

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 25, 2024

Runtime analysis for self-adaptive mutation rates

Doerr, Benjamin; Witt, Carsten; Yang, Jing

Published in:
2018 Proceedings of the Genetic and Evolutionary Computation Conference

Link to article, DOI:
10.1145/3205455.3205569

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Doerr, B., Witt, C., & Yang, J. (2018). Runtime analysis for self-adaptive mutation rates. In 2018 Proceedings of
the Genetic and Evolutionary Computation Conference (pp. 1475-1482). Association for Computing Machinery.
https://doi.org/10.1145/3205455.3205569

https://doi.org/10.1145/3205455.3205569
https://orbit.dtu.dk/en/publications/ad1f5fd5-5ac5-42b1-9991-2397cbf1a275
https://doi.org/10.1145/3205455.3205569

Runtime Analysis for Self-adaptive Mutation Rates
Benjamin Doerr

Laboratoire d’Informatique (LIX)
École Polytechnique
Palaiseau, France

Carsten Witt
DTU Compute

Technical University of Denmark
Kgs. Lyngby, Denmark

Jing Yang
Laboratoire d’Informatique (LIX)

École Polytechnique
Palaiseau, France

ABSTRACT
We propose and analyze a self-adaptive version of the (1, λ) evolu-
tionary algorithm in which the current mutation rate is part of the
individual and thus also subject to mutation. A rigorous runtime
analysis on the OneMax benchmark function reveals that a simple
local mutation scheme for the rate leads to an expected optimization
time (number of fitness evaluations) of O(nλ/log λ + n logn). This
time is asymptotically smaller than the optimization time of the
classic (1, λ) EA and (1+λ) EA for all static mutation rates and best
possible among all λ-parallel mutation-based unbiased black-box
algorithms.

Our result shows that self-adaptation in evolutionary compu-
tation can find complex optimal parameter settings on the fly. At
the same time, it proves that a relatively complicated self-adjusting
scheme for themutation rate proposed by Doerr et al. (GECCO 2017)
can be replaced by our simple endogenous scheme. Moreover, the
paper contributes new tools for the analysis of the two-dimensional
drift processes arising in self-adaptive EAs, including bounds on
occupation probabilities in processes with non-constant drift.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics; Optimization with randomized search heuristics;

KEYWORDS
self-adaptive evolutionary algorithms; theory; runtime analysis

ACM Reference Format:
Benjamin Doerr, Carsten Witt, and Jing Yang. 2018. Runtime Analysis for
Self-adaptive Mutation Rates. In GECCO ’18: Genetic and Evolutionary Com-

putation Conference, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3205455.3205569

1 INTRODUCTION
One of the core difficulties when using evolutionary algorithms
is finding suitable values for its parameters. It is well known and
supported by ample experimental and some theoretical evidence
that already small changes of the parameters can have a crucial
influence on the efficiency of the algorithm.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205569

One elegant way to overcome this difficulty, and in addition the
difficulty that the optimal parameter values may change during a
run of the algorithm, is to let the algorithm optimize the parameters
on the fly. Formally speaking, this is an even more complicated task,
because instead of a single good parameter value now a suitable
functional dependence of the parameter on the search history needs
to be found. Fortunately, a number of natural heuristics like the
1/5-th rule have proven to be effective in certain cases. In a sense,
these are all exogenous parameter control mechanisms which are
added to the evolutionary system.

An even more elegant way is to incorporate the parameter con-
trol mechanism into the evolutionary process, that is, to attach the
parameter value to the individual, to modify it via (extended) muta-
tion operators, and to use the fitness-based selection mechanisms of
the algorithm to ensure that good parameter values become domi-
nant in the population. This self-adaptation of the parameter values
has two main advantages: (i) It is generic, that is, the adaption
mechanism is provided by the algorithm, only the representation of
the parameter in the individual and the extension of the variation
operators has to be provided by the user. (ii) It allows to re-use
existing algorithms and much of the existing code.

Despite these advantages, self-adaptation is not used a lot in
discrete evolutionary optimization. From the theory side, some
advice exists how to set up such a self-adaptive system, but a real
proof for its usefulness is still missing. This is the point we aim to
make some progress on.

Our results: The main result of this work is that we propose
a version of the (1, λ) evolutionary algorithm (EA) with a natural
self-adaptive choice of the mutation rate and prove that it opti-
mizes the classic OneMax benchmark problem in a runtime that is
asymptotically optimal among all λ-parallel black-box optimization
algorithms and that is, from λ = Ω((lnn)1+ϵ) on, better than the
runtimes of the (1,λ) EA and the (1+λ) EA for all static choices of
the mutation rate. It obviously cannot beat the (also asymptotically
optimal) runtimes of the (1+λ) EA with fitness-dependent mutation
rate of Badkobeh, Lehre, and Sudholt [2] and of the (1+λ) EA with
self-adjusting (exogenous) mutation rate of Doerr, Gießen, Witt,
and Yang [11]. Hence the good news of our result is that this opti-
mal runtime could be obtained in a generic manner. Note that both
the fitness-dependent mutation rate of [2] and the self-adjusting
rate of [11] with its mix of random and greedy rate adjustments
would have been hard to find without a deeper understanding of
the mathematics of these algorithms.

Not surprisingly, the proof of our main result has some similarity
to the analysis of the self-adjusting (1+λ) EA of [11]. In particular,
we also estimate the expected progress in one iteration and use
variable drift analysis. Also, we need a careful probabilistic analysis
of the progress obtained from different mutation rates to estimate
which rate is encoded in the new parent individual (unfortunately,

1475

https://doi.org/10.1145/3205455.3205569
https://doi.org/10.1145/3205455.3205569

GECCO ’18, July 15–19, 2018, Kyoto, Japan Benjamin Doerr, Carsten Witt, and Jing Yang

we cannot reuse the analysis of [11] since it is not always strong
enough for our purposes). The reason, and this is also the main
technical challenge in this work, is that the (1,λ) EA can lose fitness
in one iteration. This happens almost surely when the mutation
rate is too high. For this reason, we need to argue more carefully
that such events do not happen regularly. To do so, among several
new arguments, we also need a stronger version of the occupa-
tion probability result [18, Theorem 7] since (i) we need sharper
probability estimates for the case that movements away from the
target are highly unlikely and (ii) for our process, the changes per
time step cannot be bounded by a small constant. We expect our
new result (Lemma 2.3) to find other applications in the theory of
evolutionary algorithms in the future. Note that for the (1+λ) EA,
an excursion into unfavorable rate regions is less a problem as long
as one can show that the mutation rate returns into the good region
after a reasonable time. The fact that the (1,λ) EA can lose fitness
also makes it more difficult to cut the analysis into regimes defined
by fitness levels since it is now possible that the EA returns into a
previous regime. In this work, we also gained two insights which
might be useful in the design of future self-adaptive algorithms.

