claim that the selected node is packed, and
therefore the algorithm updates all subsets that are adjacent to v, to be restricted (line 16). The algorithm
adds a new subset to S containing v and all its adjacent subsets that are not restricted.

The algorithm ends once S contains only one subset that is not restricted (line 20). The algorithm
returns cds and the sum

∑
v∈ds y ({v}) as LB2 (line 21).
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Algorithm 2 Constructs a connected dominating set
Input: A connected UDG G = (V,E) with |V | ≥ 2, a node weight function w (·) : V → R+, and an

independent dominating set ds.
Ensure: A connected dominating set cds and a lower bound LB2.
1: cds← ds , S ← {{v} : v ∈ ds} , cv , 99

100 · w (v)
2: y ({v})← 99

500 · (w (v)− 2) ∀v ∈ ds , g ({v})← 1 ∀v ∈ ds
3: repeat // The algorithm steps
4: Find node v ∈ V that minimizes ε← ε (v)
5: S 1 ← {S ∈ S : g (S) = 1, S ∩N ({v}) 6= ∅}
6: S 2 ← {S ∈ S : g (S) = 1, S ∩N ({v}) ∩ cds 6= ∅}
7: if

∑
S∈S :v∈N(S) g (S) > 1 then

8: cds← cds ∪ {v}
9: if S 1 \S 2 6= ∅ then

10: S ←
{
u : u is one neighbor of v from each S′ ∈ S 1 \S 2

}
11: cds← cds ∪ S
12: end if
13: end if
14: for each S ∈ S do
15: y (S)← y (S) + g (S) ε
16: if v ∈ N (S) then g (S)← 0
17: end for

18: S ←

 ⋃
S′∈S 1

S′

 ∪ {v}
19: S ← S ∪ {S} , y (S)← 0 , g (S)← 1
20: until

(∑
S∈S g (S) = 1

)
21: return

{
cds , LB2←

∑
v∈ds y ({v})

}

𝑣

𝑠𝑒𝑡 1 𝑠𝑒𝑡 2

𝑠𝑒𝑡 3

Figure 3: Adding nodes to cds in Algorithm. 2
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Algorithm 3 Constructs a data gathering tree
Input: A connected UDG G = (V,E) with |V | ≥ 2
Ensure: A gathering tree T = (V,ET ), the selected location for the MULE m, and the MWCDS approxi-

mation ratio α
1: ET ← ∅ , cds← ∅
2: for each m′ ∈ V do
3: w (v)← (2 · dist {m′, v}+ C) ∀v ∈ V
4: {ds′ , LB1} ← Algorithm 1 (G , w (·) )
5: {cds′ , LB2} ← Algorithm 2 (G , w (·) , ds′ )
6: if

∑
v∈cds′ w (v) <

∑
v∈cds w (v) then

7: m← m′ , LB ← LB1 + LB2 , cds← cds′

8: r ← The first node selected in ds′ (at the first step of Algorithm 1)
9: end if

10: end for
11: SubG← The induced subgraph of cds in G
12: p̄ ← BFS (SubG , r) // Compute the predecessors of the nodes v ∈ cds using BFS algorithm, starting

from the root r
13: for each v ∈ cds \ {r} do
14: ET ← ET ∪ {DirectedEdge (v → pv)} // pv is the predecessor of node v (a component of p̄)
15: end for
16: for each u ∈ V \ (cds ∪ {r}) do
17: v ← arg min

v∈cds
{dist {u, v}}

18: ET ← ET ∪ {DirectedEdge (u→ v)}
19: end for
20: return {T = (V,ET ) , m , α←

∑
v∈cds w(v)/LB}

Proposition 13. Each node selected by Algorithm 2 is packed.

Proof. Stems from the fact that the uniform increase of the y (S) value is identical to Algorithm 1, and from
Proposition 12.

Algorithm 3 Receives a connected UDG graph G = (V,E) with at least two nodes. The algorithm returns
a data gathering tree T = (V,ET ) in graph G, the selected MULE location m, and the approximation ratio
α (from Theorem 7).

The algorithm searches iteratively for the minimal weight CDS produced by Algorithm 2, over all possible
MULE locations. The node weight function is determined to be w (v) = (2 · dist {m, v}+ C), according to
Theorem 7. The algorithm uses Algorithm 1 to produce an IDS for Algorithm 2. The CDS with minimal
weight is assigned to cds, the corresponding MULE location is assigned to m, LB is the corresponding sum
LB1 + LB2, and r is the first node selected for the corresponding ds′.

After selecting the minimal weight CDS, the algorithm uses the BFS algorithm to construct a directed
spanning tree towards the root node r, in the induced subgraph of cds in G (lines 11 - 15). In this way,
the cds nodes compose the BackBone of the gathering tree. Then, each node in V \ cds is connected by an
outgoing edge to the nearest node in cds.

Finally, the algorithm returns the result tree as T , the MULE location m, and the approximation ratio
α of the result.

5.2 Correctness
In this section, we will show the correctness of our algorithms. We will emphasize in advance that the
algorithms are required to receive a connected UDG graph with at least two nodes in order to return correct
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structures of IDS, CDS, and gathering tree. However, for the approximation ratio and for the lower bounds,
additional constraints are required. For correct lower bounds (LB1 and LB2) and the α parameter, the
graph should have a diameter of at least three. For correct approximation of the (1, 1) −MULE − UDG
problem (i.e. (1 + ε)), it is required to be hold Average

v∈V ∗BB

[dist {m∗, v}] > 1.3, according to Theorem 7. As for

graphs that do not meet only the first condition (on the diameter), these graphs are spread over a bounded
area, and we will address this situation later in Subsection 5.3. We will show in a different approach that
the result gathering tree still ensures the approximation required. As for graphs that do not meet the second
condition, this issue still remains open.

Definition 14 (A feasible dual solution and lower bound). Consider the MWCDS problem and the dual
problem MWCDS − D. Vector ȳ will be called a feasible dual solution, if ȳ is proven to be a solution to
the MWCDS −D problem and satisfies all its constraints. A feasible lower bound is a value that has been
proven to have a feasible dual solution which is well defined, whose sum

∑
S⊆V :S 6=∅ f (S) · yS is equal to this

value. yS are the components of ȳ, V is the set of the graph nodes and f (S) is defined in Equation 10.

Correctness of Algorithm 1. Let S ′ be the collection of all active subsets that Algorithm 1 maintains
in the current step (i.e. S ′ ⊆ S ), and let y′ (S) be the value the algorithm assigns to subset S in the current
step. We define the vector ȳ′ of size |S | (where y′S are its components) as follows:

y′S =

{
y′ (S) for |S| = 1

0 for |S| > 1
∀S ∈ S . (14)

ε is the potential value of the selected node in the current step. A is the set of nodes that the algorithm has
selected up to the current step. From Lemma 19, Algorithm 1 returns an IDS. From Lemma 20, if the graph
diameter is at least three then it returns a feasible lower bound.

