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Abstract
It is generally accepted that populations are useful for the global exploration of 
multi-modal optimisation problems. Indeed, several theoretical results are available 
showing such advantages over single-trajectory search heuristics. In this paper we 
provide evidence that evolving populations via crossover and mutation may also 
benefit the optimisation time for hillclimbing unimodal functions. In particular, we 
prove bounds on the expected runtime of the standard ( � + 1 ) GA for OneMax that 
are lower than its unary black box complexity and decrease in the leading constant 
with the population size up to � = o

�

√

log n
�

 . Our analysis suggests that the opti-
mal mutation strategy is to flip two bits most of the time. To achieve the results we 
provide two interesting contributions to the theory of randomised search heuristics: 
(1) A novel application of drift analysis which compares absorption times of differ-
ent Markov chains without defining an explicit potential function. (2) The inversion 
of fundamental matrices to calculate the absorption times of the Markov chains. The 
latter strategy was previously proposed in the literature but to the best of our knowl-
edge this is the first time is has been used to show non-trivial bounds on expected 
runtimes.
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1  Introduction

Populations in evolutionary and genetic algorithms are considered crucial for the 
effective global optimisation of multi-modal problems. For this to be the case, 
the population should be sufficiently diverse such that it can explore multiple 
regions of the search space at the same time [10]. Also, if the population has suf-
ficient diversity, then it considerably enhances the effectiveness of crossover for 
escaping from local optima. Indeed the first proof that crossover can consider-
ably improve the performance of GAs relied on either enforcing diversity by not 
allowing genotypic duplicates or by using unrealistically small crossover rates for 
the so-called Jump function [14]. Since then, it has been shown several times that 
crossover is useful to GAs using the same, or similar, diversity enhancing mecha-
nisms for a range of optimisation problems including shortest path problems [5], 
vertex cover [23], colouring problems inspired by the Ising model [32] and com-
puting input output sequences in finite state machines [17].

These examples provide considerable evidence that, by enforcing the necessary 
diversity, crossover makes GAs effective and often superior to applying muta-
tion alone. However, rarely it has been proven that the diversity mechanisms are 
actually necessary for GAs, or to what extent they are beneficial to outperform 
their mutation-only counterparts rather than being applied to simplify the analy-
sis. Recently, some light has been shed on the power of standard genetic algo-
rithms without diversity over the same algorithms using mutation alone. Dang 
et  al. showed that the plain ( � + 1)  GA is at least a linear factor faster than its 
( � + 1 ) EA counterpart at escaping the local optimum of Jump [4]. Sutton showed 
that the same algorithm with crossover if run sufficiently many times is a fixed 
parameter tractable (FPT) algorithm for the closest string problem while without 
crossover it is not [33]. Lengler provided an example of a class of unimodal func-
tions to highlight the robustness of the crossover based version with respect to the 
mutation rate compared to the mutation-only version i.e., the ( � + 1) GA is effi-
cient for any mutation rate c/n, c a constant, while the ( � + 1 ) EA requires expo-
nential time as soon as approx. c > 2.13 [19]. In all three examples the population 
size has to be large enough for the results to hold, thus providing evidence of the 
importance of populations in combination with crossover. A follow-up work by 
Lengler and Zou also established that for some monotone functions increasing 
the population size can result in superpolynomial runtimes when crossover is not 
implemented [20].

Recombination has also been shown to be very helpful at exploitation if the 
necessary diversity is enforced through some mechanism. In the (1+(�, � )) GA 
such diversity is achieved through large mutation rates. The algorithm can opti-
mise the well-known OneMax function in o(n log n) expected time with static off-
spring population sizes � [7], and in linear time with self-adaptive values of � [6]. 
Although using a recombination operator, the algorithm is still basically a single-
trajectory one (i.e., there is no population). More realistic steady-state GAs that 
actually create offspring by recombining parents have also been analysed for One-
Max. Sudholt showed that ( � + � ) GAs are twice as fast as their mutation-only 
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version (i.e., no recombination) for OneMax if diversity is enforced artificially 
i.e., genotype duplicates are preferred for deletion [31]. He proved a runtime of 
(e∕2)n ln n + O(n) versus the en ln n + O(n) function evaluations required by any 
standard bit mutation-only evolutionary algorithm for OneMax and any other lin-
ear function [30, 35]. If offspring are identical to their parents it is not neces-
sary to evaluate the quality of their solution. When the unnecessary queries are 
avoided, the expected runtime of the GA using artificial diversity from [31] is 
bounded above by (1 + o(1))0.850953n ln n [28]. Hence, it is faster than any unary 
(i.e., mutation-only) unbiased1 black-box search heuristic [16].

On one hand, the enforced artificiality in the last two results considerably sim-
plifies the analysis. On the other hand, the power of evolving populations for 
effective optimisation cannot be appreciated. Since the required diversity to make 
crossover effective is artificially enforced, the optimal population size is 2 and 
larger populations provide no benefits. Corus and Oliveto showed that the stand-
ard ( � + 1)  GA without diversity is still faster for OneMax than mutation-only 
ones by proving an upper bound on the runtime of (3∕4)en ln n + O(n) for any 
3 < 𝜇 < o(log n∕ log log n) [2]. A result of enforcing the diversity in [31] was that 
the best GA for the problem only used a population of size 2. However, even though 
this artificiality was removed in [2], a population of size 3 was sufficient to get the 
best upper bound on the runtime achievable with their analysis. Overall, their anal-
ysis does not indicate any tangible benefit towards using a population larger than 
� = 3 . Thus, rigorously showing that populations are beneficial for GAs in the 
exploitation phase has proved to be a non-trivial task.

In this paper we provide a more precise analysis of the behaviour of the popula-
tion of the ( � + 1) GA for OneMax. We prove that the standard ( � + 1) GA with 
� = o(

√

log n) is at least 60% faster than the same algorithm using only mutation. 
We also prove that the GA is faster than any unary unbiased black-box search heu-
ristic if offspring with identical genotypes to their parents are not evaluated. More 
importantly, our upper bounds on the expected runtime decrease with the popula-
tion size up to � = o(

√

log n) , thus providing for the first time a natural example 
where populations evolved via recombination and mutation optimise faster than 
any unary unbiased search heuristic. The mutation rate that minimises our upper 
bounds is approximately 1.4/n. With such rates all population sizes � ≥ 5 have an 
expected runtime that is smaller than 1.675n ln n(1 + o(1)) in the standard case when 
all offspring are evaluated. A recent analysis that proves that the expected runtime 
of the (2+1) GA is at least 2.18417n ln n + O(n) for any mutation rate c/n, for any 
c < 1.422 [27] combined with our previously proven upper bounds for � ≥ 3 [2], 
have allowed the first rigorous proof that any population size greater than � = 2 
makes the ( � + 1) GA faster than the same algorithm using only 2 individuals (i.e., 
populations are provably beneficial in the exploitation phase—for hillclimbing One-
Max). In this paper we provide guarantees of larger speed-ups. These guarantees 
increase with the population size �.

1  The probability of a bit being flipped by an unbiased operator is the same for each bit-position and bit 
value.
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2 � Problem Definition and Our Results

2.1 � The Genetic Algorithm

The ( � + 1) GA is a standard steady-state GA which samples a single new solu-
tion at every generation [9, 29]. It keeps a population of the � best solutions sam-
pled so far and at every iteration selects two solutions from the current population 
uniformly at random with replacement as the parents. The recombination opera-
tor then picks building blocks from the parents to create the offspring solution. 
For the case of pseudo-Boolean functions f ∶ {0, 1}n → ℝ , the most frequently 
used recombination operator is uniform crossover which picks the value of each 
bit position i ∈ [n] from one parent or the other uniformly at random (i.e., from 
each parent with probability 1/2) [9]. Then, an unbiased unary variation operator, 
which is called the mutation operator, is applied to the offspring solution before 
it is added to the population. The most common mutation operator is standard bit 
mutation which independently flips each bit of the offspring solution with some 
probability c/n [35]. Finally, before moving to the next iteration, one of the solu-
tions with the worst fitness value is removed from the population. For the case 
of maximisation the ( � + 1) GA is defined in Algorithm 1. The runtime of Algo-
rithm 1 is the number of function evaluations until a solution which maximises 
the function f is sampled for the first time. If every offspring is evaluated, then the 
runtime is equal to the value of the variable t in Alg. 1 when the optimal solution 
is sampled. However, if the fitness of offspring which are identical to their parents 
is not evaluated, then the runtime is smaller than t. We will first analyze the for-
mer scheme and then adapt the result to the latter. 

2.2 � The Optimisation Problem

Given an unknown bitstring z ∈ {0, 1}n , OneMaxz(x) ∶= |{i ∈ [n] ∣ zi = xi}| returns 
the number of bits on which a candidate solution x ∈ {0, 1}n matches z [35]. W.l.o.g. 
we will assume that the target string z of the OneMaxz function to be identified is the 
bitstring of all one-bits since all the operators in the ( � + 1) GA are invariant to the 
bit-value (have no bias towards 0s or 1s).
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2.3 � Our Results

In this paper we prove the following results.

