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Abstract

We revisit the complexity of deciding, given a bimatrix game, whether it has a Nash

equilibrium with certain natural properties; such decision problems were early known to

be NP-hard [20]. We show that NP-hardness still holds under two significant restrictions

in simultaneity: the game is win-lose (that is, all utilities are 0 or 1) and symmetric. To

address the former restriction, we design win-lose gadgets and a win-lose reduction; to acco-

modate the latter restriction, we employ and analyze the classical GHR-symmetrization [21]

in the win-lose setting. Thus, symmetric win-lose bimatrix games are as complex as general

bimatrix games with respect to such decision problems.

As a byproduct of our techniques, we derive hardness results for search, counting and

parity problems about Nash equilibria in symmetric win-lose bimatrix games.
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1 Introduction

1.1 Framework and Motivation

1.1.1 Nash Equilibria, Win-Lose Bimatrix Games and Symmetric Games

Among the most fundamental computational problems in Algorithmic Game Theory are those

concerning the Nash equilibria [29, 30] of a game, where no player could unilaterally deviate to

increase her expected utility. Such problems have been studied extensively [1, 4, 7, 9, 10, 11,

12, 13, 14, 20, 25, 26] for 2-player games with rational utilities given by a bimatrix. There are

two prominent special cases of such general bimatrix games: win-lose and symmetric.

• Utilities are taken from {0, 1} in win-lose bimatrix games, originally put forward in [12].

• In a symmetric game [29, 30], players have identical strategy sets and the utility of a player

is determined by the multiset of strategies chosen by her and the other players, with no

discrimination. By a classical result of Nash, every symmetric game has a symmetric

Nash equilibrium, where all players are playing the same mixed strategy [29, 30]. A

symmetrization transforms a given bimatrix game into a symmetric one; the target is

that a Nash equilibrium for the original bimatrix game can be reconstructed efficiently

from a (symmetric) Nash equilibrium for the symmetric bimatrix game (cf. [8, 17, 21]).

1.1.2 The Search Problem

The fundamental theorem of Nash [29, 30] that a Nash equilibrium is guaranteed to exist for

a finite game makes its search problem total; hence, the search problem is not NP-hard unless

NP = co-NP [27, Theorem 2.1]. In a series of breakthrough papers culminating in [9, 14], it

was established that, even for bimatrix games, the search problem is complete for PPAD [31], a

complexity class capturing the computation of discrete fixed points; under suitable formulations,

the problem is FIXP-complete for games with more than two players [16, Theorem 18].

Abbott, Kane and Valiant [1] presented a polynomial time transformation of a general bima-

trix game into a win-lose bimatrix game, accompanied with a polynomial time map returning

a Nash equilibrium for the general game when given one for the win-lose game. So the search

problem is PPAD-hard for win-lose bimatrix games, which suggests that hardness is not due

to the rational utilities. The search problem for a symmetric Nash equilibrium in a symmetric

bimatrix game is also PPAD-hard, thanks to the two symmetrizations from 1950 due to Brown

and von Neumann [8] and due to Gale, Kuhn and Tucker [17], respectively; the complexity of

the search problem for any Nash equilibrium in a symmetric bimatrix game has been mentioned

as an open problem by Papadimitriou [32, Section 2.3.1].
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1.1.3 Decision, Counting and Parity Problems

Decision problems arise naturally by twisting the search problem in simple ways that deprive

it from its existence guarantee for a Nash equilibrium. Here is a non-exhaustive list of such

natural decision problems (see Section 2.3 for formal statements): given a game, does it have:

(i) At least k + 1 Nash equilibria for some fixed integer k ≥ 1? (The special case with k = 1

was introduced in [20]; the cases with k > 1 are considered here for the first time.)

(ii) A Nash equilibrium where each player has expected utility at least (resp., at most) a given

number? [20]

(iii) A Nash equilibrium where the total expected utility of players is at least (resp., at most)

a given number? [13]

(iv) A Nash equilibrium where the players’ supports contain (resp., are contained in) a given

set of strategies? [20]

(v) A Nash equilibrium where the players’ supports have sizes greater (resp., smaller) than a

given integer? [20]

(vi) A Nash equilibrium where each player is using uniform probabilities on her support? [7]

(vii) A Nash equilibrium where some player is using non-uniform probabilities on her support?

(viii) A symmetric Nash equilibrium?

(ix) A non-symmetric Nash equilibrium? (cf. [32, Section 2.3.1])

Some of these problems were first shown NP-hard for symmetric bimatrix games in the seminal

paper by Gilboa and Zemel [20, Section 1.2]. Later Conitzer and Sandholm [13, Section 3] gave

a unifying polynomial time reduction from CNF SAT to show in one shot NP-hardness results,
encompassing those from [20], for symmetric bimatrix games; their reduction yields games with

Nash equilibria mirroring satisfiability parsimoniously. McLennan and Tourky [25, Theorem 1]

refined some of these NP-hardness results for imitation bimatrix games, where the utility of

the imitator is 1 if and only if she chooses the same strategy as the mover [26]. The problems

(vii) and (viii) are considered here for the first time; (viii) is trivial for symmetric games.

The present authors introduced the decision problem about the equivalence of the sets of Nash

equilibria of two given games, which they proved co-NP-hard [4, Theorem 1]:

(x) Do the two given games have the same sets of Nash equilibria?
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An additional decision problem, which is trivial for bimatrix games, becomes NP-hard already

for 3-player games [4, Theorem 2]:

(xi) A Nash equilibrium where all probabilities are rational? [4]

It is natural to ask whether these problems remain NP-hard when restricted to win-lose games.

To the best of our knowledge, this important question has been addressed only in [7, 12]. It

was shown in [12, Theorem 1] that the decision problem (i) with k = 1 is NP-hard for win-lose

bimatrix games; there so is a variant of (ii) for imitation win-lose bimatrix games. The decision

problem (vi) was shown NP-hard for imitation win-lose bimatrix games in [7, Theorem 1].

The counting problem and the parity problem for Nash equilibria ask for the number and for

the parity of the number of Nash equilibria, respectively, for a given game. To each decision

problem there corresponds a counting problem and a parity problem, asking for the number and

the parity of the number of Nash equilibria with the corresponding property, respectively. By

the parsimonious property of the reduction in [13], these counting (resp., parity) problems are

#P-hard (resp., ⊕P-hard) for general bimatrix games; the #P-hardness (resp., ⊕P-hardness)
is inherited from the #P-hardness [35] (resp., ⊕P-hardness [33]) of computing the number

(resp., the parity of the number) of satisfying assignments for a CNF SAT formula.

1.1.4 State-of-the-Art and Statement of Results

The polynomial time transformation of a general bimatrix game into a win-lose bimatrix game

from [1] gave no guarantee on the preservation of properties of Nash equilibria; so, it had no

implication on the complexity of deciding the properties for win-lose bimatrix games. Thus,

the composition of a polynomial time reduction from an NP-hard problem to a decision prob-

lem about Nash equilibria for general bimatrix games (cf. [13, 20]) with the polynomial time

transformation from [1] does not yield a polynomial time reduction from the NP-hard problem

to the decision problems for win-lose bimatrix games, and their complexity remained open.

In this work, we settle the complexity of the decision problems about Nash equilibria [4, 7,

12, 13, 20, 25, 26, 28] for symmetric win-lose bimatrix games. Our main result is that these

problems are NP-hard for symmetric win-lose bimatrix games (Theorems 7.1 and 7.7). Further,

deciding the existence of a symmetric Nash equilibrium is NP-hard for win-lose bimatrix games

(Theorem 7.9), and of a rational Nash equilibrium [4] is NP-hard for win-lose 3-player games

(Theorem 7.10). As a byproduct, we derive, for symmetric win-lose bimatrix games, the PPAD-
hardness of the search problem (Theorem 6.7), the #P-hardness of the counting problem and the

⊕P-hardness of the parity problem (Theorem 6.8), and the #P-hardness and the ⊕P-hardness
of the counting and the parity version, respectively, of each decision problem (Theorem 7.1).
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1.2 The Techniques

We combine three powerful techniques: (1) Gadget games (Section 4). (2) A win-lose reduction

(Section 5). (3) The classical GHR-symmetrization [21], with a new analysis tailored to win-

lose bimatrix games (Section 6). All three techniques involve the positive utility property: the

property is enjoyed by the gadget games, which form a key component of the reduction, and it

is required for the new analysis of the GHR-symmetrization. The property requires that each

player may, in response to the choices of the other players, always choose a strategy to make her

utility strictly positive; it is strictly weaker than the strictly positive utilities property, assumed

for the analysis of the GHR-symmetrization in [22]. We prove that computing a Nash equilibrium

for a win-lose bimatrix game with the property is as hard as computing a Nash equilibrium for

a win-lose bimatrix game (Proposition 3.1); hence, it is PPAD-hard. So assuming the positive

utility property for symmetric win-lose bimatrix games does not simplify the search problem.

1.2.1 Gadget Games

A gadget game is a fixed game with a small number of players, which is void by design of the

property associated with some decision problem about Nash equilibria (from Section 2.3). We

present win-lose gadget games covering all such properties. For example, the win-lose 3-player

irrational game Ĝ2 (Section 4.2) has a single irrational Nash equilibrium, dismatching the prob-

lem (x); the win-lose non-uniform game Ĝ3 (Section 4.3) has no uniform Nash equilibrium,

dismatching the problem (vi); the win-lose non-symmetric game Ĝ4 (Section 4.4) has no sym-

metric Nash equilibrium, dismatching the problem (viii); for a given integer k ≥ 1, the win-lose

diagonal game Ĝ5[k] (Section 4.5) has exactly k Nash equilibria, dismatching the problem (i).

1.2.2 The Win-Lose Reduction

The technical backbone of the complexity results for decision, counting and parity problems is

a win-lose reduction we design, taking a fixed win-lose gadget game Ĝ with the positive utility

property as a parameter (Section 5). The reduction transforms a given 3SAT formula φ into

a win-lose game G = G(Ĝ, φ); G and Ĝ have the same number of players. We prove that

each Nash equilibrium for Ĝ is always a Nash equilibrium for G(Ĝ, φ) (Lemma 5.3 (Condition

(1))), while G(Ĝ, φ) has additional Nash equilibria if and only if φ is satisfiable; those are

related parsimoniously to the satisfying assignments of φ. More important, each additional

Nash equilibrium enjoys properties that do not depend on Ĝ (Propositions 5.13 and 5.14). So a

decision problem associated with some particular property reduces to deciding the inequivalence

of a win-lose game with a fixed win-lose gadget game dismatching the property, and their

equivalence is co-NP-hard.
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1.2.3 The GHR-Symmetrization

To extend hardness results from win-lose to symmetric win-lose bimatrix games, we seek win-

lose symmetrizations transforming a win-lose bimatrix game into a symmetric one. The GHR-

symmetrization [21] is the single win-lose symmetrization we know of; for emphasis, we shall

call it the win-lose GHR-symmetrization.∗ We use tools from [22] to provide a new analysis

of the GHR-symmetrization, tailored to win-lose bimatrix games with the positive utility prop-

erty (Section 6), which yields a tight characterization of the Nash equilibria for the resulting

symmetric win-lose bimatrix game G̃: they may only result, albeit in a non-parsimonious way,

as balanced mixtures [22] involving Nash equilibria for G (Theorems 6.5 and 6.6).† By Propo-

sitions 5.13 and 5.14, the set of balanced mixtures is determined by the satisfiability of φ;

hence, the “cascade” of the win-lose reduction and the win-lose GHR symmetrization is a non-

parsimonious reduction from 3SAT to decision problems about Nash equilibria in symmetric

win-lose bimatrix games.

1.3 Three-Steps Plan of the NP-Hardness Proof

• Step 1: For a property of Nash equilibria for symmetric win-lose bimatrix games, fix a

gadget game: a win-lose bimatrix game Ĝ whose Nash equilibria dismatch the property.

• Step 2: Apply the win-lose reduction with parameter Ĝ on the formula φ to get the win-lose

bimatrix game G := G(Ĝ, φ).

– When φ is unsatisfiable, the Nash equilibria for G(Ĝ, φ) are those for Ĝ (Propo-

sition 5.13); hence, they dismatch the property.

– When φ is satisfiable, there are additional Nash equilbria for G(Ĝ, φ), which

satisfy the property (Proposition 5.14). (It follows that the properties of the

Nash equilibria for Ĝ and of the additional ones for G(Ĝ, φ) are “conflicting”.)

⇒ G has a Nash equilibrium matching the property if and only if φ is satisfiable.

⇒ The associated decision problem is NP-hard for win-lose bimatrix games.

Note that Step 2 only allows proving the NP-hardness of decision problems associated

with properties matched by the additional Nash equilibria for the win-lose game G(Ĝ, φ).

∗The symmetrization due to Brown and von Neumann [8] involves the sum of the two matrices, which may

increase the number of utility values. The symmetrization due to Gale, Kuhn and Tucker [17] introduces utilities

−1. So they both result in more than two values for the utilities, and none of the symmetrizations is win-lose.
†The balanced mixture was introduced in [22] for the analysis of the GHR-symmetrization; it was later used

in [23], where it was called the GKT-product, for the analysis of the GKT-symmetrization [17].
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• Step 3: Apply the win-lose GHR-symmetrization on G to get the symmetric win-lose bima-

trix game G̃ := GHR(G(Ĝ, φ)), whose Nash equilibria may only result as balanced mixtures

involving Nash equilibria for G. Some balanced mixtures preserve the properties of the

Nash equilibria for G, while other may dismatch them. This allows incorporating proper-

ties either matched or dismatched by the additional Nash equilibria for G. We show that

the associated decision problem is NP-hard for symmetric win-lose bimatrix games by

establishing a suitable equivalence to the satisfiability of φ as follows:

There are three possible cases in achieving the equivalence between the existence of

a Nash equilibrium matching the property for G̃ and the satisfiablity of φ:

(1) The existence of a Nash equilibrium matching the property for the win-lose

game G is equivalent to the satisfiability of φ, and two extra conditions hold:

∗ When φ is unsatisfiable, every balanced mixture dismatches the property.

∗ When φ is satisfiable, there is a balanced mixture matching the property.

In this case, the equivalence is preserved by the win-lose GHR-symmetrization.

(2) There is no Nash equilibrium for G matching the property, no matter whether

φ is satisfiable or not, and two extra conditions hold:

∗ When φ is unsatisfiable, every balanced mixture dismatches the property.

∗ When φ is satisfiable, there is a balanced mixture matching the property.

Hence, the existence of a Nash equilibrium matching the property for G̃ is

equivalent to the satisfiability of φ.

(3) When φ is unsatisfiable, there is a balanced mixture matching the property.

When φ is satisfiable, there is an additional balanced mixture matching the

property. Hence, this excludes the equivalence between the existence of a Nash

equilibrium matching the property for G̃ and the satisfiability of φ.

We extend G̃ to G̃ ‖ Ĝ5[k] by “embedding” the symmetric win-lose gadget Ĝ5[k]

as a subgame so that the balanced mixtures arising when φ is unsatisfiable

are “destroyed’, while the balanced mixtures arising when φ is satisfiable are

not “destroyed”. This induces the equivalence of the existence of a Nash

equilibrium matching the property for G̃ ‖ Ĝ5[k] and the satisfiability of φ.

⇒ Since equivalence to the satisfiability of φ holds in all cases, the NP-hardness
of the associated decision problem for symmetric win-lose games follows.
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1.4 The Complexity Results and Significance

1.4.1 Decision Problems

The three-steps proof plan from Section 1.3 is used to yield, as our main result, the NP-
hardness of deciding a handful of properties for symmetric win-lose bimatrix games (Theo-

rems 7.1 and 7.7). These complexity results imply that symmetric win-lose bimatrix games are

as complex as general bimatrix games with respect to the handful of decision problems about

Nash equilibria considered before in [4, 7, 12, 13, 20, 25, 26, 28].

While the win-lose reduction applies to games with any number r ≥ 2 of players, the GHR-

symmetrization is specific to bimatrix games. Hence, Step 1 and Step 2 suffice on their own

for proving the NP-hardness of decision problems about Nash equilibria which either remain

trivial for symmetric games (such as deciding the existence of a symmetric Nash equilibrium)

or become non-trivial for win-lose games with more than two players (such as deciding the

existence of a rational Nash equilibrium):

• Choosing Ĝ as the win-lose bimatrix game Ĝ5 with no symmetric Nash equilibrium yields

the NP-hardness of deciding the existence of a symmetric Nash equilibrium for win-lose

bimatrix games (Theorem 7.9). So win-lose bimatrix games are as complex as general

bimatrix games with respect to deciding the existence of a symmetric Nash equilibrium.

• Choosing Ĝ as the win-lose 3-player game Ĝ2 with a single irrational Nash equilibrium

yields the NP-hardness of deciding the existence of a rational Nash equilibrium for win-

lose 3-player games (Theorem 7.10). So win-lose 3-player games are as complex as general

3-player games with respect to deciding the existence of a rational Nash equilibrium.

These results represent an analog of the earlier result that win-lose bimatrix games are as

complex as general bimatrix games with respect to the search problem for a Nash equilibrium [1].

1.4.2 Search, Counting and Parity Problems

We show that computing a Nash equilibrium for a symmetric win-lose bimatrix game is PPAD-
hard (Theorem 6.7); the proof appeals to the characterization of the Nash equilibria for the

win-lose GHR-symmetrization of a win-lose bimatrix game (Theorem 6.6).

Recall that the reduction used for the NP-hardness proof is non-parsimonious. Hence, the

counting and parity problems about the number and the parity of the number of Nash equilibria

for a symmetric win-lose bimatrix game, as well as the counting and parity versions of decision

problems about Nash equilibria, are not immediately #P-hard and ⊕P-hard, respectively.

Nevertheless, the NP-hardness proof yields #P-hardness and ⊕P-hardness results as well:
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• We show that computing the number (resp., the parity of the number) of Nash equilibria

for a symmetric win-lose bimatrix game is #P-hard (resp., ⊕P-hard) (Theorem 6.8). The

proof draws from simple formulas for the numbers of Nash equilibria for G and G̃ in terms

of the numbers of Nash equilibria for Ĝ and of satisfying assignments for φ, denoted as

#φ; the formulas follow from properties of the gadget games, the win-lose reduction and

the win-lose GHR-symmetrization. Solving the formula for #φ yields the #P-hardness;
computing the parity of #φ, denoted as ⊕φ, from the formula yields the ⊕P-hardness.

• We examine the balanced mixtures of Nash equilibria for G matching each property to

derive simple formulas for the numbers of Nash equilibria for G̃ matching the property.

Hence, the counting versions of these decision problems are #P-hard (Theorem 7.1).

Furthermore, all but two of the formulas are parity-preserving: the parity of the number

of Nash equilibria for G̃ matching the property yields ⊕φ; this implies the ⊕P-hardness
of all but one of the parity versions (Theorem 7.1), the exception made by a trivial

parity problem. In this sense, the “cascade” of the win-lose reduction and the win-lose

GHR-symmetrization is parity-preserving: it yields the parity of the number of satisfying

assignments. As far as we know, this is the first non-parsimonious, yet parity-preserving,

reduction to decision problems about Nash equilibria.

1.5 Evaluation and Comparison to Related Work

None of the works [4, 7, 12, 13, 20, 25, 26, 28] on the complexity of decision and counting

problems about Nash equilibria in bimatrix games considered the two restrictions to win-lose

bimatrix and symmetric bimatrix games in simultaneity; neither did the works [1, 9, 10, 14]

on the complexity of the search problem. This work encompasses all of the decision problems,

together with their counting and parity versions, in the common framework composed of the

gadget games, the win-lose reduction and the win-lose GHR-symmetrization. So, problem-

specific reductions and techniques, such as the regular subgraphs technique from [7] or the good

assignments technique from [12], are not necessary.

1.5.1 Complexity Results

Theorems 7.1, 7.7 and 7.10 improve and extend previous NP-hardness and co-NP-hardness
results for the decision problems from [4, 7, 12, 13, 20, 25, 26, 28] as follows:

• The NP-hardness of the handful of decision problems improves the results in [13, 20],

which applied to general symmetric bimatrix games, and extends their refinements in [25,

26], which applied to imitation bimatrix games.
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• The NP-hardness of deciding the existence of a uniform Nash equilibrium for a symmet-

ric win-lose bimatrix game extends [7, Theorem 1], which applied to imitation win-lose

bimatrix games.

• The NP-hardness of deciding the existence of k + 1 Nash equilibria, with k ≥ 1, for a

symmetric win-lose bimatrix game improves [12, Theorem 1], which addressed the special

case k = 1 and applied to win-lose bimatrix games.

• The NP-hardness of deciding the existence of a non-symmetric Nash equilibrium for a

symmetric win-lose bimatrix game improves [28, Theorem 3], which applied to general

symmetric bimatrix games.

• The co-NP-hardness of deciding the Nash-equivalence of a given symmetric win-lose lose

bimatrix game with the GHR-symmetrization of a fixed win-lose gadget game improves [4,

Theorem 1], which established the Nash-equivalence of a given general bimatrix game with

a fixed general gadget game.

• The NP-hardness of deciding the existence of a rational Nash equilibrium for a win-lose

3-player game improves [4, Theorem 2], which applied to general 3-player games.

Corresponding extensions and improvements follow for the #P-hardness of the counting ver-

sions of these decision problems. In particular:

• The #P-hardness of counting the number of non-symmetric Nash equilibria for a symmet-

ric win-lose bimatrix game improves [28, Theorem 5], which applied to general symmetric

bimatrix games.

Of particular interest is the #P-hardness (resp., ⊕P-hardness) of computing, for a given

symmetric win-lose bimatrix game, the number (resp., the parity of the number) of symmetric

Nash equilibria; recall that the corresponding decision problem, asking for the existence of

a symmetric Nash equilibrium for a given symmetric game, is trivial by the early result of

Nash [29, 30].

To the best of our knowledge, the proof in [36] that computing the parity of the number

of satisfying assignments for a read-twice formula, where each variable occurs at most twice,

is ⊕P-hard is the only proof of ⊕P-hardness employing a reduction from a corresponding

NP-completeness proof which, although non-parsimonious, is parity-preserving.

Figure 4 tabulates the presented complexity results for decision problems in comparison

to those in [4, 7, 12, 13, 20, 28]. Theorem 6.7 improves the PPAD-hardness of the search

problem for win-lose bimatrix games from [1] to symmetric win-lose bimatrix games. The #P-
hardness of computing the number of Nash equilibria for a symmetric win-lose bimatrix game in

Theorem 6.8 improves [13, Corollary 12], which applied to general symmetric bimatrix games.
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1.5.2 The Win-Lose Reduction

The unifying reduction from CNF SAT, introduced in [13] and further developed in [4, 24], is

inadequate to cover win-lose games. (See Section 5.1.1 for a technical discussion.) New ideas

and technical constructs, such as pair variables, were needed for the win-lose reduction, which

thus improves vastly in yielding a win-lose game while still preserving the equivalence between

the existence of additional Nash equilibria for the game G
(
Ĝ, φ

)
and the satisfiability of φ. We

needed the finer structure of a 3SAT formula in order to guarantee that certain deviations in

the game constructed by the win-lose reduction are non-profitable. Specifically, the proofs for

Propositions 5.13 and 5.14 rely on choosing φ as a 3SAT formula in an essential way.

The win-lose reduction generalizes the reduction from [13], which yielded a bimatrix game, to

yield an r-player game, with r ≥ 2; it is this generalization that has enabled showing complexity

results about decision problems, such as deciding the existence of a rational Nash equilibrium

(Theorem 7.10), which are trivial for bimatrix games but become NP-hard for 3-player games.

We note that the reduction in [13] yielded the NP-hardness of approximate versions of some

of the decision problems over general bimatrix games. We anticipate that the presented com-

position of the win-lose reduction and the win-lose GHR-symmetrization yields corresponding

NP-hardness results over symmetric win-lose bimatrix games.

1.5.3 The GHR-Symmetrization

Our analysis of the GHR-symmetrization [21] yields the first complete characterization of the

Nash equilibria for the symmetric game resulting from a win-lose symmetrization. For its

previous analysis in [22], it was assumed that all utilities in the original bimatrix game were

strictly positive in order to guarantee that the 0 utilities added for the GHR-symmetrization

are strictly less than any utility; thus, the original bimatrix game were not a win-lose game.

Recall that shifting and scaling the utilities does not alter the set of Nash equilibria for a game.

Thus, a bimatrix game with at most two values for the (strictly positive) utilities could be

transformed into an equivalent win-lose game by shifting and scaling the utilities. (Note that

the case where all utilities in the original bimatrix games are equal is degenerate.) But then it

is no more the case that the 0 utilities added for the GHR-symmetrization are strictly less than

both 0 and 1, and the analysis of the GHR-symmetrization from [22] is no more applicable.

To circumvent this difficulty, we need a different assumption on the utilities in the original

bimatrix game which is not too restrictive to make the algorithmic problems easier, while

it is strong enough to yield a tight characterization of the Nash equilibria for the GHR-

symmetrization; this is the positive utility property. We analyze the GHR-symmetrization

for win-lose bimatrix games (Section 6), replacing the assumption of strictly positive utilities
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from [22] with the positive utility property. The resulting characterization of Nash equilibria for

the GHR-symmetrization of a win-lose bimatrix game with the positive utility property is sim-

ilar to the characterization of Nash equilibria for the GHR-symmetrization of a bimatrix game

with strictly positive utilities in [22]: Cases (C’.2) and (C’.3) from Theorem 6.6 correspond to

the cases addressed in [22, Theorem 4.1]; [22, Theorem 4.2] and [22, Theorem 4.3] correspond

to Theorems 6.5 and 6.6, respectively.

1.5.4 Tractable Cases

Bilò and Fanelli [3, Section 4] consider a Linear Programming formulation, denoted as LR, of

Nash equilibria in bimatrix games, which is a relaxation of a corresponding Quadratic Program-

ming formulation they propose. They show [3, Theorem 1] that any feasible solution to LR is a

Nash equilibrium when the bimatrix game is regular [3, Definition 4]: the sum of corresponding

entries in the two matrices remains constant either accross rows or across columns; so, regular

bimatrix games are the rank-1 bimatrix games, encompassing zero-sum bimatrix games. As a

consequence of [3, Theorem 1], a Nash equilibrium optimizing any objective function involving

the players’ utilities and meeting any set of constraints expressible through Linear Programming

can be computed in polynomial time (through solving LR). Since nearly all decision problems

about Nash equilibria studied in this work are so expressible, it follows that they are polyno-

mial time solvable when restricted to regular bimatrix games. (A notable exception is problem

(v) from Section 1.1.3, which remains NP-hard even when restricted to zero-sum games [20].)

This positive result stands in contrast to the established NP-hardness for symmetric win-lose

bimatrix games. Other positive results on the search problem for a Nash equilibrium in planar,

sparse and K3,3 and K5 minor-free and minor-closed win-lose bimatrix games appear in [2], [11]

and [15], respectively.

1.6 Paper Organization

Section 2 introduces the game-theoretic framework. Section 3 considers the positive utility

property for win-lose bimatrix games. The win-lose gadget games are presented in Section 4.

Section 5 treats the win-lose reduction and its properties. The win-lose GHR-symmetrization

and its properties are analyzed in Section 6. Section 7 presents the complexity results. We

conclude, in Section 8, with a discussion of the results and some open problems.
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2 Framework and Preliminaries

Games, Nash equilibria and their decision problems are treated in Sections 2.1, 2.2 and 2.3,

respectively.

2.1 Games

A game is a triple G = 〈[r], {Σi}i∈[r], {Ui}i∈[r]〉, where: (i) [r] = {1, . . . , r} is a finite set of

players with r ≥ 2, and (ii) for each player i ∈ [r], Σi is the set of strategies for player i, and the

utility function Ui is a function Ui : ×k∈[r]Σk → R for player i. The game G is win-lose (resp.,

general) if for each player i ∈ [r], the utility function is a function Ui : ×k∈[r]Σk → {0, 1} (resp.,
Ui : ×k∈[r]Σk → Q). For each player i ∈ [r], denote Σ−i = ×k∈[r]\{i}Σk; denote Σ = ×k∈[r]Σk.

For an integer r ≥ 2, r-G is the set of r-player games; so, G =
⋃

r≥2 r-G is the set of all games.

A profile is a tuple s ∈ Σ of r strategies, one for each player. For a profile s, the vector

U(s) = 〈U1(s), . . . ,Ur(s)〉 is called the utility vector. For a profile s and a strategy t ∈ Σi of

player i, denote as s−i ⋄ t the profile obtained by substituting t for si in s. A partial profile

s−i ∈ Σ−i is a tuple of r − 1 strategies, one for each player other than i. We define:

Definition 2.1 The game G has the positive utility property if for each player i ∈ [r] and each

partial profile s−i ∈ Σ−i, there is a strategy t = t(s−i) ∈ Σi such that Ui (s−i ⋄ t) > 0.