Need for non-elitism: Given the previous works, it would be
natural to try a self-adaptive version of the (1+λ) EA. However, this
is risky. While the self-adjusting EA of [11] can cope with the fact
that the current mutation rate is far from the ideal one and in this
case provably quickly changes the rate to an efficient setting, a self-
adaptive algorithm cannot do so. Since the mutation rate is encoded
in the individual, a change of the rate can only occur if an offspring
is accepted. For an elitist algorithm like the (1+λ) EA, this is only
possible when an offspring is generated that is good enough to
compete with the parent(s). Consequently, if the parent individual
in a self-adaptive (1+λ) EA has a high fitness, but a detrimental
(that is, large) mutation rate, then the algorithm is stuck with this
individual for a long time. Already for the simpleOneMax function,
such a situation can lead to an exponential runtime. Needless to
say, when using a comma strategy we have to choose λ sufficiently
large to avoid losing the current-best solution too quickly; see [21]
for a precise analysis of this phenomenon for the (1,λ) EA using a
static mutation rate of 1/n.

Tie-breaking towards lower mutation rates: To prove our result,
we need that the algorithm in case of many offspring of equal
fitness prefers those with the smaller mutation rate. Given that the
usual recommendation for the mutation rate is small, namely 1

n ,
and that it is well-known that large rates can be very detrimental,
it is natural to prefer smaller rates in case of ties (where, loosely
speaking, the offspring population gives not hint which rate is
preferable). This choice is similar to the classic tie-breaking rule of
preferring offspring over parents in case of equal fitness (again, the
fitness indicates no preference, but the simple fact that one is maybe
working already for quite some time with this parent suggest to
rather prefer the new individual). Without proof, we remark that
without this tie-breaking rule we would need λ = nΩ(1) to ensure a
positive drift towards the optimum throughout the process.

Previous works: This being a theoretical paper, for reasons of
space we shall mostly review the relevant theory literature, so we
only refer to the survey [17] and note that use of self-adaptation
in genetic algorithms was proposed in the seminal paper [1] by

Bäck. Also, we completely disregard evolutionary optimization in
continuous search spaces due to the very different nature of opti-
mization there (visible, e.g., from the fact that dynamic parameter
changes, including self-adaptive choices, are very common and in
fact necessary to allow the algorithms to approach the optimum
with arbitrary precision).

The theoretical analysis of dynamic parameter choices started
slow. A first paper [15] on this topic in 2006 demonstrated the
theoretical superiority of dynamic parameter choices by giving
an artificial example problem for which any static choice of the
mutation rate leads to an exponential runtime, whereas a suitable
time-dependent choice leads to a polynomial runtime. Four years
later [4], it was shown that a fitness-dependent choice of the mu-
tation rate can give a constant-factor speed-up when optimizing
the LeadingOnes benchmark function. The first super-constant
speed-up on a classic benchmark function obtained from a fitness-
dependent parameter choice was shown in [8], soon to be followed
by the paper [2] which is highly relevant for this work.

Around that time, several successful self-adjusting (“on the fly”)
parameter choices were found and analyzed with mathematical
means. In [19], Lässig and Sudholt propose a success-based multi-
plicative update of the population size λ in the (1+λ) EA and show
that this can lead to a reduction of the parallel runtime. By a multi-
plicative update inspired by the 1/5-th success rule from evolution
strategies, [7] automatically finds parameter settings leading to
the same performance as the fitness-dependent choice in [8]. A
learning-based approach was used in [9] to automatically adjust
the mutation strength and obtain the performance of the fitness-
dependent choice of [10]. Again a different approach was proposed
in [11], where the mutation rate for the (1+λ) EA was determined
on the fly by creating half the offspring with a smaller and half
the offspring with a larger mutation rate than the value currently
thought to be optimal. As new mutation rate, with probability 1

2 the
rate which produced the best offspring was chosen, with probability
1
2 a random of the two rates used was chosen. The three different
exogenous approaches used in these works indicate that a generic
approach towards self-adjusting parameter choices, such as self-
adaptation, would ease the design of such algorithms significantly.

Surprisingly, prior to this work only a single runtime analysis
paper for self-adapting parameter choices appeared. In [5], Dang
and Lehre show several positive and negative results on the perfor-
mance of a simple class of self-adapting evolutionary algorithms
having the choice between several mutation rates. Among them,
they show that such an algorithm having the choice between an
appropriate and a destructively high mutation rate can optimize
the LeadingOnes benchmark function in the usual quadratic time,
whereas the analogous algorithm using a random of the two mu-
tation rates (and hence in half the cases the right rate) fails badly
and needs an exponential time. As a second remarkable result, they
give an example setting where any constant mutation rate leads
to an exponential runtime, whereas the self-adapting algorithm
succeeds in polynomial time. As for almost all such examples, also
this one is slightly artificial and needs quite some assumptions, for
example, that all λ initial individuals are based on the 1-point local
optimum. Nevertheless, this result makes clear that self-adaptation
can outperform static parameter choices. In the light of this result,

1476

Runtime Analysis for Self-adaptive Mutation Rates GECCO ’18, July 15–19, 2018, Kyoto, Japan

the main value of our results is showing that asymptotic runtime
advantages from self-adaptation can also be obtained in less con-
structed examples (of course, at the price that the runtime gap is
not exponential).

This paper is structured as follows. Section 2 defines the self-
adaptive (1,λ) EA and provides important mathematical tools used
in the analysis. Section 3 presents the main theorem. Its proof
considers two main regions of different fitness, which are dealt
with in separate subsections. We then finish with some conclusions.
Due to space restrictions, the proofs of some lemmas had to be
omitted.

2 PRELIMINARIES
2.1 A Self-Adaptive (1,λ) EA
We propose a (1,λ) EA with self-adaptive mutation rate for the
minimization of pseudo-boolean functions f : {0, 1}n → R as
defined in Algorithm 1.

To encode the mutation rate into the individual, we extend the
individual representation by adding the rate parameter. Hence the
extended individuals are pairs (x , r) consisting of a search point
x ∈ {0, 1}n and the rate parameter r , which shall indicate that r/n
is the mutation rate this individual was created with.

The extended mutation operator first changes the rate to either
r/F or Fr with equal probability (F > 1). It then performs standard
bit mutation with the new rate.

In the selection step, we choose from the offspring population
an individual with best fitness. If there are several such individuals,
we prefer individuals having the smaller rate r/F , breaking still
existing ties randomly. In this winning individual, we replace the
rate by F if it was smaller and by n/(2F) if it was larger.