Informal  The expected runtime E[T] for the ( � + 1) GA with unbiased mutations 
and population size � = o(

√

log n) to optimise the OneMax function is

1.	 E[T] ≤ (1 + o(1))n ln n ⋅ �1(�, p0, p1, p2), if offspring identical to their parents are 
not evaluated and p0 , p1 , and p2 are respectively the probabilities that zero, one 
or two bits are flipped, [Theorem 1, Sect. 3]

2.	 E[T] ≤ (1 + o(1))n ln n ⋅ �2(�, c), if the quality of each offspring is evaluated and 
standard bit mutation with rate c/n, c ∈ �(1) , is used, [Corollary 1, Sect. 3]

where �1 and �2 are decreasing functions of the population size �.

The above two statements are very general as they provide upper bounds on 
the expected runtime of the ( � + 1)  GA for each value of the population size up 
to � = o(

√

log n) and any unbiased mutation operator. The leading constants �1 and 
�2 in Statements 1 and 2 are plotted respectively in Fig. 1 and in Fig. 3 for differ-
ent population sizes using the p0 , p1 , p2 and c values which minimise the upper 
bounds. The result is significant particularly for the following three reasons (in order 
of increasing importance).

(1) The first statement shows how the genetic algorithm outperforms any unbi-
ased mutation-only heuristic since the best expected runtime achievable by any algo-
rithm belonging to such class is at least n ln n − cn ± o(n) [8]. The leading constants 
in the expected runtime for different population sizes using the p0 , p1 and p2 values 

Fig. 1   The leading constant for the (� + 1) GA which does not evaluate the fitness of copies versus the 
population size with p

0
= �(1) , p

1
= �(1) , p

2
≈ 1 and p

0
+ p

1
+ p

2
= 1 . The best leading constant 

achievable by any unary unbiased algorithm is 1. Note that the vertical axis starts at 0.916
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which minimise the upper bounds (i.e., local mutations) are plotted in Fig. 1 while 
Fig. 2 shows the leading constants for the standard bit mutation rates c which mini-
mise them. We have assumed p2 = 1 to obtain the leading constants in Fig. 1 since 
the leading constants in the upper bounds improve as p2 approaches 1 and we can 
pick p2 to be arbitrarily close to 1 (Figs. 3, 4). For the SBM variant, the mutation 

Fig. 2   The leading constant when SBM is used without evaluating offspring duplicates versus the popu-
lation size. The best leading constant achievable by any unary unbiased algorithm is 1. Note that the 
vertical axis starts at 0.9966

Fig. 3   The leading constant when SBM is used and offspring duplicates are evaluated versus the popula-
tion size. For each � value, the corresponding mutation rate minimising the upper bound is used. The 
best mutation-only variant has a the leading constant of e ≈ 2.71 . Note that the vertical axis starts at 
1.639
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rates that minimise the upper bounds when the duplicates are not evaluated are plot-
ted for each � in Fig. 5. It can be appreciated how in both cases all unbiased muta-
tion-only heuristics are outperformed.

Given that the best expected runtime achievable by any search heuristic using 
only standard bit mutation is (1 − o(1))en ln n [30, 35], the second statement shows 
how by adding recombination a speed-up of at least 60% is achieved for the One-
Max problem for any population size up to � = o(

√

log n) . The leading constants, in 
this case where offspring are always evaluated, are provided in Fig. 3 and the muta-
tion rates that minimise the upper bound are plotted in Fig. 6.

Fig. 4   The value of �
2
 with respect to the population size � ≥ 7

Fig. 5   The mutation rates minimising the upper bounds when SBM is used and the offspring duplicates 
are not evaluated versus the population size. Note that the x-axis starts at a population size of � = 7
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(2) Very few results are available proving constants in the leading terms of the 
expected runtime for randomised algorithms due to the considerable technical dif-
ficulties in deriving them. Exceptions exist such as the analyses of [8, 35] without 
which our comparative results would not have been achievable. While such precise 
results are gaining increasing importance in the theoretical computer science com-
munity, the available ones are related to more simple algorithms. This is the first 
time similar results are achieved concerning a much more complicated to analyse 
standard genetic algorithm using realistic population sizes and recombination.

(3) The preciseness of the analysis allows for the first time an appreciation of the 
surprising importance of the population for optimising unimodal functions2 as our 
upper bounds on the expected runtime decrease as the population size increases. In 
particular as the problem size increases, so does the optimal size of the population3 
(the best known runtime available for the ( � + 1) GA was of (1 + o(1))(3∕4)en ln n 
independent of the population size as long as it is greater than � = 3 i.e., there were 
no evident advantages in using a larger population [2]). This result is in contrast to 
all previous analyses of simplified evolutionary algorithms for unimodal functions 
where the algorithmic simplifications, made for the purpose of making the analy-
sis more accessible, caused the use of populations to be either ineffective or detri-
mental [28, 31, 34]. In particular, since a (2+1) GA has an expected runtime of at 
least 2.18417n ln n for any mutation rate c < 1.422 [27], any population size greater 
than 2 is provably faster (unless higher mutation rates turn out to be beneficial to 
the (2+1) GA which is unlikely because the optimal mutation rate for the algorithm 
within the range is approximately c = 1.2122 ). Our upper bound of � = o(

√

log n) 

Fig. 6   The mutation rates minimising the upper bounds when SBM is used and the offspring duplicates 
are evaluated versus the population size. Note that the x-axis starts at a population size of � = 7

2  Populations are traditionally thought to be useful for solving multi-modal problems.
3  The population size that minimises the upper bound we obtain.
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is very close to the at most logarithmic population sizes typically recommended for 
monotone functions to achieve asymptotically optimal runtimes [1, 34]. We conjec-
ture that the optimal population size is �

(

(log n)1−�
)

 for any constant 𝜖 > 0 , which 
cannot be proven with our mathematical methods for technical reasons.

2.4 � Proof Strategy

Our aim is to provide a precise analysis of the expected runtime of the ( � + 1) GA 
for optimising OneMax with arbitrary problem size n. Deriving the exact transition 
probabilities of the algorithm from all possible configurations of its population to all 
others is prohibitive. We will instead devise a set of n Markov chains, one for each 
improvement the algorithm has to make pessimistically to reach the global opti-
mum, which will be easier to analyse. Then we will prove that the Markov chains 
are slower to reach their absorbing state than the ( � + 1) GA is in finding the cor-
responding improvement.

In essence, our proof strategy is: (1) to identify suitable Markov chains, (2) to 
prove that the absorbing times of the Markov chains are larger than the expected 
improving times of the actual algorithm and (3) to bound the absorbing times of 
each Markov chain.

In particular, concerning point (2) we will first define a potential function which 
monotonically increases with the number of copies of the genotype with most dupli-
cates in the population and then bound the expected change in the potential func-
tion at every iteration (i.e., the drift) from below. Using the maximum value of the 
potential function and the minimum drift, we will bound the expected time until the 
potential function value drops to its minimum value for the first time. This part of 
the analysis is a novel application of drift analysis techniques [18, 36]. In particular, 
rather than using an explicit distance function as traditionally occurs, we define the 
potential function to be equal to the conditional expected absorption time of the cor-
responding states of each Markov chain.

Concerning point (3) of our proof strategy, we will calculate the absorbing times 
of the Markov chains Mj by identifying their fundamental matrices. This requires the 
inversion of tridiagonal matrices. Similar matrix manipulation strategies to bound 
the runtime of evolutionary algorithms have been previously suggested in the litera-
ture [11, 26]. However, all previous applications of the approach proved results that 
could be trivially achieved via simpler standard methods such as the artificial fitness 
levels method and random walks [13, 15]. To the best of our knowledge, this is the 
first time that the power of this long abandoned approach has finally been shown by 
proving non-trivial bounds on the expected runtime.

3 � Main Result Statement

Our main result is the following theorem. The transition probabilities pi,k for 
(i, k) ∈ [m]2 and m ∶= ⌈�∕2⌉ are defined in Definition 1 (Sect. 4.1) and are depicted 
in Fig. 9.
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Theorem  1  The expected runtime E[T] for the ( � + 1)  GA with � = o(
√

log n) 
using the uniform crossover and an unbiased mutation operator mutate(x) that flips i 
bits with probability pi with p0 ∈ �(1) and p1 ∈ �(1) to optimise the OneMax func-
tion is: 

1.	 E[T] ≤ (1 + o(1))n ln n
1

p1+p2
2(1−�2)�

(�+1)

 if the quality of each offspring is evaluated,

2.	 E[T] ≤ (1 + o(1))n ln n
(1−p0)

p1+p2
2(1−�2)�

(�+1)

 if the quality of offspring identical to their par-

ents is not evaluated; where, 

The recombination operator of the GA is effective only if individuals with dif-
ferent genotypes are picked as parents (i.e., recombination cannot produce any 
improvements if two identical individuals are recombined). However, more often 
than not, the population of the ( � + 1) GA consists only of copies of a single indi-
vidual. When diversity is created via mutation (i.e., a new genotype is added to the 
population), it either quickly leads to an improvement or it quickly disappears. The 
bound on the runtime reflects this behaviour as it is simply a waiting time until one 
of two event happens; either the current individual is mutated to a better one or 
diversity emerges and leads to an improvement before it is lost.