For win-lose bimatrix games, the positive utility property means that the utility matrix of the

row (resp., column) player has no all-zeros column (resp., row).

A bimatrix game is a 2-player game with player 1, or row player, and player 2, or column

player, with Σ1 = Σ2 = [n],‡ which is represented as the pair of matrices 〈R,C〉, where for each
profile 〈s1, s2〉 ∈ Σ, U1 (〈s1, s2〉) = R[s1, s2] and U2 (〈s1, s2〉) = C[s1, s2]. The game G = 〈R,C〉 is
symmetric if U1 (〈s1, s2〉) = U2 (〈s2, s1〉): exchanging players and strategies preserves utilities;

so, R = CT. For a constant c, the game G is c-sum if for each profile 〈s1, s2〉, U1 (〈s1, s2〉) +
U2 (〈s1, s2〉) = c; so, R[s1, s2] +C[s1, s2] = c. For a player i ∈ [2] in the game G, we shall denote

as i the player other than i; so i ∈ [2] \ {i}.

A mixed strategy for player i ∈ [r] is a probability distribution σi on her strategy set Σi: a

function σi : Σi → [0, 1] such that
∑

s∈Σi
σi(s) = 1. Denote as Supp(σi) the set of strategies

s ∈ Σi such that σi(s) > 0. The mixed strategy σi : Σi → [0, 1] is pure, and player i is pure,

‡The assumption that the two players have equal numbers of strategies is without loss of generality since

equality can be achieved, without altering the positive utility property, by adding ”dummy” strategies, which

are never played by a utility-maximizing player.
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if Supp(σi) = {s} for some strategy s ∈ Σi; player i is mixed if she is not pure. The mixed

strategy σi : Σi → [0, 1] is fully mixed, and player i is fully mixed, if Supp(σi) = Σi; so, player

i puts non-zero probability on all strategies in her set of strategies Σi. The mixed strategy

σi : Σi → [0, 1] is uniform if for each pair of strategies s, t ∈ Supp(σi), σi(s) = σi(t). The mixed

strategy σi is rational if all values of σi are rational numbers.

A mixed profile σ = (σi)i∈[r] is a tuple of mixed strategies, one for each player. So, a profile

is the degenerate case of a mixed profile where all probabilities are either 0 or 1. A partial

mixed profile σ−i is a tuple of r − 1 mixed strategies, one for each player other than i. For a

mixed profile σ and a mixed strategy τi of player i ∈ [r], denote as σ−i ⋄ τi the mixed profile

obtained by substituting τi for σi in σ. A mixed profile is uniform (resp., fully mixed) if all of its

mixed strategies are uniform (resp., fully mixed); else it is non-uniform (resp., non-fully mixed).

A mixed profile is symmetric if all mixed strategies are identical; else it is non-symmetric. A

mixed profile is rational if all of its mixed strategies are rational; else it is irrational.

The mixed profile σ induces a probability measure Pσ on the set of profiles in the natural

way; so, for a profile s, Pσ(s) =
∏

k∈[r] σk(sk). Say that the profile s is supported in the mixed

profile σ, and write s ∼ σ, if Pσ(s) > 0. Under the mixed profile σ, the utility of each player

becomes a random variable. So, associated with the mixed profile σ is the expected utility

Ui(σ) = Es∼σ (Ui (s)) for each player i ∈ [r]: the expectation according to Pσ of her utility; so,

Ui(σ) =
∑

s∈Σ


∏

k∈[r]

σk(sk)


 · Ui(s) .

Recall that in a c-sum bimatrix game G, for each mixed profile σ, U1 (σ) + U2 (σ) = c. Also,

in a symmetric bimatrix game, the mixed exchangeability property holds: exchanging players

and mixed strategies preserves expected utilities in the sense that for any mixed profile 〈σ1, σ2〉,
U1(〈s1, s2〉) = U2(〈s2, s1〉).§

2.2 Nash Equilibria

A pure Nash equilibrium is a profile s ∈ Σ such that for each player i ∈ [r] and for each strategy

t ∈ Σi, Ui (s) ≥ Ui (s−i ⋄ t). A mixed Nash equilibrium, or Nash equilibrium for short, is a mixed

profile σ such that for each player i ∈ [r] and for each mixed strategy τi, Ui(σ) ≥ Ui(σ−i ⋄ τi).
Note that the mixed exchangeability property of symmetric bimatrix games implies that (mixed)

Nash equilibria are preseved in a symmetric bimatrix game: 〈σ1, σ2〉 is a Nash equilibrium if

and only if 〈σ2, σ1〉 is. Denote as NE(G) (resp., SNE(G)) the set of Nash equilibria (resp.,

symmetric Nash equilibria) for the game G. For each game G, NE(G) 6= ∅ [29, 30]; for each

§Indeed, U1(〈σ1, σ2〉) =
∑

s1,s2∈[n] σ1(s1) σ2(s2) · R[s1, s2] =
∑

s1,s2∈[n] σ1(s1) σ2(s2) · C
T[s1, s2] =

∑
s1,s2∈[n] σ1(s1)σ2(s2) · C[s2, s1] = U2(〈σ2, σ1〉).
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symmetric game G, SNE(G) 6= ∅ [29, 30]. Two r-player games Ĝ and G are Nash-equivalent [4]

if NE(Ĝ) = NE(G); that is, they have the same set of Nash equilibria. We shall make extensive

use of the following basic property of Nash equilibria.

Lemma 2.1 A mixed profile σ is a Nash equilibrium if and only if for each player i ∈ [r], (1)

for each strategy t ∈ Supp(σi), Ui(σ) = Ui(σ−i ⋄ t), and (2) for each strategy t 6∈ Supp(σi),

Ui(σ) ≥ Ui(σ−i ⋄ t).

Given a partial mixed profile σ−i for some player i ∈ [r], a best-response for player i to σ−i is a

pure strategy s ∈ Σi such that Ui (σ−i ⋄ s) = maxt∈Σi
Ui (σ−i ⋄ t). Lemma 2.1 (Condition (2))

immediately implies that in a Nash equilibrium σ, for each player i ∈ [r] and strategy s ∈ Σi,

s ∈ Supp(σi) only if s is a best-response for player i to σ−i. Lemma 2.1 and the positive utility

property immediately imply:

Lemma 2.2 Fix a win-lose game G with the positive utility property. Then, in a Nash equilib-

rium σ, for each player i ∈ [r], Ui(σ) > 0.

Proof: Assume, by way of contradiction, that Ui(σ) = 0. Choose a partial profile s−i sup-

ported in σ−i; so, Pσ−i
(s−i) > 0. By the positive utility property, there is a strategy t(s−i) ∈ Σi

with Ui (s−i ⋄ t(s−i)) > 0. Since G is win-lose,

Ui (σ−i ⋄ t(s−i)) ≥ Pσ−i
(s−i) · Ui (σ−i ⋄ t(s−i)) > 0 = Ui(σ) .

A contradiction to Lemma 2.1.

We conclude with a simple property of Nash equilibria for win-lose games.

Lemma 2.3 Fix a win-lose bimatrix game 〈R,C〉 with a Nash equilibrium σ ∈ NE(〈R,C〉) such
that Ui(σ) = 0 for some player i ∈ [2]. Then, 〈R,C〉 has a pure Nash equilibrium.

Proof: For simpler notation, assume, without loss of generality, that i = 1. Denote

s := argmaxs2∈Supp(σ2) max
s1∈Supp(σ1)

{U2(〈s1, s2〉)} ;

so, s is the strategy in Supp(σ2) that incurs the maximum possible utility to player 2 over all

strategies s1 from Supp(σ1) chosen by player 1. Choose an arbitrary strategy s∗ ∈ Supp(σ1).

We shall prove that the profile 〈s∗, s〉 is a pure Nash equilibrium for 〈R,C〉. Since σ is a

Nash equilibrium for 〈R,C〉, Lemma 2.1 (Condition (2)) implies that for each strategy s ∈ Σ1,

U1(σ−1 ⋄ s) ≤ U1(σ) = 0. Since 〈R,C〉 is win-lose, it follows that U1(σ−1 ⋄ s) = 0, which

implies that for each strategy s ∈ Σ1, U1(〈s, s2〉) = 0 for all strategies s2 ∈ Supp(σ2). Since s ∈
Supp(σ2), it follows that for each strategy s ∈ Σ1, U1(〈s, s〉) = 0. In particular, U1(〈s∗, s〉) = 0,

so that player 1 cannot improve by deviating from s∗. By the definition of s, player 2 cannot

improve either by deviating from s. Hence, 〈s∗, s〉 is a pure Nash equilibrium for 〈R,C〉.
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2.3 Decision Problems about Nash Equilibria

We shall assume some basic familiarity of the reader with the basic notions of NP-completeness,

as outlined, for example, in [18]. All decision problems will be stated in the style of [18], where

I. and Q. stand for Instance and Question, respectively. They are categorized in six groups.

Group I — Question about cardinality:

∃ k + 1 NASH (with k ≥ 1)

I.: A game G.

Q.: Does G have at least k + 1 Nash equilibria?

Group II — Questions about the expected utilities:

∃ NASH WITH LARGE UTILITIES

I.: A game G and a number u.

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Ui(σ) ≥ u?

∃ NASH WITH SMALL UTILITIES

I.: A game G and a number u.

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Ui(σ) ≤ u?

∃ NASH WITH LARGE TOTAL UTILITY

I.: A game G and a number u.

Q.: Is there a Nash equilibrium σ such that
∑

i∈[r]Ui(σ) ≥ u?

∃ NASH WITH SMALL TOTAL UTILITY

I.: A game G and a number u.

Q.: Is there a Nash equilibrium σ such that
∑

i∈[r]Ui(σ) ≤ u?

Group III — Questions about the supports:

∃ NASH WITH LARGE SUPPORTS

I.: A game G and an integer k ≥ 1.

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], |Supp(σi)| ≥ k?

∃ NASH WITH SMALL SUPPORTS

I.: A game G and an integer k ≥ 1.

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], |Supp(σi)| ≤ k?

∃ NASH WITH RESTRICTING SUPPORTS
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I.: A game G and a subset of strategies Ti ⊆ Σi for each player i ∈ [r].

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Ti ⊆ Supp(σi)?

∃ NASH WITH RESTRICTED SUPPORTS

I.: A game G and a subset of strategies Ti ⊆ Σi for each player i ∈ [r].

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], Supp(σi) ⊆ Ti?

Group IV — Questions about refinements of Nash equilibrium:

A Nash equilibrium σ is Pareto-Optimal if for each mixed profile σ̂ where there is a player

i ∈ [r] with Ui(σ̂) > Ui(σ), there is a player j ∈ [r] such that Uj(σ̂) < Uj(σ); so, loosely

speaking, there is no other mixed profile where at least one player is strictly better off and

every player is at least as well off. Denote as Diff (σ, σ̂) := {i ∈ [r] : σi 6= σ̂i} the set of players

with different mixed strategies in the mixed profiles σ and σ̂. A Nash equilibrium σ is Strongly

Pareto-Optimal if for each mixed profile σ̂ with a player i ∈ [r] such that Ui(σ̂) > Ui(σ), there

is a player j ∈ Diff(σ, σ̂) such that Uj(σ̂) ≤ Uj(σ); so, loosely speaking, there is no other mixed

profile where at least one player is strictly better off and every player with a different mixed

strategy is strictly better off.

∃ PARETO-OPTIMAL NASH

I.: A game G.

Q.: Is there a Pareto-Optimal Nash equilibrium?

∃ ¬ PARETO-OPTIMAL NASH

I.: A game G.

Q.: Is there a Nash equilibrium which is not Pareto-Optimal?

∃ STRONGLY PARETO-OPTIMAL NASH

I.: A game G.

Q.: Is there a Strongly Pareto-Optimal Nash equilibrium?

∃ ¬ STRONGLY PARETO-OPTIMAL NASH

I.: A game G.

Q.: Is there a Nash equilibrium which is not Strongly Pareto-Optimal?

Group V — Questions about the probabilities:

∃ NASH WITH SMALL PROBABILITIES

I.: A game G.

Q.: Is there a Nash equilibrium σ such that for each player i ∈ [r], maxs∈Σi
σi(s) ≤ 1

2?

∃ UNIFORM NASH
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I.: A game G.

Q.: Does G have a uniform Nash equilibrium?

∃ ¬ UNIFORM NASH

I.: A game G.

Q.: Does G have a non-uniform Nash equilibrium?

∃ SYMMETRIC NASH

I.: A game G.

Q.: Does G have a symmetric Nash equilibrium?

∃ ¬ SYMMETRIC NASH

I.: A game G.

Q.: Does G have a non-symmetric Nash equilibrium?

∃ RATIONAL NASH

I.: A game G.

Q.: Does G have a rational Nash equilibrium?

Restricted to general bimatrix games, all previous decision problems belong to NP: given the

polynomial-length supports for a mixed profile, it is polynomial time verifiable that it is a Nash

equilibrium satisfying the property associated with the decision problem. ∃ RATIONAL NASH

is trivial for general bimatrix games, and ∃ SYMMETRIC NASH is trivial for symmetric games.

Note that ∃ UNIFORM NASH and ∃ RATIONAL NASH belong to NP for any number of players.

Each of the previous decision problems has a corresponding cardinality or counting version:

the problem of computing the number of Nash equilibria witnessing the validity of Ques-

tion.¶ Note that for general bimatrix games, the counting versions of all previous decision

problems belong to #P (thanks again to the efficient verifiability property of Nash equilibria).

Furthermore, each of the decision problems has a parity version: the problem of computing

the parity of the number of Nash equilibria witnessing the validity of Question. The parity

versions of all previous decision problems belong to ⊕P.‖ We shall use # (resp., ⊕) in the

place of ∃ to denote the counting (resp., parity) versions; for example, # RATIONAL NASH

(resp., ⊕ RATIONAL NASH) denotes the counting (resp., parity) version of ∃ RATIONAL NASH.

Clearly, by the mixed exchangeability property of symmetric bimatrix games, the number of

¶∃ k + 1 NASH has no counting version as it is already defined with a cardinality question.
‖⊕P , read as Parity ⊕P, is the complexity class formalizing the question of the parity of the number of

solutions to a combinatorial problem. Formally, ⊕P is the class of sets S such that there is a nondeterministic

Turing machine which, on input x, has an odd number of accepting computations if and only if x ∈ S. We shall

adopt a definition of ⊕P-completeness using polynomial-time many-to-one reductions. The development of the

theory of ⊕P-complete parity problems is rather limited — see the discussion in [36].
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non-symmetric Nash equilibria in a symmetric bimatrix game is even; this is because 〈σ1, σ2〉
is a non-symmetric Nash equilibrium if and only if 〈σ2, σ1〉 is. Hence, ⊕¬ SYMMETRIC NASH

for symmetric bimatrix games is in P.

Group VI — Equivalence property:

NASH-EQUIVALENCE

I.: Two games Ĝ and G from r-G, for some integer r ≥ 2.

Q.: Are Ĝ and G Nash-equivalent?

For a fixed game Ĝ, called the gadget game, a parameterized restriction of NASH-EQUIVALENCE

with a single input (the game G) results.

NASH-EQUIVALENCE(Ĝ)

I.: A game G from r-G (where Ĝ is from r-G).
Q.: Are Ĝ and G Nash-equivalent?

Restricted to general bimatrix games, NASH-EQUIVALENCE and NASH-EQUIVALENCE(Ĝ) be-

long to co-NP : given the polynomial-length supports for a mixed profile, it is polynomial time

verifiable that it is a Nash equilibrium for exactly one of the two games.

Matching NP- and co-NP-hardness results for the decision problems above are later summa-

rized in Figure 4.

3 Win-Lose Bimatrix Games with the Positive Utility Property

We now prove that assuming the positive utility property does not simplify the search problem

for a win-lose bimatrix game. Fix a win-lose bimatrix game 〈R,C〉. We start with a preliminary

definition. For a player i ∈ [2], a strategy s ∈ Σi is an all-zeros counter-strategy against player i

if for every profile 〈s1, s2〉 ∈ Σ with si = s, Ui(〈s1, s2〉) = 0; that is, an all-zeros counter-strategy

against the row (resp., column) player is a column (resp., row) of R (resp., C) made up only

of zero entries. Clearly, the positive utility property excludes all-zeros counter-strategies. We

prove:

Proposition 3.1 Fix a win-lose bimatrix game 〈R,C〉. Then, one of two conditions holds:

(C.1) 〈R,C〉 has a pure Nash equilibrium.

(C.2) There is a polynomial time constructible win-lose bimatrix game 〈R̄, C̄〉 with the positive

utility property such that NE(〈R̄, C̄〉) = NE(〈R,C〉).
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Proof: If Condition (C.1) holds, then we are done. So assume that Condition (C.1) does not

hold. Note that if at least one of R and C is the null matrix, then 〈R,C〉 has a pure Nash

equilibrium and Condition (C.1) holds. It follows that none of R and C is the null matrix.

Denote as c ≥ 0 and r ≥ 0 the number of all-zeros counter-strategies against the row and the

column player, respectively, in the game 〈R,C〉. Note that 〈R,C〉 has the positive utility property

if and only if r = c = 0. Renumber now the players’ strategies so that the first r strategies for

player 1 are the all-zeros counter-strategies against the column player, and the first c strategies

for player 2 are the all-zeros counter-strategies against the row player. Construct from 〈R,C〉 a
win-lose bimatrix game 〈R̄, C̄〉 as follows:

(0) If r = c = 0, then 〈R̄, C̄〉 := 〈R,C〉.

(1) Otherwise, add a new strategy n+ 1 to the strategy set of each player and set:

(1.0) Ū(〈n+ 1, n + 1〉) = 〈0, 0〉.
(1.1) Ū(〈n+ 1, s2〉) = 〈1, 0〉 for s2 ≤ c, or 〈0, 1〉 for c+ 1 ≤ s2 ≤ n.

(1.2) Ū(〈s1, n+ 1〉) = 〈0, 1〉 for s1 ≤ r, or 〈1, 0〉 for r + 1 ≤ s1 ≤ n.

Clearly, this is a polynomial time construction. We prove:

Lemma 3.2 The game 〈R̄, C̄〉 has the positive utility property.

Proof: Note that in Case (0), the game 〈R̄, C̄〉 has the positive utility property by definition.

So assume we are in Case (1). Consider the row matrix R̄; we need to prove that it does not

contain an all-zeros column. By Step (1.2) in the construction, the column n + 1 of R̄ has an

entry equal to 1 if and only if r + 1 ≤ n; the latter holds since R is not the null matrix. So it

remains to consider the columns of R̄ that are inherited from R. By the definition of c, every

column j of R with c + 1 ≤ j ≤ n is not all-zeros; for a column j ∈ [c] of R, Ū1(n + 1, j) = 1

by Step (1.1) in the construction, and we are done. We use corresponding arguments to prove

that the column matrix C̄ does not contain an all-zeros row.

Furthermore, Condition (C.2) holds vacuously in Case (0). Note also that in Case (1), 〈R̄, C̄〉
has no pure Nash equilibrium in which some player chooses strategy n + 1. We proceed by

case analysis. Assume first that there is a Nash equilibrium σ̄ for 〈R̄, C̄〉 such that at least one

player i ∈ [2] plays with positive probability an all-zeros counter-strategy s against player i.

By Lemma 2.1, choosing the strategy s with probability 1 is a best-response of player i to σ̄−i;

so, player i cannot improve her utility when choosing the strategy s with probability 1. Now,

by the definition of an all-zeros counter-strategy, player i gets utility 0 in the mixed profile
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σ̄−i ⋄ s, which she could not improve by switching to another mixed strategy. Hence, σ̄−i ⋄ s is

a Nash equilibrium with Ūi(σ̄−i ⋄ s) = 0. By Lemma 2.3, it follows that 〈R̄, C̄〉 has a pure Nash

equilibrium s. Since 〈R̄, C̄〉 has no pure Nash equilibrium in which some player plays strategy

n+ 1, s is also a pure Nash equilibrium for 〈R,C〉. A contradiction.

Assume now that in each Nash equilibrium σ̄ for 〈R̄, C̄〉, no player i plays an all-zeros counter-

strategy against player i; that is, Supp(σ̄1) ⊆ {r+1, . . . , n+1} and Supp(σ̄2) ⊆ {c+1, . . . , n+1}.
We first prove that no Nash equilibrium for 〈R,C〉 is “destroyed” due to adding strategy n+1.

Lemma 3.3 It holds that NE(〈R,C〉) ⊆ NE(〈R̄, C̄〉).

Proof: Assume, by way of contradiction, that there is a Nash equilibrium σ ∈ NE (〈R,C〉)
such that σ /∈ NE(〈R̄, C̄〉. By the construction of the game 〈R̄, C̄〉, this implies that there is

player i ∈ [2] with Ūi(σ−i ⋄ (n + 1)) > Ui(σ). Since the game 〈R̄, C̄〉 is win-lose, this implies

that Ūi(σ−i ⋄ (n + 1)) > 0. Since Supp(σ1) ⊆ {r + 1, . . . , n} and Supp(σ2) ⊆ {c + 1, . . . , n}, it
follows that any profile supported in σ−i ⋄ (n + 1) falls into either Case (1.1) with i = 1 and

c+ 1 ≤ s2 ≤ n or into Case (1.2) with i = 2 and r + 1 ≤ s1 ≤ n. By construction, this implies

that Ūi(σ−i ⋄ (n+ 1)) = 0 for each player i ∈ [2]. A contradiction.

We now prove that no new Nash equilibrium for 〈R̄, C̄〉 is “created” due to adding strategy

n+ 1.

Lemma 3.4 It holds that NE(〈R̄, C̄〉) \ NE(〈R,C〉) = ∅.

Proof: Assume, by way of contradiction, that there is a Nash equilibrium σ̄ ∈ NE(〈R̄, C̄〉) \
NE(〈R,C〉). Since σ̄ 6∈ NE (〈R,C〉), it must be that σ̄1(n + 1) + σ̄2(n + 1) > 0. Assume

that σ̄1(n + 1) > 0 and consider player 1 switching to strategy n + 1. Since Supp(σ̄2) ⊆
{c+1, . . . , n+1}, it follows that only profiles falling into Case (0) or Case (1.1) with c+1 ≤ s2 ≤ n

are supported by σ̄−1 ⋄ (n+1), which implies, by the construction, that Ū1 (σ̄−1 ⋄ (n+ 1)) = 0.

Since σ̄ is a Nash equilibrium, Lemma 2.1 (Condition (1)) implies that Ū1(σ̄) = 0. Hence,

Lemma 2.3 implies that 〈R̄, C̄〉 has a pure Nash equilibrium 〈s1, s2〉. Since 〈R̄, C̄〉 has no pure

Nash equilibrium where some player chooses the strategy n+1, it follows that s1, s2 ∈ [n]. Hence,

〈s1, s2〉 is a pure Nash equilibrium for 〈R,C〉. A contradiction. A corresponding argument

applies to yield a contradiction when σ̄2(n+ 1) > 0.

By Lemmas 3.3 and 3.4, it follows that NE(〈R̄, C̄〉) = NE(〈R,C〉), which completes the proof

of Condition (C.2).
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Since polynomial time suffices for deciding the existence of and computing a pure Nash equi-

librium for a bimatrix game, Proposition 3.1 implies that computing a Nash equilibrium for

a win-lose bimatrix game with the positive utility property is as hard as computing a Nash

equilibrium for a win-lose bimatrix game. Hence, computing a Nash equilibrium for a win-lose

bimatrix game with the positive utility property is PPAD-hard. (The PPAD-hardness will be
extended later to symmetric win-lose bimatrix games with the positive utility property.)

4 Win-Lose Gadgets

Here we collect together the win-lose games that will be used as gadgets in later proofs.

4.1 The Cyclic Game Ĝ1[h]

For an integer h ≥ 1, define the win-lose bimatrix game Ĝ1[h] :=
〈
[2], {Σ̂i}i∈[2], {Ûi}i∈[2]

〉
with

Σ̂1 = Σ̂2 = {s0, . . . , sh−1}; Û1(s) = 1 if and only if s = 〈si, si〉 and Û2(s) = 1 if and only if

s = 〈si, si+1〉 (with addition taken modulo h). So, roughly speaking, player 1 wins if and only

if the two players concur, while player 2 wins if and only if the two players choose successive

strategies with player 2 following. Clearly, Ĝ1[h] has the positive utility property. We prove:

Proposition 4.1 Ĝ1[h] has a single Nash equilibrium σ, which is fully mixed and uniform with

Û1(σ) = Û2(σ) =
1
h
; for h = 1, σ is Pareto-Optimal and Strongly Pareto-Optimal.

Proof: Fix a Nash equilibrium σ. We first prove that σ is fully mixed. Consider first player

1 and a strategy s ∈ Σ̂1 with σ1(s) > 0. Then, by Lemma 2.1 (Condition (1)), it follows that

Û1(σ) = Û1(σ−1 ⋄ s). Assume, by way of contradiction, that σ1(s − 1) = 0. If σ2(s) = 0,

then Û1(σ−1 ⋄ s) = 0, so that Û1(σ) = 0, a contradiction to Lemma 2.2. Hence, σ2(s) > 0.

By Lemma 2.1 (Condition (1)), it follows that Û2(σ) = Û2(σ−2 ⋄ s) = 0, a contradiction to

Lemma 2.2. A similar argument proves that σ2(s) > 0 for each s ∈ Σ̂2.

To prove that σ is uniform, assume, by way of contradiction, that there are indices j, k ∈ Σ̂1

with σ1(j) 6= σ1(k). Since Supp(σ2) = Σ̂2, it follows, by Lemma 2.1 (Condition (1)), that

Û2(σ) = Û2(σ−2 ⋄(j+1)) = Û2(σ−2 ⋄(k+1)), so that σ1(j) = σ1(k), a contradiction. A similar

argument proves that for all indices j, k ∈ Σ̂2, σ2(j) = σ2(k), and this implies that there is a

single Nash equilibrium. Thus, Û1(σ) = Û2(σ) = 1 · h · 1
h
· 1
h
= 1

h
. For h = 1, |Σ̂1| = |Σ̂2| = 1

and σ is pure; clearly, σ is also both Pareto-Optimal and Strongly Pareto-Optimal.

By Proposition 4.1, the win-lose game Ĝ1[h] is a negative instance for ∃ UNIFORM NASH; when

h = 1, it is also a negative instance for ∃ ¬ PARETO-OPTIMAL NASH and for ∃ ¬ STRONGLY

PARETO-OPTIMAL NASH.
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4.2 The Irrational Game Ĝ2

Define the win-lose bimatrix game Ĝ2 =
〈
[3], {Σ̂i}i∈[3], {Ûi}i∈[3]

〉
with Σ̂1 = Σ̂2 = {0, 1} and

Σ̂3 = {0, 1, 2}; the utility functions are depicted below:

Profile s Utility vector Û(s) Profile s Utility vector Û(s) Profile s Utility vector Û(s)

〈0, 0, 0〉 〈1, 0, 1〉 〈0, 1, 1〉 〈1, 0, 0〉 〈1, 0, 2〉 〈1, 0, 0〉
〈0, 0, 1〉 〈1, 1, 0〉 〈0, 1, 2〉 〈0, 0, 1〉 〈1, 1, 0〉 〈1, 1, 0〉
〈0, 0, 2〉 〈0, 1, 0〉 〈1, 0, 0〉 〈0, 0, 1〉 〈1, 1, 1〉 〈0, 0, 1〉
〈0, 1, 0〉 〈0, 1, 0〉 〈1, 0, 1〉 〈0, 1, 1〉 〈1, 1, 2〉 〈1, 1, 0〉

Clearly, Ĝ2 has the positive utility property. We prove:

Proposition 4.2 Ĝ2 has a single Nash equilibrium, which is irrational.