We formulate the algorithm to start with an initial mutation rate
r init, which we require to be in [F ,n/(2F)]. For the result we shall
show in this work, the initial rate is not important, but without
this prior knowledge we would strongly recommend to start with
the smallest possible rate r init = F . Due to the multiplicative rate
adaptation, the rate can quickly grow if this is profitable. On the
other hand, a too large initial rate might lead to an erratic initial
behavior of the algorithm. For the adaptation parameter, we shall
use F = 32 in our runtime analysis. Having such a large adaptation
parameter eases the already technical analysis, because now the
two competing rates r/F and Fr are different enough to lead to a
significantly different performance. For a practical application, we
suspect that a smaller value of F is preferable as it leads to a more
stable optimization process. The choice of the offspring population
size depends mostly on the degree of parallelism one wants to
obtain. Clearly, λ should be at least logarithmic in n to prevent a too
quick loss of the current-best solution. For our theoretical analysis,
we require λ ≥ (logn)1+ε for an arbitrarily small constant ε . We do
not know if the small extra (logn)ε factor is necessary, but this is
maybe also not the most important question in this area.

2.2 Runtime Analysis
The main result of this work is a mathematical runtime analy-
sis of the performance of the algorithm proposed above on the
classic benchmark function OneMax : {0, 1}n → R defined by
OneMax(x) =

∑n
i=1 xi for all x = (x1, . . . ,xn) ∈ {0, 1}

n . Since

Algorithm 1 The (1,λ) EA with self-adapting mutation rate, adap-
tation parameter F > 1, and initial mutation rate r init/n such that
r init ∈ [F ,n/(2F)].

Select x0 uniformly at random from {0, 1}n .
Set r0 ← r init.
for t ← 1, 2, . . . do

for i ← 1, . . . , λ do
Choose rt,i ∈ {rt−1/F , Frt−1} uniformly at random.
Create xt,i by flipping each bit in x independently with

probability rt,i/n.
Choose i ∈ [1..λ] such that f (xt,i) = minj ∈[1..λ] f (xt, j); in

case of a tie, prefer an i with rt,i = rt−1/F ; break remaining ties
randomly.
(xt , rt) ← (xt,i , rt,i).
Replace rt with min{max{F , rt },n/(2F)}.

such runtime analyses are by now a well-established way of un-
derstanding the performance of evolutionary algorithms, we only
briefly give the most important details and refer the reader to the
textbook [14].

The aim of runtime analysis is predicting how long an evolution-
ary algorithm takes to find the optimum or a solution of sufficient
quality. As implementation-independent performance measure usu-
ally the number of fitness evaluations performed in a run of the
algorithm is taken. More precisely, the optimization time of an
algorithm on some problem is the number of fitness evaluations
performed until for the first time an optimal solution is evaluated.
Obviously, for a (1,λ) EA, the optimization time is essentially λ times
the number of iterations performed until an optimum is generated.

As in classic algorithms analysis, our main goal is an asymptotic
understanding of how the optimization time depends on the prob-
lems size n. Hence all asymptotic notation in the paper will be with
respect to n tending to infinity.

2.3 Probabilistic Tools
In our analysis, we use several standard probabilistic tools includ-
ing Chernoff bounds. All these can be found in many textbook or
the book chapter [6]. We mention the following variance-based
Chernoff bound due to Bernstein [3], which is less common in this
field (but can be found as well in [6]).

Theorem 2.1. Let X1, . . . ,Xn be independent random variables.

Let b be such that E(Xi)−b ≤ Xi ≤ E(Xi)+b for all i = 1, . . . ,n. Let
X =

∑n
i=1 Xi . Let σ

2 =
∑n
i=1 Var(Xi) = Var(X). Then for all λ ≥ 0,

Pr(X ≥ E(X) + λ) ≤ exp
(
−

λ2

2(σ 2 + 1
3bλ)

)
,

Pr(X ≤ E(X) − λ) ≤ exp
(
−

λ2

2(σ 2 + 1
3bλ)

)
.

We shall follow the common approach of estimating the expected
progress and translating this via so-called drift theorems into an
estimate for the expected optimization time. We use the variable
drift theorem independently found in [16, 20] in slightly generalized
form.

1477

GECCO ’18, July 15–19, 2018, Kyoto, Japan Benjamin Doerr, Carsten Witt, and Jing Yang

Theorem 2.2 (Variable Drift, Upper Bound). Given a sto-

chastic process, let (Xt)t ≥0 be a sequence of random variables ob-

tained from mapping the random state at time t to a finite set

S ⊆ {0}∪[xmin,xmax], where xmin > 0. LetT be the random variable

that denotes the earliest point in time t ≥ 0 such that Xt = 0. If there
exists a monotone increasing function h(x) : [xmin,xmax] → R+ such
that for all x ∈ S with Pr(Xt = x) > 0 we have

E(Xt − Xt+1 | Xt = x) ≥ h(x)

then for all x ′ ∈ S with Pr(X0 = x ′) > 0

E(T | X0 = x ′) ≤
xmin

h(xmin)
+

∫ x ′

xmin

1
h(x)

dx .

2.4 Occupation Probabilities
To analyze the combined process of fitness and rate in the parent
individual, we need a tool that translates a local statement, that
is, how the process changes from one time step to the next, into
a global statement on the occupation probabilities of the process.
Since in our application the local process has a strong drift to the
target, Theorem 7 from [18] is too weak. Also, we cannot assume
that the process in each step moves at most some constant distance.
For that reason, we need the following stronger statement.

Lemma 2.3. Consider a stochastic processXt , t ≥ 0, on R such that

for some p ≤ 1/25 the transition probabilities for all t ≥ 0 satisfy
Pr(Xt+1 ≥ Xt + a | Xt > 1) ≤ pa+1 for all a ≥ −1/2 as well as

Pr(Xt+1 − 1 ≥ a | Xt ≤ 1) ≤ pa+1 for all a ≥ 0. If X0 ≤ 1 then for

all t ≥ 1 and k > 1 it holds that

Pr(Xt ≥ 1 + k) ≤ 11 (ep)k .

Proof. We aim at applying Theorem 2.3 in [12]. To this end, we
estimate the moment-generating function of the one-step change
Xt+1 −Xt . There are two cases depending on Xt : for Xt ≤ 1, using
the monotonicity of eλ(Xt+1−1) and the fact that Pr(Xt+1 ≥ 1 | Xt ≤
1) ≤ p, we obtain

D(p, λ) B E(eλ(Xt+1−1) | Xt ≤ 1) ≤ E(emax{λ(Xt+1−1),0} | Xt ≤ 1)

≤ e0(1 − p) +
∞∑
a=0

eλ(a+1)pa+1 ≤ 1 + eλp

1 − eλp
,

and for Xt > 1, using the monotonicity of eλ(Xt+1−Xt) and the fact
that Pr(Xt+1 − Xt ≥ −1/2 | Xt > 1) ≤ p1/2 we have

ρ(p, λ) B E(eλ(Xt+1−Xt) | Xt > 1) ≤ E(emax{λ(Xt+1−Xt),−
1
2 } | Xt > 1)

≤
1 − p1/2

eλ/2
+

∞∑
a=0

eλa/2p(a+1)/2 =
p1/2 − p

(eλp)1/2
+

p1/2

1 − (eλp)1/2
.

