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Embedding graphs into embedded graphs

Radoslav Fulek*

Abstract

A (possibly denerate) drawing of a graph G in the plane is approximable by an embedding
if it can be turned into an embedding by an arbitrarily small perturbation. We show that
testing, whether a straight-line drawing of a planar graph G in the plane is approximable by
an embedding, can be carried out in polynomial time, if a desired embedding of G belongs
to a fixed isotopy class. In other words, we show that c-planarity with embedded pipes is
tractable for graphs with fixed embeddings.

To the best of our knowledge an analogous result was previously known essentially only
when G is a cycle.

1 Introduction

In the theory of graph visualization a drawing of a graph G = (V| E) in the plane is usually
assumed to be free of degeneracies, i.e., edge overlaps and edges passing through a vertex.
However, in practice degenerate drawings often arise and need to be dealt with.

Recent papers [I} [7] address a certain aspect of this problem for simple polygons which can
be thought of as straight-line (rectilinear) embeddings of graph cycles. Chang et al. [7] gave
an O(n?logn)-time algorithm to detect if a given polygon with n vertices can be turned into a
simple (non self-intersecting) one by small perturbations of its vertices, or in other words if the
polygon is weakly simple. We mention that there exists an earlier closely related definition
of weakly simple polygons by Toussaint [6, 27], however, as pointed out in [7] this notion
is not well-defined for general polygons with “spurs”, see [7] for an overview of attempts at
combinatorial definitions of polygons not crossing itself.

An O(nlogn) improvement on the running time of the algorithm by Chang et al. was
announced very recently by Akitaya et al. [I]. The combinatorial formulation of this problem
corresponds to the setting of c-planarity with embedded pipes introduced by Cortese et
al. [10] well before the two aforementioned papers. Therein only an O(n?)-time algorithm for
the problem was given. Nevertheless, the algorithms in [I} [7] were built upon the ideas from [10].
Moreover, to the best of our knowledge the complexity status of the c-planarity with embedded
pipes is essentially known only for cycles. Recently the problem was studied for general planar
graphs by Angelini and Da Lozzo [3], but they gave only an FPT algorithm. The introduction of
this problem was motivated by a more general and well known problem of c-planarity by Feng
et al. [13] [14], whose tractability status was open since 1995 even in much more restricted cases
than the one that we consider. Biedl [4] gave a polynomial-time algorithm for c-planarity with
two clusters. Beyond two clusters a polynomial time algorithm for c-planarity was obtained only
in special cases, e.g., [9, [I8] 19 21], 22], and most recently in [5, 8, [15].
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[291734].



There is, however, another tightly related line of research on approximability or realizations of
maps pioneered by Sieklucki [25], Minc [23] and M. Skopenkov [26] that is completely independent
from the aforementioned developments, and that is also a major source of inspiration for our
work. It can be easily seen that the result [26, Theorem 1.5] implies that c-planarity is tractable
for flat instances with three clusters or cyclic clustered graphs [17), Section 6] with a fixed isotopy
class of a desired embedding. An algorithm with a better running time was given by the author
in [I5].

The aim of the present work is to show that c-planarity with embedded pipes is tractable
for planar graphs with a fixed isotopy class of embeddings, which extends results of [2] 3] [15].
Our work also implies the tractability of deciding whether a drawing is approximable by an
embedding in a fixed isotopy class, which extends results of [, [7]. This also answers in the
affirmative a question posed in [7, Section 8.2] if the isotopy class of an embedding of G is fixed.
The combinatorial formulation of the problem, c-planarity with embedded pipes follows,
see Fig. [II We are given

(A) A planar graph G = (V, E), whose vertex set is partitioned into k parts V = V,, &V, 0. . WV,
called clusters given by the isotopy class of an embedding of G in the plane;

(B) a planar graph H = (V(H),E(H)) that is straight-line embedded in the plane, where
V(H)=A{v,..., v}

Remark 1.1. Since H is straight-line embedded, H does not contain multiple edges. The as-
sumption that H is given by a straight-line embedding as opposed to a piecewise linear/polygonal
embedding is not crucial, since every planar graph admits a straight-line embedding in the plane
by Fary—Wagner theorem [12] 28], and its imposition is just a matter of convenience.

Let dist(p, q) denote the Euclidean distance between p, q € R?. Let dist(p, S) = mingeg dist(p, q),
where S C R2. Let N.(S) for S C R? denote the e-neighborhood of S, i.e., N.(S) = {p €
R?| dist(p, S) < e}. Let €,&’ > 0 be small values as described later. The thickening H of H is
the union of N, (v;), for all v; € V(H) and N (p), for all p € E(H) E Let the pipe of p € E(H)
be the closure of N (p) \ (N:(v;) U Nc(v;)), where p = v;v;. Let the valve of p at v; be the
curve obtained as the intersection of N.(1;) and the pipe of p. We put ¢’ < e := ¢(H) so that
the valves are pairwise disjoint in H and € > 0 is smaller than d/4, where d := d(H) is the
minimum distance between a vertex v of H and an edge p of H not incident to v over all such
edge-vertex pairs.

We want to decide if the given isotopy class of G contains an embedding contained in
H, where the vertices in V,,, for every v;, are drawn in the interior of N.(v;) and every edge
crosses the boundary of N.(v;), for every v; € V(H), at most once. Such an embedding of G is
H-compatible. Let E,,,, = {uv € E(G)| u € V,,;,v € V,,;}. An H-compatible embedding of G
is encoded by G, H, and a set of total orders (E,,,,, <), for every v;v; € E(H) and a valve w of
vivj, where (Ey,,;, <) encodes the order of crossings of w with edges along w. The isotopy class
of G is encoded by a choice of the outer face, a set of rotations at its vertices and a containment
relation of its connected components as described in Section [2| Since we are interested only
in combinatorial aspects of the problem, H is also given by the isotopy class of its embedding.
Throughout the paper we assume that G and H are given as in (A) and (B).

Theorem 1.2. There exists O(|V(G)|?) algorithm that decides if the given isotopy class of G
contains an H-compatible embedding. An H-compatible embedding of G can be also constructed
in O(|V(G)|?) time if it exists. In other words, c-planarity with embedded pipes is tractable,
when an isotopy class of a desired embedding of G is fixed.

!Throughout the paper we denote vertices and edges of H by Greek letters.



Figure 1: Instance of c-planarity with embedded pipes. The partition of the vertex set of G into
clusters is encoded by the shape of vertices. An H-compatible embedding of a subgraph of G
that cannot be extended to the whole G (left). An H-compatible embedding of G (right) inside
H. The valves of p = v;v; at No(v;) and N.(v;) are highlighted by bold arcs.