The �2 term in the runtime is the conditional probability that once diversity is 
created by mutation, it will be lost before reaching the next fitness level (an improve-
ment). Naturally, (1 − �2) is the probability that a successful crossover will occur 
before losing diversity. The (1 − �2) factor increases with the population size � and 
it is independent from the mutation operator used by the algorithms, which implies 
that larger populations have a higher capacity to maintain diversity long enough to 
be exploited by the recombination operator. In Fig. 4, how �2 changes with respect to 
the population size � is depicted.

Note that setting pi ∶= 0 for all i > 2 minimises the upper bound on the expected 
runtime in the second statement of Theorem  1 and reduces the bound to: 
E[T] ≤ (1 + o(1))n ln n(p1 + p2)∕

(

p1 + p2
2�(1−�2)

�+1

)

 . Now, we can see the critical role 
that �∗(�) = (1 − �2)�∕(� + 1) plays in the expected runtime. For any population size 
which yields �∗(�) ≤ 1∕2 , flipping only one bit per mutation becomes advantageous. 
The best upper bound achievable from the above expression is then (1 + o(1))n ln n 
by assigning an arbitrarily small constant to p0 , p1 = 1 − p0 (which implies that 
p2 = 0 ). As long as p0 = �(1) , when an improvement occurs, the superior genotype 
takes over the population quickly relative to the time between improvements. Since 
there are only one-bit flips, the crossover operator becomes virtually useless (i.e., 
crossover requires a Hamming distance of 2 between parents to create an improving 
offspring) and the resulting algorithm is a stochastic local search algorithm with a 

�i ∶=
pi−1,i−2

pi−1,m + pi−1,i−2 + pi−1,i(1 − �i+1)
,

�m ∶=
pm−1,m−2

pm−1,m + pm−1,m−2
.
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population. However, when 𝜉∗(𝜇) > 1∕2 , which is the case for all � ≥ 5 , setting p2 as 
large as possible provides the best upper bound. For � ≥ 5 , by setting p1 ∶= �∕2 and 
p0 =∶ �∕2 to an arbitrarily small constant � and setting p2 = 1 − � , we get the upper 
bound E[T] ≤ (1 + o(1))(1 + �)n ln n(� + 1)∕

(

2�
(

1 − �2

))

 , which is plotted for dif-
ferent population sizes in Fig. 1. We have assumed p2 = 1 to obtain the leading con-
stants since the leading constants improve as p2 approaches 1 and we can pick p2 to 
be arbitrarily close to 1.

A direct corollary to the main result is the upper bound for the classical ( � + 1

) GA commonly used in evolutionary computation which applies standard bit muta-
tion with mutation rate c/n for which p0 = (1 − o(1))∕ec , p1 = (1 − o(1))c∕ec and 
p2 = (1 − o(1))c2∕(2ec).

Corollary 1  Let �2 be as defined in Theorem 1. The expected runtime E[T] for the 
( � + 1) GA with � = o(

√

log n) using standard bit mutation with mutation rate c/n, 
c = �(1) to optimise the OneMax function is: 

1.	 E[T] ≤ (1 + o(1))n ln n
ec

c+
c2�

(�+1)
(1−�2)

 if the quality of each offspring is evaluated,

2.	 E[T] ≤ (1 + o(1))n ln n
(1−e−c)ec

c+
c2�

(�+1)
(1−�2)

 if the quality of offspring identical to their par-

ents is not evaluated.

By calculating �∗(�) ∶= (1 − �2)�∕(� + 1) for fixed values of � we can deter-
mine values of c (i.e., mutation rate) which minimise the leading constant of the 
runtime bound in Corollary  1. In Fig.  3 we plot the leading constants in the first 
statement, minimised by picking the appropriate c values (i.e., the ones that mini-
mise the upper bounds) for � ranging from 5 to 50. All the presented values improve 
upon the upper bound on the runtime of 1.96n ln n given in [2] for any � ≥ 3 and 
� = o(log n∕ log log n) . All the upper bounds are smaller than 1.7n ln n and clearly 
decrease with the population size, signifying an at least 60% increase in speed com-
pared to the en ln n(1 − o(1)) lower bound for the same algorithm without the recom-
bination operator [30, 35].

Considering the leading constants in the second statement of Corollary  1, for all 
population sizes larger than 5, the upper bound for the optimal mutation rate is smaller 
than the theoretical lower bound on the runtime of unary unbiased black-box algo-
rithms. For population sizes of 3 and 4, �∗ = 1∕3 and the expression to be minimised 
is (1 − e−c)ec∕(c + c2∕3) . For c > 0 , this expression has no minimum and is always 
larger than one. Thus, at least with our technique, a population of size 5 or larger is nec-
essary to prove that the ( � + 1) GA outperforms stochastic local search and any other 
unary unbiased optimisation heuristic. The mutation rates which minimise the upper 
bounds on the expected runtime are provided in Fig. 6 for the variant which evaluates 
the duplicate offspring and in Fig. 5 for the variant which does not. It can be appreci-
ated that a mutation rate of approximately 1.44/n provides better upper bounds than the 
standard recommended rate of 1/n, which instead is known to be optimal for the (1+1) 
EA on OneMax [30, 35]. For comparison the leading constants of the upper bounds for 
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the ( � + 1) GA with the standard mutation rate of 1/n are depicted in Fig. 7 for the vari-
ant which does not evaluate duplicate offspring and in Fig. 8 for the variant which does.

Fig. 7   The leading constant of the upper bound on the runtime when the standard mutation rate 1/n is 
used and the offspring duplicates are not evaluated versus the population size

Fig. 8   The leading constant of the upper bound on the runtime when the standard mutation rate 1/n is 
used and the offspring duplicates are evaluated versus the population size
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4 � Analysis

Our main aim is to provide an upper bound on the expected runtime (E[T]) of the 
( � + 1) GA defined in Algorithm 1 to maximise the OneMax function. We will pro-
vide upper bounds on the expected value E[Tj] , where Tj is the time until an indi-
vidual with at least j + 1 one-bits is sampled for the first time given that the initial 
population consists of individuals with j one-bits (i.e., the population is at level j). 
Then, by summing up the values of E[Tj] and the expected times for the whole pop-
ulation to reach j + 1 one-bits for j ∈ {1… , , n − 1} we achieve a valid upper bound 
on the expected runtime of the ( � + 1) GA. Similarly to the analysis in [2], we will 
pessimistically assume that the algorithm is initialised with all individuals having 
just zero-bits, and that throughout the optimisation process at most one extra one-bit 
is discovered at a time.

Although we divide the optimisation process into phases Tj according to the fit-
ness of the population, the widely used artificial fitness levels (AFL) method is not 
adequate to observe the potential advantages of the recombination operator. The 
AFL method relies on the minimum probability of improvement given a fitness level 
and uses its reciprocal to bound the expected time to leave the level from above. 
Using this minimal probability can give tight results when the probability of 
improvement is approximately the same for all possible population configurations at 
a given level. However, when uniform crossover is implemented, the improvement 
probability does not only depend on the current fitness but it is also heavily depend-
ent on the diversity of the population. Moreover, the above-mentioned diversity is 
not a scalar value but consists of all pairwise Hamming distances among the indi-

viduals in the population, i.e., a 
(

�

2

)

 dimensional variable. In order to avoid work-

ing with a multi-dimensional state space we will define the diversity 
Dt ∈ {0,… , ⌈

�

2
⌉ − 1} , as the number of non-majority individuals in the population 

at time t, where the majority genotype is the genotype that has the most copies in the 
population. While the improvement probability increases with Dt and can be lower 
bounded in a way that captures the contribution of crossover, it is no longer straight-
forward to convert these improvement probabilities to expected runtime values as it 
is done in the artificial fitness level method. The levels of diversity are different 
compared to the levels of fitness since while an elitist algorithm never returns to a 
fitness level it leaves, diversity levels can be visited multiple times and the total time 
to traverse all the diversity levels cannot be seperated into independent phases.