Proposition 15. Once node v is selected by Algorithm 1 it becomes packed and ε (v) = ∞, and it remains
so until the end.

Proof. From Proposition 12, after node v is chosen by the algorithm it is packed. According to lines 7 and
9, after node v is chosen, there is

∑
S∈S ′ : v∈N(S) g (S) = 0, and therefore by Equation 13 ε (v) = ∞. The

only place that can change the packaging condition or the∞ potential value is in line 14, since only here the
algorithm performs g (S′)← 1. But this assignment is performed only for new subsets. For both conditions,
subset S′ will influence node v only if v ∈ N (S′). New subsets are of the form V \ {u}, and they have only
one neighbor which is u. Since node v is already selected and added to A, it is not contained in the set
V \ A. Hence, according to line 11, the subset V \ {v} will not be added later in the algorithm. Therefore,
new subsets will not influence node v, which will remain packed and ε (v) =∞.

Proposition 16. In Algorithm 1, if g (S) = 0 for all S ∈ S ′, then there must be A = V .

Proof. Let us assume in contradiction that g (S) = 0 ∀S ∈ S ′, but A 6= V . If so, there must be a node
u ∈ V \A, and from lines 12 - 14, there must be a subset V \ {u} ∈ S ′ which is adjacent to u. Since u is the
only neighbor of V \ {u}, and u is not yet selected by the algorithm, then the if statement in line 9 never
met, nor does the assignment g (V \ {u})← 0. This is in contradiction to the assumption g (S) = 0 ∀S ∈ S ′,
and therefore must be A = V .

Proposition 17. The set ds constructed by Algorithm 1 is an IS, and if A = V then ds must be a MIS.

Proof. The set ds is IS, since, in line 6 a node is added to ds only if it is independent of the ds nodes. Note
that by line 5, if there is a step where A = V , it requires that each node was selected at least once. Let us
assume in contradiction that A = V , but the set ds is not a MIS. Then there is at least one node v ∈ V \ ds
that can be added to ds, so it must be v /∈ N (ds)∪ ds. But since v is already chosen by the algorithm, it is
in contradiction to the condition in line 6. Hence, ds must be MIS.
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Proposition 18. Each node is selected at most once during Algorithm 1.

Proof. According to Proposition 15, the potential value of each node v ∈ V selected by the algorithm becomes
ε (v) =∞, and remains so until the end. We want to show that there is no step in which a node is selected
with a potential value of ε (v) =∞. To do this, let us assume in contradiction that there is a step where node
v is selected with ε (v) =∞, but the stop condition (line 17) has not yet met. Then, according to line 4, for
each node u ∈ V holds ε (u) = ∞. Since cu < ∞, then it must be the first case in Equation 13. The graph
is connected with at least two nodes, so each subset in S ′ is adjacent to at least one node. Therefore, must
be g (S) = 0 for all S ∈ S ′, and according to Proposition 16, must also hold A = V . Consequently, from
Proposition 17, the set ds must be a MIS, hence it is also a DS. This is in contradiction to the assumption
that N (ds) ∪ ds 6= V . Therefore, the claim is correct and node can not be selected twice.

Lemma 19. Given a connected UDG with at least two nodes and node weights w (·) : V → R+, Algorithm
1 returns an IDS.

Proof. First, we argue that the set ds contains at least one node. Since the graph is connected and has at
least two nodes, and S ′ is initialized to be {{v} : v ∈ V }, then at the first iteration, each node v ∈ V has
at least one subset S ∈ S ′ for which v ∈ N (S). Without loss of generality, let us consider node v and some
subset S, where v ∈ N (S). From line 2, g (S) ← 1, so for node v holds:

∑
S∈S ′ : v∈N(S) g (S) > 0. Since

also cv = 1
100 · w (v) <∞, then from Equation 13, at least node v will be selected at the first iteration, and

ε≤ ε (v) <∞.
From line 17, we can see that the algorithm halts once set ds becomes a DS. In Proposition 18, we saw

that each node can be selected at most once. Then the iterations must be halt, and this is as a result of the
fact that the set ds has become a DS.

Combine all that with Proposition 17, we get that ds is both IS and DS. Therefore it is an IDS, and
hence the lemma is correct.

Lemma 20. Given a connected UDG with a diameter of at least three and node weights w (·) : V → R+, Algo-
rithm 1 returns a feasible lower bound, having ȳ′ as its feasible dual solution that also satisfies∑
S∈S : v∈N(S) y

′
S ≤ 1

100 · w (v) ∀v ∈ V .

Proof. We will prove by induction on the algorithm steps that it maintains the constraints∑
S∈S ′ : v∈N(S) y

′ (S) ≤ cv ∀v ∈ V . Since at the initialization phase y′ (S) = 0 ∀S ∈ S ′ (line 2) and since
cv > 0, then it is easy to see that the constraints are maintained for base case step = 0. The induction
hypothesis is that the statement is correct up to step = k, and we will prove that the statement remains
correct for step = k+1. Note, the only line that can violate the constraints is line 8, where y′ (S) is updated.
In step k + 1, the algorithm selects node v. Therefore, according to Proposition 12, node v is packed, i.e.∑
S∈S ′ : v∈N(S) y

′ (S) = cv, and according to Proposition 15, it remains packed until the end of the algorithm.
Then, nodes where the statement can be violated are only those that have not yet been selected (i.e. from
V \ A). Let us assume in contradiction that there is a node u ∈ V \ A that after step k + 1 violates the
statement, and let y′k (S) be the value of y′ (S) at step k. We can write:∑

S∈S ′ : u∈N(S) y
′ (S) > cu∑

S∈S ′ : u∈N(S) (y′k (S) + g (S) ε (v)) > cu

ε (v) >
cu−

∑
S∈S ′ : u∈N(S) y

′
k(S)∑

S∈S ′ : u∈N(S) g(S) = ε (u) .

The result is in contradiction to the minimality of ε (v). So, the statement is correct for step k + 1. Hence,
the algorithm satisfies the constraints.

S ′ contains subsets {v} : v ∈ V (line 1) and y′S = 0 ∀S : |S| > 1 (Equation 14), then we get∑
S∈S : v∈N(S) y

′
S =

∑
S∈S ′ : v∈N(S) y

′
S . Since

∑
S∈S ′ : v∈N(S) y

′ (S) ≤ cv, then ε (v) ≥ 0 (Equation 13). Com-
bine it with line 8, we get y′ (S) ≥ 0. So, from Equation 14, y′S ≤ y′ (S). Recall that cv , 1

100 · w (v). Then
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the following holds: ∑
S∈S : v∈N(S)

y′S ≤
∑

S∈S ′ : v∈N(S)

y′ (S) ≤ cv =
1

100
· w (v) ≤ w (v) ∀v ∈ V .