As a corollary of our result we obtain that we can test in polynomial time if a piecewise
linear drawing of a graph in the plane is approximable by an embedding and construct such
an embedding if it exists. We defer the definition of the approximability by an embedding to
Section (3] where also the proof of the corollary can be found. As previously discussed this
extends results in [I} [7] and also [26].

Corollary 1.3. There exists an O(n*) time algorithm that decides if a piecewise linear drawing
of a graph in the plane is approximable by an embedding, and constructs such an embedding if it
exists, where n is the size of the representation of the drawing.

Extensions of our results. By [24, Theorem 3.1], our result holds also in the setting of
rectilinear, i.e., straight-line, drawings of graphs. To extend it further in this setting by allowing
“forks” (see Section [3)) seems to be just a little bit technical.

In a recent manuscript [L6], we verified a conjecture of M. Skopenkov [26, Conjecture 1.6]
implying that that our problem is tractable, when we lift the restriction on the isotopy class G.
This does not imply that the problem with the restriction on the isotopy class G is tractable
except when G is connected. The running time of the algorithm, that is implied by this work, is
O(|V|?*), where O(n¥) is the running time of the fastest algorithm for multiplying a pair of n
by n matrices. Since w > 2 due to the matrix size, this is much worse that the running time
claimed by Theorem Furthermore, the algorithm is not constructive.

As noted by Chang et al. [7], the technique of Cortese et al. [I0] extends directly from
the plane to any closed two-dimensional surface. The same holds for our method, but since
considering general two-dimensional surfaces does not bring anything substantially new to our
treatment of the problem, for the sake of simplicity we consider only the planar case.

Strategy of the proof of Theorem Formally, the input of our algorithm is a triple
(G, H,~), where the partition of the vertex set of G corresponds to the map v from the set of
vertices of G to the set of vertices of H. Hence, for v € V,,, where v € V(H), we have v(v) = v.
The input (G, H,~) is positive if there exists an H-compatible embedding of G in the given
isotopy class of GG, and negative otherwise.

The most problems in constructing a polynomial time algorithm for our problem are caused by
so called “spurs” such as the red vertex in Fig. [1| (left), i.e., connected components in subgraphs
of GG induced by clusters, whose all adjacent vertices belong to the same cluster. Due to the
presence of spurs it is hard to see that our problem is tractable even in the case, when G is a
path.

The centerpiece of our method is an extension of the definition of the derivative of maps
of intervals/loops (corresponding to the case, when G is a path/cycle, in our terminology) in
the plane introduced by Minc [23] to arbitrary graphs. We adapt this notion to the setting of
c-planarity with embedded pipes. The derivative is an operator that takes (G, H, ), and either



detects that there exists no H-compatible embedding of G in the given isotopy class of G, or
outputs (G', H',~'), that is also a valid input for our algorithm, such that (G, H,~) is positive
if and only if (G, H',~) is positive. Intuitively, H' is reminiscent of the line graph of H and
the subgraphs of G, that are mapped by ~ to the edges of H, are turned into subgraphs of G’
mapped by 7/ into vertices of H’. This results in a shortening of problematic spurs, and zooming
into the structure of the map . We show that by iterating the derivative |E(G)| times we either
detect that there exists no H-compatible embedding of G in the given isotopy class of G, or we
arrive at an input without problematic spurs. Since it is fairly easy to solve the problem for the
latter inputs; the derivative at every iteration can be computed in linear time in |V(G)|; and by
derivating the size of the input is increased only by a little, the tractability follows.

The operation of node expansion and base contraction introduced in [10] resemble the
derivative. The main difference is that these two operations affect only a single cluster or
a pair of clusters in (G, H,7), and therefore they are local, whereas the derivative changes
the whole input. We are very positive that our method is applicable to other graph drawing
problems related to c-planarity whose tractability is open. This is documented by our recent
manuscript [16] in which a similar technique was applied.

The derivative is applied to an input (G, H,7), in which every cluster V,, induces in G
an independent set. Such an input is in the normal form. The detailed description of the
algorithm proving Theorem is in Section 4] We show in Section that an input can be
assumed to be in the normal form. The definition of the derivative is given in Section and
sufficiently simplified inputs are dealt with in Section

2 Preliminaries

Throughout the paper we tacitly use Jordan-Schonflies theorem.

Let G = (V, E) denote a planar graph possibly with multiple edges and loops. For V/ C V
we denote by G[V’] the sub-graph of G induced by V’. A star St(v) of a vertex v in a graph
G is the subgraph of G consisting of all the edges incident to v. Throughout the paper we use
standard graph theoretical notions such as path, cycle, walk, vertex degree deg(v) etc., see [11].

A drawing D(G) is a representation of G in the plane, where every vertex in V' is represented
by a point and every edge e = uv in E is represented by a simple piecewise linear curve joining the
points that represent v and v. Thus, a drawing can be thought of as a map from G understood
as a topological space into the plane. In a drawing, we additionally require every pair of distinct
curves representing edges to meet only in finitely many points each of which is a proper crossing
or a common endpoint. In a degenerate drawing, we allow a pair of distinct vertices to be
represented by the same point and a pair of edges to be represented by the same curve. A
drawing in which every vertex is represented by a unique point and every edge by a unique
curve is non-degenerate. In a non-degenerate drawing, multiple edges are mapped to distinct
arcs meeting at their endpoints. In the paper we consider non-degenerate drawings, except in
Section [3] An edge crossing-free non-degenerate drawing is an embedding. A graph given by
an embedding in the plane is a plane graph. If it leads to no confusion, we do not distinguish
between a vertex or an edge and its representation in the drawing and we use the words “vertex”
and “edge” in both contexts.

The following lemma is well known.

Lemma 2.1. Let G be a plane graph with n vertices such that G does not contain a pair of
multiple edges joining the same pair of vertices that form a face of size two, i.e., a lens, except
for the outer face. The graph G has O(n) edges.



The rotation at a vertex in an embedding of G is the counterclockwise cyclic order of the
end pieces of its incident edges. The rotation at a vertex is stored as a doubly linked list of
edges. Furthermore, we assume that for every edge of G we store a pointer to its preceding and
succeeding edge in the rotation at both of its end vertices. The interior and exterior of a
cycle in an embedded graph is the bounded and unbounded, respectively, connected component
of its complement in the plane. Similarly, the interior of an inner face and outer face in an
embedded connected graph is the bounded and unbounded, respectively, connected component
of the complement of its facial walk in the plane bounded by the walk. An embedding of a
connected graph G is up to an isotopy described by the rotations at its vertices and the choice of
its outer (unbounded) face. If G is not connected the isotopy class of its embedding is described
by isotopy classes of its connected components G, ..., G and the containment relation G; C f,
for every G;, where f is a face of G, j # 4, such that G; is embedded in the interior of f.