Fortunately, since the ( � + 1) GA adds a single solution to the population in every 
generation, the diversity can change by at most one unless the algorithm finds an 
improvement. Markov chains of similar structure where the state transition is lim-
ited to either moving one state forward or backward, staying put, or moving to the 
absorbing state can be analysed with existing tools in the literature. However, when 
we use the possible values for Dt to represent the state of the algorithm we cannot 
build an explicit Markov chain because, as we discussed above, the transition prob-
abilities would not only depend on Dt but depend on the precise Hamming distances 
among individuals. This prevents us from having a single transition probability 
between any two states.
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In order to overcome the above-mentioned difficulties in analysing the ( � + 1) GA 
on OneMax, we will devise a Markov chain Mj for each j ∈ {0,… , n − 1} with 
states that correspond to different levels of diversity in the population. Then, we 
will analyse the expected absorbing time E[Tj

i
] initialised at its state Sj

i
 by applying 

Markov chain specific methods (See Definition 1 and Fig. 9). Afterwards, we will 
prove that Mj is in expectation slower at reaching its absorbing state than the ( � + 1

) GA is at finding an improvement given an initial population at level j. In particular, 
we will define a non-negative potential function on the domain of all possible con-
figurations of a population at level j or above. Our potential function will be mono-
tonically decreasing with the diversity Dt . Moreover, we will assign to the potential 
function a value of zero for all populations with at least one solution which has more 
than j one-bits. Then, we will bound the expected change in the potential function at 
every iteration (i.e., the drift) from below. Using the maximum value of the poten-
tial function and the minimum drift, we will derive a bound on the expected time 
until an improvement is found starting from a population at level j with no diversity 
(i.e., all the solutions in the population are identical). While this upper bound will 
not provide an explicit runtime as a function of the problem size, it will allow us to 
conclude that (1 + o(1))E[T

j

0
] ≥ E[Tj] . Thus, all that remains will be to bound the 

expected absorbing time of Mj initialised at state Sj
0
 . We will obtain this bound by 

identifying the fundamental matrix of Mj . After establishing that the inverse of the 
fundamental matrix is a strongly diagonally dominant tridiagonal matrix, we will 
make use of existing tools in the literature for inverting such matrices and complete 
our proof.

4.1 � Markov Chain Definition

In this subsection we present the Markov chains which we will use to analyse the 
behaviour of the ( � + 1) GA. We should emphasise again that these Markov chains 
do not represent the exact behaviour of the algorithm and we will later prove that 
their expected absorbing times can be used to bound the expected time for the actual 
algorithm to improve the best fitness from j ∈ [n − 1] to j + 1 . Each Markov chain 
Mj has m ∶= ⌈�∕2⌉ transient states ( Sj

0
, S

j

1
,… , S

j

m−1
 ) and one absorbing state ( Sjm ) 

with the topology depicted in Fig. 9. The absorbing state Sjm represents a population 

Fig. 9   The topology of Markov Chain Mj
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with at least one improved individual with more than j one-bits. The states Sj
i
 repre-

sent the amount of diversity in the population. In particular, for i ∈ {0, 1,… ,m − 2} , 
the state Sj

i
 denotes populations where all the individuals have j one-bits and all but i 

of them share the same genotype. More diverse populations at fitness level j, which 
have at most � − (m − 1) identical individuals, are all denoted by the last transient 
state Sj

m−1
 . We have picked m ∶= ⌈�∕2⌉ because increasing the number of minor-

ity individuals above half of the population cannot be accomplished by copying 
the existing individuals and these higher diversity levels have significantly smaller 
probabilities to be observed. Compared to the analysis presented in [2] that used 
Markov chains of only three states (i.e., no diversity, diversity, increase in one-bits), 
Mj allows to control the diversity in the population more precisely, thus to show that 
larger populations are beneficial to the optimisation process.

Definition 1  Let Mj be a Markov chain with m ∶= ⌈�∕2⌉ transient states 
( Sj

0
, S

j

1
,… , S

j

m−1
 ) and one absorbing state ( Sjm ) with transition probabilities pi,k from 

state Sj
i
 to state Sj

k
 as follows:

Now, we will point out the important characteristics of these transition probabili-
ties. The transition probabilities, pi,k , are set to be equal to provable bounds on the 
probabilities of the ( � + 1) GA with a population consisting of solutions with j bits 
of gaining/losing diversity ( pi,i+1/pi,i−1 ) and sampling a solution with more than j 
one-bits ( pi,m ). In particular, upper bounds are used for the transition probabilities 

p0,1 ∶=
𝜇

(𝜇 + 1)

2j(n − j)p2

n2
, p0,m ∶=

(n − j)p1

n
,

pi,m ∶= 2
i

𝜇

𝜇 − i

𝜇

p0

4
if i > 0,

p1,2 ∶= p0

(

(

1

𝜇

)2
𝜇 − 1

𝜇 + 1
+ 2

1

𝜇

𝜇 − 1

𝜇

1

4

𝜇 − 1

𝜇 + 1

)

,

p1,0 ∶= p0

(

(

𝜇 − 1

𝜇

)2

+ 2
1

𝜇

𝜇 − 1

𝜇

1

4

)

1

𝜇 + 1
,

pi,i+1 ∶= p0

(

(

i

𝜇

)2

min

(

𝜇 − i

𝜇 + 1
, 1∕4

)

+ 2
i

𝜇

𝜇 − i

𝜇

1

4

𝜇 − i

𝜇 + 1

)

if m − 1 > i > 1,

pi,i−1 ∶= p0

(

(

𝜇 − i

𝜇

)2

+ 2
i

𝜇

𝜇 − i

𝜇

1

4
+

(

i

𝜇

)2
1

16

)

i

𝜇 + 1

if m > i > 1,

pm,m ∶= 1, p0,0 ∶= 1 − p0,1 − p0,m,

pm−1,m−1 ∶= 1 − pm−1,m−2 − pm−1,m,

pi,i ∶= 1 − pi,i−1 − pi,i+1 − pi,m if 0 < i < m − 1,

pi,j ∶= 0 otherwise.
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pi,k where i < k and lower bounds are used for the transition probabilities pi,k where 
i > k which will be shown to be precise up to a (1 + o(1)) factor in Lemma 3. Note 
that greater diversity corresponds to a higher probability of two distinct individu-
als with j one-bits being selected as parents and improved via recombination (i.e., 
pi,m monotonically increases with i and recombination is ineffective if i = 0 and the 
improvement probability p0,m is simply the probability of increasing the number of 
one-bits by mutation only. Thus, p0,m = �((n − j)∕n) while pi,m = �(i(� − i)∕�2) 
when i > 0 . The first forward transition probability p0,1 denotes the probability of 
the mutation operator of creating a different individual with j one-bits and the selec-
tion operator removing one of the majority individuals from the population. The 
other transition probabilities, pi,i+1 and pi,i−1 bound the probability that a copy of 
the minority solution or the majority solution is added to the population and that a 
member of the other species (minority/majority) is removed in the subsequent selec-
tion phase. All transition probabilities except p0,1 and p0,m are independent of j and 
referred to in the theorem statements without specifying j.

4.2 � Validity of the Markov Chain Model

In this subsection we will present how we establish that Mj is a pessimistic represen-
tation of Algorithm 1 initialised with a population of � identical individuals at level 
j. In particular, we will first show that E[Tj

0
] , the expected absorbing time starting 

from state Sj
0
 , is larger than E[Tj] . Consequently, this result will allow us to bound 

the leading constant of the expected runtime of ( � + 1) GA from above by the lead-
ing constant of 

∑n−1

j=0
E[T

j

0
] in the following lemma:

Lemma 1  Let E[T] be the expected runtime until the ( � + 1)  GA with 
� = o(log n∕ log log n) and {p0, p1, p2} = �(1) optimises the OneMax function and 
let

E[T
j

i
] (or E[Ti] wherever j is prespecified) be the expected absorbing time of Mj 

starting from state Sj
i
 . Then, E[T] ≤ o(n log n) + (1 + o(1))

∑n−1

j=0
E[T

j

0
].

The sum 
∑n−1

j=0
E[T

j

0
] excludes the fitness evaluations between when the first solu-

tion at level j is created and when the whole population is at level j or better. The 
expectation of the number of omitted evaluations is O(� log�) for each fitness level 
using standard take-over arguments [2]. The restriction of the population size to 
� = o(log n∕ log log n) allows to bound the expectation of the total number of omit-
ted evaluations by the o(n log n) term which does not affect the leading constant

We use drift analysis [18], a frequently used tool in the runtime analysis of evolu-
tionary algorithms, to prove the above result. In particular, we will make use of the 
additive drift theorem from [12], using its formulation from [18].

Theorem  2  (Additive Drift Theorem [12, 18]) Let (Xt)t≥0 be a sequence of non-
negative random variables with a finite state space S ⊆ ℝ

+
0
 such that 0 ∈ S . Let 

T ∶= inf{t ≥ 0 ∣ Xt = 0} . If there exists 𝛿 > 0 such that for all s ∈ S ⧵ {0} and for 
all t ≥ 0,
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then

We will start by defining a potential function over the state space of Alg. 1 that 
maps a state of the population to the conditional expected absorbing time of Mj that 
is initialised at the corresponding state in the Markov chain. Note that the drift anal-
ysis will be applied to the stochastic process that represents the actual algorithm, 
not on the Markov chain itself. The Markov chain will only be used to define the 
potential function that will be used for the drift analysis. The minimum of the poten-
tial function will correspond to the state of Algorithm 1 which has sampled a solu-
tion with more than j one-bits and we will explicitly prove that the maximum of 
the potential function is E[Tj

0
] . Then, we will show that the drift, i.e., the expected 

decrease in the potential function value in a single time unit (from time t to t + 1 ), is 
at least 1 − o(1) . Using the maximum value of the potential function and the mini-
mum drift, we will bound the expected time until the algorithm leaves fitness level j, 
by the absorbing time of the Markov chain Mj.