Since also y′S ≥ 0 (Equation 14), then vector ȳ′ satisfies all the constraints of MWCDS −D. Hence, ȳ′ is a
feasible dual solution.

Since the diameter of the graph is at least three, no subset of a single node is a DS. That is, f ({v}) = 1 ∀v ∈ V
(Equation 10). Combine it with Equation 14 and line 18, we get∑

S⊆V :S 6=∅

f (S) · y′S =
∑

S⊆V :S 6=∅

y′S =
∑

S⊆V : |S|=1

y′ (S) =
∑
v∈V

y′ ({v}) = LB1 . (15)

Therefore, by Definition 14, LB1 is a feasible lower bound and ȳ′ is its feasible dual solution. Hence, the
lemma is correct.

Correctness of Algorithm 2. Let S ′′ be the collection of the active subsets that Algorithm 2 maintains
in the current step (i.e. S ′′ ⊆ S ), and let y′′ (S) be the value that the algorithm assigns to subset S in the
current step. We define the vector ȳ′′ of size |S | (where y′′S are its components) as follows:

y′′S =

{
y′′ (S) for S = {v} : v ∈ ds
0 otherwise

∀S ∈ S . (16)

ε is the potential value of the selected node in the current step. Let S 1 be the collection of all un-restricted
active subsets that contain some neighbor of the selected node, and S 2 be the collection of all subsets in
S 1 that also contain a node which is both a neighbor of the selected node and belongs to the cds set. From
Lemma 27, Algorithm 2 returns a CDS. From Lemma 28, if the graph diameter is at least three and node
weights are w (v) = 2 · dist {m, v}+ C, then it returns a feasible lower bound.

Proposition 21. At each step of Algorithm 2, if node v is contained in some active subset, then there must
be an un-restricted subset which contains v.

Proof. We will prove by induction on the steps, for each node separately. Without loss of generality, let v
be the node. The base case is the earliest step in which v is contained in a subset. Let k0 be this step and
S0 be this subset. If v ∈ ds, then by lines 1 and 2, the base case is trivial. If v /∈ ds, then by line 18, v must
be selected by the algorithm to be contained in S0. By line 19, the condition holds for the base case. If v is
never selected, then it is irrelevant. The induction hypothesis is that the statement holds for step k > k0,
and we will prove that the statement still holds for step k + 1. According to the induction hypothesis, at
step k there is an un-restricted subset S′ which contains v. Let u be the node selected at step k + 1. If
u /∈ N (S′), then by line 16, the situation remains the same. Let S be the new subset at step k + 1. If
u ∈ N (S′), then S′ ∈ S 1 (line 5) and therefore v ∈ S (line 18). In line 19, g (S) ← 1, so the statement
holds. Hence the claim is correct.

Proposition 22. After node v is selected by Algorithm 2 it becomes packed and ε (v) = ∞. Once a node
becomes packed or the potential value becomes ∞, it remains so until the end.

Proof. From Proposition 13, after node v is selected by the algorithm it is packed. According to lines 14 and
16, after node v is selected, there is

∑
S∈S ′′ : v∈N(S) g (S) = 0, and therefore by Equation 13, ε (v) =∞. The

only place that can change the packing condition or the ∞ potential value is in line 19, since only here the
algorithm performs g (S)← 1. But this assignment is performed only for new subsets. For both conditions,
subset S will influence node v only if v ∈ N (S) and the assignment g (S) ← 1 will be performed. Let us
assume in contradiction that there is a new subset that influences v at some later step. Let k be the earliest
step in which v is influenced. Let S be the new subset created in this step, and u be the selected node. S
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consists of all nodes of subsets S′ ∈ S ′′ : g (S′) = 1, S′ ∩N ({u}) 6= ∅ and node u. None of these subsets can
be adjacent to v at step k − 1, since ε (v) = ∞. Therefore, the only possibility to influence v is if u and v
are neighbors. From Proposition 21, there is a subset S′′ ∈ S ′′ : v ∈ S′′, g (S′′) = 1. By line 5, S′′ ∈ S 1,
and therefore v ∈ S. This is in contradiction to the assumption that S influences v. Hence the claim is
correct.

Proposition 23. Algorithm 2 does not select a node with potential value ∞.

Proof. Let us assume in contradiction that there is a step in which the algorithm selects a node with
potential value ∞. Consider k to be the earliest step at which such a node is selected, and let v be this
node. By line 4, must hold ε (u) =∞ for all u ∈ V . From Equation 13, and since cv < ∞, it requires
that

∑
S∈S ′′ : u∈N(S) g (S) = 0 for all u ∈ V . Since the graph is connected, it implies that there is no un-

restricted subset S ∈ S ′′ : |S| < |V |. According to line 19, we know that there must be an un-restricted
subset S′ ∈ S ′′. Then this subset must be S′ = V . So it also has to be the only un-restricted subset. This
is in contradiction to the stop condition (line 20) at the end of step k − 1. Hence the claim is correct.

Proposition 24. At each step of Algorithm 2, the union of all un-restricted active subsets contains the set
cds.

Proof. By line 1, nodes from ds are contained in some active subset S. As for nodes from cds \ ds, each
node had to be selected by the algorithm to be added to cds. Thus, by line 18, this node was also added to
some active subset. According to Proposition 21, a node that is contained in some active subset must also
be contained in an un-restricted subset. Hence, all the nodes in cds are included in the union.

Proposition 25. During Algorithm 2, no node from subset ds will be selected.

Proof. Let v be some node from ds. Since ds is an IS, at the initialization stage (line 1) there is no subset
S ∈ S ′′ adjacent to v. So,

∑
S∈S ′′ : v∈N(S) g (S) = 0, and as a result ε (v) =∞. From propositions 22 and

23, the potential value of v remains ∞ until the end, and therefore the node will not be selected by the
algorithm.

Proposition 26. For each node v ∈ S : S ∈ S ′′, if v /∈ cds then it must have a neighbor u ∈ S ∩ cds.

Proof. Consider some node v and some subset S, where S ∈ S ′′ and v ∈ S \ cds. Of course v /∈ ds,
consequently v was not added to S at the initialization stage (step 0), but rather in a later step, say step
k > 0. Note that from propositions 13, 22 and 23, after node v is selected, ε (v) = ∞ until the end of
the algorithm, and so it will not be selected again. Without loss of generality, let S be the first subset v
added to. Otherwise, since v will not be selected again, by line 18 all other subsets containing v also contain
all S nodes. Since ds is a DS and v /∈ ds, then there is a node u ∈ ds ∩N ({v}). Note that in step 0, u
was contained in some subset, and therefore, according to Proposition 21, in step k − 1, there is a subset
S′ ∈ S ′′ : u ∈ S′, g (S′) = 1. In step k, S′ will be included in the collection S 1. We assumed that v /∈ cds, so
it must be because the condition in line 7 is not met. Thus it requires that

∣∣S 1
∣∣ = 1, and only S′ contained

in S 1. Recall that the neighbor u ∈ S′ ∩ ds, hence u ∈ S′ ∩ cds. According to line 18, S contains v and all
S′ nodes, and therefore the claim is correct.