Using λ B ln(1/(ep)) such that eλp = 1/e , we have

ρ B ρ(p, λ) ≤ e1/2(p1/2−p)+
p1/2

1 − e−1/2
≤

4e1/2
25 +

1/5
1 − e−1/2

< 0.8,

D B D(p, λ) ≤ 1 + (1/e)/(1 − 1/e) < 2.
Theorem 2.3, inequality (2.8) in [12] yields with a B 1 andb B 1+k
that

Pr(Xt ≥ 1 + k | X0) ≤ ρte−λ(1+k−X0) +
1

1 − ρDe
−λk

≤ (ep)k +
2
0.2 (ep)

k = 11(ep)k .

�

3 MAIN RESULT AND PROOF
Our main result is as follows.

Theorem 3.1. Let λ ≥ (lnn)1+ϵ for an arbitrary constant ϵ > 0
and F = 32. Then the expected number of generations of the self-

adapting (1,λ) EA to optimize OneMax is O(n/log λ + (n logn)/λ),
corresponding to an expected number of fitness evaluations of

O(nλ/log λ + n logn).

The proof of the theorem is based on a careful, technically de-
manding drift analysis of both the currentOneMax-value kt (which
is also the fitness distance, recall that our goal is the minimization of
the objective function) and the current rate rt of the parent. In very
rough terms, a similar division of the run as in [11] into regions
of large OneMax-value, the far region (Section 3.1), and of small
OneMax-value, the near region (Section 3.2) is made. The middle
region considered in [11] is subsumed under the far region here.

3.1 The Far Region
In this section, we analyze the optimization behavior of our self-
adaptive (1,λ) EA in the regime where the fitness distance k is at
least n/λ. Due to our assumption λ ≥ (lnn)1+ϵ , it is very likely
to have at least one copy of the parent among λ offspring for r =
O(ln λ). Thus the (1,λ) EA works almost the same as the (1 + λ) EA
but can lose fitness with small probability. The following lemma
is crucial in order to analyze the drift of the rate depending on k ,
which follows a similar scheme as with the (1 + λ) EA proposed
in [11].

Roughly speaking, the rate leading to optimal fitness progress is
n for k ≥ n/2+ω(

√
n ln(λ)),n/2 for k = n/2±o(

√
n log(λ)), and then

the optimal rate quickly drops to r = Θ(log λ) when k ≤ n/2 − εn.
To ease the representation, we first define two fitness dependent

bound L(k) and R(k).

Definition 3.2. Let n be sufficiently large, n/ln λ < k < n/2
and F = 32. We define L(k) := (F ln(en/k))−1 and U (k) := n(2n −
k)/(20(n − 2k)2).

According to the definition, both L(k) and R(k) monotonically
increase when k increases.

Lemma 3.3. Consider an iteration of the self-adaptive (1,λ) EA
with current fitness distance k and current rate r . Let F = 32 and n
sufficiently large. Then:

• If n/ln λ < k and F ≤ r ≤ L(k) ln λ, the probability that

all best offspring have been created with rate Fr is at least

1 −O(ln3(λ)/λ1/(4 ln ln λ)).
• If k < n/2 and n/(2F) ≥ r ≥ U (k) ln λ, then the probability

that all best offspring have been created with rate r/F is at

least 1 − λ1−1.15r/(U (k) ln λ).

Lemma 3.3 will be crucial in order to bound the expected progress
on fitness in the far region. We notice that in the lemma we may
allow r > ln λ when k is large and r = Θ(n) when k = n/2 −
Θ(
√
n ln λ). It is easy to show a positive progress on fitness for

r < ln λ since there will be sufficiently many offspring that do not

1478

Runtime Analysis for Self-adaptive Mutation Rates GECCO ’18, July 15–19, 2018, Kyoto, Japan

flip zeroes. When r ≥ ln λ we expect all offspring to flip zeros, but
we can still show a positive drift when k > 7n/20, as stated in the
following lemma. The idea is that the standard variation of the
number of flipping ones is

√
kr/n(1 − r/n) = Θ(

√
r). This makes a

deviation compensating bad flips among the remaining n− 2k zeros
likely enough.

Lemma 3.4. Let 7n/20 ≤ k < n/2 and n be large enough. Let

F = 32 and α = 10−4. Assume r ≤ min{1.01n2 ln λ/(11.95(n −
2k)2),n/(2F)}. Assume that from a parent with fitness distance k we

generate an offspring using standard bit mutation with mutation rate

p = r/n. Then the probability that this offspring has a fitness distance
of at most k − s with s := α(min{ln λ, r } + (n − 2k)r/n), is at least
λ−0.98/20.

For k < 7n/20, we need a more careful analysis, where we will
estimate the expected progress on fitness averaged over the random
rates the algorithm may have at a time. Hence, we assume a fixed
current fitness but a random current rate and compute the average
drift of fitness with respect to the distribution on the rates. This
approach is similar to the one by Jägersküpper [13], who computes
the average drift of the Hamming distance to the optimum when
the (1+1) EA is optimizing a linear function, where the average
is taken with respect to a distribution on all search points with a
certain Hamming distance.

Of course, we want to exploit that a rate yielding near-optimal
fitness progress is used most of the time such that too high (or too
low) rates do not have a significant impact. To this end, Lemma 2.3
about occupation probabilities will be crucial.

We now define two fitness dependent bounds rl (k) and ru (k).
We show in Lemma 3.6 that for any rate, if r/F or Fr is within the
bounds, then the algorithm has logarithmic drift on fitness.

Definition 3.5. Let n be sufficiently large, n/ln λ < k < n/2 and
F = 32. We define

ru (k) :=
{
n2 ln(λ)/(11.95(n − 2k)2) if 7n/20 ≤ k < n/2,
80U (k) ln(λ)/79 if n/ln λ < k < 7n/20.

rl (k) :=
{

L(k) ln(λ)/2 if n/ln λ ≤ k < n/2,
F if n/λ < k < n/ln λ.

We notice that Lemma 3.3 can be applied to all r > ru or r <
rl because for all 7n/20 ≤ k < n/2, we have ru/(U (k) ln λ) =
20n/(11.95(2n −k)) ≥ 20/(11.95(2− 0.35)) ≥ 80/79. For k < n/ln λ,
we set rl to the minimal possible value of r . Finally note that ru is
non-decreasing in k due to the monotonicity of n2/(n − 2k)2 and
U (k).

Lemma 3.6. Let n be sufficiently large, n/λ < k < n/2with F = 32.
Suppose that λ ≥ c lnn for some sufficiently large constant c > 0 and
λ = nO (1). Let ∆(k, r) denote the fitness gain of the best offspring.

• If r ≥ 1.01Fru , then E(∆(k, r)) ≥ −(1 + o(1))(n − 2k)r/(Fn).
• If r ≤ 1.01Fru and k ≥ 7n/20, then E(∆(k, r)) ≥ (1 −
o(1))10−4((n − 2k)r/(Fn) +min{ln λ, r/F }).
• If r ≤ 1.01Fru and n/λ < k < 7n/20, then E(∆(k, r)) ≥
(1 − o(1))min{r , ln(λ)/ln(en/k)}/F .