3 Approximation of maps by embeddings

The aim of this section is to derive Corollary from Theorem By treating a graph G as
a one-dimensional topological space, a drawing D of G is understood as a continuous map D
mapping every z € G to R%. Such a drawing is given by the finite set of pairs of real values
representing the end points of line segments of polylines corresponding in the drawing to edges
of G.

Let G = (V, E) denote a planar graph. Let D be a (possibly degenerate) drawing corre-
sponding of G. Note that we do not allow an edge to pass through a vertex by the definition of
the drawing, or in other words, we do not allow a drawing to contain forks [7]. The previous
restriction is not crucial, since we can subdivide edges at “fork” vertices while still having an
input of a quadratic size in the size of the original input. This yields the claimed running
time. An e-approximation of a drawing D of a graph G is a drawing D’ of G such that
dist(D(z),D'(x)) < €, for all z € G. A drawing D is approximable by an embedding if
there exists (D) > 0 such that for every ¢, 0 < € < ¢(D), there exists an e-approximation D
that is an embedding. It is clear that a drawing with edge crossings is not approximable by an
embedding, and thus, in the sequel we consider only drawings without edge crossings.

Given a drawing D of a graph G in the plane, in order to decide if D is approximable by
an embedding in a fixed isotopy class of G, we construct an input (G, H,~) for c-planarity
with embedded pipes. The graph H is the embedded graph given by the image of D, and G is
obtained from G by subdividing every edge e, that is not a drawn as a straight-line segment by
D, so that D is turned into a straight-line drawing of Gy. Then every end point of a line segment
representing an edge of Gy is turned into a vertex of H. We put v(v) := D(v) for v € V(Gy).

The input (Go, H,~) is positive if and only if D is approximable by an embedding. The “only
if” direction is easy. If (Go, H,~) is positive, then we can choose (D) := ¢, where ¢ is as in the
definition of the thickening of H, witnessing that D is approximable by an embedding. Let &’ be
as in the definition of the thickening of H. To prove the “if” direction, it is enough to show that
an ¢’-approximation of D, that is an embedding, can be chosen such that for every v;v; € E(H),
v; €V, and v; € V,,; we have |w ND(v;v;)| < 1, where w is a valve of v;v; € E(H). This can be
achieved by an appropriate local deformation of the ¢’-approximation as we show next.

Suppose that a valve w at, let’s say v;, crosses an edge at least two times in the &'-
approximation. We consider a pair of consecutive crossings with w along an edge e such
that the piece of e between the crossings in the pair is contained in the pipe. We choose the pair
so that the distance between the crossings is minimal, and eliminate the crossings as illustrated
in Fig. By repeating this procedure, we eventually obtain an H-compatible embedding of Gj.
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(a)

Figure 2: (a) Deforming an approximation so that every valve is crossed by an edge at most
once. (b) The input (G, HY ,+") in the normal form constructed from (G, H,) in Fig. .

4 Proof of Theorem 1.2

Let (G, H,~) be the input of our algorithm, where the partition of the vertex set of G corresponds
to the map 7 of the vertices of G by vertices of H. Recall that for v € V,, we have v(v) = v,
where v € V(H). We also naturally extend v to edges: v(v;v;) = p = vv;, for v; € V,, and
vj € V,;, and to subgraphs Gg of G: v(Go) = Ho = (V(Ho), E(Hy)) such that V(Hp) = {v €
V(H)A(v) = v, v € V(Go)} and E(Hp) = {p € E(H)| 7(e) = p, e € B(Go)}.

A vertex v € V(H) of degree two is redundant if V,, C V(@) is an independent set consisting
of vertices of degree two such that for every v € V,, we have v(vu) # v(vw), where v and w are
the two neighbors of v. We assume that every edge of H is used by at least one edge of G, i.e.,
for every p € E(H) there exists e € E(G) such that y(e) = p.

4.1 The normal form

Similarly as in [I5], the input (G, H,+) is in the normal form if

(1) every cluster V,, C V(G), for v € V(H), is an independent set without isolated vertices; and
(2) H does not contain a pair of redundant vertices joined by an edge.

We remark that is required only due to the running time analysis. Then we do not forbid
redundant vertices completely, since we do not allow H to contain multiple edges. In what
follows we show how to either detect that no H-compatible embedding in the given isotopy class
of G exists just by considering the subgraph of G induced by a single cluster V,,, or construct an
input (GN, HV,yN), see Fig. in the normal form, which is positive if and only if the input
(G, H,~) is positive. Clearly, can be assumed without loss of generality. Before establishing
the other condition we introduce a couple of definitions.

A contraction of an edge e = wv in an embedding of a graph is an operation that turns
e into a vertex by moving v along e towards u while dragging all the other edges incident to
v along e. By a contraction we can introduce multiple edges or loops at the vertices. We will
also use the following operation which can be thought of as the inverse operation of the edge
contraction in an embedding of a graph. Note that a contraction can be carried out in O(1) time,
since it amounts to merging a pair of doubly linked lists, and redirecting at most four pointers.
The same applies to the following operation. A vertex split, see Fig. in an embedding of a
graph G is an operation that replaces a vertex v by two vertices u and w joined by a crossing
free edge so that the neighbors of v are partitioned into two parts according to whether they
are joined with w or w in the resulting drawing. The rotations at v and w are inherited from
the rotation at v. When applied to GG, the operations are meant to return a graph given by an
isotopy class of its embedding; the same applies to vertex multisplit defined later.



In order to satisfy 7 by a series of successive edge contractions we contract each connected
component of G[V,,], for v; € V(H), to a vertex. Since rotations are stored as doubly linked
lists, contracting all such connected components can be carried out in linear time. We delete
any created loop and isolated vertices. If a loop at a vertex from V,, contains a vertex from a
different cluster V., v; # v;, in its interior we know that the input is negative, since for every
v; all the vertices in V,,; must be contained in the outer face of G[V,,] if the input is positive.
All this can be easily checked in linear time in |V(G)| by the the breadth-first or depth-first
search algorithm. If a loop at a vertex from V,, does not contain a vertex from a different
cluster, such a contraction preserves the existence of an H-compatible embedding in the given
isotopy class of G. Indeed, isolated vertices and deleted empty loops can be introduced in an
H-compatible embedding of the resulting graph, and contracted edges recovered via vertex splits.
Let (GN, HN,~4N) denote the resulting input in the normal form. We proved the following.