Proof: The following table establishes that Ĝ2 has no pure Nash equilibrium:

Profile s Player: Improves by switching to: Profile s Player: Improves by switching to:

〈0, 0, 0〉 2 1 〈1, 0, 0〉 1 0

〈0, 0, 1〉 3 0 〈1, 0, 1〉 1 0

〈0, 0, 2〉 1 1 〈1, 0, 2〉 3 1

〈0, 1, 0〉 3 2 〈1, 1, 0〉 3 1

〈0, 1, 1〉 3 2 〈1, 1, 1〉 1 0

〈0, 1, 2〉 1 1 〈1, 1, 2〉 3 1

We now turn to a mixed Nash equilibrium σ, which shall be represented with the vector of

probabilities 〈σ1, σ2, σ0
3 , σ

1
3〉, where for each player i ∈ [2], σi := σi(0), while σs

3 := σ3(s) for

s ∈ {0, 1}; thus, for each player i ∈ [2], σi(1) = 1− σi, while σ3(2) = 1− σ0
3 − σ1

3. We calculate
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the conditional expected utilities Ûi (s−i ⋄ s) for each player i ∈ [3] and strategy s ∈ Σ̂i:

Û1(σ−1 ⋄ 0) = σ2 · σ0
3 + σ2 · σ1

3 + (1− σ2) · σ1
3

= σ2 · σ0
3 + σ1

3 ,

Û1(σ−1 ⋄ 1) = σ2 · (1− σ0
3 − σ1

3) + (1− σ2) · σ0
3 + (1− σ2) · (1− σ0

3 − σ1
3)

= 1− σ1
3 − σ2 · σ0

3 ,

Û2(σ−2 ⋄ 0) = σ1 · σ1
3 + σ1 · (1− σ0

3 − σ1
3) + (1− σ1) · σ1

3

= σ1 · (1− σ0
3 − σ1

3) + σ1
3 ,

Û2(σ−2 ⋄ 1) = σ1 · σ0
3 + (1− σ1) · σ0

3 + (1− σ1) · (1− σ0
3 − σ1

3)

= σ0
3 + (1− σ1) · (1− σ0

3 − σ1
3) ,

Û3(σ−3 ⋄ 0) = σ1 · σ2 + (1− σ1) · σ2
= σ2 ,

Û3(σ−3 ⋄ 1) = (1− σ1) · σ2 + (1− σ1) · (1− σ2)

= 1− σ1 ,

Û3(σ−3 ⋄ 2) = σ1 · (1− σ2) .

We now examine all possible cases for σ. We shall derive a contradiction for all but one case,

where we shall establish that σ is irrational.

• Only player 1 is mixed. Then, σ2 ∈ {0, 1} and
(
σ0
3 , σ

1
3

)
∈ {(0, 0), (0, 1), (1, 0)}. Since σ

is a Nash equilibrium where player 1 is mixed, Lemma 2.1 (Condition (1)) implies that

Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or σ2 · σ0
3 + σ1

3 = 1 − σ1
3 − σ2 · σ0

3 , or 2 ·
(
σ2 · σ0

3 + σ1
3

)
= 1.

Hence, for σ2 = 0 (resp., σ2 = 1), σ1
3 = 1

2 (resp., σ0
3 + σ1

3 = 1
2). A contradiction.

• Only player 2 is mixed. Then, σ1 ∈ {0, 1} and
(
σ0
3 , σ

1
3

)
∈ {(0, 0), (0, 1), (1, 0)}. Since σ

is a Nash equilibrium where player 2 is mixed, Lemma 2.1 (Condition (1)) implies that

Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or (2σ1 − 1) ·
(
1− σ0

3 − σ1
3

)
= σ0

3 − σ1
3 . Hence, for σ1 = 0

(resp., σ1 = 1), 1 − σ0
3 − σ1

3 = σ1
3 − σ0

3 (resp., 1 − σ0
3 − σ1

3 = σ0
3 − σ1

3), or σ
1
3 = 1

2 (resp.,

σ0
3 = 1

2). A contradiction.

• Only player 3 is mixed. Then, (σ1, σ2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Since σ is a Nash

equilibrium where player 3 is mixed, Lemma 2.1 (Condition (1)) implies that there are

strategies s, t ∈ {0, 1, 2} such that Û3 (σ−3 ⋄ s) = Û3 (σ−3 ⋄ t). By Lemma 2.2, it follows

that Û3 (σ−3 ⋄ s) = Û3 (σ−3 ⋄ t) > 0. Inspecting the following table yields that σ1 = 0,

σ2 = 1 and σ2
3 = 0:
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σ1 σ2 Û3 (σ−3 ⋄ 0) = σ2 Û3 (σ−3 ⋄ 1) = 1− σ1 Û3 (σ−3 ⋄ 2) = σ1 · (1− σ2)

0 0 0 1 0

0 1 1 1 0

1 0 0 0 1

1 1 1 0 0

Hence, σ0
3+σ1

3 = 1. Since σ is a Nash equilibrium and σ1 = 0, Lemma 2.1 (Condition (2))

implies that Û1 (σ−1 ⋄ 1) ≥ Û1 (σ−1 ⋄ 0). Since σ2 = 1, it follows that 1−σ1
3−σ0

3 ≥ σ0
3+σ1

3 ,

or σ0
3 + σ1

3 ≤ 1
2. A contradiction.

• Only players 2 and 3 are mixed. Since player 1 is pure, σ1 ∈ {0, 1}. Assume, by way of

contradiction, that σ1 = 0. Then, Û3 (σ−3 ⋄ 0) = σ2, Û3 (σ−1 ⋄ 1) = 1 and Û3 (σ−1 ⋄ 2) =
0. Since σ is a Nash equilibrium, Lemma 2.1 (Condition (2)) implies that 2 6∈ Supp(σ3).

Since σ is a Nash equilibrium where player 3 is mixed, Lemma 2.1 (Condition (1)) implies

that Û3 (σ−3 ⋄ 0) = Û3 (σ−1 ⋄ 1), which implies that σ2 = 1, so that player 2 is pure. A

contradiction. It follows that σ1 = 1. Then, Û2 (σ−2 ⋄ 0) = 1− σ0
3 and Û2 (σ−2 ⋄ 1) = σ0

3 .

Since σ is a Nash equilibrium where player 2 is mixed, Lemma 2.1 (Condition (1)) implies

that Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or σ0
3 = 1

2. Also, Û3 (σ−3 ⋄ 0) = σ2, Û3 (σ−3 ⋄ 1) =

0 and Û3 (σ−3 ⋄ 2) = 1 − σ2. Since player 2 is mixed, σ2 > 0. Since σ is a Nash

equilibrium, Lemma 2.1 (Condition (2)) implies that 1 6∈ Supp(σ3), or σ1
3 = 0. Since σ

is a Nash equilibrium where player 3 is mixed, Lemma 2.1 (Condition (1)) implies that

Û3 (σ−3 ⋄ 0) = Û3 (σ−3 ⋄ 2). It follows that σ2 = 1
2.

Since σ1 = 1 and σ is a Nash equilibrium, Lemma 2.1 (Condition (2)) implies that

Û1 (σ−1 ⋄ 0) ≥ Û1 (σ−1 ⋄ 1), or σ2 ·σ0
3+σ1

3 ≥ 1−σ1
3−σ2 ·σ1

3 . Hence,
1
2 ·

1
2 +0 ≥ 1−0− 1

2 ·
1
2.

A contradiction.

• Only players 1 and 3 are mixed. Since player 2 is pure, σ2 ∈ {0, 1}. Assume, by way

of contradiction, that σ2 = 1. Then, Û3 (σ−3 ⋄ 0) = 1, Û3 (σ−3 ⋄ 1) = 1 − σ1 and

Û3 (σ−3 ⋄ 2) = 0. Since σ is a Nash equilibrium, Lemma 2.1 (Condition (2)) implies

that 2 6∈ Supp(σ3), or σ2
3 = 0. Since σ is a Nash equilibrium where player 3 is mixed,

Lemma 2.1 (Condition (1)) implies that Û3 (σ−3 ⋄ 0) = Û3 (σ−3 ⋄ 1), which implies that

σ1 = 0, so that player 1 is pure. A contradiction. It follows that σ2 = 0.

Then, Û3 (σ−3 ⋄ 0) = 0, Û3 (σ−3 ⋄ 1) = 1 − σ1 and Û3 (σ−3 ⋄ 2) = σ1. Since player 1 is

mixed, σ1 > 0. Since σ is a Nash equilibrium, Lemma 2.1 (Condition (2)) implies that

0 6∈ Supp(σ3), or σ3(0) = 0.

Since σ is a Nash equilibrium where player 1 is mixed, Lemma 2.1 (Condition (1)) implies

that Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or σ1
3 = 1− σ1

3 , so that σ1
3 = 1

2.
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Since σ is a Nash equilibrium where player 3 is mixed, Lemma 2.1 (Condition (1)) implies

that Û3 (σ−3 ⋄ 1) = Û3 (σ−3 ⋄ 2), or 1 − σ1 = σ1, or σ1 = 1
2. Since σ2 = 0 and σ is a

Nash equilibrium, Lemma 2.1 (Condition (2)) implies that Û2 (σ−2 ⋄ 0) ≤ Û2 (σ−2 ⋄ 1),
or 1

2 ·
(
1− 0− 1

2

)
+ 1

2 ≤ 0 + 1
2 ·
(
1− 0− 1

2

)
or 1

4 ≤ −
1
4. A contradiction.

• Only players 1 and 2 are mixed. Since player 3 is pure,
(
σ0
3 , σ

1
3

)
∈ {(0, 0), (0, 1), (1, 0)}.

Since σ is a Nash equilibrium where player 1 is mixed, Lemma 2.1 (Condition (1)) implies

that Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or σ2 ·σ0
3 +σ1

3 = 1−σ1
3−σ2 ·σ0

3 or 2 ·
(
σ2 · σ0

3 + σ1
3

)
= 1.

This implies that
(
σ0
3 , σ

1
3

)
6∈ {(0, 0), (0, 1)}; so,

(
σ0
3 , σ

1
3

)
= (1, 0).

Since σ is a Nash equilibrium where player 2 is mixed, Lemma 2.1 (Condition (1)) implies

that Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or σ1 ·
(
1− σ0

3 − σ1
3

)
+σ1

3 = σ0
3 +(1− σ1) ·

(
1− σ0

3 − σ1
3

)

or σ1 · 0 + 0 = 1 + (1− σ1) · 0 or 0 = 1. A contradiction.

• All players are mixed. We proceed by case analysis. Assume first that σ0
3 = 0. Since σ

is a Nash equilibrium where player 1 is mixed, Lemma 2.1 (Condition (1)) implies that

Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or σ1
3 = 1− σ1

3 , so that σ1
3 = 1

2.

Since σ is a Nash equilibrium where player 2 is mixed, Lemma 2.1 (Condition (1)) implies

that Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or σ1 · 12 + 1
2 = (1− σ1) · 12 or σ1 = 0, so that player 1

is pure. A contradiction.

Assume now that σ1
3 = 0. Since σ is a Nash equilibrium where player 3 is mixed,

Lemma 2.1 (Condition (1)) implies that Û3 (σ−3 ⋄ 0) = Û3 (σ−3 ⋄ 2), or σ2 = σ1 · (1− σ2).

Since σ is a Nash equilibrium where player 1 is mixed, Lemma 2.1 (Condition (1)) implies

that Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or σ2 · σ0
3 = 1 − σ2 · σ0

3 so that 2σ2 · σ0
3 = 1. Since σ

is a Nash equilibrium where player 2 is mixed, Lemma 2.1 (Condition (1)) implies that

Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or σ1 ·
(
1− σ0

3

)
= σ0

3+(1− σ1) ·
(
1− σ0

3

)
or 2σ1−1 =

σ0
3

1− σ0
3
.

Hence, it follows that (2σ1 − 1) · (2σ2 − 1) = 1. Thus,
(
2 σ2
σ2 − 1 − 1

)
· (2σ2 − 1) = 1, or

(−1 + 3σ2) · (2σ2 − 1) = 1 − σ2, which yields σ2 = 2
3. Hence, σ1 = σ2

1− σ2
= 2. A

contradiction.

Assume finally that σ2
3 = 0, so that σ0

3 + σ1
3 = 1. Since σ is a Nash equilibrium where

player 1 is mixed, Lemma 2.1 (Condition (1)) implies that Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or
σ2 ·σ0

3 +σ1
3 = 1−σ1

3 −σ2 ·σ0
3 or 2σ2σ

0
3 +2 ·

(
1− σ0

3

)
= 1, so that 2σ0

3 · (1− σ2) = 1. Since

σ is a Nash equilibrium where player 2 is mixed, Lemma 2.1 (Condition (1)) implies that

Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or σ1
3 = σ0

3 . It follows that σ
0
3 = 1

2, so that σ2 = 0 and player

2 is pure. A contradiction. It follows from the case analysis that 0 < σ0
3, σ

1
3 , σ

2
3 < 1, and

player 3 is fully mixed.

Since σ is a Nash equilibrium where player 3 is fully mixed, Lemma 2.1 (Condition
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(1)) implies that Û3 (σ−3 ⋄ 0) = Û3 (σ−3 ⋄ 1) = Û3 (σ−3 ⋄ 2), or σ2 = 1 − σ1 = σ1 ·
(1− σ2). Hence, (1− σ2)

2 = σ2, so that σ2 = 3−
√
5

2 and σ1 =

√
5− 1
2 . Since σ is

a Nash equilibrium where player 1 is mixed, Lemma 2.1 (Condition (1)) implies that

Û1 (σ−1 ⋄ 0) = Û1 (σ−1 ⋄ 1), or 2σ2 · σ0
3 + 2σ1

3 = 1. Since σ is a Nash equilibrium where

player 2 is mixed, Lemma 2.1 (Condition (1)) implies that Û2 (σ−2 ⋄ 0) = Û2 (σ−2 ⋄ 1), or
(2σ1 − 1) ·

(
1− σ0

3 − σ1
3

)
= σ0

3 − σ1
3 or 2 (1− σ1) · σ1

3 − 2σ1 · σ0
3 = 1− 2σ1. Combining we

obtain (2σ1 + 2 (1 − σ1) · σ2) · σ1
3 = (1− 2σ1) · σ2 + σ1, which yields σ1

3 = 5−
√
5

8 . Now,

σ0
3 =

1− 2σ1
3

2σ2
= 1 +

√
5

8 , and σ2
3 = 1− σ0

3 − σ1
3 = 1

4.

The claim now follows.

By Proposition 4.2, the win-lose 3-player game Ĝ2 is a negative instance for ∃ RATIONAL NASH.

Although Ĝ2 is also a negative instance for ∃ UNIFORM NASH and for ∃ SYMMETRIC NASH we

shall present next the win-lose bimatrix games Ĝ3 and Ĝ4 as negative instances for ∃ UNIFORM
NASH and for ∃ SYMMETRIC NASH, respectively, since we seek to establish that these two

decision problems are NP-hard for win-lose bimatrix games.

4.3 The Non-Uniform Game Ĝ3

Define the win-lose game Ĝ3 = 〈[2], {Σ̂i}i∈[2], {Ûi}i∈[2]〉 with Σ̂1 = Σ̂2 = [4]; the utility functions

are depicted below:

Profile s Û(s) Profile s Û(s) Profile s Û(s) Profile s Û(s)

〈1, 1〉 〈0, 1〉 〈1, 2〉 〈0, 1〉 〈1, 3〉 〈1, 0〉 〈1, 4〉 〈1, 0〉
〈2, 1〉 〈0, 1〉 〈2, 2〉 〈1, 0〉 〈2, 3〉 〈1, 0〉 〈2, 4〉 〈0, 1〉
〈3, 1〉 〈0, 1〉 〈3, 2〉 〈1, 0〉 〈3, 3〉 〈0, 1〉 〈3, 4〉 〈1, 0〉
〈4, 1〉 〈1, 0〉 〈4, 2〉 〈0, 1〉 〈4, 3〉 〈0, 1〉 〈4, 4〉 〈0, 1〉

Clearly, Ĝ3 has the positive utility property. Note that for each profile s, exactly one of Û1 (s) =

1 and Û2 (s) = 1 holds, and Ĝ3 is 1-sum. Define the shape of a profile s to be square (resp.,

circle) when Û1 (s) = 1 (resp., Û2 (s) = 1). Figure 1 presents a bimatricial representation of

the set of profiles for Ĝ3, where each profile is drawn as either a square or a circle; rows and

columns correspond to strategies of player 1 and 2, respectively.

Note that in a uniform Nash equilibrium σ, a best-response of player 2 (resp., player 1) to

σ1 (resp., σ2) is a strategy s ∈ Σ̂2 (resp., s ∈ Σ̂1) whose corresponding column (resp., row),

restricted to the rows (resp., the columns) corresponding to the strategies in Supp(σ1) (resp.,

in Supp(σ2)), contains a maximum number of circles (resp., squares). In particular, all columns
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✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

〈4, 1〉 〈4, 2〉 〈4, 3〉 〈4, 4〉

〈3, 1〉 〈3, 2〉 〈3, 3〉 〈3, 4〉

〈2, 1〉 〈2, 2〉 〈2, 3〉 〈2, 4〉

〈1, 1〉 〈1, 2〉 〈1, 3〉 〈1, 4〉

Figure 1: A bimatricial representation of all profiles in Ĝ3 as shapes.

(resp., rows) corresponding to strategies that are best-responses of player 2 (resp., player 1)

to σ1 (resp., σ2), restricted to the rows (resp., the columns) corresponding to the strategies in

Supp(σ1) (resp., in Supp(σ2)), contain the same number of circles (resp., squares). We prove:

Proposition 4.3 Ĝ3 has no uniform Nash equilibrium.

Proof: Note first that Ĝ3 has no pure Nash equilibrium. We now prove:

Lemma 4.4 (No Pure Player) Fix a Nash equilibrium σ. Then, for each player i ∈ [2],

|Supp(σi)| ≥ 2.

Proof: Assume, by way of contradiction, that there is a player i ∈ [2] with |Supp(σi)| = 1.

Since σ is mixed, it follows that player i ∈ [2] \ {i} is mixed. Since σ is a Nash equilibrium

where player i is mixed, Lemma 2.1 (Condition (1)) implies that for each strategy s ∈ Supp(σi),

Ûi(σ) = Ûi

(
σ−i ⋄ s

)
. So, all profiles supported in σ−i ⋄ s have the same shape. Since Ĝ3 is a

1-sum, win-lose game, either Ûi(σ) = 0 or Ûi(σ) = 0. Since Ĝ3 has the positive utility property,

Lemma 2.2 implies that both Ûi(σ) > 0 and Ûi(σ) > 0. A contradiction.

To complete the proof, we shall establish that there is no uniform Nash equilibrium σ with

2 ≤ |Supp(σ1)| ≤ 4. We first prove:

Lemma 4.5 Fix a uniform Nash equilibrium σ. Then, |Supp(σ1)| 6= 4.

Proof: Assume, by way of contradiction, that |Supp(σ1)| = 4. In this case, strategy 1 is

the unique best-response of player 2 to σ1 since column 1 is the only column containing the

maximum number of circles, which is 3. So, Supp(σ2) = {1}. A contradiction to Lemma 4.4.
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We now prove a simple structural property:

Lemma 4.6 (No Column Crossing All Supported Rows Only in Circles) Fix a Nash

equilibrium σ. Then, there is no strategy s ∈ Σ̂2 such that all profiles supported in σ−2 ⋄ s are

circles.

Proof: Assume, by way of contradiction, that there is a strategy s ∈ Σ̂2 such that all profiles

supported in σ−2⋄s are circles. This implies that Û2 (σ−2 ⋄ s) = 1. Since σ is a Nash equilibrium

where player 2 is mixed, Lemma 2.1 (Condition (2)) implies that Û2(σ) ≥ Û2 (σ−2 ⋄ s). Since

Ĝ3 is win-lose, this implies that Û2(σ) = 1. Since Ĝ3 is 1-sum, it follows that Û1(σ) = 0. Since

Ĝ3 has the positive utility property, Lemma 2.2 implies that Û1(σ) > 0. A contradiction.

We next prove:

Lemma 4.7 Fix a uniform Nash equilibrium σ. Then, |Supp(σ1)| 6= 2.

Proof: Assume, by way of contradiction, that |Supp(σ1)| = 2. Say that two distinct strategies

s, s′ ∈ Σ̂1 for player 1 collide on strategy t ∈ Σ̂2 if both profiles 〈s, t〉 and 〈s′, t〉 are circles.

Lemma 4.6 implies that the two strategies in Supp(σ1) do not collide on any strategy in Σ̂2.

Since column 1 contains only circles except for the entry corresponding to row 4, Lemma 4.6

implies that 4 ∈ Supp(σ1). So, three cases need to be considered, corresponding to which the

other strategy in Supp(σ1) is. By inspection, strategies 1 and 4 collide on column 2; strategies

2 and 4 collide on column 4; strategies 3 and 4 collide on column 3. A contradiction.

We finally prove:

Lemma 4.8 Fix a uniform Nash equilibrium σ. Then, |Supp(σ1)| 6= 3.

Proof: Assume, by way of contradiction, that |Supp(σ1)| = 3. There are four possibilities

corresponding to which strategy s among the four strategies in Σ̂1 is excluded from Supp(σ1).

We proceed by case analysis.

1. s = 1 so that Supp (σ1) = {2, 3, 4}: Since σ is uniform, strategies in {1, 3, 4} are the only

three best-responses of player 2 to σ1 since each of their corresponding columns, restricted

to rows corresponding to the strategies in Supp(σ1), contains the maximum number of

circles, which is 2. By Lemma 2.1, it follows that Supp(σ2) ⊆ {1, 3, 4}. Observe that the

only square profiles supported in σ whenever Supp (σ2) = {1, 3, 4} are 〈4, 1〉, 〈2, 3〉 and
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〈3, 4〉; so, there is exactly one square profile for each possible best-response of player 2

to σ1. This implies that Û1 (σ) =
1
3, regardless of Supp(σ2). If |Supp(σ2)| < 3, then for

each strategy s ∈ Supp(σ1), Û1 (σ−1 ⋄ s) ≥ 1
2, a contradiction to Lemma 2.1 (Condition

(1)). So, Supp (σ2) = {1, 3, 4}. But then Û1 (σ−1 ⋄ 1) = 2
3, a contradiction to Lemma 2.1

(Condition (1)).

2. s = 2 so that Supp (σ1) = {1, 3, 4}: Since σ is uniform, strategies in {1, 2, 3} are the only

three best-responses for player 2 to σ1 since each of their corresponding columns, restricted

to rows corresponding to the strategies in Supp(σ1), contains the maximum number of

circles, which is 2. By Lemma 2.1, it follows that Supp(σ2) ⊆ {1, 2, 3}. Observe that the

only square profiles supported in σ whenever Supp (σ2) = {1, 2, 3} are 〈4, 1〉, 〈3, 2〉; and
〈1, 3〉; so, there is exactly one square profile for each possible best-response of player 2

to σ1. This implies that Û1 (σ) =
1
3, regardless of Supp(σ2). If |Supp(σ2)| < 3, then for

each strategy s ∈ Supp(σ1), Û1 (σ−1 ⋄ s) ≥ 1
2, a contradiction to Lemma 2.1 (Condition

(1)). So, Supp (σ2) = {1, 2, 3}. But then Û1 (σ−1 ⋄ 2) = 2
3, a contradiction to Lemma 2.1

(Condition (1)).

3. s = 3 so that Supp (σ1) = {1, 2, 4}: Since σ is uniform, strategies in {1, 2, 4} are the only

three best-responses for player 2 to σ1 since each of their corresponding columns, restricted

to rows corresponding to the strategies in Supp(σ1), contains the maximum number of

circles, which is 2. By Lemma 2.1, it follows that Supp(σ2) ⊆ {1, 2, 4}. Observe that

the only square profiles enabled in σ whenever Supp (σ2) = {1, 2, 4} are 〈4, 1〉, 〈2, 2〉 and
〈1, 4〉; so, there is exactly one square profile for each possible best-response of player 2

to σ1. This implies that Û1 (σ) =
1
3, regardless of Supp(σ2). If |Supp(σ2)| < 3, then for

each strategy s ∈ Supp(σ1), Û1 (σ−1 ⋄ s) ≥ 1
2, a contradiction to Lemma 2.1 (Condition

(1)). So, Supp (σ2) = {1, 2, 4}. But then Û1 (σ−1 ⋄ 3) = 2
3, a contradiction to Lemma 2.1

(Condition (1)).

4. s = 4 so that Supp (σ1) = {1, 2, 3}: Then, all profiles supported in σ−2 ⋄ 1 are circles. A

contradiction to Lemma 4.6.

The proof is now complete.

The claim follows now from Lemmas 4.4, 4.5, 4.7 and 4.8.

By Proposition 4.3, the win-lose game Ĝ3 is a negative instance for ∃ UNIFORM NASH.
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4.4 The Non-Symmetric Game Ĝ4

Define the win-lose bimatrix game Ĝ4 =
〈
[2], {Σ̂i}i∈[2], {Ûi}i∈[2]

〉
with Σ̂1 = Σ̂2 = {1, 2, 3}; the

utility functions are depicted below:

Profile s Û(s) Profile s Û(s) Profile s Û(s)

〈1, 1〉 〈1, 0〉 〈1, 2〉 〈0, 1〉 〈1, 3〉 〈1, 0〉
〈2, 1〉 〈0, 1〉 〈2, 2〉 〈0, 0〉 〈2, 3〉 〈1, 0〉
〈3, 1〉 〈0, 1〉 〈3, 2〉 〈1, 0〉 〈3, 3〉 〈0, 1〉

Clearly, Ĝ4 has the positive utility property. We prove:

Proposition 4.9 Ĝ4 has no symmetric Nash equilibrium.

Proof: Assume, by way of contradiction, that Ĝ4 has a symmetric Nash equilibrium σ.

Clearly, Ĝ4 has no pure Nash equilibrium. Hence, four cases need to be examined:

(1) For each player i ∈ [2], Supp(σi) = {1, 2}: Then, Û1(σ−1 ⋄ 2) = 0. Since 2 ∈ Supp(σ1),

Lemma 2.1 (Condition (1)) implies that Û1(σ) = 0. A contradiction to Lemma 2.2.

(2) For each player i ∈ [2], Supp(σi) = {2, 3}: Then, Û2(σ−2 ⋄ 2) = 0. Since 2 ∈ Supp(σ2),

Lemma 2.1 (Condition (1)) implies that Û2(σ) = 0. A contradiction to Lemma 2.2.

(3) For each player i ∈ [2], Supp(σi) = {1, 3}: Then, Û1(σ−1 ⋄ 3) = 0. Since 3 ∈ Supp(σ1),

Lemma 2.1 (Condition (1)) implies that Û1(σ) = 0. A contradiction to Lemma 2.2.

(4) For each player i ∈ [2], Supp(σi) = {1, 2, 3}: Then, Û1(σ−1⋄1) = σ2(1)+σ2(3) and Û1(σ−1⋄
2) = σ2(3). Since σ2(1) > 0, it follows that Û1(σ−1 ⋄ 1) > Û1(σ−1 ⋄ 2). Since 1, 2 ∈
Supp(σ1), Lemma 2.1 (Condition (1)) implies that Û1(σ−1 ⋄ 1) = Û1(σ−1 ⋄ 2). A contra-

diction.

The proof is complete.

By Proposition 4.9, the win-lose game Ĝ4 is a negative instance for ∃ SYMMETRIC NASH.

4.5 The Diagonal Game Ĝ5[k]

Fix an integer k ≥ 1. Denote as Dk the k × k win-lose matrix such that Dk[i, j] = 1 if and

only if i ≤ j, with 1 ≤ i, j ≤ k; so, Dk is an upper-diagonal matrix. Then, DT
k is a k × k

win-lose matrix such that RT
k [i, j] = 1 if and only if j ≤ i, with 1 ≤ i, j ≤ k; so, DT

k is a lower-

diagonal matrix. Define the win-lose bimatrix game Ĝ5[k] :=
〈
Dk,D

T
k

〉
, which is symmetric by

construction. Clearly, Ĝ5[k] has the positive utility property. We prove:
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Proposition 4.10 Fix an integer k ≥ 1. Then, Ĝ5[k] has exactly k Nash equilibria, which are

Pareto-Optimal, Strongly Pareto-Optimal and symmetric, each yielding utility 1 to each player.

Proof: Note that Ĝ5[k] has exactly k pure Nash equilibria ss, with s ∈ [k], where each player

i ∈ [2] chooses strategy s in ss to get utility 1. Note that each of the k pure equilibria is Pareto-

Optimal, Strongly Pareto-Optimal and symmetric. Hence, it remains to prove that Ĝ5[k] has

no mixed Nash equilibrium. Towards this end, assume, by way of contradiction, that Ĝ5[k] has

a mixed Nash equilibrium σ. For each player i ∈ [2], set s∗i := min Supp(σi); so, s
∗
1 (resp., s∗2) is

the row (resp., column) with least index played by the row (resp., column) player in σ. By the

definitions of Dk and DT
k , it follows that the set of best-response strategies for the row (resp.,

column) player is [s∗2] (resp., [s
∗
1]); thus, by Lemma 2.1, Supp(σ1) ⊆ [s∗2] and Supp(σ2) ⊆ [s∗1].

These imply together that s∗1 ≤ s∗2 and s∗2 ≤ s∗1, so that s∗1 = s∗2. Hence, for each player i ∈ [2],

Supp(σi) ⊆ [s∗i ] = [min Supp(σi)], which implies that Supp(σi) = {s∗i }. Hence, σ is a pure Nash

equilibrium. A contradiction.