Lemma 27. Given a connected UDG with at least two nodes, node weights w (·) : V → R+, and an IDS,
Algorithm 2 returns a CDS.

Proof. First, we will show that the algorithm halts. From Proposition 13, the selected node is packed, and
according to Proposition 22, it remains so until the end. Thus after a node is selected, its potential value
will remain∞. According to Proposition 23, this node will not be selected again. Hence, the algorithm must
halts after at most |V | steps.

We will show that the resulting cds is indeed CDS. Since cds contains ds then it is dominates all V nodes.
After the algorithm halts, by line 20, there must be

∑
S∈S ′′ g (S) = 1. According to Proposition 24, the

only un-restricted subset S ∈ S ′′ must contain cds. We will prove by induction on the algorithm steps that
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it maintains the intersection S′ ∩ cds connected for each S′ ∈ S ′′ (and especially for S).
According to line 1, initially, each subset S′ ∈ S ′′ contains a single node from ds. So the base case is trivial.
The induction hypothesis is that the statement holds for step k, and we will prove that the statement still
holds for step k + 1. The only new subset added during step k + 1 is in line 19. Consider S′ to be the
new subset and v to be the selected node. ds is a DS, and by Proposition 25, we know that v is not in ds.
Then, there is a node u ∈ ds which is u ∈ N ({v}). By line 1, u is contained in some subset, so according to
Proposition 21, there is a subset S′′ : u ∈ S′′ that satisfies g (S′′) = 1. Therefore, S 1 contains at least the
subset S′′.
If the condition in line 7 is not met, then v is not added to cds, and S 1 contains only S′′. From the induction
hypothesis the statement holds, since S′ ∩ cds = (S′′ ∪ {v}) ∩ cds = S′′ ∩ cds.
If the condition in line 7 is met, then v is added to cds and

∣∣S 1
∣∣ > 1. We will show that (S′′ ∪ {v}) ∩ cds

is CS, for all S′′ ∈ S 1. Therefore, by line 18, S′ ∩ cds must also be connected. Note that S 2 ⊆ S 1. If
S′′ ∈ S 2, then v has a neighbor u ∈ S′′ ∩ cds. Hence (S′′ ∪ {v}) ∩ cds is also CS. If S′′ ∈ S 1 \S 2, then by
lines 9 - 12, the algorithm adds to cds some neighbor of v. Let u be this neighbor, and note that u /∈ cds.
From Proposition 26, u has a neighbor in S′′ ∩ cds, then S′′ ∩ (cds ∪ {u}) is CS. After line 11, S′′ ∩ cds
remains connected, and so is (S′′ ∪ {v}) ∩ cds.
The statement holds for step k + 1. Therefore, S′ ∩ cds is a CS for each S′ ∈ S ′′.

If we consider the last step, S ∩ cds is also a CS. Since S ∩ cds = cds, then cds must also be a CDS.
Therefore, the lemma is correct.

Lemma 28. Given a connected UDG with a diameter of at least three and node weights w (v) = 2 · dist {m, v}+ C,
Algorithm 2 returns a feasible lower bound, having ȳ′′ as its feasible dual solution that also satisfies∑
S∈S : v∈N(S) y

′′
S ≤ 99

100 · w (v) ∀v ∈ V .

Proof. We will prove by induction on the algorithm steps that it maintains the constraints∑
S∈S ′′ : v∈N(S) y

′′ (S) ≤ cv ∀v ∈ V . In the initialization phase S ′′ , {{v} : v ∈ ds}, so∑
S∈S ′′ : v∈N(S) y

′′ (S) =
∑
u∈ds : v∈N({u}) y

′′ ({u}). Recall that y′′ ({u}) are initialized to 99
500 · (w (u)− 2).

Since node weights are w (u) , 2 · dist {m,u}+ C and the distance between a pair of neighbors in UDG is
at most 1, then w (u) ≤ w (v) + 2 : v ∈ N ({u}). ds is an IS in UDG. Therefore, each node in the graph can
have at most 5 neighbors in ds (the kissing number problem). Formally, |ds ∩N ({v})| ≤ 5 ∀v ∈ V . When
we put it all together: ∑

S∈S ′′ : v∈N(S)

y′′ (S) =
∑

u∈ds : v∈N({u})

y′′ ({u})

=
∑

u∈ds : v∈N({u})

99
500 · (w (u)− 2)

≤
∑

u∈ds : v∈N({u})

99
500 · ((w (v) + 2)− 2)

= |ds ∩N ({v})| · 99
500 · w (v)

≤ 5 · 99
500 · w (v) = 99

100 · w (v) = cv .

Thus the statement is correct for base case step = 0. The induction hypothesis is that the statement is
correct up to step = k, and we will prove that the statement remains correct for step = k + 1. Note, the
only line that can violate the constraints is line 15, where y′′ (S) is updated. In step k + 1, the algorithm
selects node v. Therefore, according to Proposition 13, node v is packed, i.e.

∑
S∈S ′′ : v∈N(S) y

′′ (S) = cv,
and according to Proposition 22, it remains packed until the end of the algorithm. Then, nodes where the
statement can be violated are only those that have not yet been selected. Let us assume in contradiction
that there is a node u that has not yet been packed and after step k + 1 violates the statement. Let y′′k (S)

18



be the value of y′′ (S) at step k. So, we can write:∑
S∈S ′′ : u∈N(S) y

′′ (S) > cu∑
S∈S ′′ : u∈N(S) (y′′k (S) + g (S) ε (v)) > cu

ε (v) >
cu−

∑
S∈S ′′ : u∈N(S) y

′′
k (S)∑

S∈S ′′ : u∈N(S) g(S) = ε (u) .

In contradiction to the minimality of ε (v). Thus the statement is correct for step k+1. Hence, the algorithm
satisfies the constraints.

S ′′ contains subsets {v} : v ∈ ds (line 1) and y′′S = 0 ∀S /∈ {{v} : v ∈ ds} (Equation 16), then we get∑
S∈S : v∈N(S) y

′′
S =

∑
S∈S ′′ : v∈N(S) y

′′
S . Since

∑
S∈S ′′ : v∈N(S) y

′′ (S) ≤ cv, then ε (v) ≥ 0 (Equation 13).
By combining this with line 15, we get y′′ (S) ≥ 0. Consequently, from Equation 16, y′′S ≤ y′′ (S). Recall
that cv , 99

100 · w (v). Then the following holds:∑
S∈S : v∈N(S)

y′′S ≤
∑

S∈S ′′ : v∈N(S)

y′′ (S) ≤ cv =
99

100
· w (v) ≤ w (v) ∀v ∈ V .