Lemma 4.1. If a loop at a vertex of G obtained during the previously described procedure
contains a verter of G in its interior the input (G, H,~) is negative. Otherwise, the input
(G, H,~) is positive if and only if (GN, HN ) is positive.

4.2 Derivative

We present the operation of the derivative that simplifies the input, and whose iterating results
in an input that is easy to deal with. Such inputs are treated in Section [£.3] Before we describe
the derivative we give a couple of definitions.

A vertex multisplit, see Fig. Ba] in an embedding of a graph G is an operation that replaces
a vertex v with a crossing free star ({v,v1,..., v}, {vvi,...,vv}) so that the resulting underlying
graph has vertex set V(G) U {v1,..., v} and edge set (E(G) \ {vui, ..., 0Ugeq)}) U{vijug| j =
1,...,deg(v)} U{vvy, ..., v}, where ui, ..., Ugeq(y) are neighbors of v in G and 1 <i; <1, for
all j. The rotations at v1,...,v; are inherited from the rotation at v so that by contracting all
the edges of St(v) in the resulting graph we obtain the original embedding of G. Note that a
vertex multisplit can be carried out in O(deg(v)) time.

The rotation of v € V(H) is consistent with the rotation of v € V,, if the rotation given by
(Y(vv1), -+ s Y(VVgeg(v))), Where (vv1, ..., VVgeq(v)) I8 the Totation at v in an embedding of G in
the given isotopy class, is the rotation at ¥ € V(H) in the embedding of H. Let the potential
p(G,H,~v) = |E(G)| — |E(H)|. Obviously, p(G, H,~v) > 0 and p(G, H,v) = 0, if G is isomorphic
to H via v, and if G is connected the opposite implication also holds. The input in the normal
form (G, H,~) is locally injective if

(i) the restriction of v to V(St(v)) is injective, for all v € V(G); and

(ii) every vertex v of degree one in G is incident to an edge e such that v(e) = v(f) implies
e= fforall f € E(G).

Given an input (G, H,7), the vertex v € V(G) is fixed if the condition of property (i) holds
for v, and v is alone in its cluster, i.e., y(u) = v(v) implies u = v. If v is fixed then we call
v(v) =v; € V(H) also fixed.

Given an input (G, H,~) in the normal form that is not locally injective, we either detect
that there does not exist an H-compatible embedding of GG in the given isotopy class, or we
construct the input (G’, H',7') having a smaller potential after being brought to the normal
form, such that (G’, H',~') is positive if and only if (G, H,~) is positive. The input (G, H',~’)
is obtained as follows, see Fig.

First, we construct the graph G’ by applying the following procedure to every vertex
v € V(G) such that the star y(St(v)) has at least two edges, and thus, v is not a “spur”. By



Figure 3: (a) Operation of vertex split (top) and multisplit (bottom). (b) The derivative of
(G, H,7) in the normal form from Fig. On the left the input after splitting vertices, and on
the right the obtained derivative; in the example we have H' = H,’,i, since every other H,,, for
i # j, is a trivial graph with one vertex.

slightly abusing the notation we will extended ~ to take values on the vertices of G'. The
input (G, H,7) is clearly negative, if there exists a vertex v in G with four incident edges
vy, ..., o4 € E(G) such that vvy,vve, vu3 and vvy appear in the rotation at v in the given
order and ~y(vvy) = y(vvs) # y(vve),y(vvs). Otherwise, the following operations of vertex split
and multisplit are applicable to G.

If |[E(y(St(v)))| = 2, we apply the operation of vertex split to v thereby turning it into an
edge uw as follows. Let E(v(St(v))) = {p1,p2}. Let vi,...,v4e4(,) be the neighbors of v. Let
{v1. ..o} U{vig1 .. Vgegv)} be the partition of the neighbors of v such that y(vv1) = ... =
v(vu) = p1 and Y(vvis1) = ... = Y(VVdeg(v)) = p2. We put y(u),v(w) := v(v), and join u by an
edge with the vertices in {v;...v;} and w with the vertices in {vjy1 ... Vg4 }- Let B2 C E(G)
denote the set of edges in G’ consisting of every edge uw obtained by splitting v € V(G) such
that |E(y(St(v)))| = 2.

If |[E(y(St(v)))| > 3, we analogously apply the operation of vertex multisplit to v so that we
replace v with a star ({v,v1,..., v}, {vvy,...,vu}) with |E(y(St(v)))| = | edges, in which every
leaf vertex v; is incident to the edges mapped by v to the same edge of H and ~y(v;) = v(v).
Let V>3 C V(G) denote the set of vertices in G consisting of the vertices v € V(G) such that
|E(v(St(v)))| > 3. Note that V>3 can be treated also as a subset of V(G’). Let C denote the set
of connected components of G’ \ Ea \ V>3.

Second, we construct H': V(H') = {p*|p € E(H)} U{vy| v € V>3}, and E(H') = {vp*| p €
E(y(St(v)))} U{v(C)v(D)| C,D € C s.t. there exists e € Ey joining C' with D}. We put
v (v) :=v(C)*, for v € V(C) where C € C; and 7(v) := 1, for v € V>3. Note that v, and v are
fixed in the latter.

Finally, the embedding of H’, if it exists, is constructed as follows. By Fary—Wagner theorem
it is enough to give any embedding of H' in the plane in a desired isotopy class, which we describe
next by constructing a particular embedding of H'. Let HJ,, v; € V/(H), denote the subgraph of
H' induced by {p*| p=vv € E(H)} U{vy|y(v) = v;}. Let ﬁ,’jl be obtained from HJ, by adding
to H,, (1) the missing edges of the cycle traversing {p*| p = v;v € E(H)} according to the
rotation of v;, let us denote the cycle by C,,; and (2) a new vertex joined by the edges exactly with
all the vertices of C),. Note that I—AIZ’,Z is vertex three-connected, and hence, if fIl’,z is planar, then
the rotations at vertices in its embedding are determined up to the choice of orientation. Note

that the construction of (G, H',~") can be carried out in O (ZUGV(G,) deg(v)) =0O(|V(GQ))).
Suppose that every ﬁ{m for v; € V(H), is a planar graph. Let us fix for every v; € V(H) an
embedding of H,,_, in which the cycle C,, bounds the outer face and its orientation corresponds

to the rotation of v;. Such an embedding is obtained as a restriction of an embedding of ﬁ{,z
Note that for every i the graph H, does not have multiple edges. Since H also does not have



Figure 4: Discs D, filled white.