By Proposition 4.10, the win-lose game Ĝ5[k] is a negative instance for ∃ k + 1 NASH, with

k ≥ 1, for ∃ ¬ PARETO-OPTIMAL NASH, for ∃ ¬ STRONGLY PARETO-OPTIMAL NASH and

for ∃ ¬ SYMMETRIC NASH.

5 The Win-Lose Reduction

We start with some preliminary material. Denote In := {0, 1, . . . , n − 1}; for all arithmetic

operations on In, we shall assume a cyclic ordering on its elements; so, (n − 1) + 1 = 0 and

for a given pair i, j ∈ In, j − i is the number of elements of In encountered when moving from

j (excluded) to i (included) in the anticlockwise direction. A CNF SAT formula is a boolean

formula φ =
∧

i∈[k]

∨
j∈[li]

ℓij in Conjunctive Normal Form, where ℓij is a literal (a boolean

variable or its negation), we shall denote as (i) C = C(φ) = {∨j∈[li]
ℓij | i ∈ [k]}, the set of

clauses, and (ii) Var = Var(φ) = {v0, . . . , vn−1} and L = L(φ) = {ℓ0, ℓ0, . . . , ℓn−1, ℓn−1} the sets

of variables and literals, respectively, with |Var(φ)| = n and |L(φ)| = 2n. We shall use c to

denote a clause from C(φ), and either ℓ or ℓ to denote a literal from L(φ). φ is a 3SAT formula if

each clause c has |c| = 3. An assignment is a function γ : Var(φ)→ {0, 1}; so, γ is represented

by the n-tuple of literals made true. For a literal ℓ ∈ L(φ), denote as I(ℓ) the index j ∈ In such

that ℓ ∈ {ℓj , ℓj}. Denote as φ(γ) the value of φ when each variable v takes the value γ(v). γ is a

satisfying assignment if φ(γ) = 1, and φ is satisfiable if it has a satisfying assignment; deciding

the satisfiability of a 3SAT formula φ is NP-complete. Denote as #φ and ⊕φ the number and

the parity of the number of satisfying assignments of φ, respectively; when φ is a 3SAT formula,

computing #φ is #P-complete [35] and computing ⊕φ is ⊕P-complete [33].
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5.1 The Reduction

We shall construct, given an r-player win-lose gadget game Ĝ, for an arbitrary integer r ≥ 2,

and an instance φ of 3SAT with n = |Var(φ)| ≥ 4, the r-player win-lose game G = G(Ĝ, φ) =〈
[r], {Σi}i∈[r] , {Ui}i∈[r]

〉
. Players 1 and 2 are called special. For a player i ∈ [2], i ∈ [2] \ {i}

denotes the special player other than i.

5.1.1 Inadequacy of the Reduction in [13] and Getting Around it

A crucial step in both the win-lose reduction and the reduction in [13] is to guarantee two

significant properties:

(P.1) A mixed profile in which some special player chooses some literals with positive probability

is a Nash equilibrium for the constructed game G if and only if φ is satisfiable.

(P.2) Each satisfying assignment induces a Nash equilibrium where both special players are

choosing the literals from the satisfying assignment with uniform probabilities.

To guarantee these properties, both the win-lose reduction and the reduction in [13] have to rule

out the existence of a Nash equilibrium in which either some special player plays literals with

non-uniform probabilities or some pair of complementary literals (ℓ and ℓ) is not played by some

special player. The reduction in [13] achieves these properties with the following approach:

• By assigning a non-zero utility to both special players when they are choosing a pair of

non-complementary literals.

• By using n auxiliary strategies, called variables, v0, . . . , vn−1, where, for each index j ∈ In,

vj is associated with the pair of complementary literals {ℓj, ℓj}, as follows: When a special

player i ∈ [2] chooses a literal ℓ ∈ {ℓj , ℓj}, the utility given to player i when choosing a

variable other than vj is more than the utility she would get when choosing any literal

from L(φ).

Thus, this approach requires using at least two different non-zero utilities. Hence, the reduction

in [13] is inadequate for win-lose games. We resolve this inadequacy by combining two new ideas

in the win-lose reduction:

• Instead of giving non-zero utility to both special players when they are choosing non-

complementary literals, only one of them gets non-zero utility. This idea is implemented

by using a cyclic ordering among the literals and extending the construction of the cyclic
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game Ĝ1[n]. (See Cases (1) through (4) in Figure 2.) We shall prove that this suffices to

rule out the existence of Nash equilibria in which literals in the support of both special

players are played with non-uniform probabilities.

• To guarantee that every pair of complementary literals are chosen with strictly positive

probability, we introduce a new kind of auxiliary strategies, namely the pair variables

vj,k, for each pair j, k ∈ In with j 6= k; thus, there are n(n − 1) of them. The pair

variables provide the special player i with an improving deviation whenever there is a

pair of complementary literals not chosen by the special player i; at the same time, we

define the utility functions so that no special player could improve by switching to a

pair variable when both special players are playing the same satisfying assignment with

uniform probabilities. (See Cases (5/a) and (5/b) in Figure 2.) This is the point where

the structure of a 3SAT formula shall be needed.

The proof of Lemma 5.5 demonstrates how the two new ideas combine together. We now

proceed to formally define the win-lose reduction.

5.1.2 Formal Definition

For each player i ∈ [2], Σi := Σ̂i∪L(φ)∪C(φ)∪V(φ); for each player i ∈ [r]\ [2], Σi := Σ̂i∪{δ},
where V(φ) = {vi,j | 0 ≤ i, j < n, i 6= j} and δ is a special strategy. The strategies in

V(φ) are called pair variables. The two special players 1 and 2 are the only players whose

sets of strategies are determined by the formula φ. Note that for each player i ∈ [2], |Σi| =
|Σ̂i|+ 2n+ |C(φ)|+ n(n+ 1), and for each player i ∈ [r] \ [2], |Σi| = |Σ̂i|+ 1; so, the size of the

strategy sets in G(Ĝ, φ) is polynomial in the sizes of Ĝ and φ. In the following, we shall write

L, C and V for L(φ), C(φ), and V(φ), respectively.

Fix a profile s = 〈s1, . . . , sr〉 from Σ = Σ1× . . .×Σr. Use s to partition [r] into P̂(s) = {i ∈ [r] |
si ∈ Σ̂i} and P(s) = {i ∈ [r] | si 6∈ Σ̂i}; so, P̂(s) and P(s) are the sets of players choosing and

not choosing, respectively, strategies from Ĝ. The utility functions are depicted in Figure 2.

5.1.3 Notation

For a mixed profile σ and a special player i ∈ [2], σi(S) denotes the total probability assigned

by σi to strategies from S ⊆ Σi; so, in particular, σi(L), σi(C ∪ V) and σi(Σ̂i) are the total

probabilities assigned by σi to strategies from L, C ∪V and Σ̂i, respectively, with σi(L)+σi(C ∪
V) + σi(Σ̂i) = 1. For a player i ∈ [r] \ [2], σi(Σ̂i) and σi(δ), with σi(Σ̂i) + σi(δ) = 1, are set

correspondingly. Sometimes a strategy from Ĝ will be called a gadget strategy.
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Case Condition on the profile s = 〈s1, s2, . . . , sr〉 Utility vector U(s)

(1) s = 〈ℓ, ℓ, δ, . . . , δ〉 〈0, 0, 1, . . . , 1〉
(2) s = 〈ℓ, ℓ′, δ, . . . , δ〉 with I(ℓ′)− I(ℓ) ∈ {0, 1} and ℓ 6= ℓ 〈1, 0, 1, . . . , 1〉
(3) s = 〈ℓ, ℓ′, δ, . . . , δ〉 with I(ℓ′)− I(ℓ) ∈ {2, 3} 〈0, 1, 1, . . . , 1〉
(4) s = 〈ℓ, ℓ′, δ, . . . , δ〉 with I(ℓ′)− I(ℓ) > 3 〈0, 0, 1, . . . , 1〉
(5/a) s = 〈vij , ℓk, δ, . . . , δ〉 with k ∈ {i, j} 〈1, 0, 1, . . . , 1〉
(5/b) s = 〈ℓk, vij , δ, . . . , δ〉 with k ∈ {i, j} 〈0, 1, 1, . . . , 1〉
(6/a) s = 〈c, ℓ, δ, . . . , δ〉 with ℓ ∈ c 〈1, 0, 1, . . . , 1〉
(6/b) s = 〈ℓ, c, δ, . . . , δ〉 with ℓ ∈ c 〈0, 1, 1, . . . , 1〉
(7) For each i ∈ [r], si ∈ Σ̂i. (So, |P̂(s)| = r.) Û(〈s1, . . . , sr〉)
(8) |P̂(s)| > 1 and |P(s)| > 0 Ui(s) = 1 iff i ∈ P̂(s)
(9) P̂(s) = {i} with i ∈ [r] \ [2] Uj(s) = δji

(10) P̂(s) = {i} with i ∈ [2] & s[2]\{i} ∈ {ℓ0, ℓ0, ℓ1, ℓ1} ∪ C ∪ V Uj(s) = δji

(11) None of the above. 〈0, . . . , 0〉

Figure 2: The utility functions for the game G = G(Ĝ, φ). (δij denotes the Kronecker delta.)

5.2 Properties of Nash Equilibria for G

We now present a collection of properties for a Nash equilibrium σ ∈ NE(G). The first property
is that either all players are exclusively playing gadget strategies or none is.

Lemma 5.1 Fix a Nash equilibrium σ ∈ NE(G) with Supp (σi) ⊆ Σ̂i for some player i ∈ [r].

Then, for each player j ∈ [r] \ {i}, Supp (σj) ⊆ Σ̂j.

Proof: Fix a player j ∈ [r] \ {i} and a strategy s ∈ Supp(σj). Since σ is a Nash equilibrium,

s is a best-response to σ−j . We shall establish that s ∈ Σ̂j. Consider the mixed profile σ−j ⋄ s.
Since Supp (σi) ⊆ Σ̂i, each profile s−j ⋄ s supported in σ−j ⋄ s may only come from Cases (7),

(8), (9), (10) and (11). For any such profile s−j ⋄ s, it follows, by the utility functions, that if

s 6∈ Σ̂j, then Uj (s−j ⋄ s) = 0, which implies that Uj (σ−j ⋄ s) = 0. So, to establish the claim, it

suffices to determine a strategy s ∈ Σ̂j with Uj (σ−j ⋄ s) > 0. We proceed by case analysis.

• Assume first that there is a profile s−j supported in σ−j with s−j ∈ Σ̂−j; hence, by the

positive utility property of Ĝ, there is a strategy t = t(s−j) ∈ Σ̂j with Ûj (s−j ⋄ t) > 0.
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Set s := t. Then,

Uj (σ−j ⋄ s)
≥ Ps−j∼σ−j

(s−j ⋄ s) · Uj (s−j ⋄ s) (since G is win-lose)

= Ps−j∼σ−j
(s−j ⋄ s)︸ ︷︷ ︸

>0

· Ûj (s−j ⋄ s)︸ ︷︷ ︸
>0

(by the utility functions)

> 0 .

• Assume now that there is no profile s−j supported in σ−j with s−j ∈ Σ̂−j. Set s to any

strategy from Σ̂j . Thus, {i, j} ⊆ P̂ (s−j ⋄ s) for each profile s−j ⋄ s supported in σ−j ⋄ s;
so, by the utility functions, only profiles from Case (8) may be supported in σ−j ⋄s. Since
s ∈ Σ̂j, j ∈ P̂ (s−j ⋄ s). Hence, by the utility functions, Uj (s−j ⋄ s) = 1, which implies

that Uj (σ−j ⋄ s) = 1 > 0.

The claim follows.

The next property concerns the two special players: if one of them is assigning probability 0

on literals, then the other is exclusively playing gadget strategies.

Lemma 5.2 Fix a Nash equilibrium σ ∈ NE(G) with Supp(σi) ⊆ Σ̂i ∪ C ∪ V for some special

player i ∈ [2]. Then, Supp(σi) ⊆ Σ̂i.

Proof: Fix a strategy s ∈ Supp(σi). Since σ is a Nash equilibrium, s is a best-response to σ−i.

We shall establish that s ∈ Σ̂i. Consider the mixed profile σ−i ⋄ s. Since Supp(σi) ⊆ Σ̂i∪C ∪V,
or Supp(σi) ∩ L = ∅, each profile s−i ⋄ s supported in σ−i ⋄ s may only come from Cases (5),

(6), (7), (8), (9), (10) and (11). For any such profile s−i ⋄ s, it follows, by the utility functions,

that if s /∈ Σ̂i, then Ui

(
s−i ⋄ s

)
= 0, which implies that Ui

(
σ−i ⋄ s

)
= 0. (Note that Cases (5)

and (6) occur if and only if player i chooses a strategy from L.) So, to establish the claim, it

suffices to determine a strategy s ∈ Σ̂i with Ui

(
σ−i ⋄ s

)
> 0. We proceed by case analysis.

• Assume that there is a profile s supported in σ with s−i ∈ Σ̂−i. By the positive utility

property of Ĝ, there is a strategy t = t(s−i) ∈ Σ̂i with Ui

(
s−i ⋄ t

)
> 0. Set s := t. Then,

Ui

(
σ−i ⋄ s

)

≥ Ps
−i∼σ−i

(
s−i ⋄ s

)
· Ui

(
s−i ⋄ s

)
(since G is win-lose)

= Ps
−i∼σ−i

(
s−i ⋄ s

)
︸ ︷︷ ︸

>0

· Ûi

(
s−i ⋄ s

)
︸ ︷︷ ︸

>0

(by the utility functions)

> 0 .
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• Assume now that there is no profile s supported in σ with s−i ∈ Σ̂−i. Define s to be any

strategy from Σ̂i. So, i ∈ P̂
(
s−i ⋄ s

)
for each profile s−i supported in σ−i ⋄ s; it follows

that only profiles from Cases (8) and (10) may be supported in σ−i ⋄ s. Hence, by the

utility functions, Ui

(
s−i ⋄ s

)
= 1, which implies that Ui

(
σ−i ⋄ s

)
= 1 > 0.

The claim follows.

We now prove that the only Nash equilibria for G where some player is exclusively playing

gadget strategies are the Nash equilibria for the gadget game Ĝ.

Lemma 5.3 The following conditions hold:

(C.1) NE(Ĝ) ⊆ NE(G).

(C.2) There is no Nash equilibrium σ ∈ NE(G) \ NE(Ĝ) with Supp(σi) ⊆ Σ̂i, for some player

i ∈ [r].

Proof: For Condition (C.1), fix a Nash equilibrium σ ∈ NE(Ĝ); so, no player i ∈ [r] can

improve by switching to a strategy s ∈ Σ̂i. Consider now player i ∈ [r] switching to a strategy

s /∈ Σ̂i. Then, a profile s supported in σ−i ⋄ s may only come from Cases (8), (9), (10) and

(11), so that i ∈ P(s) and Ui(s) = 0, which implies that Ui(σ−i ⋄ s) = 0. Since G is win-lose,

Ui(σ) ≥ 0. It follows that Ui(σ−i ⋄ s) ≤ Ui(σ), and player i cannot improve by switching to s.

So, σ is a Nash equilibrium for G, so that NE(Ĝ) ⊆ NE(G).

For Condition (C.2), assume, by way of contradiction, that there is a Nash equilibrium

σ ∈ NE(G)\NE(Ĝ) with Supp(σi) ⊆ Σ̂i for some player i ∈ [r]. By Lemma 5.1, for each player

j ∈ [r] \ {i}, Supp(σj) ⊆ Σ̂j. Hence, σ is a mixed profile for Ĝ, which implies that σ ∈ NE(Ĝ).
A contradiction.

A Nash equilibrium for G coming from Ĝ will be called a gadget equilibrium. The following

properties characterize a Nash equilibrium σ ∈ NE(G)\NE(Ĝ). Lemmas 5.4, 5.5, 5.10 and 5.11

concern the two special players; Lemma 5.9 concerns the non-special players. We first prove

that each special player is playing some literal with positive probability.

Lemma 5.4 Fix a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ). Then, σ1(L) · σ2(L) > 0.

Proof: Assume, by way of contradiction, that there is a player i ∈ [2] with σi(L) = 0. So,

Supp(σi) ⊆ Σ̂i ∪ C ∪ V. Then, Lemma 5.2 implies that Supp(σi) ⊆ Σ̂i. A contradiction to

Lemma 5.3 (Condition (2)).
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We now prove that in a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ), each special player assigns the

same positive probability to each pair of literals {ℓ, ℓ}.

Lemma 5.5 Fix a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ) and a special player i ∈ [2]. Then,

for each literal ℓ ∈ L, σi
({

ℓ, ℓ
})

=
σi(L)
n .

Proof: We shall establish a sequence of claims. We first prove:

Claim 5.6 For each special player i ∈ [2], there is no index j ∈ In with σi(L) = σi
({

ℓj , ℓj
})

.

Proof: Assume, by way of contradiction, that there is an index j ∈ In with σi(L) = σi
({

ℓj, ℓj
})

.

Set i := 1. Consider now player 2 switching to a literal ℓ. By the utility functions (Cases (3) and

(4)), player 2 gets utility 1 if and only if ℓ ∈ L′ := {ℓj+2, ℓj+2, ℓj+3, ℓj+3} and all non-special

players choose δ. By Lemma 5.3 (Condition (2)), for each non-special player i′ ∈ [r] \ [2],
δ ∈ Supp(σi′). Hence, there is at least one profile from Case (3) supported in σ−2 ⋄ ℓ. It follows
that U2 (σ−2 ⋄ ℓk) > U2 (σ−2 ⋄ ℓh) for any pair of literals ℓk ∈ L′ and ℓh 6∈ L′. By Lemma 2.1

(Condition (2)), this implies that Supp(σ2) ∩ L ⊆ L′.

Now, taking that Supp(σ2) ∩ L ⊆ L′, consider player 1 switching to a literal ℓ. By the

utility functions (Cases (1), (2) and (4)), if ℓ 6∈ L′′ := {ℓj+1, ℓj+1, ℓj+2, ℓj+2, ℓj+3, ℓj+3} then

player 1 gets utility 0; if she chooses some literal ℓk ∈ L′′ and all non-special players choose δ

then she gets utility 1 By Lemma 5.3 (Condition (2)), for each non-special player i′ ∈ [r] \ [2],
δ ∈ Supp(σi′). Hence, there is at least one profile from Case (2) supported in σ−1 ⋄ ℓ. It follows
that U1 (σ−1 ⋄ ℓk) > U1 (σ−1 ⋄ ℓh) for any literal ℓh 6∈ L′′. By Lemma 2.1 (Condition (2)), this

implies that Supp(σ1) ∩ L ⊆ L′′. Note that with n ≥ 4, this implies ℓj 6∈ Supp(σ1) ∩ L. A

contradiction. We use a corresponding argument to establish the claim for player 2.

We continue to prove:

Claim 5.7 The following conditions hold for each index k ∈ In:

(C.1) If σ1
({

ℓk, ℓk
})

> 0 then σ2
({

ℓk, ℓk
})
· σ2

({
ℓk+1, ℓk+1

})
> 0.

(C.2) If σ2
({

ℓk, ℓk
})

> 0 then σ1
({

ℓk−3, ℓk−3

})
· σ1

({
ℓk−2, ℓk−2

})
> 0.

Proof: We start with Condition (C.1). Claim 5.6 implies that there are at least two distinct

indices j, h ∈ In with σ2
({

ℓj , ℓj
})

> 0 and σ2
({

ℓh, ℓh
})

> 0. If {k, k + 1} = {j, h}, then we

are done. So assume that {k, k + 1} 6= {j, h}. This implies that either k 6= j and k + 1 6= j or

k 6= h and k + 1 6= h. Choose k 6= h and k + 1 6= h.
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Since σ1
({

ℓk, ℓk
})

> 0, either ℓk or ℓk is a best-response for player 1 to σ−1; assume,

without loss of generality, that ℓk is a best-response for player 1 to σ−1. Consider player 1

switching to ℓk. By the utility functions (Cases (1), (2) and (4)), player 1 gets utility 1 if

and only if player 2 chooses a literal from {ℓk, ℓk+1, ℓk+1} and all non-special players choose δ.

Hence,

U1 (σ−1 ⋄ ℓk) = σ2

({
ℓk, ℓk+1, ℓk+1

})
·
∏

i∈[r]\[2]

σi (δ) .

Consider player 1 switching to vh,k. By the utility functions (Case (5)), player 1 gets utility

1 if and only if player 2 chooses a literal from {ℓh, ℓh, ℓk, ℓk} and all non-special players choose

δ. Hence,

U1 (σ−1 ⋄ vh,k) = σ2

({
ℓh, ℓh, ℓk, ℓk

})
·
∏

i∈[r]\[2]

σi (δ) .

Since ℓk is a best-response for player 1 to σ−1, it follows that

σ2

({
ℓk, ℓk+1, ℓk+1

})
·
∏

i∈[r]\[2]

σi (δ) ≥ σ2

({
ℓh, ℓh, ℓk, ℓk

})
·
∏

i∈[r]\[2]

σi (δ) .

By Lemma 5.3 (Condition (2)),
∏

i∈[r]\[2] σi (δ) 6= 0; thus, it follows that

σ2

({
ℓk, ℓk+1, ℓk+1

})
≥ σ2

({
ℓh, ℓh, ℓk, ℓk

})
,

which implies that

σ2

({
ℓk+1, ℓk+1

})
≥ σ2

({
ℓh, ℓh, ℓk

})
.

Since σ2
({

ℓh, ℓh,
})

> 0, it follows that σ2
({

ℓk+1, ℓk+1

})
> 0.

Consider now player 1 switching to vh,k+1. By the utility functions (Case (5)), player 1

gets utility 1 if and only if player 2 chooses a literal from {ℓh, ℓh, ℓk+1, ℓk+1} and all non-special

players choose δ. Hence,

U1 (σ−1 ⋄ vh,k+1) = σ2

({
ℓh, ℓh, ℓk+1, ℓk+1

})
·
∏

i∈[r]\[2]

σi (δ) .

Since ℓk is a best-response for player 1 to σ−1, it follows that

σ2

({
ℓk, ℓk+1, ℓk+1

})
·
∏

i∈[r]\[2]

σi (δ) ≥ σ2

({
ℓh, ℓh, ℓk+1, ℓk+1

})
·
∏

i∈[r]\[2]

σi (δ) .

By Lemma 5.3 (Condition (2)),
∏

i∈[r]\[2] σi (δ) 6= 0; thus, it follows that

σ2

({
ℓk, ℓk+1, ℓk+1

})
≥ σ2

({
ℓh, ℓh, ℓk+1, ℓk+1

})
,

which implies that

σ2

({
ℓk, ℓk

})
≥ σ2 ({ℓk}) ≥ σ2

({
ℓh, ℓh

})
.
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Since σ2
({

ℓh, ℓh
})

> 0, it follows that σ2
({

ℓk, ℓk
})

> 0. This completes the proof of Condition

(1).

We continue with Condition (C.2). Claim 5.6 implies that there are at least two distinct

indices j, h ∈ In with σ1
({

ℓj , ℓj
})

> 0 and σ1
({

ℓh, ℓh
})

> 0. If {k − 3, k − 2} = {j, h}, then
we are done. So assume that {k − 3, k − 2} 6= {j, h}. This implies that either k − 3 6= j and

k − 2 6= j or k − 3 6= h and k − 2 6= h. Choose k − 3 6= h and k − 2 6= h.

Since σ2
({

ℓk, ℓk
})

> 0, either ℓk or ℓk is a best-response for player 2 to σ−2; assume,

without loss of generality, that ℓk is a best-response for player 2 to σ−2. Consider player 2

switching to ℓk. By the utility functions (Cases (1), (2) and (4)), player 2 gets utility 1 if and

only if player 1 chooses a literal from {ℓk−2, ℓk−2, ℓk−3, ℓk−3} and all non-special players choose

δ. Hence,

U2 (σ−2 ⋄ ℓk) = σ1

({
ℓk−2, ℓk−2, ℓk−3, ℓk−3

})
·
∏

i∈[r]\[2]

σi (δ) .

Consider player 2 switching to vh,k−2. By the utility functions (Case (5)), player 2 gets

utility 1 if and only if player 1 chooses a literal from {ℓh, ℓh, ℓk−2, ℓk−2} and all non-special

players choose δ. Hence,

U2 (σ−2 ⋄ vh,k−2) = σ1

({
ℓh, ℓh, ℓk−2, ℓk−2

})
·
∏

i∈[r]\[2]

σi (δ) .

Since ℓk is a best-response for player 2 to σ−2, it follows that

σ1

({
ℓk−2, ℓk−2, ℓk−3, ℓk−3

})
·
∏

i∈[r]\[2]

σi (δ) ≥ σ1

({
ℓh, ℓh, ℓk−2, ℓk−2

})
·
∏

i∈[r]\[2]

σi (δ) .

By Lemma 5.3 (Condition (2)),
∏

i∈[r]\[2] σi (δ) 6= 0; thus, it follows that

σ1

({
ℓk−2, ℓk−2, ℓk−3, ℓk−3

})
≥ σ1

({
ℓh, ℓh, ℓk−2, ℓk−2

})
,

which implies that

σ1

({
ℓk−3, ℓk−3

})
≥ σ1

({
ℓh, ℓh

})
.

Since σ1
({

ℓh, ℓh,
})

> 0, it follows that σ1
({

ℓk−3, ℓk−3

})
> 0.

Consider now player 2 switching to vh,k−3. By the utility functions (Case (5)), player 2

gets utility 1 if and only if player 1 chooses a literal from {ℓh, ℓh, ℓk−3, ℓk−3} and all non-special

players choose δ. Hence,

U2 (σ−2 ⋄ vh,k−3) = σ1

({
ℓh, ℓh, ℓk−3, ℓk−3

})
·
∏

i∈[r]\[2]

σi (δ) .

Since ℓk is a best-response for player 2 to σ−2, it follows that

σ1

({
ℓk−2, ℓk−2, ℓk−3, ℓk−3

})
·
∏

i∈[r]\[2]

σi (δ) ≥ σ1

({
ℓh, ℓh, ℓk−3, ℓk−3

})
·
∏

i∈[r]\[2]

σi (δ) .
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By Lemma 5.3 (Condition (2)),
∏

i∈[r]\[2] σi (δ) 6= 0; thus, it follows that

σ1

({
ℓk−2, ℓk−2, ℓk−3, ℓk−3

})
≥ σ1

({
ℓh, ℓh, ℓk−3, ℓk−3

})
,

which implies that

σ1

({
ℓk−2, ℓk−2

})
≥ σ1

({
ℓh, ℓh

})
.

Since σ1
({

ℓh, ℓh,
})

> 0, it follows that σ1
({

ℓk−2, ℓk−2

})
> 0, and this completes the proof.

We continue to prove:

Claim 5.8 Fix a player i ∈ [2]. Then, for each index j ∈ In, σi
({

ℓj, ℓj
})

> 0.

Proof: Assume, by way of contradiction, that there is an index j ∈ In with σi
({

ℓj , ℓj
})

= 0.

Without loss of generality, take that σi
({

ℓj+1, ℓj+1

})
> 0. There are two cases: (1) i = 1.

By Claim 5.7 (Condition (C.1)), σ2
({

ℓj+2, ℓj+2

})
> 0; hence, by Claim 5.7 (Condition (C.2)),

σ1
({

ℓj , ℓj
})

> 0. A contradiction. (2) i = 2. By Claim 5.7 (Condition (C.2)), σ1
({

ℓj−1, ℓj−1

})
>

0; hence, by Claim 5.7 (Condition (C.1)), σ2
({

ℓj , ℓj
})

> 0. A contradiction.

To prove that for each index j ∈ In, σi
({

ℓj , ℓj
})

=
σi(L)
n , assume, by way of contradiction,

that there is an index j ∈ In with

σi

({
ℓj, ℓj

})
> σi

({
ℓj+1, ℓj+1

})
.

Fix now i := 2. We proceed by case analysis.

1. Assume first that there is an index k ∈ In \ {j, j + 1} with

σ1

({
ℓk, ℓk

})
> σ1

({
ℓj+1, ℓj+1

})
.

By Claim 5.8, either ℓj+3 or ℓj+3 is a best-response for player 2 to σ−2; assume, without

loss of generality, that ℓj+3 is such a best-response. Consider first player 2 switching to

ℓj+3. By the utility functions (Cases (3) and (4)), player 2 gets utility 1 if and only if

player 1 chooses a literal from
{
ℓj , ℓj, ℓj+1, ℓj+1

}
and all non-special players choose δ.

Hence,

U2 (σ−2 ⋄ ℓj+3) = σ1

({
ℓj , ℓj , ℓj+1, ℓj+1

})
·
∏

i∈[r]\[2]

σi(δ) .