Proof. The probability of using rate r/F is 1/2. Thus with prob-
ability at least 1 − (1/2)λ = 1 − o(1/n3), at least one offspring uses
rate r/F . For this offspring, the expected loss is (n − 2k)r/(Fn). If

the complementary event (hereinafter called failure) of probability
o(1/n3) happens, we estimate ∆(k, r) pessimistically by −n. Hence,
the contribution of failure events is o(1/n2) which is lower order of
our desired expectation. We thus ignore ∆(k, r) < −(n − 2k)Fr/n.
This proves the first statement.

To prove the second item, we take i = 10−4((n − 2k)r/(Fn) +
min{ln λ, r/F }) = Ω((n − 2k)r/n + 1) and consider the proba-
bility that an offspring uses rate r/F and achieves progress i or
more. Applying Lemma 3.4, we obtain Pr(∆(k, r) > i) ≥ 1 − (1 −
λ−0.98/40)λ = 1 −O(exp(−λ0.02/40)) = 1 − o(1). If the complemen-
tary (failure) event happens, we estimate ∆(k, r) pessimistically
by −(n − 2k)r/(Fn). Since i = Ω((n − 2k)r/n + 1) and the failure
probability is o(1), the contribution of failure events is o(i). Thus
the statement holds.

For the third item, we still consider the progress of rate r/F .
Notice that for k < 7n/20 we have 1.01ru (k) < 1.01ru (7n/20) <
0.95 ln λ. Take i := min{r , ln λ/ln(en/k)}/F . The probability that
one offspring using rate r/F < 0.95 ln λ makes a progress of at least
i is lower bounded by(

k

i

) (r

Fn

)i (
1 − r

Fn

)n
≥

(
k

i
·
r

Fn

)i (
(1 − o(1))e−

r
F

)
≥

(
k

en

)i
e−0.95 ln λ ≥ λ−1/F−0.95 > λ−0.99.

Thus we obtain Pr(∆(k, r) > i) ≥ 1 − (1 − λ−0.99/2)λ = 1 −
O(exp(−λ0.01/2)) = 1 − o(1/ln λ). If the failure event happens we
estimate ∆(k, r) pessimistically by −(n − 2k)r/(Fn) = O(ln λ). The
contribution of failure events is o(1) which is also o(i). Therefore
the third statement holds. �

As discussed, our aim is to show that rt /F or Frt stays in the
right range frequently enough such that the overall average drift is
still logarithmic. We notice that small rates rt < rl intuitively do
not have a negative effect, therefore we focus on the probability
that rt < Fru . Since ru monotonically decreases when k decreases,
we need to analyze whether r still stays in the right range if there
are large jumps in fitness distance k . Intuitively, the speed at which
the mutation rate is decreased is much higher than than the de-
crease of fitness distance. To make this rigorous, we first look at
the probability of large jumps, as detailed in the following lemma.

Lemma 3.7. Let n be sufficiently large, n/ln λ < k < n/2 and

F = 32. Let Z (k, r) denote the fitness-distance increase when applying
standard bit mutation with probability p = r/n to an individual with

k ones. Then

Pr
(
Z (k, r) ≤ (n − 2k)r/n − ∆

)
≤ exp

(
−∆2

2(1 − p)(r + ∆/3)

)
,

Pr
(
Z (k, r) ≥ (n − 2k)r/n + ∆

)
≤ exp

(
−∆2

2(1 − p)(r + ∆/3)

)
.

We now use Lemma 3.7 to show that once rt ≥ Fru (kt), there
will be a strong drift for rt /ru (kt) to decrease down to 1.

Lemma 3.8. Let Xt = logF (rt /ru (kt)). If kt < n/2, we have

Pr (Xt+1 − Xt ≥ a | Xt > 1) ≤ λ−Ω(a+1) for all a ≥ −1/2,

Pr (Xt+1 − 1 ≥ a | Xt ≤ 1) ≤ λ−Ω(a+1) for all a > 0.

1479

GECCO ’18, July 15–19, 2018, Kyoto, Japan Benjamin Doerr, Carsten Witt, and Jing Yang

Proof. We first notice that rt+1 ∈ {Frt , rt /F }. If ru (kt) ≤
ru (kt+1) then Xt+1 − Xt ≤ 1, otherwise if ru (kt) > ru (kt+1)
then Xt+1 − Xt > 1 is possible. Our intuition is that Xt concen-
trates below or equal to 1 which means rt is a useful rate. Let
τ := logF (79/80) < 0. We take this value because Xt > τ implies
rt > 79ru (kt)/80 ≥ U (kt) ln λ. Thus we can apply Lemma 3.3 for
Xt > τ . Since Pr(Xt+1 − 1 ≥ a | τ < Xt ≤ 1) < Pr(Xt+1 − Xt ≥ a |
τ < Xt ≤ 1), it is sufficient to analyze Pr(Xt+1 − Xt ≥ a | Xt > τ)
and Pr(Xt+1 − 1 ≥ a | Xt ≤ τ).

If kt+1 ≥ kt then ru (kt+1) ≥ ru (kt). When rt+1 = rt /F we
have Xt+1 − Xt ≤ −1. Otherwise if rt+1 = Frt using the fact that
ru (kt) > U (kt) ln λ and applying Lemma 3.3 we obtain Pr(Xt+1 −
Xt ≥ a,kt+1 ≥ kt | Xt > τ) ≤ Pr(rt+1 = Frt | Xt > τ) < λ−0.15

for all a > −1. Furthermore Pr(Xt+1 − Xt > 1,kt+1 ≥ kt) = 0 and
Pr(Xt+1 − 1 ≥ 0,kt+1 ≥ kt | Xt < τ) = 0.

If kt+1 < kt then ru (kt+1) < ru (kt). Thus Xt+1 − Xt depends
on how much ru decreases. Let σ 2

t := ru (kt)/ru (kt+1) = (n −
2kt+1)2/(n − 2kt)2. Then σ > 1 if and only if kt+1 < kt . Using the
fact that rt+1 ∈ {Frt , rt /F } we bound

Pr (Xt+1 − Xt ≥ a,kt+1 < kt | Xt > τ)

≤ Pr
(
rt = rt+1/F ,σ

2
t ≥ Fa+1 | Xt > τ

)
+ Pr

(
rt+1 = Frt ,σ

2
t ≥ Fa−1 | Xt > τ

)
.

For −1/2 ≤ a < 4, we apply Lemma 3.3 to obtain

Pr (Xt+1 − Xt ≥ a,kt+1 < kt | Xt > τ)

≤ Pr
(
σ 2
t ≥ Fa+1 | Xt > τ

)
+ λ−0.15.

Otherwise for a ≥ 4,

Pr (Xt+1 − Xt ≥ a,kt+1 < kt | Xt > τ) ≤ Pr
(
σ 2
t ≥ Fa−1 | Xt > τ

)
.