LD D

Figure 5: The curve K, splitting the cluster of p in the derivative on the left. The construction
of the curve (K)o and its deformation into K, on the right.

multiple edges, H,, and H, ;j, for i # j, are either disjoint (if v;v; ¢ E(H)) or intersect in a single
vertex (v;v;)* (if viv; € E(H)). It follows that H' does not have multiple edges. The desired
embedding of H' is obtained by combining embeddings of H,,_, for v; € V(H), in the same
isotopy class as the embeddings of H r/w that we fixed above, by identifying the corresponding
vertices so that the restriction of the obtained embedding of H' to every Hj, has the rest of H'
in the interior of the outer face (of this restriction).

Lemma 4.2. The input (G, H,~) is negative if one of the following three conditions is satisfied.
There ezists a vertex v in G with four incident edges vvy, ... ,vvy € E(G) such that vvi,vve, vus
and vvy appear in the rotation at v in the given order and vy(vvi) = y(vvz) # vy(vva),y(vvy).
The graph I:ILZ, for some v; € V(H), is not planar. The rotation of a vertex v, € V(H,,), for
some v; € V(H) and v € V(G'), in the obtained embedding of H), is not consistent with the
rotation of v in G'.

The input (G, H,~) is positive if and only if the input (G', H',~") is positive.

Proof. The first part of the claim is obvious. For the second part, we start with “only if”
direction, which is easier.

To this end given an H-compatible embedding of G, we first easily construct an H-compatible
embedding of G’ with respect to the input (G’, H,v). In the second step, for every p € E(H),
we construct a disc D, containing the restriction to G;, = UCGC’V(C): 0 C of the H-compatible
embedding of G in its interior as follows. Let (G’p)x be a plane graph obtained from the
embedding of G’p by turning the crossings of edges of G; with both valves of p into vertices; and
parts of the valves joining closest pairs of crossing (which were turned into vertices) into edges.
The disc D,, see Fig. [4] is a small neighborhood of the union of the inner faces in the embedding
of (G;))X. Finally, we apply a homeomorphism of the plane that maps the union of the discs
D,’s with G;, into the thickening of H’, so that every D, is mapped onto N¢(p*) and a small
neighborhood of every v € V>3 onto N.(v,). This concludes the proof of the “only if” direction.

It remains to prove the “if” direction. We show that by [I7, Lemma 6] given an H’-embedding
of G’ in the given isotopy class, every N (p*), for p* € V(H'), p = v;v;, can be split by a simple
continuous curve K, see Fig. [5] disjoint from every edge mapped by ' to an edge of H' into two
parts as follows. The vertices in v~!(p), for which v(v) = v;, are in one part and the vertices,
for which v(v) = v}, are in the other part.



Figure 6: Construction of an H-compatible embedding of G’ from the H’-compatible embedding
of G in Fig. 3bj .

(Glp)o G/ g ; G/ @ G/ @ G/ @

Figure 7: Construction of (G/), from G, in Fig. I

For a while suppose that K,’s exist. Then it follows that an H-compatible embedding of G in
the given isotopy class exists. Analogously, to the previous paragraph, for every v; € V(H), we
construct a disc D,,, see Fig. @ containing the subgraph of G’ induced by the vertex set v~ !(1;).
We construct D,, so that (1) the intersection of the boundary of D,, with the thickening of H'
is U p=vsvEE(H) K,, which is intersected by the boundary in the order given by the rotation at
vi; (2) Ne(v) N D,, =0, for v ¢ V(H),); and (3) every pair of discs D,, and D,, for i # j, is
internally disjoint. We perturb discs D,,’s a little bit in order to make them pairwise disjoint.
Then we apply a homeomorphism of the plane that maps the union of the discs D,,’s with
G’ into the thickening of H, so that every D,, is mapped onto N.(v;). Finally, we contract
the edges incident to the vertices in V>3 and contract edges in F» in order to obtain a desired
H-compatible embedding of G. It remains to show that K,’s exist, which is rather simple, but a
detailed argument requires some work. The claim essentially follows due to the fact that given
an embedded bipartite graph in the plane there exists a simple closed curve that crosses every
edge of the graph exactly once.

Let G; be as above. We construct an auxiliary graph (G’p)4 in five steps, see Fig. |7l The
graph G, has the bipartition V; U V; = V(G}) such that v(V;) = v; and v(V;) = v;, where
p = vivj. Let (G',)o be the union of G, with its incident edges in G’. Let (G',)1 be a plane graph
obtained from the embedding of (G;J)g by turning the crossings of edges of G;, with valves into
vertices; and parts of the boundary of N(p*) joining consecutive pairs of crossings into edges as
follows. A consecutive pair of vertices both of which are joined by an edge with a vertex of V;
(or V}), is joined by an edge contained in the boundary of N.(p*) so that the edge is disjoint
from every valve of an edge in H,, (or Hy,). Let (G7)2 be the subgraph of (G})1 contained in
Ne(p*). Let (G7)3 be the plane graph obtained from (G7,)2 by contracting all the edges that
do not join a vertex of V; with a vertex of V;. Let v; and v; denote the vertices that resulted
from the contractions in the construction of (G;)g. We assume that v; is joined by an edge
with vertices in V; and v; with vertices in V;. Note that v; or v; might not exist. If none of v;
and v; exist we simply have (G',)3 = G,. Finally, let (G},)4 be the plane graph obtained from
(G/p)g by applying the vertex split to vj, if exists, so that the newly created edge is incident to a
vertex of degree one denoted by v;. We can assume that (G7)4 is drawn in Ne(p*) such that v;
is contained in the valve of an edge of H,, and v; in the valve of an edge of M),

By taking the bipartition V; U {v;} and Vi U{v;} of (G,)4, it follows by [17 Lemma 6] that
there exists a simple curve closed curve (K)o C N:(p*) intersecting every edge of (G,)4 exactly
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once. Finally, we construct K, by cutting and deforming (K)o as follows, see Fig. [5| right. We
distinguish two cases depending on whether v; exists.

First, suppose that v; exists. The desired curve K, is obtained by cutting (K)o at its
crossing point with the edge incident to v;, and applying a homeomorphism of N¢(p*) that
takes the severed end points very close to a pair of the boundary points of N.(p*) that split the
boundary into two parts, one of which contains the valves of the edges in H], and the other the
valves of the edges in H), . Second, if v; does not exist, we cut (K)o at its arbitrary point in
the outer face of (G, and apply a similar homeomorphism of N.(p*).