Consider now player 2 switching to the variable vj,k. By the utility functions (Case

(5/b)), player 2 gets utility 1 if and only if player 1 chooses a literal from
{
ℓj, ℓj, ℓk, ℓk

}

and all non-special players choose δ. Hence,

U2 (σ−2 ⋄ vj,k) = σ1

({
ℓj, ℓj , ℓk, ℓk

})
·
∏

i∈[r]\[2]

σi(δ) .
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Since ℓj+3 is a best-response for player 2 to σ−2, it follows that

σ1

({
ℓj, ℓj , ℓj+1, ℓj+1

})
·
∏

i∈[r]\[2]

σi(δ) ≥ σ1

({
ℓj, ℓj , ℓk, ℓk

})
·
∏

i∈[r]\[2]

σi(δ).

By Lemma 5.3 (Condition (2)),
∏

i∈[r]\[2] σi(δ) 6= 0; thus, it follows that

σ1

({
ℓj, ℓj , ℓj+1, ℓj+1

})
≥ σ1

({
ℓj, ℓj , ℓk, ℓk

})
,

which implies that

σ1

({
ℓj+1, ℓj+1

})
≥ σ1

({
ℓk, ℓk

})
.

A contradiction.

2. Assume now that there is no index k ∈ In \ {j, j + 1} with

σ1

({
ℓk, ℓk

})
> σ1

({
ℓj+1, ℓj+1

})
.

It follows that for each index k ∈ In \ {j, j + 1},

σ1

({
ℓk, ℓk

})
≤ σ1

({
ℓj+1, ℓj+1

})
.

Choose k := j + 2; so,

σ1

({
ℓj+2, ℓj+2

})
≤ σ1

({
ℓj+1, ℓj+1

})
.

Consider first player 2 switching to ℓj+4. By the utility functions (Cases (3) and (4)),

player 2 gets utility 1 if and only if player 1 chooses a literal from
{
ℓj+1, ℓj+1, ℓj+2, ℓj+2

}

and all non-special players choose δ. Hence,

U2 (σ−2 ⋄ ℓj+4) = σ1

({
ℓj+1, ℓj+1, ℓj+2, ℓj+2

})
·
∏

i∈[r]\[2]

σi(δ) .

Consider now player 2 switching to the variable vj,j+1. By the utility functions (Case

(5)), player 2 gets utility 1 if and only if player 1 chooses a literal from
{
ℓj, ℓj , ℓj+1, ℓj+1

}
.

and all non-special players choose δ. Hence,

U2 (σ−2 ⋄ vj,j+1) = σ1

({
ℓj, ℓj , ℓj+1, ℓj+1

})
·
∏

i∈[r]\[2]

σi(δ) .

Since ℓj is a best-response for player 1 to σ−1, it follows that

σ1

({
ℓj+1, ℓj+1, ℓj+2, ℓj+2

})
·
∏

i∈[r]\[2]

σi(δ) ≥ σ1

({
ℓj, ℓj , ℓJ+1, ℓj+1

})
·
∏

i∈[r]\[2]

σi(δ).

By Lemma 5.3 (Condition (2)),
∏

i∈[r]\[2] σi(δ) 6= 0; hence, it follows that

σ1

({
ℓj+1, ℓ+1j , ℓj+2, ℓj+2

})
≥ σ1

({
ℓj, ℓj , ℓj+1, ℓj+1

})
,

which implies that

σ1

({
ℓj+2, ℓj+2

})
≥ σ1

({
ℓj, ℓj

})
.
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It follows that

σ1

({
ℓj+1, ℓj+1

})
≥ σ1

({
ℓj, ℓj

})
.

A contradiction.

We use a corresponding argument to establish the claim when i = 1.

We prove that in a Nash equilibrium from NE(G) \ NE(Ĝ), each non-special player chooses δ.

Lemma 5.9 Fix a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ). Then, for each player i ∈ [r] \ [2],
σi(δ) = 1.

Proof: Assume, by way of contradiction, that there is a player i ∈ [r] \ [2] with σi(δ) < 1.

Since Σi = Σ̂i ∪ {δ}, this implies that σi(Σ̂i) > 0. Lemma 5.3 (Condition (2)) implies that

σi(Σ̂i) < 1. Since Σi = Σ̂i ∪ {δ}, it follows that σi(δ) > 0.

By Lemma 5.4, there is a literal ℓj ∈ Supp(σ1). Consider player 1 switching to ℓj . By the

utility functions, player 1 gets utility 1 if and only if player 2 chooses a literal from {ℓj , ℓj+1, ℓj+1}
and each non-special player chooses δ (Cases (1), (2) and (4)). Hence,

U1 (σ−1 ⋄ ℓj)
=

∏
i′ /∈[2]∪{i} σi′ (δ) · σi(δ) · σ2

({
ℓj, ℓj+1, ℓj+1

})

≤ σi(δ) · 2 · σ2(L)
n (by Lemma 5.5)

< 2 · σ2(L)
n (since σi(δ) < 1) .

Consider now player 1 switching to a strategy s ∈ Σ̂1. By the utility functions, player 1

gets utility 1 if player 2 chooses a literal from {ℓ0, ℓ0, ℓ1, ℓ1} (Case (10)). Then, by Lemma 5.5,

U1(σ−1 ⋄ s) ≥ 2 · σ2(L)

n
.

By Lemma 5.4, σ2(L) > 0. This implies that

U1(σ−1 ⋄ s) > U1(σ−1 ⋄ ℓj) .

Since σ is a Nash equilibrium and ℓj ∈ Supp(σ1), Lemma 2.1 (Condition (2)) implies that

U1(σ−1 ⋄ s) ≤ U1(σ−1 ⋄ ℓj) .

A contradiction.
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Lemma 5.9 implies that for a Nash equilibrium σ ∈ NE(G) \NE(Ĝ), the utility of each special

player i ∈ [2] in either σ or σ−i ⋄ s, where s ∈ Σi, is solely determined by the strategies chosen

by the two special players. We prove that each special player is exclusively playing literals.

Lemma 5.10 (Special Players Only Play Literals) Fix a Nash equilibrium σ ∈ NE(G) \
NE(Ĝ) and a special player i ∈ [2]. Then, σi(L) = 1.

Proof: By Lemma 5.4, there is a literal ℓj ∈ Supp(σi). Consider player i switching to ℓj .

By the utility functions, Lemma 5.9 implies that player i gets utility 1 if and only if player i

chooses a literal from
{
ℓj, ℓj+1, ℓj+1

}
(Cases (1), (2) and (4), with i = 2) (resp., player i chooses

a literal from
{
ℓj−2, ℓj−2, ℓj−3, ℓj−3

}
(Cases (3) and (4), with i = 1)). Hence, for i = 2,

Ui(σ−i ⋄ ℓj) = σi

({
ℓj , ℓj+1, ℓj+1

})
,

while for i = 1,

Ui(σ−i ⋄ ℓj) = σi

({
ℓj−2, ℓj−2, ℓj−3, ℓj−3

})
,

By Lemma 5.5, these imply that

Ui(σ−i ⋄ ℓj) ≤ 2 · σi(L)

n
.

Consider now player i switching to a strategy s ∈ Σ̂i.

Assume, by way of contradiction, that σi (C ∪ V) > 0. By the utility functions, player i gets

utility 1 if player i chooses a strategy s ∈
{
ℓ0, ℓ0, ℓ1, ℓ1

}
∪ C ∪ V (Case (10)). Then,

Ui(σ−i ⋄ s) ≥ σi

({
ℓ0, ℓ0, ℓ1, ℓ1

})
+ σi (C ∪ V)

> σi

({
ℓ0, ℓ0, ℓ1, ℓ1

})
(since σi (C,V) > 0)

≥ 2 · σ2(L)
n . (by Lemma 5.5) .

By Lemma 5.4, σ2(L) > 0. This implies that

Ui(σ−i ⋄ s) > Ui(σ−i ⋄ ℓj) .

Since σ is a Nash equilibrium and ℓj ∈ Supp(σi), Lemma 2.1 (Condition (2)) implies that

Ui(σ−i ⋄ s) ≤ Ui(σ−i ⋄ ℓj) .

A contradiction. It follows that σi (C ∪ V) = 0.

Assume, by way of contradiction, that σi(Σ̂i) > 0. By the utility functions, player i gets

utility 1 if player i chooses a strategy s ∈ {ℓ0, ℓ0, ℓ1, ℓ1} ∪ Σ̂i (Cases (8) and (10)). Then,

Ui(σ−i ⋄ s) ≥ σi

({
ℓ0, ℓ0, ℓ1, ℓ1

})
+ σi

(
Σ̂i

)

> σi

({
ℓ0, ℓ0, ℓ1, ℓ1

})
(since σi

(
Σ̂i

)
> 0)

≥ 2 · σ2(L)
n . (by Lemma 5.5) .
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By Lemma 5.4, σ2(L) > 0. This implies that

Ui(σ−i ⋄ s) > Ui(σ−i ⋄ ℓj) .

Since σ is a Nash equilibrium and ℓj ∈ Supp(σi), Lemma 2.1 (Condition (2)) implies that

Ui(σ−i ⋄ s) ≤ Ui(σ−i ⋄ ℓj) .

A contradiction. It follows that σi(Σ̂i) = 0.

Since σi(C ∪ V) = σi(Σ̂i) = 0, it follows that σi(L) = 1, and we are done.

In view of Lemma 5.10, a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ) will be called a literal equi-

librium. The next property of such literal equilibria is that the two special players are playing

literals in a consistent way: for each literal, the two special players are both playing either the

literal or its negation; this will imply that a literal equilibrium induces an assignment for φ.

Lemma 5.11 Fix a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ) and a literal ℓ ∈ L. Then, σ1(ℓ) ·
σ2(ℓ) = 0.

Proof: Lemmas 5.5 and 5.10 imply together that for each player i ∈ [2] and for each literal

ℓj ∈ L, σi
({

ℓj , ℓj
})

= 1
n . Assume, by way of contradiction, that σ1(ℓj) · σ2(ℓj) > 0. This

implies that σ2(ℓj) <
1
n . Hence, by the utility functions (Cases (1), (2) and (4)),

U1(σ)

= U1(σ ⋄ ℓj) (by Lemma 2.1 (Condition (1)))

= σ2(ℓj) + σ2

({
ℓj+1, ℓj+1

})

< 2
n .

Consider now player 1 switching to a strategy s ∈ Σ̂1. Then, by the utility functions (Case

(10)), player 1 gets utility 1 if player 2 chooses a literal from
{
ℓ0, ℓ0, ℓ1, ℓ1

}
. So,

U1 (σ−1 ⋄ s) ≥ σ2

({
ℓ0, ℓ0, ℓ1, ℓ1

})
=

2

n
.

A contradiction.

We finally conclude:

Corollary 5.12 Fix a Nash equilibrium σ ∈ NE(G) \ NE(Ĝ). Then, the following conditions

hold:

(C.1) σ induces an assignment γ(σ) for φ.
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(C.2) For each player i ∈ [2], σi is a uniform distribution on γ(σ).

(C.3) U1(σ) = U2(σ) =
2
n .

Proof: Condition (C.1) follows from Lemma 5.11. Condition (C.2) follows from Condition

(C.1) and Lemma 5.5. Condition (C.3) follows from Condition (C.2) and the utility functions

(Cases (2), (3) and (4)).

5.3 Proof of the Reduction

We are now ready to prove:

Proposition 5.13 Assume that φ is unsatisfiable. Then, NE(G) = NE(Ĝ).

We prepare the reader that the property that each clause c of φ contains K ≥ 3 literals is

necessary for the proof in order to render the deviation to c profitable in a Nash equilibrium.

The assumption that φ is a 3SAT formula guarantees this property.

Proof: By Lemma 5.3 (Condition (C.1)), NE(Ĝ) ⊆ NE(G). So, assume, by way of contradic-

tion, that there is a Nash equilibrium σ ∈ NE(G)\NE(Ĝ). By Corollary 5.12 (Conditions (C.1)

and (C.3)), σ induces an assignment γ for φ, and for each player i ∈ [2], Ui(σ) =
2
n . Denote

as c the clause not satisfied by γ. Consider a special player i ∈ [2] switching to c. Since φ is

a 3SAT formula, there are three literals in c; for each such literal ℓ, Corollary 5.12 (Condition

(C.2)) implies that σi(ℓ) =
1
n . Thus, Ui(σ−i ⋄ c) = 3

n . So, Ui(σ−i ⋄ c) > Ui(σ). A contradiction

to Lemma 2.1 (Condition (2)).

We continue to prove:

Proposition 5.14 Assume that φ is satisfiable. Then, for each satisfying assignment γ, G has

a symmetric Nash equilibrium σ = σ(γ) ∈ NE(G) \ NE(Ĝ) such that for each player i ∈ [2]:

(C.1) |Supp(σi)| = n.

(C.2) Ui(σ) =
2
n .

(C.3) Supp(σi) ∩ Σ̂i = ∅.

(C.4) For each literal ℓ ∈ L set to true by γ, ℓ ∈ Supp(σi) with σi(ℓ) =
1
n .
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We prepare the reader that the property that each clause c of φ contains K ≤ 3 literals is

necessary for the proof in order to render the deviation of a player to c non-profitable in a Nash

equilibrium. The assumption that φ is a 3SAT formula guarantees this property. Clearly, the

assumption that φ is a 3SAT formula is the unique assumption that simultaneously guarantees

both this property and the property needed for the proof of Proposition 5.13.

Proof: Construct the mixed profile σ where, for each special player i ∈ [2], for each literal

ℓ ∈ L set to true by γ, σi(ℓ) :=
1
n ; for each non-special player i ∈ [r] \ [2], σi(δ) := 1. Clearly,

Conditions (C.1), (C.3) and (C.4) hold by construction; Condition (C.2) holds by the utility

functions (Cases (2), (3) and (4)). It remains to prove that σ is a Nash equilibrium. There are

four possible deviations for a special player i ∈ [2]:

• To a strategy s ∈ Σ̂: By the utility functions (Case (10)), player i gets utility 1 for two

possible choices of literals by player i: ℓ0 (resp., ℓ0) and ℓ1 (resp., ℓ1). Hence, Ui (σ−i ⋄ s) =
2
n .

• To a literal ℓ ∈ L: By the utility functions (Cases (1), (2), (3) and (4)), player i gets utility

1 for at most two possible choices of literals by player i. Hence, Ui (σ−i ⋄ s) ≤ 2
n .

• To a strategy vj,k ∈ V: By the utility functions (Case (5)), player i gets utility 1 for two

possible choices of literals by player i: ℓj or ℓj , and ℓk or ℓk. Hence, Ui (σ−i ⋄ vj,k) = 2
n .

• To a clause c = {ℓ, ℓ′, ℓ′′} ∈ C: Since γ is a satisfying assignment, γ satisfies c. So, at least

one of the literals from {ℓ, ℓ′, ℓ′′} is in γ(σ). Since φ is a 3SAT formula, this implies

that at most two of the literals from
{
ℓ, ℓ

′
, ℓ

′′
}

are not in γ(σ). Hence, by construction,

σi

({
ℓ, ℓ

′
, ℓ

′′
})
≤ 2

n . By the utility functions (Case (6)), player i gets utility 1 if and only

if player i chooses a literal from
{
ℓ, ℓ

′
, ℓ

′′
}
. It follows that Ui (σ−i ⋄ c) ≤ 2

n .

Hence, player i ∈ [2] cannot improve by switching. Consider now a non-special player i ∈ [r]\[2].
By construction, σi(δ) = 1; hence, it follows, by the utility functions (Cases (2), (3) and (4)),

that Ui (σ) = 1, and player i cannot improve by switching. So σ is a Nash equilibrium.

Fix a win-lose game Ĝ with the positive utility property. By Propositions 5.13 and 5.14, G(Ĝ, φ)

and Ĝ are Nash-equivalent if and only if φ is unsatisfiable. So 3SAT reduces in polynomial time

to NASH-EQUIVALENCE(Ĝ), so that, restricted to win-lose games, NASH-EQUIVALENCE(Ĝ) is

co-NP-hard. We shall later strengthen this co-NP-hardness result to the more restricted class

of symmetric win-lose bimatrix games (Theorem 7.7). By Propositions 5.13 and 5.14,

|NE (G)| =
∣∣∣NE

(
Ĝ
)∣∣∣+#φ .
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Note that |NE(Ĝ)| is a fixed constant when Ĝ is independent of φ. Since computing #φ (resp.,

⊕φ) for a 3SAT formula φ is #P-hard [35] (resp., ⊕P-hard [33]), it follows that computing the

number (resp., the parity of the number) of Nash equilibria for a win-lose bimatrix game is

#P-hard (resp., ⊕P-hard). We shall later strengthen the #P-hardness and the ⊕P-hardness
to the more restricted class of symmetric win-lose bimatrix games (Theorem 6.8).

6 The Win-Lose GHR-Symmetrization

For a given integer n ≥ 2, denote as 0n the n-dimensional null function 0n : [n] → {0}; it is

represented as the n-dimensional null vector in the natural way. Denote as 0n×n the n×n null

matrix. For a positive n-dimensional vector ρ ∈ [0, 1]n, denote as ̺ the normalization of ρ to

a probability vector; so, for each index j ∈ [n], ̺(j) =
ρ(j)∑

k∈[n] ρ(k)
.

Given the bimatrix game G = 〈R,C〉 and two functions f, g : [n]→ R, define

U1(f, g) :=
∑

s1,s2∈[n]

f(s1) · g(s2) · R[s1, s2]

and

U2(f, g) :=
∑

s1,s2∈[n]

f(s1) · g(s2) · C[s1, s2] .

So, U1(f, g) and U2(f, g) become the expected utilities of players 1 and 2, respectively, in G

when f and g are mixed strategies.

6.1 Definition

Definition 6.1 The GHR-symmetrization [21] of the bimatrix game 〈R,C〉, denoted as GHR (〈R,C〉),
is the symmetric bimatrix game 〈S,ST〉, where S is the 2n × 2n matrix

S =

(
0n×n R

CT 0n×n

)
;

so,

ST =

(
0n×n C

RT 0n×n

)
.

Note that the GHR-symmetrization of 〈R,C〉 is polynomial time computable. For shorter nota-

tion, denote G̃ := GHR (〈R,C〉). Clearly, when 〈R,C〉 is a win-lose game, so also is GHR (〈R,C〉).
To emphasize this property, we shall term the GHR-symmetrization as the win-lose GHR-

symmetrization. We further observe:
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S ST

−→σ1

←−σ1

−→σ1

←−σ1

−→σ2
←−σ2

−→σ2
←−σ2

CT 0n×n RT 0n×n

0n×n R 0n×n C

Figure 3: The bimatrix game G̃ = 〈S,ST〉 with the mixed profile σ.

Lemma 6.1 The win-lose GHR-symmetrization preserves the positive utility property.

Given a mixed profile σ = 〈σ1, σ2〉 for G̃, denote, for each player i ∈ [2], as −→σi (resp., ←−σi) the

restriction of σi to the last (resp., first) n strategies of player i, so that for each strategy j ∈ [n],
←−σi(j) = σi(j) and

−→σi(j) = σi(n+ j). Thus, σi =
←−σi ◦−→σi is the concatenation of←−σi and −→σi , which

are its first and second component, respectively; σ = 〈←−σ1 ◦ −→σ1,←−σ2 ◦ −→σ2〉, where←−σ1 ◦−→σ1 and←−σ2 ◦−→σ2
are the first and second entry, respectively, of σ. See Figure 3 for a pictorial representation of

the components ←−σ1 and −→σ1 (resp., ←−σ2 and −→σ2) and their association with the blocks R and CT

(resp., C and RT) of S (resp., ST). We observe:

Observation 6.1 The expected utilities Ũ1(σ) and Ũ2(σ) are:

(Eq. 1) Ũ1(σ) =
∑

s1,s2∈[n]

←−σ1(s1)
−→σ2(s2) · R[s1, s2] +

∑

s1,s2∈[n]

−→σ1(s1)
←−σ2(s2) · C[s2, s1] .

(Eq. 2) Ũ2(σ) =
∑

s1,s2∈[n]

←−σ1(s1)
−→σ2(s2) · C[s1, s2] +

∑

s1,s2∈[n]

−→σ1(s1)
←−σ2(s2) · R[s2, s1] .

Proof: It is evident from Figure 3 that

Ũ1(σ) = E(s1,s2)∼σS[s1, s2]

= E(s1,s2)∼(
←−σ1,
−→σ2)R[s1, s2] + E(s1,s2)∼(

−→σ1,
←−σ2)C

T[s1, s2]

= E(s1,s2)∼(
←−σ1,
−→σ2)R[s1, s2] + E(s1,s2)∼(

−→σ1,
←−σ2)C[s2, s1]

=
∑

s1,s2∈[n]

←−σ1(s1)
−→σ2(s2) · R[s1, s2] +

∑

s1,s2∈[n]

−→σ1(s1)
←−σ2(s2) · C[s2, s1] ,

and

Ũ2(σ) = E(s1,s2)∼σS
T[s1, s2]

= E(s1,s2)∼(
←−σ1,
−→σ2)C[s1, s2] + E(s1,s2)∼(

−→σ1,
←−σ2)R

T[s1, s2]

= E(s1,s2)∼(
←−σ1,
−→σ2)C[s1, s2] + E(s1,s2)∼(

−→σ1,
←−σ2)R[s2, s1]

=
∑

s1,s2∈[n]

←−σ1(s1)
−→σ2(s2) · C[s1, s2] +

∑

s1,s2∈[n]

−→σ1(s1)
←−σ2(s2) · R[s2, s1] ,
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as needed.

By Observation 6.1, it immediately follows:

Observation 6.2 For a given strategy s ∈ [2n], the conditional expected utilities are:

(Eq. 1) Ũ1(σ−1 ⋄ s) =

{ ∑
s2∈[n]

−→σ2(s2) · R[s, s2] , s ∈ [n]
∑

s2∈[n]
←−σ2(s2) · C[s2, s− n] , s ∈ [2n] \ [n] ,

(Eq. 2) Ũ2(σ−2 ⋄ s) =

{ ∑
s1∈[n]

−→σ1(s1) · R[s, s1] , s ∈ [n]∑
s1∈[n]

←−σ1(s1) · C[s1, s− n] , s ∈ [2n] \ [n] .

We now prove a characterization of the supports of a Nash equilibrium for the win-lose GHR-

symmetrization of a bimatrix game with the positive utility property.

Lemma 6.2 Fix a win-lose bimatrix game G = 〈R,C〉 with the positive utility property, and

consider its win-lose GHR-symmetrization G̃ with a Nash equilibrium σ. Then, there are only

three possible cases:

(C.1) ←−σ1,−→σ1,←−σ2,−→σ2 6= 0n.

(C.2) ←−σ1,−→σ2 = 0n and −→σ1,←−σ2 6= 0n.

(C.3) −→σ1,←−σ2 = 0n and ←−σ1,−→σ2 6= 0n.

Proof: Since σ1 and σ2 are mixed strategies, the following four implications hold trivially:

(I.1) ←−σ1 = 0n ⇒ −→σ1 6= 0n; (I.2) −→σ1 = 0n ⇒ ←−σ1 6= 0n; (I.3) ←−σ2 = 0n ⇒ −→σ2 6= 0n; (I.4) −→σ2 = 0n ⇒ ←−σ2 6= 0n.

We now prove: (I.5) ←−σ1 = 0n ⇒ ←−σ2 6= 0n: Assume, by way of contradiction, that ←−σ1 = 0n

and ←−σ2 = 0n. Then, no profile 〈s1, s2〉 is supported in 〈←−σ1,−→σ2〉 and no profile 〈s1, s2〉 is sup-

ported in 〈−→σ1,←−σ2〉. By the formula for Ũ1(σ) in Observation 6.1 (Eq. 1), these imply that

Ũ1(σ) = 0. By Lemmas 2.2 and 6.1, Ũ1(σ) > 0. A contradiction. In a corresponding way,

the following three implications are proved: (I.6) −→σ1 = 0n ⇒ −→σ2 6= 0n; (I.7) ←−σ2 = 0n ⇒ ←−σ1 6= 0n;

(I.8) −→σ2 = 0n ⇒ −→σ1 6= 0n.

We finally prove: (I.9) ←−σ1 = 0n ⇒ −→σ2 = 0n. Assume, by way of contradiction, that ←−σ1 = 0n

and−→σ2 6= 0n. Then, there is a strategy s2 ∈ [2n]\[n] with−→σ2(s2−n) > 0; so, s2 ∈ Supp(σ2). Since
←−σ1 = 0n, it follows from the formula for Ũ2 (σ) in Observation 6.2 (Eq. 2) with σ = σ−2⋄s2 that
Ũ2 (σ−2 ⋄ s2) = 0. Since σ is a Nash equilibrium and s2 ∈ Supp(σ2), Lemma 2.1 (Condition

(1)) implies that Ũ2 (σ) = 0. By Lemmas 2.2 and 6.1, Ũ2 (σ) > 0. A contradiction. In

a corresponding way, the following three implications are proved: (I.10) −→σ1 = 0n ⇒ ←−σ2 = 0n;

(I.11) ←−σ2 = 0n ⇒ −→σ1 = 0n; (I.12) −→σ2 = 0n ⇒ ←−σ1 = 0n.

The claim follows now from the twelve implications.
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6.2 The Balanced Mixture

Fix a win-lose bimatrix game 〈R,C〉 with the positive utility property. We revisit a composition

among either (i) a pair of Nash equilibria for 〈R,C〉 or (ii) a Nash equilibrium for 〈R,C〉 and
the tuple of null vectors 〈0n, 0n〉 from [22].

Definition 6.2 Given ρ = 〈ρ1, ρ2〉 ∈ NE(〈R,C〉) ∪ {〈0n, 0n〉} and τ = 〈τ1, τ2〉 ∈
NE (〈R,C〉), the balanced mixture of ρ and τ is the pair

ρ ∗ τ :=

〈
U1(τ )

U1(τ ) + U2(ρ)
ρ1 ◦

U2(ρ)

U1(τ ) + U2(ρ)
τ2 ,

U1(ρ)

U1(ρ) + U2(τ )
τ1 ◦

U2(τ )

U1(ρ) + U2(τ )
ρ2

〉
,

and

τ ∗ ρ :=

〈
U1(ρ)

U1(ρ) + U2(τ )
τ1 ◦

U2(τ )

U1(ρ) + U2(τ )
ρ2 ,

U1(τ )

U1(τ ) + U2(ρ)
ρ1 ◦

U2(ρ)

U1(τ ) + U2(ρ)
τ2

〉
.

Roughly speaking, the balanced mixture doubles the strategy set of each player by concatenating

it to itself; it uses a suitable combination of the probabilities in ρ and τ and concatenates

together the resulting mixed strategies without modifying the players’ supports in ρ and τ .

Since 〈R,C〉 has the positive utility property, Lemma 2.2 implies that both U1(τ ) > 0 and

U2(τ ) > 0; since 〈R,C〉 is win-lose, both U1(ρ) ≥ 0 and U2(ρ) ≥ 0. It follows that both ρ ∗ τ
and τ ∗ρ are well-defined. It is straightforward to see that ρ∗τ and τ ∗ρ are mixed profiles for

the win-lose GHR-symmetrization. Thus, a balanced mixture maps the pair of ρ and τ to the

pair of mixed profiles ρ ∗ τ and τ ∗ ρ for the win-lose GHR-symmetrization. (We shall provide

an inverse map in Theorem 6.6.)

Note that the balanced mixture is an injective map as long as the supports (but not the

probabilities) are concerned. Note that when ρ = 〈0n, 0n〉, then ρ ∗ τ = 〈0n ◦ τ2, τ1 ◦ 0n〉 and
τ ∗ ρ = 〈τ1 ◦ 0n, 0n ◦ τ2〉; so, in ρ ∗ τ and τ ∗ ρ, the mixed strategies τ1 and τ2 are swapped

between the two players, while each is concatenated with 0n from left and right, respectively.

By abuse of notation, we shall often refer to each of ρ ∗ τ and τ ∗ ρ as a balanced mixture.

Note that ρ ∗ τ together with τ ∗ρ form a symmetric pair of mixed profiles: setting φ := ρ ∗ τ
with φ = 〈φ1, φ2〉 yields that τ ∗ ρ = 〈φ2, φ1〉. Clearly, ρ ∗ τ is uniform (resp., symmetric) if

and only if τ ∗ ρ is. We observe a simple uniformity property of the balanced mixture:

Observation 6.3 If (1) ρ = 〈0n, 0n〉, or (2) either ρ or τ is non-uniform, then both ρ ∗ τ and

τ ∗ ρ are non-uniform; thus, if ρ ∗ τ and τ ∗ ρ are uniform, then both ρ and τ are uniform.