When we analyze Xt+1 − 1 ≥ a for a > 0, we bound

Pr (Xt+1 − 1 ≥ a,kt+1 < kt | Xt ≤ τ)

≤ Pr
(
rt = rt+1/F ,σ

2
t ≥ Fa+2−Xt | Xt ≤ τ

)
+ Pr

(
rt+1 = Frt ,σ

2
t ≥ Fa−Xt | Xt ≤ τ

)
≤ Pr

(
σ 2
t ≥ Fa−Xt | Xt ≤ τ

)
.

It remains to estimate Pr(σt ≥ 1+s | Xt) in three cases respectively:
(i) (1 + s)2 = Fa−Xt when Xt ≤ τ < 0,a ≥ 0; (ii) (1 + s)2 = Fa−1

whenXt > τ ,a > 4; (iii) (1+s)2 = Fa+1 whenXt > τ ,−1/2 ≤ a < 4.
The minimal value of s is attained at (1 + s)2 = F−τ = 80/79 when
Xt = τ and a = 0. In each case, s increases faster than a. Thus
s = Ω(1 + a). We rewrite

Pr (σt ≥ 1 + s | Xt) = Pr
(
n − 2kt+1
n − 2kt

≥ 1 + s | Xt
)

= Pr (kt − kt+1 ≥ s(n − 2kt)/2 | Xt) .

Let ∆r̂ := (s/2 + r̂/n)(n − 2kt) for r̂ ∈ {rt /F , Frt }. Applying
Lemma 3.7 and using a union bound we obtain

Pr (σt ≥ 1 + s | Xt) < λ exp
(
max

{
−∆2

r̂
2(1 − r̂/n)(r̂ + ∆r̂ /3)

})
.

We first show that we only need to consider (n− 2kt)2 > 170n ln(λ).
Because otherwise ru (kt) ≥ n/2040 > n/(2F 2) results in Xt =
logF (rt /ru (kt)) < 1 even for the maximal possible rate n/(2F).
Therefore we consider ∆r̂ = Ω(

√
n ln λ). If rt = O(∆r̂) then Pr(σt ≥

1+s | Xt ≥ 0) < λ exp(−Θ(∆r̂)) = o(1/n2). Otherwise if rt = ω(∆r̂)
we regard (−(n − 2kt)2/n) · (s/2 + p̂)2/(2(1 − p̂)(p̂ + o(1))) with
p̂ = r̂/n. The minimal value for (s/2 + p)2/((1 − p)p) is s(2 + s)
attained at p = s/(2(s + 1)). Using (n − 2kt)2/n > 170 ln λ and
s ≥

√
80/79 − 1 > 1/160, we obtain Pr(σt ≥ 1 + s) ≤ λ−Ω(s). �

We finally use Lemma 3.8 and Lemma 2.3 to obtain a logarithmic
drift on average. After this major effort, it is a matter of a rela-
tively straightforward drift analysis of fitness distance to obtain
the following bound on the time to leave the far region.

Theorem 3.9. For any initial search point k0 and r0, the hitting
time T for kt ≤ n/λ has expectation E(T) = O(n/log λ). Moreover

with probability at least 1 − o(n−1.2), it holds kt ′ ≤ 2n/λ and rt ′ <
0.6 ln λ for some t ′ = O(n/log λ).

Proof. We first argue that within an expected number of
O(n/log λ) generations we will have kt < n/2. When kt > n/2
any rate between 1 and n/2 makes positive progress in expectation.
Thuskt+1 < kt with probability at least 1−exp(−Θ(λ)) = 1−o(1/n2).
Moreover, if k0 − n/2 >

√
n ln λ, the drift for kt towards 0 is

Ω(ln λ) no matter how small r0 is. This is because according to
Lemma 3.3 if kt > n/2 and rt = o(ln λ) it takes O(ln ln(λ)) itera-
tions in expectation for rt to increase to Ω(ln λ). Moreover, once
rt = Ω(ln λ), we have kt − kt+1 = Ω(ln λ). Hence, it takes an
expected number of O(n/ln λ) generations to obtain a fitness of
kt < n/2. Once we have kt < n/2 the probability that kt+1 > n/2
is less than exp(−Θ(λ)) = o(1/n2) since we take the best among λ
offspring. We now assume kt < n/2 for all t . We notice that when
0 < (n − 2kt)2 < 170n ln λ, any rt satisfies rt < Fru (kt). Otherwise,
according to Lemma 3.8, as long as rt ≥ Fru (kt), there is strong
drift for rt /ru (kt) to decrease. It takes at mostO(lnn) iterations un-
til rt < Fru (kt) in expectation. The fitness distance kt may increase
during adaptation, but kt < n/2 always holds. Thus, we assume
k0 < n/2 and r0 < Fru (k0) without loss of generality.

The idea of the remaining proof is to compute an average
drift for any fixed distance using the distribution of mutation
rates, and then to apply the variable drift theorem to obtain a
runtime bound. Applying Lemma 3.8 and Lemma 2.3 to the ran-
dom variables logF (rt /ru (kt)) we see that Pr(rt ≥ F 1+aru (kt)) ≤
λ−Ω(a). For distance k , let r (i), i ∈ Z, denote the rate between
(1.01F i−1ru (k), 1.01F iru (k)]. Therefore for any i ≥ 1 we obtain
Pr(rt = r (i+1) | kt) = o(Pr(rt = r (i) | kt)). According to
Lemma 3.6, the average drift satisfies E(∆(k, r (i))) ≥ Ω(−(n −

2k)r (i)/n − 2) for i ≥ 2 and E(∆(k, r (1))) ≥ Ω((n − 2k)r (1)/n). Thus
E(∆(k, r (i))) Pr(r (i)) = o(E(∆(k, r (i−1))) Pr(r (i−1))) for i ≥ 2 and
E(∆(k, r (2))) Pr(r (2)) = o(E(∆(k, r (1))) Pr(r (1))). Let ∆(k) denote the
average drift at distance k . We obtain

∆(k) =
∑
i ∈Z

E(∆(k, r (i))) Pr(r (i)) ≥
∑
i<0

E(∆(k, r (i))) Pr(r (i)).

We notice that for all i < 0 the drift E(∆(k, r (i))) is positive. Fur-
thermore due to the result of Lemma 3.3 and the definition of rl (k)

1480

Runtime Analysis for Self-adaptive Mutation Rates GECCO ’18, July 15–19, 2018, Kyoto, Japan

we will have Pr(r ≥ rl (k) | k) = Θ(1). Therefore the average drift is

∆(k) ≥ min
rl (k)≤r<ru (k)

{E(∆(k, r))} Pr(rl (k) ≤ r < ru (k))

= Θ(ln(λ)/ln(n/k)).