In the end, we extend K, a little bit so that both of its end points are contained in the
boundary of N.(p*) and split the contracted vertices in (G7))4 thereby recovering G/. m

4.3 Locally injective inputs

The following lemma implies that by iterating the derivative at most |E(G)| = O(|V(G)|) many
times we obtain an input that is locally injective.

Lemma 4.3. If (G, H,v) is in the normal form then p((G")N, (HN, (+)YV) < p(G, H,~). If ad-
ditionally (G, H,~) is not locally injective then the inequality is strict, i.e., p((G)N, (H')N, (v)V) <
p(G, H,~). Moreover, p((G)N, (H")N,(v)N) < p(G, H,~) — 3t, where t is the number of vertices
in G that do not satisfy the condition in property (@) or of locally injective inputs.

Proof. Note that edges incident to fixed vertices in ((G')Y, (H")Y,(7')") do not contribute
towards p((G")N, (H")N, (7)), and thus, we will deal only with the remaining edges. We consider
vertices in Va3 C V(G’) to be their corresponding vertices in V((G’)"V). Since suppressing the
vertices of degree two in G’ and H' violating property of the normal form in order to make
the property satisfied does not increase the value of the potential, for the purpose of the proof
of the lemma by somewhat abusing the notation we assume that we keep such vertices in (G')"
and (H")V.

Let H} be the subgraph of (H')N = H' induced by its vertex subset {p*| p € E(H)}. Every
connected graph on n vertices has at least n — 1 edges. It follows that (¢) the number of edges
in Hj is at least |V (H())| — ¢ = |E(H)| — ¢, where ¢ is the number of connected components of
H] that are trees. We use this fact together with the following observation to prove the claim.

Suppose for a while that H} is connected. The set of edges of (G’)"Y not incident to any
v € V>3, where the vertices in V>3 are now fixed, forms a matching M’ whose edges are in
one-to-one correspondence with edges in Es in G’. Note that none of the end vertices of edges
in Fy is of degree one in G'. Let Iy = {(v,e2) |v € ea € Es}. By using the natural one-to-one
correspondence between the edges of G’ \ E3 \ V>3 and the edges of G, it follows that the size
of M’ is upper bounded by the size of E(G), since 2|M'| = 2|Ey| = || < [{(v,e)] eNey =
{v},e2 € Eg,e € E(G')}| < 2|E(G)|. Hence, it follows that

|M'| = |E| < |E(G)] (1)

Furthermore, |M'| = |E(G)|, only if (G, H,~) is locally injective, and H), contains a cycle.
Indeed, if H{, does not contain a cycle, it is either a trivial graph consisting of a single vertex,
or it contains a pair of vertices (pg)* and (p1)* of degree one such that 7/(vg) = (pg)* and
’y’(vl) = (pl)*, where Vg € ey € EQ,U() € fo = VoUQ Q EQ, and v1 € ey € EQ,Ul S f1 = ViUl € Es.
It holds that |M'| < |E(G)|, because (ug, fo) and (u1, f1) are not in the image of the injective
map p from I taking (v,e3), v € e2 € Es to a pair (v,e), e € E(G’), such that e N ey = {v}.
Note that there exists at least two such pairs also if H|) is trivial (which is a fact that we will
need later). Namely, (u, uv) and (v, uv), for some v/ (uv) = p* € V(H]). By the same token, we
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Figure 8: Constructing the normal form and derivating one more time the derivative from Fig.
on the left, we obtain an input that is strongly locally injective in the normal form on the right.

have that |[M'| < |E(G)|, if (G, H,~) is not locally injective. In fact, if |[M'| = |E(G)| then every
connected component of G’ must be a cycle.

If Hj has more connected components, we then have |M'| < |E(G)| — ¢, where the inequality
is strict if (G, H,~) is not locally injective. Indeed, if |M’| = |E(G)| — ¢, then there exist exactly
2¢ pairs (v,e), v € e € E(G') \ E2 \ V>3, that are not in the image of the map p. However, we
showed in the previous paragraph that there are at least 2¢ such pairs (u, f), where both u and
f are mapped by 7' to a vertex of degree at most one in Hy. Hence, if |M'| = |[E(G)| — ¢ then all
the pairs, that are not contained in the image of u, are accounted for by such (u, f)’s, in which
case V>3 is exactly the subset of V(G’) of vertices of degree at least three. This establishes
property of locally injective inputs. Finally, to establish also we consider the natural
correspondence of the vertices of degree one in G with the vertices of degree one in G'. Note
that none of the pairs (u, f), u € f € E(G’), where u is of degree one, is in the image of v.
Thus, if |M'| = |E(G)| — ¢, then every leaf u € V(G’) is mapped by 7 to some p*, p € E(H),
which is an isolated vertex or a leaf of H). We need to show that there is no other edge besides
f > u mapped by 4 to p*. If p* is an isolated vertex of H{, this is immediate, since otherwise
IM'| < |[E(G)| —c. If p* is a leaf of H|), every other edge g # f such that 7'(g) = p* must share
both end vertices with an edge of Ea, but then p* has degree at least two in H|, (contradiction).

Putting it together, we have |M'| < |E(G)|—c and (o) |[E(H)| —c¢ < |E(H})|, where the first
inequality is strict if (G, H,~) is not locally injective as we just showed. Since the remaining
edges of (G')N and (H')" contributes together zero towards p((G")™, (H")N, (v)"V), summing
up the inequalities concludes the proof.

The “moreover” part follows immediately due to the fact that every vertex of G not satisfy-
ing (lif) or causes the slack of % in as shown by the previous analysis. =

Given an input (G, H,~v) in the normal form. Similarly as in Section let V>3 C V(G)
denote the set of vertices in G consisting of the vertices v € V(G) such that |E(y(St(v)))| > 3.
The input is strongly locally injective if it is locally injective and

(iii) every vertex in V>3 is fixed.
For convenience, we would like work with strongly locally injective inputs, see Fig.[8l The

following lemma shows that if the input (G, H, ) is locally injective, but not strongly, we just
derivate it one more time in order to arrive at a strongly locally injective input.

Lemma 4.4. Suppose that (G, H,~) in the normal form is locally injective. Then in (G, (H")N, (v )N),

every vertexv € V((G")N), such that |E((v")N (St(v)))| > 3 is fized. Moreover, (G")N, (H")N, (v))
1s still locally injective.