We further prove a simple symmetry property of the balanced mixture:
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Lemma 6.3 A balanced mixture is symmetric if and only if it is the balanced mixture τ ∗τ for

some Nash equilibrium τ ∈ NE(〈R,C〉).

Proof: By Definition 6.2, the balanced mixture τ ∗τ is symmetric for τ ∈ NE(〈R,C〉). In the

other direction, consider the symmetric balanced mixture ρ∗τ , with ρ ∈ NE(〈R,C〉)∪{〈0n, 0n〉}
and τ ∈ NE(〈R,C〉); we shall prove that ρ = τ ∈ NE(〈R,C〉). Since ρ ∗ τ is symmetric, we

have that

U1(τ )

U1(τ ) + U2(ρ)
ρ1 =

U1(ρ)

U1(ρ) + U2(τ )
τ1

and

U2(ρ)

U1(τ ) + U2(ρ)
τ2 =

U2(τ )

U1(ρ) + U2(τ )
ρ2 .

This implies that ρ1 6= 0n and ρ2 6= 0n, so that ρ 6= 〈0n, 0n〉, which implies that ρ ∈ NE(〈R,C〉).
Since ρ1, ρ2, τ1 and τ2 are mixed strategies with each summing up its probabilities to 1, it follows

that ρ1 = τ1 and ρ2 = τ2; so, ρ = τ , as needed. An identical argument applies to the balanced

mixture τ ∗ ρ.

Finally, we observe:

Lemma 6.4 Consider the pair of Nash equilibria τ ,ρ ∈ NE (〈R,C〉). Then, for each player

i ∈ [2], Ũi (τ ∗ ρ) < max{U1(ρ),U1(τ ),U2(ρ),U2(τ )}.

Proof: First set i := 1. By Observation 6.1,

Ũ1 (τ ∗ ρ) =
∑

s1,s2∈[n]

U1(τ )

U1(τ ) + U2(ρ)
ρ1(s1) ·

U2(τ )

U1(ρ) + U2(τ )
ρ2(s2) · R[s1, s2]

+
∑

s1,s2∈[n]

U2(ρ)

U1(τ ) + U2(ρ)
τ2(s1) ·

U1(ρ)

U1(ρ) + U2(τ )
τ1(s2) · C[s2, s1]

Note that
U1(τ )

U1(τ ) + U2(ρ)
,

U2(τ )

U1(ρ) + U2(τ )
,

U2(ρ)

U1(τ ) + U2(ρ)
,

U1(ρ)

U1(ρ) + U2(τ )
< 1, with

U1(σ)

U1(τ ) + U2(ρ)
· U2(τ )

U1(ρ) + U2(τ )
+

U2(ρ)

U1(τ ) + U2(ρ)
· U1(ρ)

U1(ρ) + U2(τ )
< 1 .

It follows that

Ũ1 (τ ∗ ρ) < max{
∑

s1,s2∈[n]

ρ1(s1) · ρ2(s2) · R[s1, s2],
∑

s1,s2∈[n]

τ2(s1) · τ1(s2) · C[s1, s2]}

= max
{
U1(ρ),U2(τ )

}
.

In a corresponding way, we establish that Ũ2 (τ ∗ ρ) < max{U2(ρ),U1(τ )}. From these

together, the claim follows.
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6.3 Characterization of Nash Equilibria

Loosely speaking, Theorem 6.5 establishes that the balanced mixture yields Nash equilibria

for the win-lose GHR-symmetrization, which are thus induced by given Nash equilibria of the

bimatrix game G = 〈R,C〉 with the positive utility property; Theorem 6.6 establishes that every

Nash equilibrium for the win-lose GHR-symmetrization is the balanced mixture of either a pair

of Nash equilibria for the bimatrix game 〈R,C〉 or a Nash equilibrium with the null vector. We

first prove that the balanced mixture maps to the set of Nash equilibria for G̃.

Theorem 6.5 Consider the bimatrix game G = 〈R,C〉 with the positive utility property and its

win-lose GHR-symmetrization G̃. Fix ρ ∈ NE(〈R,C〉) ∪ {〈0n, 0n〉} and τ ∈ NE(〈R,C〉). Then,

ρ ∗ τ , τ ∗ ρ ∈ NE(G̃).

Proof: We prove that ρ∗τ ∈ NE(G̃). Denote φ = 〈φ1, φ2〉 := ρ∗τ . Consider a strategy j ∈ [n]

with j ∈ Supp(φ1). By the definition of the balanced mixture, this implies that j ∈ Supp(ρ1).

It follows that ρ ∈ NE (〈R,C〉). Hence,

U1(ρ)

= U1(ρ−1 ⋄ j) (by Lemma 2.1 (Condition (1)))

=
∑

s2∈[n]
ρ2(s2) · R[j, s2] (from the definition of 〈R,C〉)

= maxℓ∈[n]

{∑
s2∈[n]

ρ2(s2) · R[ℓ, s2]
}

(by Lemma 2.1 (Condition (2))) .

Hence, we get

Ũ1(φ−1 ⋄ j)
=

∑
s2∈[n]

−→
φ2(s2) · R[j, s2] (by Observation 6.2 (Eq. 1))

=
U2(τ )

U1(ρ) + U2(τ )

∑
s2∈[n]

ρ2(s2) · R[j, s2] (from the definition of φ)

=
U2(τ )

U1(ρ) + U2(τ )
max
ℓ∈[n]




∑

s2∈[n]

ρ2(s2) · R[ℓ, s2]





︸ ︷︷ ︸
=U1(ρ)

= maxℓ∈[n]

{∑
s2∈[2n]\[n]

−→
φ2(s2) · R[ℓ, s2]

}
(from the definition of φ)

= maxℓ∈[n]

{
Ũ1(φ−1 ⋄ ℓ)

}
(by Observation 6.2 (Eq. 1)) .

Hence, restricted to strategies from [n], strategy j ∈ [n] is a best-response for player 1 in φ,

with

Ũ1(φ−1 ⋄ j) =
U2(τ ) · U1(ρ)

U1(ρ) + U2(τ )
. (1)
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Consider now a strategy k ∈ [2n] \ [n] with k ∈ Supp(φ1). By the definition of the balanced

mixture, this implies that k − n ∈ Supp(τ2). It follows that ρ ∈ NE(〈R,C〉). Hence,

U2(τ )

= U1(τ−2 ⋄ (k − n)) (by Lemma 2.1 (Condition (1)))

=
∑

s1∈[n]
τ1(s1) · C[s1, k − n] (from the definition of 〈R,C〉)

= maxℓ∈[2n]\[n]

{∑
s1∈[n]

τ1(s1) · C[s1, ℓ− n]
}

(by Lemma 2.1 (Condition (2)))

Hence, we get

Ũ1(φ−1 ⋄ k)
=

∑
s1∈[n]

←−
φ2(s1) · C[s1, k − n] (by Observation 6.2 (Eq. 1))

=
U1(ρ)

U1(ρ) + U2(τ )

∑
s1∈[n]

τ1(s1) · C[s1, k − n] (from the definition of φ)

=
U1(ρ)

U1(ρ) + U2(τ )
max

ℓ∈[2n]\[n]




∑

s1∈[n]

τ1(s1) · C[s1, ℓ− n]





︸ ︷︷ ︸
=U2(τ)

= maxℓ∈[2n]\[n]

{∑
s1∈[n]

←−
φ2(s1) · C[s1, ℓ− n]

}
(from the definition of φ)

= maxℓ∈[2n]\[n]

{
Ũ1(φ−1 ⋄ ℓ)

}
(by Observation 6.2 (Eq. 1)), .

Hence, restricted to strategies from [2n] \ [n], strategy k ∈ [2n] \ [n] is a best-response for

player 1 in φ, with

Ũ1(φ−1 ⋄ k) =
U1(ρ) · U2(τ )

U1(ρ) + U2(τ )
. (2)

By (1) and (2), Ũ1(φ−1 ⋄ j) = Ũ1(φ−1 ⋄ k), which implies that all strategies played by player

1 in φ1 are best-responses to φ2. Similarly, we prove that all strategies played by player 2 in φ2

are best-responses to φ1. Hence, φ = ρ ∗ τ ∈ NE(G̃). Since G̃ is a symmetric game, and ρ ∗ τ
together with τ ∗ ρ form a symmetric pair of mixed profiles, it follows that τ ∗ ρ ∈ NE(G̃).

We now prove that a Nash equilibrium for G̃ is either the balanced mixture of two Nash equilibria

for 〈R,C〉, or the balanced mixture of a Nash equilibrium for 〈R,C〉 with 〈0n, 0n〉.

Theorem 6.6 Consider a bimatrix game G = 〈R,C〉 with the positive utility property, and its

win-lose GHR-symmetrization G̃ with a Nash equilibrium φ. Then, exactly one of the following

conditions hold:

(C’.1)
←−
φ1,
−→
φ1,
←−
φ2,
−→
φ2 6= 0n, with φ = 〈←−ϕ1,

−→ϕ2〉 ∗ 〈←−ϕ2,
−→ϕ1〉 and 〈←−ϕ2,

−→ϕ1〉, 〈←−ϕ1,
−→ϕ2〉 ∈ NE(〈R,C〉).

(C’.2)
←−
φ1 =

−→
φ2 = 0n, with φ = 〈0n, 0n〉 ∗ 〈←−ϕ2,

−→ϕ1〉 and 〈←−ϕ2,
−→ϕ1〉 ∈ NE(〈R,C〉).
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(C’.3)
−→
φ1 =

←−
φ2 = 0n, with φ = 〈0n, 0n〉 ∗ 〈←−ϕ1,

−→ϕ2〉 and 〈←−ϕ1,
−→ϕ2〉 ∈ NE(〈R,C〉).

Proof: Note that each of the Conditions (C’.1), (C’.2) and (C’.3) refines Condition (C.1),

(C.2) and (C.3), respectively, in Lemma 6.2, of which exactly one holds. We first prove that

Condition (C.3) in Lemma 6.2 implies Condition (C’.3). So assume
←−
φ1,
−→
φ1,
←−
φ2,
−→
φ2 6= 0n. Consider

a strategy j ∈ Supp(
←−
φ1); so, j ∈ [n]. By Observation 6.2 (Eq. 1),

Ũ1(φ−1 ⋄ j) =
∑

s2∈[n]

−→
φ2(s2) · R[j, s2] .

Since j is a best-response for player 1 to φ2, Lemma 2.1 implies that

∑

s2∈[n]

−→
φ2(s2) · R[j, s2] = max

ℓ∈[n]




∑

s2∈[n]

−→
φ2(s2) · R[ℓ, s2]



 .

Clearly, ←−ϕ1 is a mixed strategy for player 1 in the game 〈R,C〉 with Supp(←−ϕ1) = Supp(
←−
φ1).

Thus, by normalizing
−→
φ2, it follows that for each strategy j ∈ Supp(←−ϕ1),

∑

s2∈[n]

−→ϕ2(s2) · R[j, s2] = max
ℓ∈[n]




∑

s2∈[n]

−→ϕ2(s2) · R[ℓ, s2]



 . (3)

Consider now a strategy k ∈ Supp(
−→
φ2); so, k ∈ [n]. By Observation 6.2 (Eq. 2),

Ũ2(φ−2 ⋄ (k + n)) =
∑

s1∈[n]

←−
φ1(s1) · C[s1, k] .

Since k is a best-response for player 2 to φ1, it follows that

∑

s1∈[n]

←−
φ1(s1) · C[s1, k] = max

ℓ∈[n]




∑

s1∈[n]

←−
φ1(s1) · C[s1, k]



 .

Clearly, −→ϕ2 is a mixed strategy for player 2 in the game 〈R,C〉 with Supp(−→ϕ2) = Supp(
−→
φ2).

Thus, by normalizing
←−
φ1, it follows that for each strategy k ∈ Supp(

−→
φ2),

∑

s1∈[n]

←−ϕ1(s1) · C[s1, k] = max
ℓ∈[n]




∑

s1∈[n]

←−ϕ1(s1) · C[s1, k]



 . (4)

By (3) and (4), it follows that 〈←−ϕ1,
−→ϕ2〉 ∈ NE(〈R,C〉). Similarly, we prove that 〈←−ϕ2,

−→ϕ1〉 ∈
NE(〈R,C〉). Now it remains to prove that φ = 〈←−ϕ1,

−→ϕ2〉 ∗ 〈←−ϕ2,
−→ϕ1〉.

Fix now strategies j, k ∈ Supp(φ1) with j ∈ [n] and k ∈ [2n] \ [n]. Then, by Observation 6.2

(Eq. 1),

Ũ1(φ−1 ⋄ j) =
∑

s2∈[n]

−→
φ2(s2) · R[j, s2] ,
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and

Ũ1(φ−1 ⋄ k) =
∑

s1∈[n]

←−
φ2(s1) · C[s1, k − n] ;

also, for any fixed strategies j, k ∈ Supp(φ2) with j ∈ [n] and k ∈ [2n] \ [n], by Observation 6.2

(Eq. 2),

Ũ2(φ−2 ⋄ k) =
∑

s1∈[n]

←−
φ1(s1) · C[s1, k − n] ,

and

Ũ2(φ−2 ⋄ j) =
∑

s2∈[n]

−→
φ1(s2) · R[j, s2] .

Since φ is a Nash equilibrium for G̃, Lemma 2.1 (Condition (1)) implies that Ũ1(φ−1 ⋄ j) =
Ũ1(φ−1 ⋄ k) and Ũ2(φ−2 ⋄ j) = Ũ2(φ−2 ⋄ k). Hence,

∑

s2∈[n]

−→
φ2(s2) · R[j, s2] =

∑

s1∈[n]

←−
φ2(s1) · C[s1, k − n] (5)

and ∑

s1∈[n]

←−
φ1(s1) · C[s1, k − n] =

∑

s2∈[n]

−→
φ1(s2) · R[j, s2] , (6)

respectively. First, note that

U1

(〈←−
φ1,
−→
φ2

〉)

=
∑

s1,s2∈[n]

←−
φ1(s1)

−→
φ2(s2)R[s1, s2]

=
∑

s1∈[n]

←−
φ1(s1)

(∑
s2∈[n]

−→
φ2(s2)R[s1, s2]

)

=
(∑

s1∈[n]

←−
φ1(s1)

)
·


 ∑

s2∈[n]

−→
φ2(s2)R[s1, s2]




︸ ︷︷ ︸
for any strategy s1 ∈ [n] with

←−
φ1(s1) > 0

(by Lemma 2.1 (Condition (1))),

and

U2

(〈←−
φ2,
−→
φ1

〉)

=
∑

s1,s2∈[n]

←−
φ2(s1)

−→
φ1(s2)C[s1, s2]

=
∑

s2∈[n]

−→
φ1(s2)

(∑
s1∈[n]

←−
φ2(s1)C[s1, s2]

)

=
(∑

s2∈[n]

−→
φ1(s2)

)
·



∑

s1∈[n]

←−
φ2(s1)C[s1, s2]




︸ ︷︷ ︸
for any strategy s2 ∈ [n] with

−→
φ1(s2) > 0

(by Lemma 2.1 (Condition (1))).
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By (5), it follows that

U1

(〈←−
φ1,
−→
φ2

〉)
·∑s2∈[n]

−→
φ1(s2) = U2

(〈←−
φ2,
−→
φ1

〉)
·∑s1∈[n]

←−
φ1(s1) . (7)

Second, note that

U1

(〈←−
φ2,
−→
φ1

〉)

=
∑

s1,s2∈[n]

←−
φ2(s1)

−→
φ1(s2)R[s1, s2]

=
∑

s1∈[n]

←−
φ2(s1)

(∑
s2∈[n]

−→
φ1(s2)R[s1, s2]

)

=
(∑

s1∈[n]

←−
φ2(s1)

)
·



∑

s2∈[n]

−→
φ1(s2)R[s1, s2]




︸ ︷︷ ︸
for any strategy s1 ∈ [n] with

←−
φ2(s1) > 0

(by Lemma 2.1 (Condition (1))) ,

and

U2

(〈←−
φ1,
−→
φ2

〉)

=
∑

s1,s2∈[n]

←−
φ1(s1)

−→
φ2(s2)C[s1, s2]

=
∑

s2∈[n]

−→
φ2(s2)

(∑
s1∈[n]

←−
φ1(s1)C[s1, s2]

)

=
(∑

s2∈[n]

−→
φ2(s2)

)
·



∑

s1∈[n]

←−
φ1(s1)C[s1, s2]




︸ ︷︷ ︸
for any strategy s2 ∈ [n] with

−→
φ2(s2) > 0

(by Lemma 2.1 (Condition (1))) .

By (6), it follows that

U1

(〈←−
φ2,
−→
φ1

〉)
·∑s2∈[n]

−→
φ2(s2) = U2

(〈←−
φ1,
−→
φ2

〉)
·∑s1∈[n]

←−
φ2(s1) . (8)

Set←−p1 :=
∑

s1∈[n]

←−
φ1(s1);

−→p1, ←−p2 and −→p2 are defined in a corresponding way. Note that for each

i ∈ [2], ←−pi +−→pi = 1. By the definition of the balanced mixture, the first component of the first

entry of 〈←−ϕ1,
−→ϕ2〉 ∗ 〈←−ϕ2,

−→ϕ1〉 is
U1 (〈←−ϕ2,

−→ϕ1〉)
U1 (〈←−ϕ2,

−→ϕ1〉) + U2 (〈←−ϕ1,
−→ϕ2〉)

· ←−ϕ1

=
U1

(〈←−
φ2,
−→
φ1

〉)

←−p2 · −→p1 ·



U1

(〈←−
φ2,
−→
φ1

〉)

←−p2 · −→p1 +
U2

(〈←−
φ1,
−→
φ2

〉)

←−p1 · −→p2




1←−p1 ·
←−
φ1

=
U1

(〈←−
φ2,
−→
φ1

〉)

←−p1 · U1

(〈←−
φ2,
−→
φ1

〉)
+
←−p2 · −→p1−→p2 · U2

(〈←−
φ1,
−→
φ2

〉) · ←−φ1

=
U1

(〈←−
φ2,
−→
φ1

〉)

←−p1 · U1

(〈←−
φ2,
−→
φ1

〉)
+
←−p2 · −→p1−→p2 ·

−→p2←−p2 · U1

(〈←−
φ2,
−→
φ1

〉) · ←−φ1 (by (8))

=
←−
φ1 .
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The second component of the first entry of 〈←−ϕ1,
−→ϕ2〉 ∗ 〈←−ϕ2,

−→ϕ1〉 is

U2 (〈←−ϕ1,
−→ϕ2〉)

U1 (〈←−ϕ2,
−→ϕ1〉) + U2 (〈←−ϕ1,

−→ϕ2〉)
· −→ϕ1 =

(
1− U1 (〈←−ϕ2,

−→ϕ1〉)
U1 (〈←−ϕ2,

−→ϕ1〉) + U2 (〈←−ϕ1,
−→ϕ2〉)

)
−→ϕ1

= (1−←−p1) ·
1
−→p1
· −→φ1

=
−→
φ1 .

The first component of the second entry of 〈←−ϕ1,
−→ϕ2〉 ∗ 〈←−ϕ2,

−→ϕ1〉 is

U1 (〈←−ϕ1,
−→ϕ2〉)

U1 (〈←−ϕ1,
−→ϕ2〉) + U2 (〈←−ϕ2,

−→ϕ1〉)
· ←−ϕ2

=
U1

(〈←−
φ1,
−→
φ2

〉)

←−p1 · −→p2 ·



U1

(〈←−
φ1,
−→
φ2

〉)

←−p1 · −→p2 +
U2

(〈←−
φ2,
−→
φ1

〉)

←−p2 · −→p1




1←−p2 ·
←−
φ2

=
U1

(〈←−
φ1,
−→
φ2

〉)

←−p1 · U1

(〈←−
φ2,
−→
φ1

〉)
+
←−p2 · −→p1−→p2 · U2

(〈←−
φ2,
−→
φ1

〉) · ←−φ2

=
U1

(〈←−
φ1,
−→
φ2

〉)

←−p1 · Û1

(〈←−
φ2,
−→
φ1

〉)
+
←−p2 · −→p1−→p2 ·

−→p2←−p2 · U1

(〈←−
φ1,
−→
φ2

〉) · ←−φ2 (by (7))

=
←−
φ2 .

The second component of the second entry of 〈←−ϕ1,
−→ϕ2〉 ∗ 〈←−ϕ2,

−→ϕ1〉 is

U2(
←−ϕ2,
−→ϕ1)

U1(
←−ϕ1,
−→ϕ2) + U2(

←−ϕ2,
−→ϕ1)
· −→ϕ2 =

(
1− U1(

←−ϕ1,
−→ϕ2)

U1(
←−ϕ1,
−→ϕ2) + U2(

←−ϕ2,
−→ϕ1)

)
−→ϕ2

= (1−←−p2) ·
1
−→p2
· −→φ2

=
−→
φ2 .

The proofs that Condition (C.2) (resp., Condition (C.3)) implies Condition (C’.2) (resp.,

Condition (C’.3)) are corresponding.

Recall that the balanced mixture is an injective map as long as the supports (but not the

probabilities) are concerned, Hence, Proposition 6.5 implies that

|NE (GHR(G)) | ≥ |NEG|2 + 2 · |NE (G) | .

(The squared term comes from forming the pair of balanced mixtures ρ ∗ σ and σ ∗ ρ,
for each pair ρ,σ ∈ NE

(〈
S,ST

〉)
; the linear term comes from forming the pair of balanced

mixtures ρ ∗ 〈0n, 0n〉 and 〈0n, 0n〉 ∗ ρ, for each ρ ∈ NE
(〈
S,ST

〉)
.) Proposition 6.6 implies that

a Nash equilibrium for 〈S,ST〉 is induced via the balanced mixture either by a single Nash
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equilibrium (Cases (C’.2) and (C’.3)) or by a pair of Nash equilibria (Case (C’.1)) for G. Hence,

Proposition 6.6 establishes that the balanced mixture is a surjective map, so that

|NE (GHR(G)) | = |NE (G) |2 + 2 · |NE (G) |
= |NE (G) | · (|NE (G) |+ 2) .

Thus, Theorems 6.5 and 6.6 provide together a complete characterization of the Nash equi-

libria for the GHR-symmetrization 〈S,ST〉 in terms of those for 〈R,C〉; so computing a Nash

equilibrium for a win-lose bimatrix game and computing a Nash equilibrium for a symmetric

win-lose bimatrix game are polynomially equivalent problems.

6.4 Complexity of the Search Problem

Here is an algorithm to compute a Nash equilibrium for a win-lose bimatrix game G with the

positive utility property, with a single invocation of an algorithm to compute a Nash equilibrium

for a symmetric win-lose bimatrix game with the positive utility property:

(1) Construct the win-lose GHR-symmetrization GHR(G).

(2) Compute a Nash equilibrium φ for the symmetric win-lose game GHR(G).

(3) Recover a Nash equilibrium for G as follows:

(3.1) If
←−
φ1,
−→
φ1,
←−
φ2,
−→
φ2 6= 0n, then output 〈←−ϕ2,

−→ϕ1〉 (or 〈←−ϕ1,
−→ϕ2〉).

(3.2) If
←−
φ1 =

−→
φ2 = 0n, then output 〈←−ϕ2,

−→ϕ1〉.
(3.3) If

−→
φ1 =

←−
φ2 = 0n, then output 〈←−ϕ1,

−→ϕ2〉.

Correctness follows from Theorem 6.6. Since computing a Nash equilirium for a win-lose bima-

trix game with the positive utility property is PPAD-hard (Section 3), it immediately follows:

Theorem 6.7 Computing a Nash equilirium for a symmetric win-lose bimatrix game with the

positive utility property is PPAD-complete.

6.5 Complexity of the Counting Problem

It was a consequence of Propositions 5.13 and 5.14 that computing the number of Nash equilibria

for a win-lose bimatrix game is #P-hard. We now extend this result to symmetric win-lose

bimatrix games. We show:

Theorem 6.8 Computing the number (resp., the parity of the number) of Nash equilibria for

a symmetric win-lose bimatrix game is #P-complete (resp., ⊕P-complete).
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Proof: Fix a win-lose gadget game Ĝ and a 3SAT formula φ, inducing the win-lose bimatrix

game G = G(Ĝ, φ) and the symmetric win-lose bimatrix game G̃ = GHR(G). By Lemma 5.3

(Condition (1)) and Propositions 5.13 and 5.14,

|NE(G(Ĝ, φ))| = |NE(Ĝ)|+#φ .

Hence, by Theorems 6.5 and 6.6,

|NE(G̃)|
= (|NE(Ĝ)|+#φ)2︸ ︷︷ ︸

balanced mixtures of two Nash equilibria

+ 2 · (|NE(Ĝ)|+#φ)︸ ︷︷ ︸
balanced mixtures of a Nash equilibrium and 〈0n, 0n〉

= (|NE(Ĝ)|+#φ) · (|NE(Ĝ)|+#φ+ 2) ,

which can be solved for #φ. Since computing #φ is #P-hard [35], the #P-hardness follows.
Note that ⊕|NE(G̃)| = ⊕(|NE(Ĝ)| +#φ), from which ⊕φ can be computed. Since computing

⊕φ is ⊕P-hard [33], the ⊕P-hardness follows.

7 Complexity Results

Symmetric win-lose bimatrix games, win-lose bimatrix games and win-lose three-player games

are considered in Sections 7.1, 7.2 and 7.3, respectively. We first recall an informal summary of

the proof technique from Section 1.3. The win-lose reduction is used to obtain, given a suitable

win-lose gadget game Ĝ and a formula φ, a win-lose game G = G(Ĝ, φ); Propositions 5.13

and 5.14 are used to relate the properties of the Nash equilibria for G to the satisfiablity of φ.

For the case of symmetric win-lose bimatrix games, the GHR-symmetrization from Section 6 is

used to obtain from G the symmetric win-lose game G̃ = GHR(G); Theorems 6.5 and 6.6 are

used to relate the properties of the Nash equilibria for G̃ to those of the Nash equilibria for G.

In turn, this results in relating the properties of the Nash equilibria for G̃ to the satisfiability

of φ.

Recall that for bimatrix games, the win-lose reduction sets that the strategy set of each player

i ∈ [2] in G is Σi(G) = Σ̂i ∪ L ∪ V ∪ C.

7.1 Symmetric Win-Lose Bimatrix Games

Recall that the win-lose GHR-symmetrization mirrors the strategies of each player in a bimatrix

game. So, for each player i ∈ [2], Σi(G̃) = Σ̂i ∪ L ∪ V ∪ C ∪ Σ̂′
i ∪ L′ ∪ V′ ∪ C′, where the strategy

sets Σ̂′
i, L

′, V′ and C′ are mirrors of the strategy sets Σ̂i, L, V and C, respectively. We show:

Theorem 7.1 Restricted to symmetric win-lose bimatrix games, the following decision prob-

lems are NP-complete:
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Group I Group III

∃ NASH WITH SMALL UTILITIES ∃ NASH WITH LARGE UTILITIES

∃ NASH WITH SMALL TOTAL UTILITY ∃ NASH WITH LARGE TOTAL UTILITY

∃ NASH WITH LARGE SUPPORTS ∃ NASH WITH SMALL SUPPORTS

∃ NASH WITH RESTRICTING SUPPORTS Group IV

∃ NASH WITH RESTRICTED SUPPORTS ∃ k + 1 NASH (with k ≥ 1)

∃ NASH WITH SMALL PROBABILITIES ∃ ¬ PARETO-OPTIMAL NASH

∃ ¬ UNIFORM NASH ∃ ¬ STRONGLY PARETO-OPTIMAL NASH

Group II ∃ ¬ SYMMETRIC NASH

∃ UNIFORM NASH

Furthermore, their counting versions are #P-complete; so is # SYMMETRIC NASH. Except

for ⊕ ¬ UNIFORM NASH (whose ⊕P-hardness remains open) and for ⊕ ¬ SYMMETRIC NASH

(which is in P), their parity versions are ⊕P-complete.

For each of the four Groups, we fix a different gadget game Ĝ. For Group I, Ĝ is fixed to the

win-lose cyclic game Ĝ1[1] (Section 4.1). For Group II, Ĝ is fixed to the win-lose non-uniform

game Ĝ3 (Section 4.3). For Group III, Ĝ is fixed to the win-lose cyclic game Ĝ1[h], for any

integer h with h > n
2 (Section 4.1). For Group IV, Ĝ is fixed to the win-lose cyclic game Ĝ1[2]

(Section 4.1); we also use the win-lose diagonal game Ĝ5[k] as a subgame in the last stage of the

reduction. Regarding Step 3 in the three-steps proof plan outlined in Section 1.3, the decision

problems in Group I and Group III fall under Case (1); the single decision problem in Group

II falls under Case (2); the decision problems in Group IV fall under Case (3).