Since also y′′S ≥ 0 (Equation 16), then vector ȳ′′ satisfies all the constraints of MWCDS −D. Hence, ȳ′′ is
a feasible dual solution.

Since the diameter of the graph is at least three, so no subset of a single node is a DS. That is,
f ({v}) = 1 ∀v ∈ ds (Equation 10). Combine it with Equation 16 and line 21, we get∑

S⊆V :S 6=∅

f (S) · y′′S =
∑
S∈S

y′′S =
∑
v∈ds

y′′ ({v}) = LB2 . (17)

Therefore, by Definition 14, LB2 is a feasible lower bound and ȳ′′ is its feasible dual solution. Hence, the
lemma is correct.

Correctness of Algorithm 3. From Lemma 29, Algorithm 3 returns a data gathering tree and its
corresponding MULE location. From Lemma 30, if the graph diameter is at least three then it returns
a feasible approximation ratio.

Lemma 29. Given a connected UDG with at least two nodes, Algorithm 3 returns a data gathering tree and
its corresponding MULE location.

Proof. According to lines 14 and 18, the structure consists of directed edges.
Since the node weight function is 0 < w (·) <∞ (line 3) and |V | ≥ 2, then according to Lemma 19 the subset
ds′ that produces Algorithm 1 (line 4) is an IDS, and according to Lemma 27, the subset cds′ produced
by Algorithm 2 (line 5) is a CDS. From line 7, also cds is a CDS. Let SubG be the induced sub graph of
cds in G. So, since G is a connected graph and cds is a CS, then SubG is a connected graph. By line 8,
r ∈ ds′, therefore, r is a node in SubG. In line 12, since the BFS algorithm starts at node r and the graph
is connected, then at line 14 at least one incoming edge must be added to r. From lines 13, 14, 16 and 18,
we see that each node (except r) has a directed outgoing edge in the structure. Hence, we can say that the
structure spans all the nodes in G.
From the BFS mechanism to finding shortest paths, and since for each node in cds \ {r}, an added edge is
directed to its predecessor, after the for loop of line 13, r is reachable from all cds \ {r} nodes in the sub
graph SubG. After the for loop of line 16, it can be reached from any of the other nodes of V to some node
in cds. Therefore, r is also reachable from all the nodes in the structure.
Since G is a connected UDG and cds is a DS, note that each directed edge in the structure is added only
between a pair of neighbors, so it is also an undirected edge in G.
We have seen that the structure that constructs Algorithm 3 is a directed spanning tree in G, and that r is
reachable from all nodes. Thus, by Definition 1, it can be said that the structure is a data gathering tree
and r is its root.

According to the last iteration where line 7 is performed, we can see that m is the MULE location used
for building cds, which is used later on to build the gathering tree. Hence, the lemma is correct.
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Lemma 30. Given a connected UDG with a diameter of at least three, Algorithm 3 returns a feasible
approximation ratio α.

Proof. Consider ȳ′ and ȳ′′, to be the vector solution that constructs Algorithm 1 (Equation 14) and Algorithm
2 (Equation 16), respectively. According to lemmas 20 and 28, since node weights are w (v) , 2 · dist {m, v}+ C
and the graph diameter is at least three, then holds

∑
S∈S : v∈N(S) y

′
S ≤ 1

100 · w (v) and
∑
S∈S : v∈N(S) y

′′
S ≤ 99

100 · w (v)

for all v ∈ V . Consider vector ȳ (where yS are its components) which is defined as follows: ȳ , ȳ′ + ȳ′′. So
we can write: ∑

S∈S : v∈N(S)

yS =
∑

S∈S : v∈N(S)

(ȳ′S + ȳ′′S)

≤ 1
100 · w (v) + 99

100 · w (v)
= w (v) ∀v ∈ V .

Since also yS = ȳ′S + ȳ′′S ≥ 0, then vector ȳ satisfies all the constraints of MWCDS − D. Hence, ȳ is a
feasible dual solution. Using equations 15 and 17, we can also write:∑

S⊆V :S 6=∅

f (S) · yS =
∑

S⊆V :S 6=∅

f (S) · y′S +
∑

S⊆V :S 6=∅

f (S) · y′′S = LB1 + LB2 .

Therefore, by Definition 14, LB = LB1 + LB2 is a feasible lower bound.
In Lemma 29, we showed that cds is a CDS. Then by line 20 and from Definition 11, we can say that the

value α returned by algorithm 3 is a feasible approximation ratio.

5.3 Performance guarantees
In this section we show performance guarantees of Algorithm 3 (including algorithms 1 and 2) in the context
of approximation and runtime. We analyze the approximation ratio of the gathering tree produced by
Algorithm 3 with respect to the optimal gathering tree for the (1, 1)−MULE − UDG problem. According
to Theorem 7, we show that if the input graph satisfies the condition Average

v∈V ∗BB

[dist {m∗, v}] > 1.3, then

the algorithm achieves an approximation of 20 + ε. It should be noted that for graphs that do not meet
this condition, the problem still remains open. From now on, let us consider only graphs that satisfy the
condition. Lemma 32 and Lemma 33 prove the approximation ratio. Further, we analyze the algorithm
runtime and present optimizations that can achieve time complexity of O

(
n3 ·∆ (G)

)
, where ∆ (G) is the

maximum degree in the graph and n is the number of nodes.

Algorithm 3 produces a (20 + ε) − approximate solution. Let us refer to nodes in cds \ ds as the
”connectors”, since they connect the ds nodes.

Lemma 31. There is an injective mapping function from each connector to a single node in ds, such that
no more than two connectors are mapped to one node. The connector is at most one unit away from the
node, and if there is an additional connector, then it is at most two units away.

Proof. In order to prove this claim, we first build a spanning tree T ′ = (cds,E′), which spans all cds nodes.
Then, based on T ′, we explain the mapping of each connector.

The construction of T ′ is based on the decisions made by Algorithm 2. For each node v selected at each
step, we add two types of edges. The first type is for each subset S ∈ S 2, we add the edge (v, u) to E′,
where u ∈ S ∩N ({v}) ∩ ds if there is one, and if not, u ∈ S ∩N ({v}) ∩ cds. The second type of edges is
for each subset S ∈ S 1 \S 2, we add the edge (v, u) to E′, where u is a neighbor according to the choice of
the algorithm in line 10. At the end, we go over all edges in E′ and delete edges with nodes in V \ cds.