Using the variable drift theorem (Theorem 2.2) and the fact that∫ n/2

n/λ

ln(n/k)
ln(λ) dk =

(
k ln(n) − k ln(k) + k

) ��n/2
n/λ

ln λ =
Θ(n)

ln λ ,

the expected time to reduce the fitness distance to at most n/λ is
then Θ(n/ln λ).

The proof of the second statement is omitted for reasons of space.
�

3.2 The Near Region
We now analyze the drift in rate and fitness distance in the regime
kt = O(n/λ), the so-called near region. Informally, this region
is responsible for the (n logn)/λ term in the expected number of
generations since here the probability of an improvement is only
O(1/λ) and the offspring population can boost this probability by a
factor of Θ(λ), assuming constant rate.

We start with a preparatory lemma about the probability of
making progress and, in any case, not losing fitness in this regime.

Lemma 3.10. Letn be sufficiently large, 0 < k ≤ 3n/λ and consider
rate r with r = O(ln λ). Let p−(r) and p0(r) denote the probability of

a single offspring being better than or same as its parent. Then

(1 − o(1))e−r < p0(r) < (1 + o(1))e−r ,

(1 − o(1))kre
−r

n
< p−(r) < (1 + o(1))

kre−r

n
.

Proof. We look at the number X of flips in k one-bits and the
numberY of flips in (n−k) zero-bits. Thenp−(r) is lower bounded by
p−(r) > Pr(X = 1,Y = 0) = kr

n
(
1 − r

n
)n−1

> (1−o(1))kre−rn . Using
the fact that kr/n = o(1), kr2/n = o(1) and (kr2/n)1.5 = o(kr/n),
p−(r) is upper bounded by

p−(r) < Pr(X ∈ {1, 2},Y = 0) +
2k−1∑
i=3

Pr(X + Y = i,X > Y)

<
kr

n

(
1 − r

n

)n−1
+
k2r2

n2

(
1 − r

n

)n−2
+

2k−1∑
i=3
(i − 1)

(r
n

)i (
1 − r

n

)n−i (
k

⌈i/2⌉

) (
n − k

⌊i/2⌋

)
<

kr

n

(
1 − r

n

)n−2 (
1 − r

n
+
kr

n

)
+

2k−1∑
i=3

(r
n

)i (
1 − r

n

)n−i
(kn)i/2

< (1 + o(1))kr
n

(
1 − r

n

)n
+

2k−1∑
i=3

(
kr2

n

)i/2 (
1 − r

n

)n−i
< (1 + o(1))kre

−r

n
.

Similarly for p0(r) we have

p0(r) > Pr(X = Y = 0) =
(
1 − r

n

)n
> (1 − o(1))e−r .

Using the fact that r2 = o(k/n) then

p0(r) = Pr(X = Y = 0) +
k∑
i=1

Pr(X = Y = i)

=
(
1 − r

n

)n
+

k∑
i=1

(
k

i

) (
n − k

i

) (r
n

)2i (
1 − r

n

)n−2i
< e−r +

k∑
i=1

(
kr2

n

)i
e−r < (1 + o(1))e−r . �

The following lemma is the counterpart of Lemma 3.3 in the near
region, where the optimal rate is the smallest possible value F . We
observe that now the probability of making a rate-increasing step is
no longer bounded by o(1) in general. If kt = Θ(n/λ) and rt = O(1),
we still have a small constant probability of increasing the rate,
which is due to the fact that with constant probability all offspring
copy the parent. If kt = o(n/λ), the effect of the tie-breaking rule
leads to the second bound that depends on k .

Lemma 3.11. Let n be sufficiently large, 0 < k ≤ 3n/λ and F = 32.
The probability that a best offspring has been created with rate Fr is

at most exp(−9r) for r ≥ ln λ and λke−(F−1)r /n for r < ln λ.

The previous lemma is used to bound the average drift of fitness
distance in the near region, as detailed by the following lemma.
Also a bound on the expected loss in a step is given, which will be
used later to estimate the probability that the near region is not left
towards the far region again.

Lemma 3.12. Suppose that λ ≥ (lnn)1+ϵ for some arbitrarily small

constant ϵ > 0 and λ = nO (1). Let r0 = F and consider an arbitrary

t ≥ 0. If ks ≤ 3n/λ for all s ∈ {0, . . . , t} then
(1) E(kt − kt+1 | kt) = Ω(λkt /n).
(2) E((kt+1 − kt) · 1{kt+1 ≥ kt } | kt) = o(kt /n)

The previous lemma can be applied in a relatively straightfor-
ward drift analysis on fitness distance to bound the time to cross
the near region, resulting in the following theorem.

Theorem 3.13. Assume k0 ≤ 2n/λ and r0 ≤ (7/9) ln λ. With

probability at least 1/2, it holds kt = 0 for some t = O(n ln(n/λ)/λ).

Proof. We assume that ks ≤ 3n/λ for all s ∈ {0, . . . , t} and
show later that the assumption holds with probability Ω(1). Under
the assumption, we may apply Lemma 3.11.

The first aim is to show that the rate quickly drops to F and then
with high probability stays close to this minimum value. The prob-
ability of observing R∗ B logF ((7/9) ln λ) rate-decreasing steps in
a row is by Lemma 3.11 at least

∏R∗−1
i=0

(
1 − 2e−31(7/9)(ln λ)F −i

)
≥

1−
∑R∗−1
i=0 2λ−(217/9)F −i by theWeierstrass product inequality. Since

the last sum equals 2
∑R∗
i=1 e

−31F i ≤ 2
∑R∗
i=1 e

−31F ·i ≤ 2 e−F
1−e−F ≤

4e−32, the probability is altogether at least 1 − 4e−32. Moreover, the
probability of not flipping any zero-bits in at least one offspring,
resulting in not increasing fitness distance, is for rate r ≤ (7/9) ln λ
at least

1 −
(
1 − 1

2

(
1 − r

Fn

)n)λ/3
≥ 1 −

(
1 − Ω(e−r)

)λ/3
≥ 1 − e−Ω(λ

2/9)

1481

GECCO ’18, July 15–19, 2018, Kyoto, Japan Benjamin Doerr, Carsten Witt, and Jing Yang

since the probability of using the smaller rate is 1/2. By a union
bound over R∗ iterations, the probability of decreasing the initial
rate to at most F without losing fitness is at least 1 − 4e−32 −
R∗e−Ω(λ

2/9) ≥ 5/6 for sufficiently large n, using λ = ω(1). We
assume this event to happen.

We are now in the position to apply the first item of Lemma 3.12,
which yields that the drift at fitness distance k ≤ 3n/λ is at least
γλk/n, where γ > 0 is a constant. We are interested in the expected
time to reduce the fitness distance to 0. To this end, we use multi-
plicative drift analysis with starting point 2n/λ and drift factor λ/n
to obtain a bound of O(ln(n/λ)nλ). By Markov’s inequality, the num-
ber of generations is at most t B c ′ ln(n/λ)(n/λ) with probability
at least 5/6, choosing c ′ as a sufficiently large constant. We assume
this to happen.