Notation-wise, we shall use, for the proof of Theorem 7.1, the symbols P and Q to denote

properties of Nash equilibria for the game GHR(G(Ĝ, φ)) in the cases where φ is unsatisfiable

and satisfiable, respectively. Loosely speaking, we shall use, to establish NP-hardness, a Q

property and a contradictory P property, which together disentangle satisfiability; that is, the

Q property holds if and only if φ is satisfiable, and this implies the NP-hardness of deciding

the corresponding property. To establish #P-hardness, we shall express the number of Nash

equilibria for GHR(G(Ĝ, φ)) fulfilling the property Q as a function of #φ; inverting the formula

yields #φ, and #P-hardness follows. To establish ⊕P-hardness, we shall express the parity of

the number of Nash equilibria for GHR(G(Ĝ, φ)) fulfilling the property Q as a function of ⊕φ;
inverting the expression yields ⊕φ and ⊕P-hardness follows. We shall use U and Ũ to denote

(expected) utilities for the games G = G(Ĝ, φ) and G̃ = GHR(G(Ĝ, φ)), respectively. For a

game G, denote as κ(G) the maximum number of strategies for each player in the game G.

Proof: Consider a 3SAT formula φ with n := |Var(φ)| ≥ 5 and a win-lose gadget game Ĝ, and

their induced win-lose game G = G(Ĝ, φ) constructed by the win-lose reduction (Section 5), and
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the win-lose GHR-symmetrization G̃ := GHR (G) (Section 6). Clearly, κ(G(Ĝ, φ)) = κ(Ĝ)+ 2n+

|C(φ)| + n(n+ 1). Hence, G = G(Ĝ, φ) has size polynomial in the size of φ if and only if Ĝ has

size polynomial in the size of φ. It follows, by the win-lose GHR-symmetrization, that G̃ has

size polynomial in the size of φ if and only if Ĝ has size polynomial in the size of φ.

Assume first that φ is unsatisfiable. Proposition 5.13 implies that NE(G(Ĝ, φ)) = NE(Ĝ);
call each Nash equilibrium for G(Ĝ, φ) coming from Ĝ a gadget equilibrium. So there are |NE(Ĝ)|
gadget equilibria for G. By Theorem 6.5, G̃ = GHR (G) has the following Nash equilibria, which

are balanced mixtures of the gadget equilibria for G:

(1) σ1 = σ̂ ∗ τ̂ , for each ordered pair 〈σ̂, τ̂ 〉 of the gadget equilibria σ̂ and τ̂ for G.

(2) σ2 = σ̂ ∗ 〈0κ, 0κ〉 = 〈σ̂1 ◦ 0κ, 0κ ◦ σ̂2〉 and σ3 = 〈0κ, 0κ〉 ∗ σ̂ = 〈0κ ◦ σ̂2, σ̂1 ◦ 0κ〉, for each

gadget equilibrium σ̂ for G.

By Theorem 6.6, G̃ has no other Nash equilibrium. Hence, when φ is unsatisfiable, there are

|NE(Ĝ)|2 + 2 · |NE(Ĝ)| Nash equilibria for G̃.

Assume now that φ is satisfiable. Then, in addition to the gadget equilibria, it follows, by

Proposition 5.14, that G(Ĝ, φ) has, for each satisfying assignment γ of φ, a Nash equilibrium

σ = σ(γ); call σ a literal equilibrium. So there are #φ literal equilibria for G. By Theorem 6.5,

G̃ = GHR (G) has, in addition to the balanced mixtures of gadget equilibria, the following Nash

equilibria, called additional, which are either balanced mixtures of literal equilibria for G or

balanced mixtures of a literal and a gadget equilibrium for G:

(1) σ4 = σ ∗ τ , for each ordered pair 〈σ, τ 〉 of the literal equilibria σ and τ for G.

(2) σ5 = σ ∗ 〈0κ, 0κ〉 and σ6 = 〈0κ, 0κ〉 ∗ σ, for each literal equilibrium σ for G.

(3) σ7 = σ̂∗σ and σ8 = σ∗σ̂, for each pair of a gadget equilibrium σ̂ and a literal equilibrium

σ for G.

Since there are |NE(Ĝ)| gadget equilibria and #φ literal equilibria, it follows that there are

(#φ)2+2·#φ = #φ·(#φ+ 2) balanced mixtures of literal equilibria and 2·|NE(Ĝ)|·#φ balanced

mixtures of a gadget equilibrium and a literal equilibrium, respectively. By Theorem 6.6, G̃ has

no other Nash equilibrium.

We proceed to establish properties of the Nash equilibria for G and G̃, respectively. Loosely

speaking, these shall be properties disentangling the satisfiability of φ; thus, NP-hardness
follows. We split the proof into four parts, one for each Group.

Group I: We start with a particular remark about ∃ ¬ UNIFORM NASH. Proposition 5.14

ensures that when φ is satisfiable, the literal Nash equilibria for G(Ĝ, φ) dismatch non-uniformity
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as they are uniform no matter how Ĝ were chosen. So the win-lose reduction is inadequate on

its own to ensure the equivalence of non-uniformity to the satisfiability of φ. Although it might

seem that techniques based on the win-lose reduction could not be adequate for showing theNP-
hardness of deciding the existence of a non-uniform Nash equilibrium, we shall establish that this

is not the case. In Step 1, choose the gadget game Ĝ to have a single uniform Nash equilibrium.

For Step 2, Proposition 5.13 ensures that G(Ĝ, φ) has no non-uniform Nash equilibrium when φ is

unsatisfiable. Hence, Theorems 6.5 and 6.6 ensure that G̃ has no non-uniform Nash equilibrium

when φ is unsatisfiable. But when φ is satisfiable, in Step 3, non-uniform Nash equilibria

are created for the win-lose GHR-symmetrization of G(Ĝ, φ) as balanced mixtures of the single

uniform Nash equilibrium for G (coming from Ĝ) with some literal Nash equilibrium for G(Ĝ, φ).

So the win-lose GHR-symmetrization has a non-uniform Nash equilibrium if and only if φ is

satisfiable, and NP-hardness follows. We stress that the NP-hardness of ∃ ¬ UNIFORM NASH

for symmetric win-lose bimatrix games exploits the possibility of creating non-uniform Nash

equilibria as balanced mixtures of uniform Nash equilibria. Note that this result is subsuming

the NP-hardness of ∃ ¬ UNIFORM NASH for the more general class of win-lose bimatrix games,

for which the win-lose reduction could accomodate no direct proof. We now continue with the

formal proof.

Fix Ĝ := Ĝ1[1]. Since κ
(
Ĝ1[1]

)
= 1, it follows that each of G = G(Ĝ, φ) and G̃ = GHR (G)

has size polynomial in the size of φ. By Proposition 4.1, Ĝ1[1] has a unique Nash equilibrium

σ̂. Assume first that φ is unsatisfiable. Since NE(G(Ĝ1[1], φ)) = NE(Ĝ1[1]), it follows that

G(Ĝ1[1], φ) has a unique Nash equilibrium, the gadget equilibrium σ̂, which has, by Proposi-

tion 4.1, the following properties:

For each player i ∈ [2]: Ui(σ̂) = 1, so that
∑

i∈[2] Ui(σ̂) = 2; Supp (σ̂i) = Σ̂i, with

|Supp (σ̂i) | = 1, so that for each strategy s ∈ Supp(σi), σ̂i(s) = 1; σ is uniform.

Hence, G̃ has exactly three Nash equilibria, σ1, σ2 and σ3, such that:

For each player i ∈ [2]: Ũi(σ
1) = 1

2, so that
∑

i∈[2] Ũi(σ
1) = 1; Supp

(
σ1
i

)
= Σ̂i∪ Σ̂′

i,

with |Supp
(
σ̂1
i

)
| = 2; for each strategy s ∈ Supp(σ1

i ), σ̂
1
i (s) =

1
2; σ

1 is uniform.

For each σ ∈
{
σ2,σ3

}
: For each player i ∈ [2]: Ũi(σ) = 1, so that

∑
i∈[2] Ũi(σ) = 2;

either Supp (σi) = Σ̂i or Supp (σi) = Σ̂′
i, with |Supp (σ̂i) | = 1; for each strategy

s ∈ Supp(σi), σ̂i(s) = 1; σ is uniform.

Hence, when φ is unsatisfiable, each Nash equilibrium σ for G̃ has the following properties:
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For each player i ∈ [2]: (P.1) Ũi(σ) ≥ 1
2, so that (P.2)

∑
i∈[2] Ũi(σ) ≥ 1; (P.3)

Supp (σi) ⊆ Σ̂i∪ Σ̂′
i, with (P.4) |Supp (σi) | ≤ 2; (P.5) for each strategy s ∈ Supp (σi),

σi(s) ≥ 1
2; (P.6) σ is uniform.

Assume now that φ is satisfiable. Then, by Proposition 5.14, the literal equilibrium σ = σ(γ),

for a satisfying assignement γ of φ, has the following properties:

For each player i ∈ [2]: Ui(σ) =
2
n , so that

∑
i∈[2] Ui(σ) =

4
n ; Supp (σi) = L, with

|Supp (σi) | = n; for each strategy s ∈ Supp(σi), σi(s) =
1
n ; σ is uniform.

Here are the additional Nash equilibria for G̃ and their properties:

• The (#φ)2 balanced mixtures of literal equilibria for G:

For each player i ∈ [2]: Ũi(σ
4) = 1

n , so that
∑

i∈[2] Ũi(σ
4) = 2

n ; Supp
(
σ4
i

)
⊂

L ∪ L′, with |Supp
(
σ4
i

)
| = 2n; for each strategy s ∈ Supp(σ4

i ), σ
4
i (s) =

1
2n ; σ

4

is uniform.

For each σ ∈ {σ5,σ6}: For each player i ∈ [2]: Ũi(σ) =
2
n , so that

∑
i∈[2] Ũi(σ) =

4
n ; Supp (σi) ⊂ L ∪ L′, with |Supp (σi) | = n; for each strategy s ∈ Supp(σi),

σi(s) =
1
n ; σ is uniform.

• The 2 ·#φ balanced mixtures of a gadget equilibrium and a literal equilibrium for G: Note

that

σ7 =

〈
2
n

1 + 2
n

σ̂1 ◦
1

1 + 2
n

σ2,
1

1 + 2
n

σ1 ◦
2
n

1 + 2
n

σ̂2

〉

=

〈
2

n+ 2
σ̂1 ◦

n

n+ 2
σ2,

n

n+ 2
σ1 ◦

2

n+ 2
σ̂2

〉
,

and

σ8 =

〈
n

n+ 2
σ1 ◦

2

n+ 2
σ̂2,

2

n+ 2
σ̂1 ◦

n

n+ 2
σ2

〉
,

respectively. Consider first σ7 = σ7(γ), for a satisfying assignment γ of φ. Then, by the

definition of the win-lose GHR-symmetrization, the row (resp., column) player may get

utility 1 only in two cases:

– The row player plays L′ and the column player plays L. By Proposition 5.14 (Condi-

tion (C.4)), for each literal ℓ ∈ γ, σ1(ℓ) = σ2(ℓ) =
1
n . Thus, by the balanced mixture

σ7, for each player i ∈ [2], for each literal ℓ ∈ γ,

σ7
i (ℓ) =

n

n+ 2
· σi(ℓ) =

n

n+ 2
· 1
n

=
1

n+ 2
.
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By the utility functions, there are two subcases in which the row (resp., column)

player gets utility 1: The row player plays ℓ, the column player plays ℓ′ with

ℓ′ 6= ℓ, and I(ℓ′) − I(ℓ) ∈ {0, 1} (resp, I(ℓ′) − I(ℓ) ∈ {2, 3}). The two subcases

occur with probability
∑

ℓ,ℓ′∈γ|I(ℓ′)−I(ℓ)∈{0,1} σ1(ℓ) · σ2(ℓ) = 2n ·
(

1
n+ 2

)2
(resp.,

∑
ℓ,ℓ′∈γ|I(ℓ′)−I(ℓ)∈{2,3} σ1(ℓ) · σ2(ℓ) = 2n ·

(
1

n+ 2

)2
).

– The row player plays Σ̂1 and the column player plays Σ̂′
2. Since each of Σ̂1 and Σ̂′

2

consists of a single strategy s, it follows, by Proposition 4.1, that σ̂1(s) = σ̂2(s) = 1.

Thus, for each player i ∈ [2],

σ7
i (s) =

2

n+ 2
σ̂i(s) =

2

n+ 2
.

By the utility functions, there is a single subcase in which the row (resp., column)

player gets utility 1: Both players choose s. The subcase occurs with probability(
2

n+ 2

)2
.

Hence, for each player i ∈ [2],

Ũi(σ
7) = 2n ·

(
1

n+ 2

)2

+

(
2

n+ 2

)2

=
2

n+ 2
.

Since σ7 and σ8 form a symmetric pair of mixed profiles for the win-lose GHR-symmetrization

G̃, it follows that for each player i ∈ [2], Ũi(σ
8) = 2

n+ 2. Thus, we have:

For each σ ∈
{
σ7,σ8

}
: For each player i ∈ [2]: Ũi(σ) = 2

n+ 2, so that
∑

i∈[2] Ũi(σ) =
4

n+ 2; either Supp(σi) ⊂ Σ̂i ∪ L ∪ L′ or Supp(σi) ⊂ Σ̂′
i ∪ L ∪ L′,

with |Supp(σi)| = n + 1; for each strategy s ∈ Supp(σi), σi(s) ≤ 2
n+ 2; σ is

non-uniform.

Hence, when φ is satisfiable, we have:

(1) Each additional Nash equilibrium σ among the (#φ)2 balanced mixtures of literal equi-

libria for G has the following properties:

For each player i ∈ [2]: (Q.1) Ũi(σ) ≤ 2
n ≤ 2

5, so that (Q.2)
∑

i∈[2] Ũi(σ) ≤
4
n ≤ 4

5; (Q.3) Supp (σi) ⊂ L ∪ L′, with (Q.4) |Supp (σi) | ≥ n ≥ 5; (Q.5) for each

strategy s ∈ Supp(σi), σi(s) <
2

n+ 2 ≤
2
7; (Q.6) σ is uniform.

(2) Each additional Nash equilibrium σ among the 2 · #φ balanced mixtures of a gadget

equilibrium and a literal equilibrium for G has the following properties:
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For each player i ∈ [2]: (Q.7) Ũi(σ) <
2
n ≤ 2

5, so that (Q.8)
∑

i∈[2] Ũi(σ) <
4
n ≤

4
5; (Q.9) Supp (σi) ⊂ L ∪ L′ ∪ Σ̂i ∪ Σ̂′

i, with (Q.10) |Supp (σi) | > n ≥ 5; (Q.11)

for each strategy s ∈ Supp(σi), σi(s) ≤ 2
n+ 2 ≤

2
7; (Q.12) σ is non-uniform.

Hence, we derive NP-hardness from the following table:

NP-hard decision problem: By properties disentangling the satisfiability of φ:

Unsat.: Sat.:

∃ NASH WITH SMALL UTILITIES, (P.1) (Q.1), (Q.7) #φ · (#φ+ 2)

with 2
5 ≤ u < 1

2
∃ NASH WITH SMALL TOTAL UTILITY, (P.2) (Q.2), (Q.8) #φ · (#φ+ 2)

with 4
5 ≤ u < 1

∃ NASH WITH LARGE SUPPORTS, (P.4) (Q.4), (Q.10) #φ · (#φ+ 2)

with 2 < k ≤ 5

∃ NASH WITH RESTRICTING SUPPORTS, (P.3) (Q.3), (Q.9) #φ · (#φ+ 2)

with Ti = {ℓ} and Ti = {ℓ} , i ∈ [n], for any ℓ ∈ L

∃ NASH WITH RESTRICTED SUPPORTS, (P.3) (Q.3) (#φ)
2

with Ti = L ∪ L′, i ∈ [n]

∃ NASH WITH SMALL PROBABILITIES (P.5) (Q.5), (Q.11) #φ · (#φ+ 2)

∃ ¬ UNIFORM NASH (P.6) (Q.12) 2 ·#φ

The formulas in the rightmost column can be solved for #φ; by the #P-hardness of computing

#φ [35], this yields the #P-hardness of the seven counting problems. Furthermore, except for

2 ·#φ, these formulas preserve the parity ⊕φ; by the ⊕P-hardness of computing ⊕φ [33], this

yields the ⊕P-hardness of the six parity problems other than ⊕ ¬ UNIFORM NASH.

Group II: Fix Ĝ := Ĝ3. Since κ(Ĝ3) = 4, it follows that each of G
(
Ĝ3, φ

)
and GHR(G) has size

polynomial in the size of φ. By Proposition 4.3, Ĝ3 has no uniform Nash equilibrium. Assume

first that φ is unsatisfiable. Since NE(G(Ĝ3, φ)) = NE(Ĝ3), it follows that G(Ĝ3, φ) has no

uniform Nash equilibrium. Assume, by way of contradiction, that G̃ = GHR(G) has a uniform

Nash equilibrium σ. By Proposition 6.6, exactly one of the following conditions holds for σ:

(C’.1) ←−σ1,−→σ1,←−σ2,−→σ2 6= 0n, with σ = 〈←−ς1 ,−→ς2 〉 ∗ 〈←−ς2 ,−→ς1 〉 and 〈←−ς2 ,−→ς1 〉, 〈←−ς1 ,−→ς2 〉 ∈ NE(G).

(C’.2) ←−σ1 = −→σ2 = 0n, with σ = 〈0n, 0n〉 ∗ 〈←−ς2 ,−→ς1 〉 and 〈←−ς2 ,−→ς1 〉 ∈ NE(G).

(C’.3) −→σ1 =←−σ2 = 0n, with σ = 〈0n, 0n〉 ∗ 〈←−ς1 ,−→ς2 〉 and 〈←−ς1 ,−→ς2 〉 ∈ NE(G).

By Observation 6.3, the uniformity of σ implies that exactly one of these conditions holds:

(C”.1) ←−σ1,−→σ1,←−σ2,−→σ2 6= 0n, and both 〈←−ς2 ,−→ς1 〉 and 〈←−ς1 ,−→ς2 〉 are uniform Nash equilibria for G.

66



(C”.2) ←−σ1 = −→σ2 = 0n, and 〈←−ς2 ,−→ς1 〉 is a uniform Nash equilibrium for G.

(C”.3) −→σ1 =←−σ2 = 0n, and 〈←−ς1 ,−→ς2 〉 is a uniform Nash equilibrium for G.

So, in all cases, G has a uniform Nash equilibrium. A contradiction. This implies the following

property: (P.1) G̃ has no uniform Nash equilibrium.

Assume now that φ is satisfiable. Then, by Proposition 5.14 (Condition (4)), the literal

equilibrium σ = σ(γ), for a satisfying assignment γ of φ, is uniform. Here are the additional

Nash equilibria for G̃ and their properties:

• The (#φ)2 balanced mixtures of literal equilibria for G: σ4 is uniform. By Observation 6.3,

σ5 and σ6 are non-uniform.

• The 2 ·#φ balanced mixtures of a gadget equilibrium and a literal equilibrium for G: Since

σ̂ is non-uniform, it follows, by Observation 6.3, that σ7 and σ8 are non-uniform.

Hence, when φ is satisfiable, we have:

(1) Each additional Nash equilibrium σ among the (φ)2 balanced mixtures of literal equilibria

for G has the following property: (Q.1) σ is uniform.

(2) Each additional Nash equilibrium σ among the 2 · φ balanced mixtures of a gadget equi-

librium and a literal equilibrium for G has the following property: (Q.2) σ is non-uniform.

Hence, we derive NP-hardness from the following table:

NP-hard decision problem: By properties disentangling the satisfiability of φ:

Unsat.: Sat.:

∃ UNIFORM NASH (P.1) (Q.1) (#φ)
2

The formula (#φ)2 in the rightmost column can be solved for #φ; by the #P-hardness of

computing #φ [35], this yields the #P-hardness of the counting problem. Furthermore, the

formula (#φ)2 preserves the parity ⊕φ; by the ⊕P-hardness of computing ⊕φ [33], this yields

the ⊕P-hardness of the parity problem.

Group III: Fix Ĝ := Ĝ1[h], where h is polynomial in n with h > 2n. Since κ (G1[h]) = h, where h

is polynomial in n, it follows that each of G = G(Ĝ1[h], φ) and G̃ = GHR(G) has size polynomial

in the size of φ. By Proposition 4.1, Ĝ1[h] has a unique Nash equilibrium σ̂. Assume first

that φ is unsatisfiable. Since NE(G(Ĝ1[h], φ)) = NE(Ĝ1[h]), it follows that G(Ĝ1[h], φ) has a

unique Nash equilibrium, the gadget equilibrium σ̂, which has, by Proposition 4.1, the following

properties:
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For each player i ∈ [2]: Ui(σ̂) =
1
h
, so that

∑
i∈[2] Ui(σ̂) =

2
h
; |Supp (σ̂i) | = h.

Hence, G̃ has exactly three Nash equilbria, σ1, σ2 and σ3, such that:

For each player i ∈ [2]: Ũi(σ
1) = 1

2h , so that
∑

i∈[2] Ũi(σ
1) = 1

h ; |Supp
(
σ1
i

)
| = 2h.

For each σ ∈
{
σ2,σ3

}
: For each player i ∈ [2]: Ũi(σ) =

1
h
, so that

∑
i∈[2] Ũi(σ) =

2
h
; |Supp (σi) | = h.

Hence, when φ is unsatisfiable, each Nash equilibrium σ for G̃ has the following properties:

For each player i ∈ [2]: (P.1) Ũi(σ) ≤ 1
h
< 1

2n , so that (P.2)
∑

i∈[2] Ũi(σ) ≤ 2
h
< 1

n ;

(P.3) |Supp (σi) | ≥ h > 2n.

Assume now that φ is satisfiable. Then, by Proposition 5.14, the literal equilibrium σ =

σ(γ), for a satisfying assignment γ of φ, has the following properties:

For each player i ∈ [2]: Ui(σ) =
2
n , so that

∑
i∈[2] Ui(σ) =

4
n ; |Supp (σi) | = n.

Here are the additional Nash equilibria of G̃ and their properties:

• The (#φ)2 balanced mixtures of literal equilibria for G:

For each player i ∈ [2]: Ũi(σ
4) = 1

n , so that
∑

i∈[2] Ũi(σ
4) = 2

n ; |Supp
(
σ4
i

)
| =

2n.

For each σ ∈
{
σ5,σ6

}
: For each player i ∈ [2]: Ũi(σ) =

2
n , so that

∑
i∈[2] Ũi(σ) =

4
n ; |Supp (σi) | = n.

• The 2 ·#φ balanced mixtures of a gadget equilibrium and a literal equilibrium for G: Note

that

σ7 =

〈
2
n

1
h
+ 2

n

σ̂1 ◦
1
h

1
h
+ 2

n

σ2,

1
h

1
h
+ 2

n

σ1 ◦
2
n

1
h
+ 2

n

σ̂2

〉

=

〈
2h

n+ 2h
σ̂1 ◦

n

n+ 2h
σ2,

n

n+ 2h
σ1 ◦

2h

n+ 2h
σ̂2

〉
,

and

σ8 =

〈
n

n+ 2h
σ1 ◦

2h

n+ 2h
σ̂2,

2h

n+ 2h
σ̂1 ◦

n

n+ 2h
σ2

〉
,

respectively. Consider first σ7, with σ7 = σ7(γ) for a satisfying assignment γ of φ. Then,

by the definition of the win-lose GHR-symmetrization, the row (resp., column) player may

get utility 1 only in the following two cases:
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– The row player plays L′ and the column player plays L. By Proposition 5.14 (Condi-

tion (C.4)), for each literal ℓ ∈ γ, σ1(ℓ) = σ2(ℓ) =
1
n . Thus, by the balanced mixture

σ7, for each player i ∈ [2], for each literal ℓ ∈ γ,

σ7
i (ℓ) =

n

n+ 2h
· σi(ℓ) =

n

n+ 2h
· 1
n

=
1

n+ 2h
.

By the utility functions, there are two subcases in which the row (resp., column)

player gets utility 1: The row player chooses ℓ, the column player chooses ℓ′ with

ℓ′ 6= ℓ, and I(ℓ′) − I(ℓ) ∈ {0, 1} (resp, I(ℓ′) − I(ℓ) ∈ {2, 3}). The two subcases

occur with probability
∑

ℓ,ℓ′∈γ|I(ℓ′)−I(ℓ)∈{0,1} σ1(ℓ) · σ2(ℓ) = 2n ·
(

1
n+ 2h

)2
. (resp.,

∑
ℓ,ℓ′∈γ|I(ℓ′)−I(ℓ)∈{2,3} σ1(ℓ) · σ2(ℓ) = 2n ·

(
1

n+ 2h

)2
).

– The row player plays Σ̂1 and the column player plays Σ̂′
2. By Proposition 4.1, it fol-

lows that for each strategy s ∈ [h], σ̂1(s) = σ̂2(s) = 1
h . Thus, by the balanced

mixture σ7, for each player i ∈ [2], for each strategy s ∈ [h], σ7
i (s) =

2h
n+ 2h σ̂i(s) =

2
n+ 2h

. By the utility functions, there is a single subcase in which the row (resp.,

column) player gets utility 1: The row player chooses sl and the column player

chooses sl (resp., the row player chooses sl and the column player chooses sl+1).

The subcase occurs with probability
∑

sl∈[h]
σ7
1(sl) · σ7

2(sl) = h ·
(

2
n+ 2h

)2
(resp.,

∑
sl∈[h]

σ7
1(sl) · σ7

2(sl+1) = h ·
(

2
n+ 2h

)2
).

It follows that for each player i ∈ [2],

Ũi(σ
7) = 2n ·

(
1

n+ 2h

)2

+ h ·
(

2

n+ 2h

)2

=
2

n+ 2h
.

Since σ7 and σ8 form a symmetric pair of mixed profiles for the win-lose GHR-symmetrization

G̃, it follows that for each player i ∈ [2], Ũi(σ
8) = 2

n+ 2h
. Thus, it follows:

For each σ ∈
{
σ7,σ8

}
: For each player i ∈ [2]: Ũi (σ) = 2

n+ 2h
, so that

∑
i∈[2] Ũi(σ) =

4
n+ 2h

; |Supp(σi)| = n+ h.

Hence, when φ is satisfiable, we have:

(1) Each additional Nash equilibrium among the (#φ)2 balanced mixtures of literal equilibria

for G has the following properties:

For each player i ∈ [2]: (Q.1) Ũi(σ) ≥ 1
n , so that (Q.2)

∑
i∈[2] Ũi(σ) ≥ 2

n ; (Q.3)

Supp(σi) ≤ 2n < h.

(2) Each additional Nash equilibrium among the 2 ·#φ balanced mixtures of a gadget equi-

librium and a literal equilibrium for G has the following properties:
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For each player i ∈ [2]: (Q.4) Ũi(σ) = 2
n+ 2h

, so that (Q.5)
∑

i∈[2] Ũi(σ) =

4
n+ 2h

; (Q.6) Supp(σi) = n+ h.

Note that the choice h > 2n implies that 2
n+ 2h

< 1
2h

and h < n + h < 2h. Hence, the

properties (Q.4), (Q.5) and (Q.6) are not contradictory to the properties (P.1), (P.2) and

(P.3), respectively, of Nash equilibria, holding when φ is unsatisfiable.

Hence, we derive NP-hardness from the following table:

NP-hard decision problem: By properties disentangling the satisfiability of φ:

Unsat.: Sat.:

∃ NASH WITH LARGE UTILITIES, (P.1) (Q.1) (#φ)
2

with 1
2n ≤ u < 1

n
∃ NASH WITH LARGE TOTAL UTILITY, (P.2) (Q.2) (#φ)

2

with 1
n ≤ u < 2

n
∃ NASH WITH SMALL SUPPORTS, (P.3) (Q.3) (#φ)

2

with 2n ≤ k < h

The formula (#φ)2 in the rightmost column can be solved for #φ; by the #P-hardness of

computing #φ [35], this yields the #P-hardness of the three counting problems. Furthermore,

this formula preserves the parity ⊕φ; by the ⊕P-hardness of computing ⊕φ [33], this yields the

⊕P-hardness of the three parity problems.