The proof that T ′ = (cds,E′) is a spanning tree for cds is done by induction on the algorithm steps.
Recall that S ′′ is the collection of all active subsets of Algorithm 2. We want to show that at each step
and for each un-restricted active subset S ∈ S ′′, the induced subgraph of S ∩ cds in T ′ is a spanning tree
for the nodes in S ∩ cds. The base case, step 0, is trivial. The induction hypothesis is that the statement
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holds for step k > 0, and we will prove that the statement still holds for step k + 1. Consider S′ to be the
new subset created in step k + 1. S′ contains all subsets of S 1. From the induction hypothesis for step
k and since each S′′ ∈ S 1 is un-restricted, the induced subgraph of S′′ ∩ cds in T ′ is a spanning tree for
S′′ ∩ cds. Let v be the selected node. Since ds is a DS, then v has a neighbor in ds. At initialization, this
neighbor is contained in some subset. So, according to Proposition 21, implies that

∣∣S 1
∣∣ > 0. If at the end

of the algorithm v ∈ cds, then for each S′′ ∈ S 1 one edge is added to E′, and connects S′′ ∩ cds (also its
sub spanning tree) to v. If eventually v /∈ cds, then v /∈ S′′ ∩ cds and its edges are deleted at the end. Since
all edges are added in a star form around v, then the result structure is still a tree, and it also spans node
v. Hence, it is a spanning tree for S′ ∩ cds. According to the induction principle, the statement is correct
for every step. In particular for the last step, in which S ′′ contains only one un-restricted subset S. From
Proposition 24 we know that cds ⊆ S, so T ′ is a spanning tree for cds.

The mapping function between the connectors and the ds nodes is described as follows. Since the
algorithm adds to cds, only connectors with at least two edges in E′, then the connectors can not be leaves
in T ′. Consider the root node r, we know that r ∈ ds. We go over all edges of T ′, and each edge we directed
towards r. Each connector is mapped to the nearest (by hops) node in ds which has a directed path to that
connector. In case of multiple choice, select one arbitrarily.

The proof that we do not map to one node in ds, more than two connectors that meet the distance
requirements is as follows. We will show that each connector v ∈ cds \ ds has a node u ∈ ds so that there is
a directed path from u to v of a length no more than two hops. If v has an incoming edge from a node in
ds, then we are done. Otherwise, let us consider v′ to be one of the connectors of the incoming edges (note,
since v is not a leaf then there must be one). Since T ′ is a directed tree towards a particular node, then v′
has only one outgoing edge, and this edge is to v. All other edges of v′ must be incoming. We have already
seen that

∣∣S 1
∣∣ > 0 since each selected node has a neighbor from ds in G, so each connector has a neighbor

from ds, also in tree T ′. Then, one of the incoming edges of v′ must be from a node in ds, and let us denote
this node by u. Thus, we have the path u→ v′ → v in T ′, and we are done.
Since T ′ is a directed tree towards a particular node, each node has only one outgoing edge. Therefore, each
node from ds can reach at most two connectors at a distance of two hops in T ′. These are the only two
connectors that can be mapped to this node. Since we are dealing with an UDG, the first must be at most
one unit away, and the second at most two units. Hence, we complete the proof.

Lemma 32. Given a connected UDG with a diameter of at least three, Algorithm 3 returns a
(20 + ε)− approximate solution to the (1, 1)−MULE − UDG problem.

Proof. Recall that w (v) = 2 ·dist {m, v}+C. According to Lemma 31, each node v from ds has at most two
connectors in cds \ ds, where one connector has a weight greater by 2 and the other by 4, than v’s weight.
Therefore, we can bound cds weight by Weight (cds) ≤

∑
v∈ds (3 · w (v) + 6). In Algorithm 2 line 2, we

assign initial y’s values, then we can bound Fȳ from below by Fȳ ≥
∑
v∈ds

99
500 · (w (v)− 2). Since both sums

contain only the ds nodes, we can calculate the ratio even for just a single node. Note that w (v) ≥ C, and
since 0 < RM < 0.3, then C > 14.5 (Figure 2). So from Definition 11, we can state that the approximation
ratio α is:

Weight (cds)

Fȳ
≤

∑
v∈ds (3 · w (v) + 6)∑
v∈ds

99
500 · (w (v)− 2)

=
3 · w (v) + 6

99/500 · (w (v)− 2)
=

=
3

99/500
+

6 + 6
99/500 · (w (v)− 2)

≤ 500

99

(
3 +

12

(14.5− 2)

)
= 20 . (18)

From Equation 12, OPTcds∗ ≥ Fȳ, then we can write:

Weight (cds)

OPTcds∗

(12)

≤ Weight (cds)

Fȳ

(18)

≤ 20 . (19)

Let T be the gathering tree that produces Algorithm 3 and m is its MULE location. From Lemma 5 and
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since the tree’s BackBone is cds, we get:

Cost (T,m)
(3)

≤
∑

v∈VBB

(2 · dist {m, v}+ C) =
∑
v∈cds

(2 · dist {m, v}+ C) = Weight (cds) . (20)

Let us distinguish between the two MULE locations, m is the one chosen by the algorithm and m∗ of the
optimal solution. Let cds∗m be the optimal solution of MWCDS for location m, where cdsm is the CDS
constructed by the algorithm, and cds∗m∗ is for location m∗. The algorithm selects the minimal-weight CDS,
so we have the following inequality:

20 ·OPTcds∗
m∗

(19)

≥ Weight (cdsm∗) ≥Weight (cdsm) . (21)

Let T ∗ be the optimal gathering tree and m∗ is its MULE location. From Theorem 7, OPTT∗ > (1 + ε)
−1 ·

OPTcds∗
m∗

. So we can put it all together into one equation and conclude that:

Cost (T,m)

OPTT∗

(9)
<

Cost (T,m)

(1 + ε)
−1 ·OPTcds∗

m∗

(20)

≤ (1 + ε) · Weight (cdsm)

OPTcds∗
m∗

(21)

≤

(21)

≤ (1 + ε) · Weight (cdsm)

20−1 ·Weight (cdsm)
= 20 · (1 + ε) = 20 + ε ,

where the last equality is if we include the multiplication by 20 into the inaccuracy ε. So that

ε , 20

(
2

(C+2.6) ·

(
Average
v∈V ∗BB

[dist {m∗, v}]− 1.3

))−1

.

Lemma 33. Given a connected UDG with a diameter of less than three, Algorithm 3 returns a
(20 + ε)− approximate gathering tree to the (1, 1)−MULE − UDG problem.