We will define our potential function over the domain of all possible population 
diversities at level j. We will refer to the genotype with the most copies in the popu-
lation as the majority genotype and recall that the diversity, Dt ∈ {0,… ,� − 1} , of a 
population Pt is defined as the number of non-majority individuals in the population.

Definition 2  The potential function value for level j, gj (or g wherever j is prespeci-
fied), is defined as follows:

where E[Tj

i
] (denoted as E[Ti] wherever j is prespecified) is the expected absorbing 

time of the Markov chain Mj starting from state Sj
i
.

The absorbing state of the Markov chain corresponds to a population with 
at least one individual with more than j one-bits, thus having potential function 
value (and expected absorbing time) equal to zero. The state Sj

0
 corresponds to 

a population with no diversity. This potential function is quite similar to the so-
called canonical potential function [18], which maps each state Si to the condi-
tional expected runtime given that the process is initialised at Si . The drift of the 
canonical potential function is always equal to 1 due to the law of total expecta-
tion. The potential function gj similarly maps states to conditional expectations, 
however the referred conditional expectations belong to a different but related 
stochastic process, the Markov chain Mj . Moreover, when Dt > 0 , the exact tran-
sition probabilities for the algorithm cannot be expressed as a function that only 

E[�t(s)] ∶= E[Xt − Xt+1 ∣ Xt = s] ≥ �,

E[T] ≤
E[X0]

�
.

gj(Dt) ∶= g
j

t ∶=

⎧

⎪

⎨

⎪

⎩

E[T
j

Dt
] 0 ≤ Dt < ⌈𝜇∕2⌉ − 1

E[T
j

⌈𝜇∕2⌉−1
] ⌈𝜇∕2⌉ − 1 ≤ Dt < 𝜇 − 1

0 ∃x ∈ Pt s.t. OneMax(x) > j,
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depends on Dt . When diversity is present in the population the transition prob-
abilities depend also on the pairwise Hamming distance between all pairs of indi-
viduals in the population. However, bounds on the transition probabilities that 
hold for any configuration of population for a given Dt can be obtained and these 
bounds are used to design the Markov chain Mj , which in turn provides us with 
the conditional expectations that define our potential function. The following 
lemma formalises that the expected absorbing time gets larger as the initial states 
get further away from ⌈�∕2⌉ − 1 . The main observation behind this result is that 
the probability of directly jumping to the absorbing state increases as the process 
approaches the end of the chain. This property implies that the expected absorb-
ing time from state Sj

0
 constitutes an upper bound for the potential function gj.

Lemma 2  Let E[Tj

i
] be the expected absorbing time of the Markov chain Mj condi-

tional on its initial state being Sj
i
 . Then, ∀j ∈ {0,… , n − 1} , E[Tj

i
]≤E[T

j

i−1
] for all 

1 ≤ i ≤ ⌈�∕2⌉ and gjt ≤ E[T
j

0
] ∀t > 0.

Proof  We are interested in max (E[T0],E[T1],… ,E[Tm]) since these are the val-
ues that the potential function g can have. According to the transition probabilities 
in Definition  1, pi+1,m ≥ pi,m for all i. Using this observation and the law of total 
expectation we will show that not only max (E[T0],E[T1],… ,E[Tm]) = E[T0] but 
also E[Ti−1] ≥ E[Ti] for all i. First, we will prove that E[Tm−2] ≥ E[Tm−1] by con-
tradiction. Then, we will prove by induction that E[Ti−1] ≥ E[Ti] for all i. For this 
induction we will use E[Tm−2] ≥ E[Tm−1] as our basic step and we will prove by 
contradiction that if for all k > i , E[Tk−1] ≥ E[Tk] holds, then E[Ti−1] ≥ E[Ti] must 
also hold.

If we use the law of total expectation for the absorbing time starting from state 
0 < i < m , we obtain:

This equation can be rearranged as follows:

For the special case of i = m − 1 , we have:

If we introduce the allegedly contradictory assumption E[Tm−2] < E[Tm−1] , the 
above equation implies:

E[Ti] =pi,i+1(E[Ti+1] + 1) + pi,i−1(E[Ti−1] + 1)

+ pi,m + (1 − pi,i+1 − pi,i−1 − pi,m)(E[Ti] + 1).

1 = pi,i+1(E[Ti] − E[Ti+1]) + pi,i−1(E[Ti] − E[Ti−1]) + pi,mE[Ti].

1 = pm−1,m(E[Tm−1]) + pm−1,m−2(E[Tm−1] − E[Tm−2]).

1 > pm−1,m(E[Tm−1]) ⟹
1

pm−2,m
≥

1

pm−1,m

> E[Tm−1] > E[Tm−2] ⟹
1

pm−2,m
> E[Tm−2].
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Given that 1

pi,m
> E[Ti] and E[Ti+1] > E[Ti] the law of total expectation for i implies:

Thus, the allegedly contradictory claim E[Tm−1] > E[Tm−2] induces over i such that 
it implies E[T1] > E[T0] and 1∕p0,m > E[T0] . We can now write the total law of 
expectation for i = 0.

The last statement is a contradiction since a probability cannot be negative. This 
contradiction proves the initial claim E[Tm−2] ≥ E[Tm−1].

We will now follow a similar route to prove that E[Ti−1] ≥ E[Ti] for all i. Given 
that for all k > i , E[Tk−1] ≥ E[Tk] holds, we will show that E[Ti > E[Ti−1] creates a 
contradiction. We start with the law of total expectation for E[Ti]:

Our assumption “ ∀k > i ∶ E[Tk] ≤ E[Tk−1] ” implies that E[Ti] − E[Ti+1] ≥ 0 , 
thus we obtain:

With our allegedly contradictory assumption E[Ti] − E[Ti−1] > 0 we obtain:

We have already shown above that 1∕pi−1,m ≥ 1∕pi,m > E[Ti] > E[Ti−1] can be 
induced over i and implies E[T1] > E[T0] and 1∕p0,m > E[T0] . Then we can conclude 
that:

The above conclusion implies that E[T0] is the largest value that our potential func-
tion can have and E[Ti] − E[Ti+1] is non-negative for all i. 	�  ◻

Now that the potential function is bounded from above, we will bound the drift 
E[gt − gt+1 ∣ Dt = i] . Due to the law of total expectation, the expected absorbing 
time, E[Ti] satisfies 

∑

j pi,j(E[Tj] − E[Ti]) = 1 for any absorbing Markov chain at a 
transient state i. Since E[Ti] and E[Tj] are the respective potentials of the states Si 

1 = pi,i+1(E[Ti] − E[Ti+1]) + pi,i−1(E[Ti] − E[Ti−1]) + pi,mE[Ti]

1 < pi,i+1(E[Ti] − E[Ti+1]) + pi,i−1(E[Ti] − E[Ti−1]) + 1

0 < pi,i−1(E[Ti] − E[Ti−1])

E[Ti−1] < E[Ti] ⟹
1

pi−1,m
≥

1

pi,m
> E[Ti] > E[Ti−1].

1 = p0,1(E[T0] − E[T1]) + p0,mE[T0]

1 < p0,1(E[T0] − E[T1]) + 1

0 < p0,1(E[T0] − E[T1])

0 > p0,1

1 = pi,i+1(E[Ti] − E[Ti+1]) + pi,i−1(E[Ti] − E[Ti−1]) + pi,mE[Ti]

1 > pi,i−1(E[Ti] − E[Ti−1]) + pi,mE[Ti].

1 > pi,mE[Ti] ⟹
1

pi−1,m
≥

1

pi,m
> E[Ti] > E[Ti−1].

(1)E[Ti] ≥ E[Ti+1] ∀0 ≤ i ≤ ⌈�∕2⌉ − 1.
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and Sj , the left hand side of the equation closely resembles the drift. In particular, 
the actual drift at state Si is also a linear combination of the terms (E[Ti] − E[Tj]) , 
although the precise weights (i.e., transition probabilities) of these terms can-
not be expressed as functions of i and j alone. However, these weights can be 
bounded and using these bounds the drift can be compared with the expression 
∑

j pi,j(E[Tj] − E[Ti]) in order to determine how close it is to 1. Since the prob-
abilities for Mj are pessimistically set to underestimate the drift, we can formally 
prove the following lemma.

Lemma 3  For a population at level j, E[gjt − g
j

t+1
∣ Dt = i] ≥ 1 − o(1) for all t > 0 

and i ∈ {0, 1,… ,� − 1}.