Group IV: We start with an informal outline of the proof. First note that the problems ∃ 2

NASH and ∃ 3 NASH “escape” the technique using the GHR-symmetrization of G = G(Ĝ, φ)

since, by Theorem 6.6, each Nash equilibrium of G gives rise to exactly three, distinct Nash

equilibria of G̃ = GHR(G); thus, even if Ĝ had a unique Nash equilibrium, this approach could

only help proving the NP-hardness of ∃ k + 1 NASH with k ≥ 3. Instead, to prove the NP-
hardness of ∃ k + 1 NASH for all integers k ≥ 1, we “embed” the win-lose diagonal game

Ĝ5[k] (Section 4.5) as a subgame of G̃. Denote the resulting game as G̃ ‖ Ĝ5[k], which is still

symmetric and win-lose. We shall establish that when φ is unsatisfiable, all Nash equilibria

of G̃ which are “inherited” from Ĝ are “destroyed” in G̃ ‖ Ĝ5[k] as long as Ĝ has been chosen

so that the players’ expected utilities are smaller than 1 in a Nash equilibrium; thus, in this

case, G̃ ‖ Ĝ5[k] has exactly k Nash equilibria, which are “inherited” from the win-lose diagonal

game Ĝ5[k]; instead, when φ is satisfiable, all k Nash equilibria inherited from Ĝ5[k] survive,

and a new Nash equilibrium is created for each satisfying assignment of φ. Besides the decision

problem ∃ k + 1 NASH, with k ≥ 1, the same idea goes through for the last three decision

problems in Group IV. We now continue with the details of the formal proof.

Fix Ĝ := Ĝ1[2]. Since κ(Ĝ1[2]) = 2, it follows that each of G and G̃ has size polynomial in the

size of φ. Denote as G̃ ‖ Ĝ5[k] the win-lose game resulting from G̃ by adding the k strategies

70



from T := {t1, . . . , tk} to the strategy set of each player, so that Σ(G̃ ‖ Ĝ5[k]) = Σ(G̃) ∪ T, and

setting:

(C.1) U(〈s, t〉) := 〈0, 1〉 and U(〈t, s〉) := 〈1, 0〉, when s ∈ Σ(G̃) \ (L ∪ L′) and t ∈ T.

(C.2) U(〈s, t〉) := U(〈t, s〉) := 〈0, 0〉, when s ∈ L ∪ L′ and t ∈ T.

(C.3) U(〈tj , tl〉) := 〈Dk[j, l],D
T
k [j, l]〉, when j, l ∈ [k]; thus, Ĝ5[k] is “embedded” into G̃ as a

subgame.

Note that G̃ ‖ Ĝ5[k] is a symmetric game, which has size polynomial in the size of φ. Further-

more, by Proposition 4.10, for each Nash equilibrium σ ∈ NE(Ĝ5[k]), for each player i ∈ [2],

Ui(σ) = 1. Since G̃ ‖ Ĝ5[k] is win-lose and T ⊆ Σ(G̃ ‖ Ĝ5[k]), it follows that σ is a Nash

equilibrium for G̃ ‖ Ĝ5[k]. Thus, NE(Ĝ5[k]) ⊆ NE(G̃ ‖ Ĝ5[k]). We continue to prove two simple

properties of the Nash equilibria for G̃ ‖ Ĝ5[k].

Claim 7.2 Fix a Nash equilibrium σ ∈ NE(G̃ ‖ Ĝ5[k]) with Supp(σi) ⊆ T for some player

i ∈ [2]. Then, σ ∈ NE(Ĝ5[k]).

Proof: By Cases (C.1) and (C.2) from the definition of the utility functions of G̃ ‖ Ĝ5[k],

Ui(σ−i ⋄ s) = 0 for each strategy s ∈ Σ(G̃). Since Ĝ5[k] has the positive utility property, there

is a strategy t ∈ T such that Ui(σ−i ⋄ t) > 0. Thus, by Lemma 2.1, every best-response strategy

for player i is contained in T, which implies that Supp(σi) ⊆ T. Hence, σ maps to a mixed

profile for Ĝ5[k], and the claim follows.

Fix now a mixed profile σ for G̃ ‖ Ĝ5[k] such that for each player i ∈ [2], σi(T) < 1; so, for each

player i ∈ [2], Supp(σi) 6⊆ T. Construct from σ the mixed profile ς = ς(σ) for G̃ such that for

each player i ∈ [2] and strategy s ∈ Σ(G̃),

ςi(s) :=
σi(s)

1− σi(T)
;

that is, ς is the projection of σ to Σ(G̃). Note that, by the construction, for each player i ∈ [2],

Supp(ςi) ⊆ Supp(σi). We now prove:

Claim 7.3 Fix a Nash equilibrium σ ∈ NE(G̃ ‖ Ĝ5[k]) \ NE(Ĝ5[k]). Then, ς(σ) is a Nash

equilibrium for G̃.

Proof: Assume, by way of contradiction, that ς(σ) is not a Nash equilibrium for G̃. Then,

by Lemma 2.1, there is a player i ∈ [2] and a pair of strategies s′ ∈ Σ(G̃) and s ∈ Supp(ςi) such

that

Ui (ς−i ⋄ s′) > Ui (ς−i ⋄ s) . (9)
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Since Supp(ςi) ⊆ Supp(σi), it follows that s ∈ Supp(σi). Since G̃ ‖ Ĝ5[k] is a symmetric game,

we may assume, without loss of generality, that i = 1. Clearly,

U1 (ς−1 ⋄ s′) =
∑

t∈Σ(G̃)

U1 (〈s′, t〉) · ς2 (t)

=
1

1− σ2(T)

∑

t∈Σ(G̃)

U1 (〈s′, t〉) · σ2 (t) ,

and

U1(ς−1 ⋄ s) =
∑

t∈Σ(G̃)

U1(〈s, t〉) · ς2(t)

=
1

1− σ2(T)

∑

t∈Σ(Ĝ)

U1 (〈s, t〉) · σ2(t) .

Hence, by (9), it follows that
∑

t∈Σ(Ĝ)

U1(〈s′, t〉) · σ2(t) >
∑

t∈Σ(Ĝ)

U1(〈s, t〉) · σ2(t) . (10)

Thus,

U1 (σ−1 ⋄ s′)
=

∑
t∈Σ(G̃‖Ĝ5[k]) U1 (〈s′, t〉) · σ2(t)

=
∑

t∈Σ(G̃) U1 (〈s′, t〉) · σ2(t) (since Σ(G̃ ‖ Ĝ5[k]) = Σ(G̃) ∪ T & U1(s, t) = 0 for s ∈ Σ(G̃), t ∈ T)

>
∑

t∈Σ(G̃) U1 (〈s, t〉) · σ2(t) (by (10))

=
∑

t∈Σ(G̃‖Ĝ5[k]) U1 (〈s, t〉) · σ2(t) (since Σ(G̃ ‖ Ĝ5[k]) = Σ(G̃) ∪ T & U1(s, t) = 0 for s ∈ Σ(G̃), t ∈ T)

= U1 (σ−1 ⋄ s) .

Since σ is a Nash equilibrium for G̃ ‖ Ĝ5[k] and s ∈ Supp(σ1), Lemma 2.1 (Condition (1))

implies that U1 (σ−1 ⋄ s) ≥ U1 (σ−1 ⋄ s′). A contradiction.

We now prove:

Lemma 7.4 Assume that φ is unsatisfiable. Then, NE(G̃ ‖ Ĝ5[k]) = NE(Ĝ5[k]).

Proof: SinceNE(Ĝ5[k]) ⊆ NE(G̃ ‖ Ĝ5[k]), it remains to prove thatNE(G̃ ‖ Ĝ5[k])\NE(Ĝ5[k]) =

∅. Assume, by way of contradiction, that there is a Nash equilibrium σ ∈ NE(G̃ ‖ Ĝ5[k]) \
NE(Ĝ5[k]).

Since φ is unsatisfiable, it follows, by Proposition 5.13, that NE(G) = NE(Ĝ1[2]). Thus, by

Proposition 6.6, for each τ ∈ NE(G̃), for each player i ∈ [2], Supp(τi) ⊆ Σ̂i∪Σ̂′
i. Since, by Claim

7.3, ς(σ) is a Nash equilibrium for G̃, it follows that for each player i ∈ [2], Supp(σi) ⊆ Σ̂i∪Σ̂′
i∪T.

Since σ 6∈ NE(Ĝ5[k]), Claim 7.2 implies that for each player i ∈ [2], Supp(σi) 6⊆ T. Hence, it

follows that for each player i ∈ [2], Supp(σi) ∩ (Σ̂i ∪ Σ̂′
i) 6= ∅. There are two cases:
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1. Assume first that for each player i ∈ [2], Supp(σi) ⊆ Σ̂i ∪ Σ̂′
i. By the utility functions

of Ĝ1[2] and by the definition of the GHR-symmetrization, it follows that for any profile

s supported in σ, U1(s) + U2(s) ≤ 1. This implies that there is a player i ∈ [2] with

Ui(s) < 1.∗∗ This implies that Ui(σ) < 1. Consider now player i switching to a pure

strategy t ∈ T. Note that only profiles falling into case (C.1) are supported in σ−i ⋄ t.
Hence, by the utility functions of G̃ ‖ Ĝ5[k], Ui (σ−i ⋄ t) = 1. Since Ui(σ) < 1, Lemma

2.1 (Condition (1)) yields a contradiction.

2. Assume now that there is a player i ∈ [2] with Supp(σi) ∩ T 6= ∅. Since G̃ ‖ Ĝ5[k]

is a symmetric game, we may assume, without loss of generality, that i = 2. Since

Supp(σi)∩
(
Σ̂i ∪ Σ̂′

i

)
6= ∅ for each player i ∈ [2], there is a strategy s ∈ Supp(σ1)∩(Σ̂1∪Σ̂′

1).

Thus,

U1(σ−1 ⋄ s)
=

∑
s′∈Σ̂2∪Σ̂′

2

U1(〈s, s′〉) · σ2(s
′) +

∑
t′∈T U1(〈s, t′〉) · σ2(t

′)

=
∑

s′∈Σ̂2∪Σ̂′

2

U1(〈s, s′〉) · σ2(s
′) (from Case (C.1) in the utility functions)

≤ ∑
s′∈Σ̂2∪Σ̂′

2

σ2(s
′) (since G̃ ‖ Ĝ5[k] is win-lose) .

Since Ĝ5[k] has the positive utility property and Supp(σ2) ∩ T 6= ∅, it follows that there

is a strategy t ∈ T such that

∑

t′∈T

U1(〈t, t′〉) · σ2(t
′) > 0 . (11)

So consider player 1 switching to the pure strategy t. Then,

U1(σ−1 ⋄ t)
=

∑
s′∈Σ̂2∪Σ̂′

2

U1 (〈t, s′〉) · σ2(s
′) +

∑
t′∈T U1 (〈t, t′〉) · σ2(t

′)

>
∑

s′∈Σ̂2∪Σ̂′

2

U1 (〈t, s′〉) · σ2(s
′) (from (11))

=
∑

s′∈Σ̂2∪Σ̂′

2

σ2(s
′) (from Case (C.1) in the utility functions) .

It follows that

U1 (σ−1 ⋄ s) < U1 (σ−1 ⋄ t) .

Since s ∈ Supp(σ1), Lemma 2.1 (Condition (1)) implies that

U1 (σ−1 ⋄ s) ≥ U1 (σ−1 ⋄ t) .

A contradiction.

∗∗We prepare the reader that this is the only property of the gadget game Ĝ1[2] that we shall use for the proof

regarding the decision problems in Group IV. Thus, there could be used, as a gadget game, any win-lose game

other than Ĝ1[2], such that there is, for each Nash equilibrium of it, a player receiving utility less than 1.
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The claim now follows.

By Proposition 4.10, Lemma 7.4 immediately implies:

Corollary 7.5 Assume that φ is unsatisfiable. Then: (P.0) G̃ ‖ Ĝ5[k] has exactly k Nash equi-

libria, and each is (P.1) Pareto-Optimal, (P.2) Strongly Pareto-Optimal, and (P.3) symmetric.

We continue to prove:

Lemma 7.6 Assume that φ is satisfiable. Then, (Q.1) #φ · (#φ+ 4) of the additional Nash

equilibria for G̃ ‖ Ĝ5[k] are neither Pareto-Optimal nor Strongly Pareto-Optimal, (Q.2) #φ ·
(#φ+ 1) of them are non-symmetric, and (Q.3) #φ of them are symmetric.

Proof: Since φ is satisfiable, it follows, by Proposition 5.14, that for each satisfying assignment

γ of φ, there is a Nash equilibrium σ for G such that for each player i ∈ [2], Ui(σ) =
2
n < 1.

Here are the additional Nash equilibria for G̃ and their properties:

• The (φ)2 balanced mixtures of literal equilibria for G: By Lemma 6.3, σ4 is symmetric if

and only if σ = τ , while σ5 and σ6 are non-symmetric. Furthermore:

For each player i ∈ [2], Ui(σ
4) = 1

n < 1.

For each σ ∈
{
σ5,σ6

}
:
∑

i∈[2] Ui(σ) =
2
n < 2.

• The 2 ·#φ balanced mixtures of a literal equilibrium and a gadget equilibrium for G: By

Lemma 6.3, it follows that σ7 and σ8 are non-symmetric. Furthermore, by Lemma 6.4:

For each σ ∈
{
σ5,σ6

}
: For each player i ∈ [2]: Ui(σ

7) < max{Ui(σ),Ui(σ̂)} <
1.

Hence, there are #φ additional Nash equilibria for G̃ which are symmetric and #φ · (#φ+ 2)−
#φ = #φ · (#φ+ 1) additional Nash equilibria for G̃ which are non-symmetric.

Consider now any additional Nash equilibrium σ for G̃. Since G̃ ‖ Ĝ5[k] is constructed from

G̃ by adding T to the strategy set of each player, it suffices, in order to prove that σ is a Nash

equilibrium for G̃ ‖ Ĝ5[k], to check that no player can improve her utility in σ by switching

to a strategy in T. By Case (C.2) in the utility functions, it holds that U (〈s1, s2〉) = 〈0, 0〉
for s1 ∈ L ∪ L′ (resp., s1 ∈ T) and s2 ∈ T (resp., s2 ∈ L ∪ L′). Hence, for each player i ∈ [2],

Ui (σ−i ⋄ t) = 0 for each strategy t ∈ T. Thus, σ ∈ NE(G̃ ‖ Ĝ5[k]) with Ui(σ) < 1 for
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each player i ∈ [2]. Hence, G̃ ‖ Ĝ5[k] has #φ symmetric Nash equilibria and #φ · (#φ+ 1)

non-symmetric Nash equilibria. Properties (Q.2) and (Q.3) follow.

By Proposition 4.10, each player i ∈ [2] has utility 1 in any Nash equilibrium for Ĝ5[k].

Since NE(Ĝ5[k]) ⊆ NE(G̃ ‖ Ĝ5[k]), this implies that σ is neither Pareto-Otimal nor Strongly

Pareto-Optimal. So there are (#φ)2 + 2 · #φ + 2 · #φ#φ · (φ+ 4) additional Nash equilibria

which are neither Pareto-Otimal nor Strongly Pareto-Optimal. Property (Q.1) follows.

Hence, using Lemma 7.6, we derive NP-hardness from the following table:

Decision Problem is NP-hard due to: Properties disentangling the satisfiability of φ:

Unsat.: Sat.:

∃ k + 1 NASH (P.0) — —

∃ ¬ PARETO-OPTIMAL NASH (P.1) (Q.1) #φ · (#φ+ 4)

∃ ¬ STRONGLY PARETO-OPTIMAL NASH (P.2) (Q.1) #φ · (#φ+ 4)

∃ ¬ SYMMETRIC NASH (P.3) (Q.2) #φ · (#φ+ 1)

Both formulas in the rightmost column can be solved for #φ; by the #P-hardness of computing

#φ [35], this yields the #P-hardness of the three counting problems. Furthermore, the formula

#φ · (#φ + 1) preserves the parity ⊕φ; by the ⊕P-hardness of computing ⊕φ [33], this yields

the ⊕P-hardness of the parity problems ⊕ ¬ PARETO-OPTIMAL NASH and ⊕ ¬ STRONGLY

PARETO-OPTIMAL NASH.

By Corollary 7.5 and Lemma 7.6 (Condition (Q.3)), # SYMMETRIC NASH = k + #φ. This

formula can be solved for #φ; by the #P-hardness of computing #φ [35], this yields the #P-
hardness of # SYMMETRIC NASH. Furthermore, this formula allows computing ⊕φ from ⊕
SYMMETRIC NASH; by the ⊕P-hardness of computing ⊕φ [33], this yields the ⊕P-hardness
of ⊕ SYMMETRIC NASH.

We now show:

Theorem 7.7 Fix a win-lose bimatrix game Ĝ with the positive utility property. Then, re-

stricted to symmetric win-lose bimatrix games, NASH-EQUIVALENCE (GHR(Ĝ)) is co-NP-
complete.

Proof: Here is a polynomial time algorithm to decide the non-satisfiability of an input formula

φ, with access to an oracle for NASH-EQUIVALENCE (GHR(Ĝ)):

Construct the symmetric win-lose bimatrix games GHR(Ĝ) and G̃ = GHR(G(Ĝ, φ)).

Query the oracle for NASH-EQUIVALENCE (GHR(Ĝ)) on input G̃ and return the

answer of the oracle.
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To establish the correctness of the algorithm, we prove:

Lemma 7.8 NE(G
(
Ĝ, φ

)
) = NE(Ĝ) if and only if NE(GHR(G(Ĝ, φ))) = NE(GHR(Ĝ)).

Proof: Assume first that NE(GHR(G(Ĝ, φ))) = NE(GHR(Ĝ)). Since every Nash equilibrium

for Ĝ is a gadget equilibrium, the win-lose GHR-symmetrization implies that every Nash equi-

librium for GHR(Ĝ) is also a gadget equilibrium. Hence, the Nash-equivalence of GHR(Ĝ)

and GHR(G(Ĝ, φ)) implies that every Nash equilibrium for GHR(G(Ĝ, φ)) is a gadget equi-

librium. Hence, the win-lose GHR-symmetrization implies that every Nash equilibrium for

G(Ĝ, φ) is a gadget equilibrium. By Propositions 5.13 and 5.14, it follows that φ is unsatisfi-

able (since otherwise G(Ĝ, φ) has a literal equilibrium). Hence, Proposition 5.13 implies that

NE(G(Ĝ, φ)) = NE(Ĝ).
Assume now that NE(GHR(G(Ĝ, φ))) 6= NE(GHR(Ĝ)). Since NE(Ĝ) ⊆ NE(G(Ĝ, φ)), ev-

ery gadget equilibrium is a Nash equilibrium for G(Ĝ, φ). Hence, Proposition 6.5 implies that

NE(GHR(Ĝ)) ⊆ NE(GHR(G(Ĝ, φ))). Hence, the assumption implies that GHR(G(Ĝ, φ)) has a

literal equilibrium. By the GHR-symmetrization, this implies that G(Ĝ, φ) has a literal equilib-

rium. By Propositions 5.13 and 5.14, it follows that φ is satisfiable (since otherwise G(Ĝ, φ) has

no literal equilibrium). Hence, Propositions 5.14 implies that NE(G(Ĝ, φ)) 6= NE(Ĝ), and this

completes the proof.

By Propositions 5.13 and 5.14, φ is unsatisfiable if and only if NE(G(Ĝ, φ)) = NE(Ĝ). Hence, by
Lemma 7.8, it follows that φ is unsatisfiable if and only if NE(GHR(G(Ĝ, φ))) = NE(GHR(Ĝ)).
Hence, NASH-EQUIVALENCE(GHR(Ĝ)) is co-NP-hard.

7.2 Win-Lose Bimatrix Games

We show:

Theorem 7.9 Restricted to win-lose bimatrix games, ∃ SYMMETRIC NASH is NP-complete.

Proof: Fix Ĝ := Ĝ4 (Section 4.4). Assume first that φ is unsatisfiable. Then, by Propo-

sition 5.13, NE(G(Ĝ4, φ)) = NE(Ĝ4). Hence, by Proposition 4.9, G(Ĝ4, φ) has no symmetric

Nash equilibrium. Assume now that φ is satisfiable. Then, by Proposition 5.14 (Condition (4)),

G(Ĝ4, φ) has a symmetric Nash equilibrium. So G(Ĝ4, φ) has a symmetric Nash equilibrium if

and only if φ is satisfiable, and the NP-hardness of ∃ SYMMETRIC NASH follows.

We remark that the #P-hardness of # SYMMETRIC NASH for win-lose bimatrix games is

already implied by the #P-hardness of # SYMMETRIC NASH for symmetric win-lose bimatrix

games (Theorem 7.1).
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7.3 Win-Lose 3-Player Games

We show:

Theorem 7.10 Restricted to win-lose 3-player games, ∃ RATIONAL NASH is NP-complete.

Furthermore, # RATIONAL NASH is #P-complete and ⊕ RATIONAL NASH is ⊕P-complete.

Proof: Fix Ĝ := Ĝ2 (Section 4.2). Assume first that φ is unsatisfiable. Then, by Propo-

sition 5.13, NE(G(Ĝ2, φ)) = NE(Ĝ2). Hence, by Proposition 4.2, G(Ĝ2, φ) has a single Nash

equilibrium, which is irrational. Assume now that φ is satisfiable. Then, by Proposition 5.14

(Condition (4)), G(Ĝ2, φ) has, for each satisfying assignment γ of φ, a rational Nash equilibrium

σ = σ(γ). Thus, G(Ĝ2, φ) has a rational Nash equilibrium if and only if φ is satisfiable, and the

NP-hardness of ∃ RATIONAL NASH follows. By Propositions 5.13 and 5.14, the number of ra-

tional Nash equilibria for G is #φ. Since computing #φ is #P-hard [35], the #P-hardness of #
RATIONAL NASH follows. Since computing ⊕φ is ⊕P-hard [33], ⊕P-hardness of ⊕ RATIONAL

NASH follows.

8 Discussion and Open Problems

We have established that symmetric win-lose bimatrix games are as complex as general bimatrix

games with respect to a handful of decision problems about Nash equilibria, which either

were previously studied in [4, 7, 12, 13, 20, 25, 26, 28] or are new (Theorems 7.1 and 7.7).

Furthermore, deciding the existence of a symmetric Nash equilibrium for win-lose bimatrix

games is as hard as for general bimatrix games (Theorem 7.9); deciding the existence of a

rational Nash equilibrium for win-lose 3-player games is as hard as for general 3-player games

(Theorem 7.10). Figure 4 provides a tabular summary of these NP-hardness results, which

improve and extend previous corresponding NP-hardness results from [4, 7, 12, 13, 20, 28]—

there remain just two of those decision problems whoseNP-hardness is still open; we conjecture:

Conjecture 8.1 ∃ PARETO-OPTIMAL NASH and ∃ STRONGLY PARETO-OPTIMAL NASH

are NP-hard for symmetric win-lose bimatrix games.

Furthermore, the counting versions of theseNP-hard problems (Theorems 7.1, 7.9 and 7.10) are

all #P-hard. Except for two of the parity versions of those NP-hard decision problems, namely

⊕¬ UNIFORM NASH and ⊕¬ SYMMETRIC NASH, their parity versions are all ⊕P-hard. Of

these two, recall that ⊕¬ SYMMETRIC NASH is in P; the ⊕P-hardness of ⊕¬ UNIFORM NASH

remains open. We conjecture:
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Conjecture 8.2 ⊕ ¬ UNIFORM NASH is ⊕P-hard.

The following decision problem inquires about the irrationality of Nash equilibria:

∃ IRRATIONAL NASH

I.: A game G.

Q.: Does G have an irrational Nash equilibrium?

∃ IRRATIONAL NASH is a trivial problem for non-degenerate bimatrix games,†† while it is

NP-hard for general 3-player games [4, Theorem 4].‡‡

Conjecture 8.3 ∃ IRRATIONAL NASH is NP-hard for win-lose 3-player games.

Obtaining tight hardness results for the complexity of the decision problems about Nash equi-

libria (resp., symmetric Nash equilibria) in 3-player win-lose games (resp., symmetric 3-player

win-lose games) remains a tantalizing open problem. In two very recent works [5, 6] extend-

ing [19], the present authors established tight ∃R-hardness results for this complexity in general

3-player games (resp., general symmetric 3-player games); ∃R is the complexity class capturing

the Existential Theory of the Reals [34].

Open Problem 8.1 Determine whether or not the ∃R-complete decision problems about Nash

equilibria (resp., symmetric Nash equilibria) in 3-player games (resp., symmetric 3-player

games) from [5, 6] remain ∃R-hard when the corresponding games are restricted to win-lose.
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††For bimatrix games, the existence of an irrational Nash equilibrium is equivalent to the existence of infinitely

many Nash equilibria. Non-degenerate bimatrix games have a finite number of Nash equilibria. Hence, they have

no irrational Nash equilibrium.
‡‡The proof used an alternative approach, employing a reduction from the decision problem NASH-

REDUCTION [4, Section 2.3.2], which is not considered here.
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NP-hard for bimatrix games:

Decision problem: G S WL S+WL

∃ k + 1 NASH (with k ≥ 1) ⇐ [13, 20] (k = 1) & ⇐ [12] (k = 1) & ⇐ (7.1), Ĝ1[2] & Ĝ5[k]

∃ NASH WITH LARGE UTILITIES ⇐ [13, 20] & ⇐ ⇐ (7.1), Ĝ1[h]

∃ NASH WITH SMALL UTILITIES ⇐ ⇐ ⇐ (7.1), Ĝ1[1]

∃ NASH WITH LARGE TOTAL UTILITY ⇐ [13] & ⇐ ⇐ (7.1), Ĝ1[h]

∃ NASH WITH SMALL TOTAL UTILITY ⇐ ⇐ ⇐ (7.1), Ĝ1[1]

∃ NASH WITH LARGE SUPPORTS ⇐ [13, 20] & ⇐ ⇐ (7.1), Ĝ1[1]

∃ NASH WITH SMALL SUPPORTS ⇐ [20] & ⇐ ⇐ (7.1), Ĝ1[h]

∃ NASH WITH RESTRICTED SUPPORTS ⇐ [13, 20] & ⇐ ⇐ (7.1), Ĝ1[1]

∃ NASH WITH RESTRICTING SUPPORTS ⇐ [13, 20] & ⇐ ⇐ (7.1), Ĝ1[1]

∃ PARETO-OPTIMAL NASH ⇐ [13] ? ?

∃ ¬ PARETO-OPTIMAL NASH ⇐ ⇐ ⇐ (7.1), Ĝ1[2] & Ĝ5[k]

∃ STRONGLY PARETO-OPTIMAL NASH ⇐ [13] ? ?

∃ ¬ STRONGLY PARETO-OPTIMAL NASH ⇐ ⇐ ⇐ (7.1), Ĝ1[2] & Ĝ5[k]

∃ NASH WITH SMALL PROBABILITIES ⇐ ⇐ ⇐ (7.1), Ĝ1[1]

∃ UNIFORM NASH ⇐ ⇐ [7] & ⇐ (7.1), Ĝ3

∃ ¬ UNIFORM NASH ⇐ ⇐ ⇐ (7.1), Ĝ1[1]

∃ SYMMETRIC NASH ⇐ ⊥ (7.9), Ĝ4 ⊥
∃ ¬ SYMMETRIC NASH ⇐ [28] & ⇐ ⇐ (7.1), Ĝ1[2] & Ĝ5[k]

NASH-EQUIVALENCE(Ĝ) [4] ⇐ ⇐ (7.7), Ĝ

NASH-EQUIVALENCE [4] ⇓ ⇓ ⇓

NP-hard for 3-player games

Decision problem: G WL

∃ RATIONAL NASH [4] (7.10), Ĝ2

∃ IRRATIONAL NASH [4] ?

Figure 4: Summary of the NP-hardness results for decision problems about Nash equilibria,

and comparison to previous related work in [4, 7, 12, 13, 20, 28]. Columns correspond to

classes of bimatrix games; specifically, the symbols G, S, WL and S+WL denote general,

symmetric, win-lose and simultaneously symmetric and win-lose bimatrix games, respectively.

The rightmost column gives the number of the corresponding theorem (in parenthesis), followed

by the gadget used in the NP-hardness proof. The symbol ”?” indicates that the NP-hardness
of the decision problem remains open for the corresponding class. The symbol ⊥ indicates that

the decision problem is trivial for the corresponding class. An arrow ⇐ in some entry indicates

that NP-hardness follows directly from a corresponding NP-hardness result for some entry in

the same row and to its right. An arrow ⇓ in some entry indicates that NP-hardness follows
directly from the NP-hardness result for the entry in the same column and just above it. The

first table applies to bimatrix games, while the second table applies to 3-player games.
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[5] V. Bilò and M. Mavronicolas, “A Catalog of ∃R-Complete Decision Problems about Nash

Equilibria in Multi-Player Games,” Proceedings of the 33rd International Symposium on

Theoretical Aspects of Computer Science, Article No. 17, pp. 17:1–17:13, Vol. 47, LIPIcs,

Schloss Dagstuhl - Leibniz Zentrum fuer Informatik, February 2016.
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