We now apply the second item of Lemma 3.12 to estimate the
total loss (i. e., increase of fitness distance) incurred during the drift
phase of length t . By linearity of expectation, the expected value of
this loss is o(t(maxs=0, ...,t ks)/n) = o(n/λ). By Markov’s inequality,
the loss is at most n/λ with probability at least 5/6. If this happens,
the maximum OneMax-value during the phase is at most 3n/λ as
required. Hence, assuming both a total loss of at most n/λ and that
the drift phase lasts at most t generations, the OneMax-value is
reduced to at most 0 within t generations. By a union bound, the
success probability is at least 1 − 1/6 − 1/6 − 1/6 = 1/2. �

3.3 Proof of Theorem 3.1
We can now put everything together to prove our main result.

Proof. Starting with arbitrary initialization, Theorem 3.9 along
with a Markov bound yield that with probability Ω(1) after t =
O(n/log λ) iterations a search point is reached such that kt ≤ 2n/λ
and rt < 0.6(ln λ). Assuming this to happen, the assumptions of
Theorem 3.13 are satisfied. Hence, after anotherO((n logn)/λ) itera-
tions the optimum is found with probability at least 1/2. Altogether,
with probability Ω(1) the optimum is found from an arbitrary ini-
tial OneMax-value and rate within T ∗ = O(n/log λ + (n logn)/λ)
iterations. The claimed expected time now follows by a standard
restart argument, more precisely by observing that after expected
O(1) repetitions of a phase of length T ∗ the optimum is found. �

CONCLUSIONS
We have analyzed the self-adaptive (1,λ) EA using a very simple
scheme for mutating the mutation rate and proved that is achieves
the expected runtime O(nλ/log λ + n logn) on OneMax, which is
optimal for all λ-parallel mutation-based unbiased black-box algo-
rithms. Hence, we have identified a simple and natural example
where self-adaptation of strategy parameters in discrete EAs can
lead to provably optimal runtimes that beat all known static pa-
rameter settings. Moreover, a relatively complicated and partly
unintuitive self-adjusting scheme for the mutation rate proposed
in [11] can be replaced by our simple endogenous scheme.

The analysis of the (1,λ) EA has revealed a highly non-trivial
stochastic process where drift happens in two dimensions, namely
regarding fitness distance and mutation rate. We have advanced the
techniques for the analysis of such two-dimensional drift processes,
including a useful lemma about occupation probabilities. Altogether,

we are optimistic that our research helps pave the ground for further
analyses of self-adaptive EAs.

ACKNOWLEDGMENTS
The authors thank Christian Gießen for useful discussions on this
topic. This work was supported by a public grant as part of the In-
vestissement d’avenir project, reference ANR-11-LABX-0056-LMH,
LabEx LMH, in a joint call with Gaspard Monge Program for op-
timization, operations research and their interactions with data
sciences. This publication is based upon work from COST Action
CA15140, supported by COST.

REFERENCES
[1] Thomas Bäck. 1992. Self-adaptation in genetic algorithms. In Proc. of ECAL ’92.

MIT Press, 263–271.
[2] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. 2014. Unbiased black-box

complexity of parallel search. In Proc. of PPSN ’14. Springer, 892–901.
[3] Sergey N. Bernstein. 1924. On a modification of Chebyshev’s inequality and of

the error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 1 4 (1924),
38–49.

[4] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. 2010. Optimal fixed
and adaptive mutation rates for the LeadingOnes problem. In Proc. of PPSN ’10.
Springer, 1–10.

[5] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of mutation rates
in non-elitist populations. In Proc. of PPSN ’16. Springer, 803–813.

[6] Benjamin Doerr. 2011. Analyzing Randomized Search Heuristics: Tools from
Probability Theory. In Theory of Randomized Search Heuristics, Anne Auger and
Benjamin Doerr (Eds.). World Scientific, 1–20.

[7] Benjamin Doerr and Carola Doerr. 2015. Optimal parameter choices through self-
adjustment: applying the 1/5-th rule in discrete settings. In Proc. of GECCO ’15.
ACM, 1335–1342.

[8] Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2013. Lessons from the
black-box: fast crossover-based genetic algorithms. In Proc. of GECCO ’13. ACM,
781–788.

[9] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. k -bit mutation with self-
adjusting k outperforms standard bit mutation. In Proc. of PPSN ’16. Springer,
824–834.

[10] Benjamin Doerr, Carola Doerr, and Jing Yang. 2016. Optimal parameter choices
via precise black-box analysis. In Proc. of GECCO ’16. ACM, 1123–1130.

[11] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. 2017. The
(1+λ) evolutionary algorithm with self-adjusting mutation rate. In Proc. of

GECCO ’17. ACM, 777–784. Full version available at http://arxiv.org/abs/1704.
02191.

[12] Bruce Hajek. 1982. Hitting-time and occupation-time bounds implied by drift
analysis with applications. Advances in Applied Probability 13 (1982), 502–525.

[13] Jens Jägersküpper. 2011. Combining Markov-chain analysis and drift analysis –
the (1+1) evolutionary algorithm on linear functions reloaded. Algorithmica 59
(2011), 409–424.

[14] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms - The Computer Science

Perspective. Springer.
[15] Thomas Jansen and Ingo Wegener. 2006. On the analysis of a dynamic evolution-

ary algorithm. Journal of Discrete Algorithms 4 (2006), 181–199.
[16] Daniel Johannsen. 2010. Random combinatorial structures and randomized search

heuristics. Ph.D. Dissertation. Saarland University.
[17] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben. 2015. Parameter con-

trol in evolutionary algorithms: trends and challenges. IEEE Transactions on

Evolutionary Computation 19 (2015), 167–187.
[18] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. 2015. (1+1) EA on generalized

dynamic OneMax. In Proc. of FOGA ’15. ACM, 40–51.
[19] Jörg Lässig and Dirk Sudholt. 2011. Adaptive population models for offspring

populations and parallel evolutionary algorithms. In Proc. of FOGA ’11. ACM,
181–192.

[20] Boris Mitavskiy, Jonathan E. Rowe, and Chris Cannings. 2009. Theoretical anal-
ysis of local search strategies to optimize network communication subject to
preserving the total number of links. International Journal of Intelligent Comput-

ing and Cybernetics 2 (2009), 243–284.
[21] Jonathan E. Rowe and Dirk Sudholt. 2014. The choice of the offspring population

size in the (1, λ) evolutionary algorithm. Theoretical Computer Science 545 (2014),
20–38.

1482

http://arxiv.org/abs/1704.02191
http://arxiv.org/abs/1704.02191

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 A Self-Adaptive (1,) EA
	2.2 Runtime Analysis
	2.3 Probabilistic Tools
	2.4 Occupation Probabilities

	3 Main Result and Proof
	3.1 The Far Region
	3.2 The Near Region
	3.3 Proof of Theorem 3.1

	Acknowledgments
	References