Proof  When there is no diversity in the population (i.e., Dt = 0 and gt = g(0) = E[T0] ) 
the only way to increase the diversity is to introduce it during a mutation operation. A 
non-majority individual is obtained when one of the n − j zero-bits and one of the j 
one-bits are flipped while no other bits are touched. Then, one of the majority individ-
uals must be removed from the population during the selection phase. This event has 
probability at least p2 ⋅ 2 ⋅

(n−j)

n

j

n

�

�+1
= p0,1 and decreases the potential to g(1) = E[T1] . 

Another way to change the potential function value is to create an improved individual 
with the mutation operator. In order to improve a solution it is sufficient to pick one of 
n − j one-bits and flip no other bits. This event has probability at least p1 ⋅

(n−j)

n
= p0,m 

and reduces the potential to 0 since an improvement has been found. Thus, we can 
conclude that when Dt = 0 , the conditional drift E[�t ∣ Dt = 0] is at least 
p0,m(g(0) − 0) + p0,1(g(0) − g(1)) = p0,mE[T0] + p0,1(E[T0] − E[T1]) . The law of 
total expectation for the state S

j

0
 of Markov chain Mj similarly states 

∑

j pi,j(E[T0] − E[Tj]) = p0,m(E[T0] − E[Tm]) + p0,1(E[T0] − E[T1]) = 1 . Since the 
state Sjm is the absorbing state, E[Tm] = 0 , and therefore,

For Dt > 0 , we will condition the drift on whether the picked parents are both 
majority individuals E1 , are both minority individuals with the same genotype E2 , are 
a pair that consists of one majority and one minority individual E3 , or they are both 
minority individuals with different genotypes E4.

Let E∗ be the event that the population Pt consists of two genotypes with Ham-
ming distance two. Then,

E[�t ∣ Dt = 0] ≥ p0,mE[T0] + p0,1(E[T0] − E[T1]) = 1.

(2)

ℙ{E1 ∣ E
∗} = ℙ{E1 ∣ E

∗} =

(

� − i

�

)2

ℙ{E2 ∣ E
∗} = ℙ{E2 ∣ E

∗} + ℙ{E4 ∣ E
∗} =

(

i

�

)2

ℙ{E3 ∣ E
∗} = ℙ{E3 ∣ E

∗} = 2
i

�

� − i

�
; ℙ{E4 ∣ E

∗} = 0.
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Let E[𝛥i>0
t

] be the drift conditional on i > 0 . The law of total expectation states:

where the last inequality is obtained by substituting the probabilities from (2) and 
rearranging the terms. Due to the Definition 2, the conditional drifts in the above 
expression depend on the values of (E[Ti] − E[Tj]) for (i, j) ∈ {0,… ,m} . Therefore, 
in order to prove a lower bound on the drift, we will make use of another equality 
where the (E[Ti] − E[Tj]) terms appear. We will now write the law of total expecta-
tion for state i for our Markov chain Mj and then replace the probabilities in the law 
of total expectation with the values from Definition 1 and rearrange it into additive 
terms with the probabilities of events Ei as multiplicative factors.

In particular, we will prove that the following three inequalities hold in order to 
prove that E[𝛥i>0

t
] ≥ 1 − o(1).

E[𝛥i>0
t

] =ℙ{E∗}

4
∑

k=1

ℙ{Ek ∣ E
∗}E[𝛥i>0

t
∣ Ek, E

∗]

+ (1 − ℙ{E∗})

4
∑

k=1

ℙ{Ek ∣ E
∗}E[𝛥i>0

t
∣ Ek, E

∗]

≥

(

𝜇 − i

𝜇

)2

E[𝛥i>0
t

∣ E1] +

(

i

𝜇

)2

min
(

E[𝛥i>0
t

∣ E2],E[𝛥
i>0
t

∣ E4]
)

+ 2
𝜇 − i

𝜇

i

𝜇
E[𝛥i>0

t
∣ E3],

(3)

1 = pi,i+1(E[Ti] − E[Ti+1]) + pi,i−1(E[Ti] − E[Ti−1]) + pi,mE[Ti]

=

(

� − i

�

)2

p0
i

� + 1
(E[Ti] − E[Ti−1])

+

(

i

�

)2

p0

(

min

(

� − i

� + 1
, 1∕4

)

(E[Ti] − E[Ti+1]) +
i(E[Ti] − E[Ti−1])

16(� + 1)

)

+ 2
i

�

� − i

�
p0

(

1

4

� − i

� + 1
(E[Ti] − E[Ti+1]) +

i(E[Ti] − E[Ti−1])

4(� + 1)
+

E[Ti]

4

)

.

(4)E[𝛥i>0
t

∣ E1] ≥ (1 − o(1)) ⋅ p0
i

𝜇 + 1
(E[Ti] − E[Ti−1])

(5)
min

(

E[𝛥i>0
t

∣ E2],E[𝛥
i>0
t

∣ E4]
)

≥ (1 − o(1))⋅

p0

(

min

(

𝜇 − i

𝜇 + 1
, 1∕4

)

(E[Ti] − E[Ti+1]) +
1

16

i

𝜇 + 1
(E[Ti] − E[Ti−1])

)
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We will start with (4).When two majority individuals are selected as parents ( E1 ), 
we pessimistically assume that improving to the next level and increasing the diver-
sity has zero probability. Losing the diversity requires that no bits are flipped during 
mutation (with probability p0 ) and that a minority individual will be removed from 
the population with probability i

�+1
 . Therefore, E[𝛥i>0

t
∣ E1] ≥ p0

(

E[Ti] − E[Ti−1]
)

i

𝜇+1
 

which proves that (4) holds.
Next, we will prove the inequality (5). When two minority individuals are 

selected as parents ( E2 or E4 ), if they are identical ( E2 ) then it is sufficient that the 
mutation does not flip any bits and that a majority individual is removed from the 
population. Thus, given E2 , the probability of increasing the diversity is at least 
p0 ⋅ (� − i)∕(� + 1) and the probability of creating a majority individual is O

(

1∕n2
)

 
since it is necessary to flip at least two particular bit positions. The resulting lower 
bound is,

If the two minority individuals have a Hamming distance of 2d ≥ 2 (i.e., E4 ), then 
in order to create another minority individual at the end of the crossover operation it 
is sufficient that crossover picks exactly d one-bits and d zero-bits among 2d bit 

positions where they differ. There are 
(

2d

d

)

 different ways that this can happen and 

the probability that any particular outcome of crossover is realised is 2−2d . One of 
those outcomes though, might be the majority individual and if that is the case the 
diversity can decrease afterwards. However, while the Hamming distance between 
the minority individuals can be 2d = 2 , obtaining a majority individual by recom-
bining two minority individuals requires at least four specific bit positions to be 
picked correctly during the crossover with probability at most 1/16 or at least one 
specific bit must be flipped by the mutation operator to obtain the majority individ-
ual with probability at most O(1∕n) . On the other hand, when two different minority 

individuals are selected as parents, there is at least a 1−
⎛

⎜

⎜

⎝

2d

d

⎞

⎟

⎟

⎠

2−2d

2

 probability that the 

crossover will result in an individual with more one-bits and then with probability 

p0 the mutation will not flip any bits. The probability 1−
⎛

⎜

⎜

⎝

2d

d

⎞

⎟

⎟

⎠

2−2d

2

 monotonically 

increases with d and has its minimum value 1/4 for d = 1 . Hence,

(6)
E[𝛥i>0

t
∣ E3] ≥ (1 − o(1))⋅

p0

(

1

4

𝜇 − i

𝜇 + 1
(E[Ti] − E[Ti+1]) +

1

4

i

𝜇 + 1
(E[Ti] − E[Ti−1]) +

E[Ti]

4

)

(7)
E[𝛥i>0

t
∣ E2] ≥ p0

𝜇 − i

𝜇 + 1
(E[Ti] − E[Ti+1]) +O

(

1

n2

)

(E[Ti] − E[Ti−1])

≥ (1 − o(1)) ⋅ p0
𝜇 − i

𝜇 + 1
(E[Ti] − E[Ti+1]).
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Where in the last inequality we used the fact that E[Ti] > E[Ti] − E[Ti+1] . The ine-
qualities (7) and (8) establish that (5) holds. Finally, we will prove that (6) holds. 
We will consider the drift conditional on event E3 , the case when one minority and 
one majority individual are selected as parents. We will further divide this event into 
two subcases. In the first case the Hamming distance 2d between the minority and 
the majority individual is exactly two ( d = 1 ). Then, the probabilities that crossover 
creates a copy of the minority individual, a copy of the majority individual or a 
new individual with more one-bits are all equal to 1/4 unless the mutation operator 
flips at least one of the bit positions where the minority and majority individuals 
differ which happens with probability at most O(1∕n) which we can absorb in the 
(1 − o(1)) multiplier. Thus, the conditional drift is:

On the other hand, when d > 1 , the drift is more similar to the case of E4 where 
the probabilities of creating copies of either the minority or the majority individ-
uals diminish with larger d while larger d increases the probability of creating an 
improved individual. More precisely,

We will now show that E[𝛥i>0
t

∣ E3, d > 1] ≥ E[𝛥i>0
t

∣ E3, d = 1] which together with 
(9) will imply that (6) holds. Since (E[Ti] − E[Ti−1]) is negative, for d > 1,

(8)

E[𝛥i>0
t

∣ E4] ≥ p0

[((

2d

d

)

− 1

)

2−2d
𝜇 − i

𝜇 + 1
(E[Ti] − E[Ti+1])

+
(

min
(

1

16
, 2−2d

)

+O(1∕n)
)

i

𝜇 + 1
(E[Ti] − E[Ti−1]) +

1

4
E[Ti]

]

≥ (1 − o(1)) ⋅ p0

[

1

16

i

𝜇 + 1
(E[Ti] − E[Ti−1]) +

E[Ti]

4

]

.