Proof. Since the graph is an UDG with a bounded area, then for each node v ∈ V holds dist {m, v} ≤ 2.
Recall that the node weight function is 2 · dist {m, v}+ C, so we have Weight (cds) ≤ (4 + C) · |cds|. From
Lemma 31, we know that |cds| ≤ 3 · |ds|. Therefore, we can write the following equation:

Weight (cds) ≤ 3 · (4 + C) · |ds| . (22)

Note that w (v) ≥ C. Let mcds∗ be the optimal solution for the MCDS problem. Thus, since cds∗ is a CDS,
it must be hold that |cds∗| ≥ |mcds∗|. We obtain the following inequality:

OPTcds∗ =
∑

v∈cds∗
w (v) ≥ C · |cds∗| ≥ C · |mcds∗| . (23)

Letmis be a maximal independent set. Weili Wu et al. [13] showed that for UDG graph, |mis| ≤ 3.8 · |mcds∗|+ 1.2.
From Proposition 17, ds is a MIS, then

|ds| ≤ 3.8 · |mcds∗|+ 1.2 . (24)

If we sum it all up here, we get:

Weight (cds)

OPTcds∗

(22)

≤ 3 · (4 + C) · |ds|
OPTcds∗

(23)

≤ 3 · (4 + C) · |ds|
C · |mcds∗|

(24)

≤

(24)

≤ 3 · (4 + C) · (3.8 · |mcds∗|+ 1.2)

C · |mcds∗|
=

=
45.6 · |mcds∗|+ 11.4 · C · |mcds∗|+ 14.4 + 3.6 · C

C · |mcds∗|
.
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Recall that C > 14.5, and mcds∗ is a DS, so it must contain at least one node, i.e. |mcds∗| ≥ 1. We can
continue the inequality as follows:

Weight (cds)

OPTcds∗
<

45.6

14.5
+ 11.4 +

14.4

14.5 · 1
+

3.6

1
< 19.14 < 20 . (25)

As in Lemma 32, let us distinguish between two MULE locations, m and m∗. Remember that the algorithm
selects the minimal-weight CDS, then we can state that:

20 ·OPTcds∗
m∗

(25)
> Weight (cdsm∗) ≥Weight (cdsm) . (26)

Similarly to Lemma 32, we can put it all together and conclude that:

Cost (T,m)

OPTT∗

(9)
<

Cost (T,m)

(1 + ε)
−1 ·OPTcds∗

m∗

(20)

≤ (1 + ε) · Weight (cdsm)

OPTcds∗
m∗

(26)
<

(26)
< (1 + ε) · Weight (cdsm)

20−1 ·Weight (cdsm)
= 20 · (1 + ε) = 20 + ε ,

where the last equality is if we include the multiplication by 20 into the inaccuracy ε (as in Lemma 32).

The total time complexity can be optimized to O
(
n3 ·∆ (G)

)
.

Proposition 34. The number of active subsets maintained by Algorithm 1 is at most twice the number of
nodes.

Proof. Initially, the number of active subsets (
∣∣S ′∣∣) is as the number of nodes in the graph. We will show

that for each node, at most one new subset is added to S ′. Without loss of generality, look at some node
u ∈ V . Consider the first iteration in which the if statement in line 12 is met, for node u. Note, u is not
yet selected by the algorithm. The new subset S′ is added in line 14, where u is its only neighbor. Since the
assignment g (S′)← 1 is performed, then only after the algorithm will assign g (S′)← 0, the statement will
be able to met again. The only place where the assignment g (S′)← 0 can be performed is in line 9, when
u is chosen by the algorithm. In the same step, node u is added to A, so the if statement in line 12 will not
be checked again for u. Hence, no other new subset will be added for node u.

Proposition 35. At each step of Algorithm 2, a node can be contained in only one un-restricted active
subset.

Proof. Without loss of generality, let us consider node u ∈ V . We will prove by contradiction, if node u
is contained in some un-restricted subset S ∈ S ′′ then there is no other un-restricted subset S′ ∈ S ′′ that
contains u. Let us assume in contradiction that u is contained in both S and S′. Note, u can not be added
to the two subsets in the same step. We assume that u is already contained in subset S′, and let us consider
the step where u is added to subset S. According to propositions 22 and 23, since u is contained in S′ then
it cannot be the selected node. Therefore, u had to be added to S due to the union in line 18 of collection
S 1. S′ is the only un-restricted subset containing u, so S′ must be in the collection. By Proposition 23, the
selected node v can not be in S′. Since S′ ∈ S 1, then there must be a neighbor of v is S′. Therefore, the if
statement in line 16 is met and the assignment g (S′)← 0 is performed. But this is in contradiction to the
assumption that S′ is un-restricted. Hence, subset S must be the only un-restricted subset that contains
u.

Proposition 36. At each step of Algorithm 2, a node can have at most five adjacent un-restricted subsets.

Proof. We will prove by induction on the steps. Initially, the subsets of S ′′ are based on the ds nodes and
they are all un-restricted. Since ds is an IS then the statement holds for base case, step 0. The induction
hypothesis is that the statement holds for step k > 0, and we will prove that the statement still holds for
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step k + 1. We will show that for each node u ∈ V the condition is preserved. Let v be the selected node
in step k + 1, and S be the new subset. If u is not adjacent to any subset of S 1 and is not a neighbor of
v, then the new subset S has no influence on u. If u adjacent to at least one subset of S 1, then after the
union in line 18 the number of un-restricted subsets adjacent to u can not increase. Consider the case where
u is not adjacent to any subset of S 1 but is neighbor of v. Each subset adjacent to u contains a neighbor
of u. Note, all of these neighbors are independent, and are also independent in v. Therefore, the number of
subsets adjacent to u can not be greater than five, including the new un-restricted subset S that contains v.
Hence, the condition holds for each step, and the statement is correct.

Algorithm 1 can be implemented in such a way that will produce a solution in O
(
n2 ·∆ (G)

)
time. In order to do so, we maintain for each node v ∈ V two additional variables. sumy (v) will be main-
tained equivalent to the value of

∑
S∈S ′ : v∈N(S) y (S), and sumg (v) for the value of

∑
S∈S ′ : v∈N(S) g (S).

These two types of variables will be used to calculate the potential function ε (·) and the if statement of line
12, in constant time. sumy (·) variables will be initialized to zero, and sumg (·) variables will be initialized
to their node degree since all subsets are initially un-restricted. The sumy (·) values should be updated after
changing the y (S) values in line 8. To do so, we will add an update after this line, for each node u ∈ N (S),
the sumy (u) value will be increased by g (S) · ε. The sumg (·) values should be updated in two places. If
the algorithm performs the assignment g (S)← 0 in line 9, when previously g (S) value was 1, then sumg (u)
should be decrease by 1 for each u ∈ N (S). After the assignment g (S′)← 1 in line 14, sumg (u) should be
increased by 1. Now, to calculate the algorithm runtime, we will focus within the general repeat loop, on the
for loop in line 7. All other components can be computed in O (n) time, if we refer to the complement subsets
only symbolically and we consider unsorted sets. Each operation on N (S) is performed in O (∆ (G)) time,
since a subset can have as many neighbors as a node has. Note that according to Proposition 34,

∣∣S ′∣∣ ≤ 2n.
The for loop can perform at most 2n iterations, as the number of subsets in S ′. By Proposition 18, the
repeat loop can perform at most n iterations. Therefore, the total runtime of Algorithm 1 is O

(
n2 ·∆ (G)

)
.