Proof. The lemma follows directly from the definition of the derivative. m
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Deciding in, roughly, quadratic time in p(G, H,), which is sufficient for us due to the
bottleneck discussed in Section whether the strongly locally injective input (G, H,7) is
positive, is quite straightforward. The reason is that in this case the order of crossings of a valve
with edges, that are incident to the same vertex v of GG, along the valve in an H-compatible
embedding of G is determined by the rotation at v. In order to decide if a desired H-compatible
embedding of G exists, we just detect if for every valve w such an order of all the edges crossing
w exists, such that together the orders are compatible. To this end we consider relations between
unordered pairs of edges of G such that the edges in a pair are mapped by v to the same edge of
H, and two pairs are related if they intersect in a pair of vertices. In the following we assume
that (G, H,~) is strongly locally injective.

Let 2= {{e,f}| e, f € E(G) s.t. e # f and y(e) = v(f)}. Two elements {ei, f1} € = and
{e2, f2} € E are neighboring if |e; Nex| =1, [f1 N fo| = 1 and y(e1 Nez) = y(f1 N f2); we write
{e1, fi} ~ {e2, fo}. An element {e1, fi} € = is a boundary pair if there exists at most one
{ea, f2} € E such that {e1, f1} and {eq, fo} are neighboring. Let =y, ... =; be equivalence classes
of the transitive closure of the relation ~. A boundary pair {ej, f1} € E is determined if there
exists a pair of edges ey and fy such that |e; Nes| =1, |f1 N fa| =1, y(e1 Nea) = v(f1 N f2) and
~v(e2) # v(f2). By properties (i) and (iii), the subgraph G= of G induced by U{&f}ea{e, f} has
maximum degree two. First, we consider the case when a connected component of Gz does not
contain a vertex of degree one.

Lemma 4.5. If there exists an equivalence class =., such that the subgraph G=, of G induced
by U{e,f}eEc{e’ f} is a cycle, then (G, H,~y) is a negative input.

Proof. Let 2. = {{eo, fo},..-{€m—1, fm—1}}, where {ep, fp} ~ {€p+1 mod m> fp+1 mod m}- Since
Uge,rrez.{e; f} induces a cycle C of G, there exists the minimum value pg < m such that

epy = fo or fp, = eg. Note that pg|m, since y(eq) = Y(€g+apy mod m), for every 0 < ¢,a < m,
and that C = eq,...,emn—1. Due to the fact that the plane is orientable, it follows that the cycle
C does not admit an H-compatible emebedding, since in an H-compatible embedding C' must
wind around a point in the plane more than once. =

Note that Lemma does not cover only the case when Gz, is a union of two cycles. By ,
it must be that if =, contains a boundary pair, then it, in fact, contains exactly two boundary
pairs, both of which are determined. Hence, in the following we assume that every =, either
gives rise to a pair of cycles, or contains exactly two determined boundary pairs. We construct
for every valve w of p € E(H) the relation (E,, <), where E, = {e € E(H)| v(e) = p}. We
define relations (E,, <) by propagating relations enforced by the determined boundary pairs,
for every determined pair contained in =. We assume that (E,, <,,) encodes the increasing order
of the crossing points of edges with w as encountered when traversing w C N.(v) in the direction
inherited from the counterclockwise orientation of the boundary of N.(v).

Let {e1, fi} € Ec C = be determined. Let 2. = {{e1, f1},...{em, fm}} such that {e,, fp} ~
{eps1, fpr1}. Let v(er) = v(f1) = vivj,v(eo) = vivy,v(fo) = vivjr, where vy # v and
leoNei| =1and [foN fi| = 1. W.lLo.g. we suppose that v;v;, ;v and vv;n appear in the
rotation of v; in this order counterclockwise. Let w; be the valve of v;v; at v;. Let ws be
the valve of v;v; at v;. We put the relation f; <., er into (El,wj, <w;) and e} <., f1 into
(Eviv;s <w,)- Recursively, we put fpi1 <wgpii €pt1 into (Eyw;, <wg,y,) and epiq <wspe1) Jrt1
into (Evv,s <wspiny)s i fp <wspoi €p and €y <uwy, fp, and vice-versa, where wo), and wop11 are
valves contained in the boundary of the same disc.

If Gz, is a union of two disjoint cycles we add f, <w,, €, and e, <u,, , fp, OF fp >u,, €
and ey >, , fp for every p, in correspondence with the isotopy class of G.
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Lemma 4.6. Suppose that every equivalence class 2. contains exactly two determined boundary
pairs or Gz, is a union of two disjoint cycles. We can test in O((p(G, H,~v))* + |V(G)|) time if
(G, H,~) is positive or negative.

Proof. The relations (E,, <,,) can be clearly constructed in O((p(G, H,~)?) time, since only
edges not incident to fixed vertices are contained in pairs of Z. If the constructed (E,, <) is a
total order for all p € F(H) and its valve w, the isotopy class of every H-compatible embedding
of GG is determined by an embedding constructed as follows. We first draw the crossings of valves
with edges of G according to the orders (E,, <); join every pair of consecutive crossing on the
same edge of G by a straight-line segment contained in a pipe of an edge of H; and finish by
drawing the straight-line segments joining vertices of G with the already drawn parts of edges
contained in pipes. It is enough to check if the obtained embedding is in the desired isotopy
class of G, which can be easily done in O(|V(G)|) time by traversing orders (E,, <.,). Note that
the only thing that can make the input negative is the containment of connected components of
G in the interiors of its faces.

If (E,, <), for some p € E(H), contains a cyclic chain of inequalities, the input is clearly
negative. H

4.4 Algorithm

We start with a description of the decision algorithm proving the first part of the theorem.

Decision Algorithm. Let (G, H,v) = (Go, Ho, ) be the input. We work with inputs in
which G contains multiple edges and loops. However, w.l.o.g we assume that G does not contain
a pair of multiple edges joining the same pair of vertices that form a face of size two, i.e., a
lens, except for the outer face. Moreover, we assume that whenever a lens is created during the
execution of the algorithm, the lens is eliminated by deleting one of its edges.

An execution of the algorithm is divided into steps. During the s-th step we process
(Gs, Hg,vs) and output (Gsy1, Hsy1,Vs+1) as follows.

First, by following the procedure described in Section we either construct an instance
(G)N, (Hs)N, (7s)Y) in the normal form that is positive if and only if (G, Hs,s) is positive,
or output that (G, H,~) is negative, if the hypothesis of the first part of Lemma is satisfied.