≥ (1 − o(1)) ⋅ p0

[

1

16

i

𝜇 + 1
(E[Ti] − E[Ti−1]) +

1

4
(E[Ti] − E[Ti−1])

]

.

(9)

E[𝛥i>0
t

∣ E3, d = 1]

≥ (1 − o(1))
p0

4

(

i

𝜇 + 1
(E[Ti] − E[Ti−1]) +

𝜇 − i

𝜇 + 1
(E[Ti] − E[Ti+1]) + E[Ti]

)

.

E[𝛥i>0
t

∣ E3, d > 1] ≥ p0

���

2d

d

�

− 1

�

2−2d
𝜇 − i

𝜇 + 1
(E[Ti] − E[Ti+1])

+
�

2−2d +O(1∕n)
� i

𝜇 + 1
(E[Ti] − E[Ti−1]) +

⎛

⎜

⎜

⎜

⎜

⎝

1 −

�

2d

d

�

2−2d

2

⎞

⎟

⎟

⎟

⎟

⎠

E[Ti]

�

(

2−2d +O(1∕n)
) i

� + 1
(E[Ti] − E[Ti−1]) ≥

1

4

i

� + 1
(E[Ti] − E[Ti−1]).
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As the multiplier of the negative (E[Ti] − E[Ti−1]) term decreases when d > 1 , 
showing that the sum of the remaining two positive terms increases when d > 1 , 
establishes that E[𝛥i>0

t
∣ E3, d > 1] ≥ E[𝛥i>0

t
∣ E3, d = 1] . Between the cases of d = 1 

and d > 1 , the probability of creating a copy of the minority individual decreases 

from 1/4 to 
((

2d

d

)

− 1

)

2−2d while the probability of creating an improvement 

increases from 1/4 to 

⎛

⎜

⎜

⎜

⎜

⎝

1−

⎛

⎜

⎜

⎝

2d

d

⎞

⎟

⎟

⎠

2−2d

2

⎞

⎟

⎟

⎟

⎟

⎠

 . A trivial but crucial observation here is that 

𝜇−i

𝜇+1
(E[Ti] − E[Ti+1]) < E[Ti] . Thus, if,

then, E[𝛥i>0
t

∣ E3, d > 1] ≥ E[𝛥i>0
t

∣ E3, d = 1] . We can factorise the above expres-
sion as,

where we can see that it is positive as long as 
(

2d

d

)

> 2 , which holds for all d ≥ 1 

and proves that E[𝛥i>0
t

∣ E3, d > 1] ≥ E[𝛥i>0
t

∣ E3, d = 1] . This in turn shows that (6) 
holds and establishes our claim.

	�  ◻

Now, we can prove Lemma 1 using the above results.
Proof of  Lemma 1  Since E[g

j

t − g
j

t+1
∣ Dt = i] ≥ 1 − o(1) from Lemma  3 

and g
j

t ≤ E[T
j

0
] from Lemma  2, we can apply Theorem  2 to obtain 

E[Tj] ≤ (1 + o(1))E[T
j

0
] . Given that there are k individuals with at least j + 1 one-

bits (improved individuals) in the population, in every generation with probability at 
least k∕� , at least one improved individual is selected as parent. If we pessimistically 
assume that the other parent has only j 1-bits, the Hamming distance between the 
genotypes is equal to 2d + 1 for some integer d > 0 . Let � be an arbitrarily picked 
bit-position which was set to 1 in the improved individuals and to 0 in the other par-
ents. With probability 1/2, this bit-position will be set to 1 in the offspring as well. 
For the remaining 2d bit-positions, the probability that at least d 1-bits are inherited 
by the offspring is at least 1/2 due to the symmetry of the actual outcome around d. 
Thus, given that there are k improved individuals in the population, the expected 

���

2d

d

�

− 1

�

2−2d −
1

4

�

+

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎝

1 −

�

2d

d

�

2−2d

2

⎞

⎟

⎟

⎟

⎟

⎠

−
1

4

⎞

⎟

⎟

⎟

⎟

⎠

> 0

���

2d

d

�

− 1

�

2−2d −
1

4

�

+

⎛

⎜

⎜

⎜

⎜

⎝

1 −

�

2d

d

�

2−2d

2

⎞

⎟

⎟

⎟

⎟

⎠

−
1

4
= 2−1−2d

��

2d

d

�

− 2

�
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time until a new improved individual is at most �∕k ⋅ 8 ⋅ (1 − 1∕n)−n = O(�∕k) . 
Summing over k ∈ [�] we obtain, 

∑�

k=1
O(�∕k) = O(� log�) expected iterations 

after sampling the first improved solution, as an upper bound on the expected time 
until all individuals in the population have at least j + 1 1-bits. If the population 
size is in the order of o(log n∕ log log n) , then the total number of iterations where 
there are individuals with different fitness values in the population is in the order of 
o(n log n) . Since j ∈ {0, 1,… , n − 1} , we can establish that

	�  ◻

4.3 � Markov Chain Absorption Time Analysis

In the previous subsection we stated in Lemma 1 that we can bound the absorbing times 
of the Markov chains Mj to derive an upper bound on the runtime of Algorithm 1. In 
this subsection we use mathematical tools developed for the analysis of Markov chains 
to provide such bounds on the absorbing times.

The absorbing time of a Markov chain starting from any initial state i can be 
derived by identifying its fundamental matrix. Let the matrix Q denote the transition 
probabilities between the transient states of the Markov chain Mj . The fundamental 
matrix of Mj is defined as N ∶= (I − Q)−1 where I is the identity matrix. The most 
important characteristic of the fundamental matrix is that, when it is multiplied by 
a column vector of ones, the product is a vector holding E[Tj

i
] , the expected absorb-

ing times conditional on the initial state i of the Markov chain. Since, Lemma 1 only 
involves Tj

0
 , we are only interested in the entries of the first row of N = [nik] . How-

ever, inverting the matrix I − Q is not always a straightforward task. Fortunately, 
I − Q = [aik] has characteristics that allow bounds on the entries of its inverse. Its 
entries are related to the transition probabilities of Mj as follows:

Observe that I − Q is a tridiagonal matrix, in the sense that all non-zero ele-
ments of I − Q are either on the diagonal or adjacent to it. Moreover, the diagonal 
entries aii of I − Q are in the form 1 − pi−1,i−1 , which is equal to the sum of all 
transition probabilities out of state i − 1 . Since the other entries on row i are 

E[T] ≤ o(n log n) +

n−1
∑

j=0

E[Tj] ≤ o(n log n) + (1 + o(1))

n−1
∑

j=0

E[T
j

0
].

(10)a11 = 1 − p0,0 = p0,1 + p0,m

(11)amm = 1 − pm−1,m−1 = pm−1,m−2 + pm−1,m

(12)
aii = 1 − pi−1,i−1 = pi−1,i−2 + pi−1,i + pi−1,m

∀i ∈ {2, ...,m − 1}

(13)aik = −pi−1,k−1 ∀i, k ∈ {1,… ,m} ∧ i ≠ k
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transition probabilities from state i − 1 to adjacent states, we can see that 
�aii� >

∑

i≠k �aik� . The matrices where �aii� >
∑

i≠k �aik� holds are called strongly 
diagonally dominant (SDD). Since I − Q is SDD, according to [21, Lemma 2.1], 
it holds for the fundamental matrix N for all i ≠ k that, 
�ni,k� ≤ �nk,k� ≤

�

�ak,k�
�

1 −
∑

l≠k �al,k�

�ak,k�

��−1

≤
�

�ak,k� −
∑

l≠k �al,k�
�−1.