Algorithm 2 can also be implemented in such a way that will produce a solution in O
(
n2 ·∆ (G)

)
time. Also here (as Algorithm 1), we maintain for each node v ∈ V the two variables sumy (v) (for∑
S∈S ′′ : v∈N(S) y (S)) and sumg (v) (for

∑
S∈S ′′ : v∈N(S) g (S)), and in addition the variable s (v). This vari-

able will hold an un-restricted subset that contains v, and from Proposition 35 we know that this subset
is the only one. The first two types of variables will be used to calculate the potential function ε (·) and
the if statement of line 7, in constant time. While the third will be used in lines 5, 6 and 16 to find all
subsets adjacent to a node, in O (∆ (G)) time. Here, variables sumg (v) will be initialized to |N ({v}) ∩ ds|
for each node v ∈ V , sumy (v) to zeros, and variables s (v) will hold subset {v} for each v ∈ ds and ∅ for each
v ∈ V \ ds. Variables s (·) should be updated after adding the new subset in line 19. For each node u in the
new un-restricted subset S we assign s (u)← S. The sumy (·) values should be updated after changing the
y (S) values by the for loop in line 14. Thus, after line 17 we will insert their update. Let S 1

u be the collection
of all un-restricted active subsets adjacent to node u. For each node u ∈ V we find S 1

u using s (·), and need
to increase sumy (u) by

∣∣S 1
u

∣∣ · ε. The sumg (·) values should be recalculated after changing the g (S) values
in lines 16 and 19. So, for each node u ∈ V we find S 1

u using s (·), and assign sumg (u)←
∣∣S 1

u

∣∣. Let us
calculate the algorithm’s runtime. The main component of the runtime is the repeat loop, which according
to propositions 22 and 23, performs at most n iterations. According to Proposition 36,

∣∣S 2
∣∣ ≤ ∣∣S 1

∣∣ ≤ 5.
Then, within the repeat loop, no component requires more than O (n ·∆ (G)) time to calculate (also the
maintenance operations we added for sumy (·) and sumg (·)). Therefore, the total runtime is O

(
n2 ·∆ (G)

)
.

The time complexity of Algorithm 3 is O
(
n3 ·∆ (G)

)
. Stems from the fact that the algorithm

runs algorithms 1 and 2, n times.
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6 Empirical Results
In this section we present simulation results of Algorithm 3. The simulations were performed on random
UDG graphs, in a model of uniform random distribution of nodes across a given square area. Each graph is
characterized by the size of the square area on which it is spread, and by the average density of its nodes. The
simulation was performed only on connected graphs. The MULE transmission range (RM ) is determined to
be 0.2. Since the goal is to show the α-approximation ratio obtained by the algorithm, the MULE location for
each simulation is predetermined, in order to reduce runtime. The MULE location is intuitively determined
to be the closest node to the center of the given area. There are two interesting aspects to explore. One
aspect, is the performance of the algorithm for increasing nodes density, on a given area. For this aspect,
we prepared three sequences of random graphs with the same area. The second aspect is the performance of
the algorithm for increasing area. For this aspect, we prepared three sequences of random graphs with the
same density of nodes.

The first results we present in Figure 4 (a) are simulations for increasing nodes density. We chose three
sizes of square area of 4, 16 and 36 square units. For each area and density, we ran five simulations of
different random graphs. We have seen that these areas are sufficient to represent the general trend. First of
all, in the results we can see a convergence trend of all the simulations to a constant approximation value, as
the density increases. This can be explained by the fact that as the density of the nodes grows, the selection
of nodes for cds is increasingly based on their geographical location in the area. After all, we are looking
for a set that will dominate the entire area. For a fixed area, the position will remain the same. Another
thing that can be observed is the convergence of the distribution of the results, as the area increases. The
convergence of the distribution can be explained as follows. The set of nodes that the algorithm finds, as well
as the optimal solution, must dominate the entire area as the density increases. So when the area increases,
also the weights of the nodes far from the MULE, are increased respectively. In the end, both sets (cds and
the optimal solution) are required to dominate the same area, so the small shifts to the right and left, less
affect the overall cost. What affects more, is the need to have one dominating node in the unit disk around
each node in the graph, and this is also required from the optimal solution.

The second results we present in Figure 4 (b) are simulations for increasing area. We chose three different
densities of 2.5, 10, and 40. We have seen that they represent the general trend. In addition, we illustrated
the value of the approximation inaccuracy (1 + ε) resulting from the reduction to the MWCDS problem.
Since we can not calculate its exact value because it depends on the optimal solution, then we used the cds
nodes that the algorithm finds. We denote this estimator by ε̂. As we explained in the previous simulation
results, as the area grows, then the general form of the optimal solution must be more similar to the solution
found by the algorithm. Since the optimal gathering tree also needs to span all the nodes in the graph,
then the trend should also be similar, as the area increases. Therefore, the ε̂ value calculated by the average
of the cds nodes distances should behave similarly to ε. In the results, we can see the convergence of the
approximation value to a constant. The explanation for this is as before, since both the algorithm’s solution
and the optimal solution should dominate the entire area, and if a node is selected slightly to the right or left
relative to the optimal solution node, then the effect becomes negligible relative to the weight of nodes far
from the MULE. Another thing that can be observed is convergence as the density increases. The explanation
for this is, of course, from the results of the previous simulation, in which we saw this convergence explicitly.
One last thing to note is the downward trend of the estimator (1 + ε̂), which gives us an insight for the value
of (1 + ε). For the range of area sizes we used, we can already see that the approximation inaccuracy has a
very reasonable value.

7 Conclusions and Future Work
In this work, we studied the use of data MULEs in order to gather data and increase information survivability
in wireless sensor networks. We considered the MULE problem for a general UDG with a single MULE and
only one failed sensor, and referred to this problem as (1, 1) −MULE − UDG. We showed that with a
reasonable assumption it can be reduced to a MWCDS problem with an approximation of (1 + ε). Then, we
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(a) Approximation value for increasing
nodes density
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(b) Approximation value for increasing
area size
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Figure 4: Simulation results for the approximation ratio α of Algorithm 3.

proposed a primal-dual algorithm that finds a 20−approximate solution to the reduced problem of MWCDS
in polynomial time. Finally, we introduced the complete algorithm which produces a (20 + ε)-approximate
solution for the (1, 1)−MULE −UDG problem in O

(
n3 ·∆ (G)

)
time. Also, we have shown by simulation

that in practice the algorithm achieves even better results. Future extensions of our work could investigate
how to expand the algorithm for multiple MULEs in the network, or for different cost functions. In addition,
it will be interesting to explore the implications of the algorithm technique on the research field of the
MWCDS problem.
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