Second, if ((G)N, (Hs)N, (vs)"V) is not strongly locally injective we proceed as follows. If
(Gs, Hs,7s) satisfies the hypothesis of the first part of Lemma with ((Gs)™, (Hs)N, (75)N)
playing the role of (G, H,~) we output that (G, H,~) is negative; otherwise we construct the
derivative ((GN), (HN)', (vN)) = (Gss1, Hss1,7s+1) defined in Section |4.2| and proceed to the
(54 1)-st step. Otherwise, ((Gs)Y, (H)", (v5)") is strongly locally injective and we construct
equivalence classes Z1,...Z; from Section defined by ((Gs)V, (Hs)V, (vs)"V) and proceed as
follows.

We check if there exists a class =, satisfying the hypothesis of Lemma 4.5 If this is the
case, then we output that (G, H,~) is negative. Otherwise, we construct relations (E,, <), for
every p € (H;)N and its valve w. If there exists (FE,, <,) that is not a total order we output
that (G, H,~) is negative; otherwise we check if the isotopy class of an H-compatible embedding
of G enforced by relations (E,, <,,) is the same as the given one and output that (G, H,~) is
positive if and only if this is the case.

The correctness of the algorithm follows directly from Lemma and

Running time analysis. By Lemma Lemma [£.4] and Lemma [2.] the number of steps
of our algorithm is O(|V(G)|). Furthermore, we show that |V ((G5)")| = O(|V(G))), for every s.
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By Lemma p((Gs-i-l)Nv (H8+1)N7 (’Ys-i—l)N) < p((Gs)N’ (HS)N7 (’YS)N) - %t7 where ¢ is
the number of vertices in (G4)" that do not satisfy the condition in property or of
locally injective inputs. The number of newly created vertices in (G441)Y of degree at least
three satisfying the condition in property ((il) during the s-th step of the algorithm is at most
t =2(p((G)N, (H)N, (7)) = p((Gs11)V, (Hsx 1)V, (7541)")). Note that a vertex of degree
d>3in ((Gs)N, (Hs)N, (7)) satisfying the condition of property (i) becomes a fixed vertex of
degree d in ((Go1), (Host) ™, (yor1)V).

Let V>3 denote the set of fixed vertices of degree at least three in (G)". By the previous
paragraph, [Vas| < [V(G)|+ 320 2(0((Go)™, (H)Y, (4:)™) = p((Gas) ™, (Hp) ™, (ve4)™)) <
V(G| + 2p((Go)N, (Ho)N, (7)) = O(|E(G)]) = O(|V(G)]), for every s, due to the definition
of the potential. The fact |V ((Gs)V)| = O(|]V(G)|), for every s, then follows by (2)) in the
definition of the normal form. Indeed, the number of vertices of degree two in (G S)N mapped
to redundant vertices in (H)" is linear in the number of remaining vertices in (G)" due to
Lemma Hence, the number of vertices in (G)" that are not fixed vertices of degree at least
three is linear in p(G, H,7) + |V ((Hs)N)| = p(G, H,~) + |V (H})| + |V>3] due to Lemma
where H{ is defined as in the proof of Lemma with ((Gs—1)V, (Hs—1)", (7s-1)") playing
the role of (G, H,~v). It follows that the number of vertices in |V ((Gs)V)|, for every s, is
linear in p(G, H,v) + |V (G)], since the size of the subset of V(H])) of non-redundant vertices
is upper bounded by |E(G)| = O(]V(G)|). This more-or-less follows inductively from
in the proof of Lemma except that in every step we consider the subgraph of (Gy)¥,
s’ < s, induced by the set Es, where Ej is defined with ((G¢)N, (Hy)", (7¢)") playing the
role of (G, H,~). Indeed, the rest of the edges in Gy are incident to fixed vertices and are
mapped by 7y11 to a redundant vertex of Hy 1. Formally, we show by induction on s’ that
|E(Gs)N\Vy)| < |E(G)|, where Vy is the set of fixed vertices of degree at least two in V ((G¢)™)
for all s’. In the base case we have |E((G1)N \ V1)| < |E2| < |E(G)| by . For s’ > 0, we have
|IE(Gy11)N \ Vary1)| < |E((Gy)N \ V)| by the argument that we used to prove .

After having shown that O(|V ((Gs_1)")|) = O(|V(G)]), it is easy to see that the s-th step
of the algorithm can be easily carried out in O(|V(G)|) time, since the planarity testing and
embedding construction of all H ,.’s needed in the construction of the derivative can be done in
linear time in O(|V(Gs)|) = O(|V ((Gs—1)")|) [20], and the construction of the instance in the
normal form from the given one takes the same running time. The last step of the algorithm in
which we construct orders (E,, <) can be easily done in O(|V(G)|?), since the number of pairs
in 2 is O(|V(G)]?) due to |V (Gs)| = O(|]V(G))) .

Algorithm constructing an embedding. The construction of an H-compatible embed-
ding of G for strongly locally injective inputs is given by the set of total orders (E,, <), for every
p € H and a valve w of p. Therefore in order to construct a desired H-compatible embedding
of G we need to reverse the order of steps in the decision algorithm. To this end we make the
proof of the second part of Lemma algorithmic. In order words, we need to construct the
order in which a curve K, intersect edges of G’. Since we can construct a desired order in linear
time by the following lemma, the overall quadratic running time follows.

Lemma 4.7. Given a plane bipartite graph G, we can construct in O(|V(G)|) time a cyclic
order O of edges of G such that there exists a simple closed curve in the plane properly crossing
every edge of G exactly once, but otherwise disjoint from G, in the order given by O.

Proof. Let V} W Vo = V(G) be the bipartition of V(G). We construct a plane graph G U T such
that V(T) = Vi, E(T)N E(G) =0, and T is a spanning tree of (GUT)[V4] = T. The tree T is
constructed in linear time as follows. We subdivide every face of G by as many edges as possible
in (‘gl), while keeping the resulting graph Gy plane and its subgraph Go[V;] without multiple
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edges, e.g., we perform the subdivision so that every subgraph of Gy[V;] subdiving a face of G is
a star containing all the vertices incident to the face. Since rotations at vertices are stored in
doubly linked lists, Gy can be constructed in time O(|V(G)]|). Note that Go[V1] is connected,
since every face of G is incident to a vertex in Vj. The tree T is obtained as a spanning tree of

Go[VA].

We contract all the edges of T in GUT. Let O be the rotation at the vertex, that T was

contracted into, in the resulting graph. The desired order O is obtained by substituting in O’
for every edge its corresponding edge in G. =
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