In our particular case, the above inequality implies that |n1,k| ≤ 1∕pk−1,m . For 
any population with diversity, there is a probability in the order of �(1∕�) of 
selecting one minority and one majority individual and a constant probability 
that their offspring will have more one-bits than the current level. Considering 
m = O(�) , we obtain:

We note here that the O
(

�
2
)

 factor in the above expression creates the con-
dition � = o(

√

log n) on the population size for our main results. We will now 
bound the term n1,1 from above to establish our upper bound using the following 
theorem which follows from [21, Corollary 3.2]:

Theorem  3  Let A be an m × m tridiagonal non-singular SDD matrix such 
that ai,k ≤ 0 for all i ≠ k , A−1 = [ni,k] exists and ni,k ≥ 0 for all i,  k. Then, 
n1,1 = 1∕(a1,1 + a1,2�2) , where �i = ai,i−1∕(ai,i + ai,i+1�i+1) , and �m = am,m−1∕am,m.

In order to use Theorem 3, we need to satisfy its conditions. We can easily see that 
non-diagonal entries of the original matrix I − Q are non-positive and use [21, Theo-
rem 3.1] to show that N = (I − Q)−1 has no negative entries:

Theorem 4  (Theorem 3.1 in [21]) If A is a tridiagonal non-singular SDD matrix 
and ai,i > 0 , then A−1 = [ni,k] exists and

–	 sign(ni,i) = 1

–	 sign(ni,k) = (−1)i+k
∏i

l=k+1
al,l−1, i > k

–	 sign(ni,k) = (−1)i+k
∏k

l=i
al,l+1, i < k.

Since the diagonal entries of I − Q are strictly positive, according to Theo-
rem 4 the diagonal entries of N are also positive. The non-diagonal entries of I − Q 
are all negative thus the series multiplication from Theorem  4 for i > k reduces to 
(−1)i+k+i−k = (−1)2i = 1 . Similarly for the case i < k , the multiplication reduces to 
(−1)i+k+k−i = (−1)2k = 1 . Hence, N does not have any negative entries.

Lemma 4  With an initial population of size � = o(
√

log n) at level j, the expected 
time E[Tj] until an individual with j + 1 one-bits is sampled by the ( � + 1) GA for 
the first time is bounded from above as follows:

(14)E[T
j

0
] =

m
∑

k=1

n1,k < n1,1 +

m
∑

k=2

1

pk−1,m
≤ n1,1 +O

(

𝜇
2
)

.
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where pi,k are the transition probabilities of the Markov chain Mj.

Proof  Starting from Inequality 14 and applying Theorem 3 we obtain:

where we substitute p0,1 and p0,m with their values declared in Definition 1. The defi-
nitions of �i and �m are obtained by simply substituting the matrix entries in Theo-
rem 3 with their respective values from Eqs. 10 to 13. 	�  ◻

In Lemma 4, we can now see that the bound depends on p1 and p2 of the mutation 
operator and �2 . The term �i represents the conditional probability of returning to the 
state (i − 1) given that you initialise at state i. It only depends on the probabilities of 
creating either a copy of the minority/majority solution or an improvement. Since 
we pessimistically assume that we can only improve by crossover when diversity is 
present, the leading term of all these probabilities include p0 . Thus, when the condi-
tional probabilities �i are calculated, the common factor p0 disappears and we obtain 
the upper bound that only depends on p1 , p2 and �.

The above bound on E[Tj

0
] , together with Lemma 1, yields Theorem 1, our main 

result.

Proof of Theorem 1  Combining Lemmas 1 and 4 we obtain:

E[T
j

0
] ≤

n

n − j

1

p1 +
2𝜇p2

(𝜇+1)

j

n
(1 − 𝜉2)

+ o(log n), where,

𝜉m =
pm−1,m−2

pm−1,m + pm−1,m−2

𝜉i =
pi−1,i−2

pi−1,m + pi−1,i−2 + pi−1,i(1 − 𝜉i+1)
∀1 < i < m = ⌈𝜇∕2⌉.

E[T
j

0
] ≤ n1,1 +O

(

�
2
)

≤
1

a1,1 + a1,2�2
+O

(

�
2
)

=
1

p0,m + p0,1(1 − �2)
+O

(

�
2
)

≤
1

p0,m + p0,1(1 − �2)
+O

(

�
2
)

≤
1

(n−j)p1

n
+

�

(�+1)

2j(n−j)p2

n2
(1 − �2)

+O
(

�
2
)

=
n

n − j

1

p1 +
�

(�+1)

2jp2

n
(1 − �2)

+ o(log n),
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We will now divide the sum into two smaller sums:

 We conclude the proof by substituting the sum in Eq. 15 with the above expression.

The expressions for �i and �m come from Lemma 4 and prove the first statement.
For the second statement, we adapt the result for the variant of the ( � + 1) GA 

which does not evaluate copies of either parents. When there is no diversity in the 
population the offspring is identical to the parent with probability p0 . Then, given 
that a fitness evaluation occurs, the probability of improvement via mutation is 

(15)

E[T] ≤ o(n log n) + (1 + o(1))

n−1
�

j=0

E[Tj]

≤ o(n log n) + (1 + o(1))

n−1
�

j=0

⎛

⎜

⎜

⎝

n

n − j

1

p1 +
�

(�+1)

2jp2

n
(1 − �2)

⎞

⎟

⎟

⎠

n
�

j=1

n

n − j

1

p1 +
�

(�+1)

2jp2

n
(1 − �2)

=

n−n∕
√

log n
�

j=1

n

n − j

1

p1 +
�

(�+1)

2jp2

n
(1 − �2)

+

n
�

j=n−n∕
√

log n+1

n

n − j

1

p1 +
�

(�+1)

2jp2

n
(1 − �2)

≤ O

�

n
√

log n
�

+
n

p1 +
2p2�

(�+1)

�

1 −
1

√

log n

�

(1 − �2)

n
�

j=n−n∕
√

log n+1

1

n − j

≤ O

�

n
√

log n
�

+
n ln n

p1 +
2p2�

(�+1)

�

1 −
1

√

log n

�

(1 − �2)

E[T] ≤ o(n log n)

+ (1 + o(1))

⎛

⎜

⎜

⎜

⎝

O

�

n
√

log n
�

+
n ln n

p1 +
2p2�

(�+1)

�

1 −
1

√

log n

�

(1 − �2)

⎞

⎟

⎟

⎟

⎠

≤ o(n log n)

+ (1 + o(1))

⎛

⎜

⎜

⎝

O

�

n
√

log n
�

+ (1 + o(1))
n ln n

p1 +
2p2�

(�+1)
(1 − �2)

⎞

⎟

⎟

⎠

= (1 + o(1))n ln n
1

p1 +
2p2�

(�+1)
(1 − �2)

.
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p0,m∕(1 − p0) and the probability that diversity is introduced is p0,1∕(1 − p0) . The 
proof is identical to the proof of the first statement, except for using probabilities 
p∗
0,m

= p0,m∕(1 − p0) and p∗
0,1

= p0,1∕(1 − p0) instead of p0,1 and p0,m from Defini-
tion 1. Even if we pessimistically assume that a function evaluation occurs at every 
iteration when there is diversity in the population, we still get a (1 − p0) decrease in 
the leading constant. 	�  ◻

Whether the copies of the parents are evaluated or not does not affect the algo-
rithm’s trajectory in the search space. Its effect on the expected runtime in turn can 
be estimated in a straightforward manner if the probability of producing a copy is 
known. In general this probability is a function of the mutation operator and the 
Hamming distances between each pair of individuals in the population. For the 
special case of monotypic populations (where the Hamming distance between all 
pairs is zero) it is equal to the probability that the mutation operator does not flip 
any bits, i.e., p0 . The probability of creating a copy decreases with the diversity of 
the population. However, for population sizes of o(

√

log n) , the expected number 
of iterations with a diverse population is asymptotically smaller than the number of 
iterations with a monotypic population. This property allows us to adapt the leading 
constant of the upper bound on the expected runtime of the standard algorithm by 
multiplying it with (1 − p0).

5 � Conclusion

In this work, we have shown that the steady-state ( � + 1)  GA optimises OneMax 
faster than any unary unbiased search heuristic. Providing precise asymptotic 
bounds on the expected runtime of standard GAs without artificial mechanisms 
that simplify the analysis has been a long standing open problem [22, 31]. We have 
derived bounds up to the leading term constants of the expected runtime. To achieve 
this result we show that a simplified Markov chain pessimistically represents the 
behaviour of the GA for OneMax. This insight about the algorithm/problem pair 
allows the derivation of runtime bounds for a complex multi-dimensional stochastic 
process. The analysis shows that as the number of states in the Markov chain (the 
population size) increases, so does the probability that diversity in the population 
is kept. Thus, larger populations increase the probability that recombination finds 
improved solutions quickly, hence reduce the expected runtime. Recent work has 
provided lower bounds on the expected runtime of the (2 + 1) GA with mutation 
rates up to 1.422/n [27]. Future work should focus on deriving corresponding lower 
bounds for different population sizes to fill in the gaps left in this paper regarding 
the power of populations for hill-climbing OneMax-like functions. The only other 
lower bounds available for standard genetic algorithms are those derived to show 
that generational GAs are inefficient even for easy problems if fitness proportional 
selection is used [24, 25].
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