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ABSTRACT
In the last decade remarkable progress has been made in develop-

ment of suitable proof techniques for analysing randomised search

heuristics. The theoretical investigation of these algorithms on

classes of functions is essential to the understanding of the under-

lying stochastic process. Linear functions have been traditionally

studied in this area resulting in tight bounds on the expected op-

timisation time of simple randomised search algorithms for this

class of problems. Recently, the constrained version of this problem

has gained attention and some theoretical results have also been

obtained on this class of problems. In this paper we study the class

of linear functions under uniform constraint and investigate the

expected optimisation time of Randomised Local Search (RLS) and

a simple evolutionary algorithm called (1+1) EA. We prove a tight

bound of Θ(n2) for RLS and improve the previously best known

bound of (1+1) EA from O(n2
log(Bwmax)) to O(n

2
logB) in expec-

tation and to O(n2
logn) with high probability, wherewmax and B

are the maximum weight of the linear objective function and the

bound of the uniform constraint, respectively.
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• Theory of computation → Theory of randomized search
heuristics;
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1 INTRODUCTION
Randomised search heuristics, such as evolutionary computing tech-

niques and randomised local search algorithms have been widely
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used in real world applications that involve optimisation. Over the

last decade a lot of progress has been obtained in understanding the

running time behaviour of these algorithms, which give us insights

on the underlying stochastic process, particularly for classes of

optimisation problems.

One of the classes of problems which has been studied for a

simple evolutionary algorithm, called (1+1) EA, is the class of lin-

ear pseudo-boolean functions [4, 9, 12–14, 23]. The problem is to

optimise a linear function of n Boolean variables. An upper bound

of O(n logn) is first obtained for the optimisation time of (1+1) EA

on this problem by Droste, Jansen and Wegener in [9], where the

presented proof is highly technical. Later, using the analytic frame-

work of drift analysis [11], He and Yao presented a simplified proof

for the same upper bound of O(n logn) [12]. Another major im-

provement was made in [13, 14], where the first precise analysis is

presented for the optimisation time of the problem. Using a frame-

work for the analysis of multiplicative drift [5], Doerr, Johannsen

and Winzen improved the precise upper bound result to the bound

(1.39 + o(1))en lnn [4]. This bound was again further improved by

Witt [23] to en lnn +O(n), who used adaptive drift [2, 3] based on

a novel potential function.

The mentioned results consider the problem without any con-

straints. However, the class of linear pseudo-boolean functions has

also been recently studied under linear constraints [10]. The prob-

lem of optimising a linear function under a linear constraint means

that the search space is split by a hyperplane and only the points

in one of the half spaces are considered feasible. This problem is

equivalent to the well-known knapsack problem in the Boolean

domain. One of the linear constraints that is studied in [10], is the

uniform constraint, in which the constraint is given by OneMax;

hence, restricting the number of 1-bits in the string. Denoting the

bound on the number of 1-bits by B, the authors of that work have

conjectured a general upper bound ofO(n2) for all linear functions,

independently of B. However, their analysis only proves a general

upper bound of O(n2
log(Bwmax)) for this setting, where wmax is

the largest weight in the objective function.

In this paper, we study two randomised search heuristics, RLS

and (1+1) EA, and analyse the expected optimisation time of these al-

gorithms on the linear function problem under a uniform constraint.

We prove that an upper bound of O(n2) holds for RLS and we im-

prove the current upper bound of O(n2
log(Bwmax)) to O(n

2
logB)

for (1+1) EA.

The problem of optimising a linear function under a uniform

constraint can be seen as a simplification of the classical minimum

spanning tree problem. The minimum spanning tree problem has

been studied quite extensively in the area of randomised search

heuristics. Neumann andWegener [19] have shown an upper bound

https://doi.org/10.1145/3321707.3321722
https://doi.org/10.1145/3321707.3321722
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Algorithm 1 (1+1) EA

t := 0.

Choose uniformly at random x0 ∈ {0, 1}n .

repeat
Create x ′ by flipping each bit in xt independently with proba-

bility 1/n.
xt+1 := x ′ if f (x ′) ≤ f (xt ), and xt+1 := xt otherwise.
t := t + 1.

until some stopping criterion is fulfilled.

ofO(m2(logn+ logwmax)), where n is the number of nodes,m is the

number of edges andwmax is the largest edge weight of the given

input graph. These results have been improved for special classes of

graphs [24] and edge weights [20]. However, it still remains an open

question whether an upper bound of O(m2
logn) can be achieved

for (1+1) EA on any graph.

The investigations in this paper are on a simpler problem, but

we are hopeful that the provided techniques and insights will be

helpful to achieve an upper bound of O(m2
logn) of (1+1) EA on

the minimum spanning tree problem. Many other analyses of evo-

lutionary algorithms also contain the largest input weight in the

obtained runtime bounds and getting strong results independent

of this parameter poses a significant challenge for many problems

where input weights might be exponential. This includes many

results using multiplicative drift analysis when dealing with expo-

nentially large weights and using the given fitness functions as the

potential/drift function [6].

This paper is structured as follows. Section 2 includes the defini-

tion of the investigated algorithms and the analytical tools that we

are going to use in the paper. Section 3 explains the studied prob-

lem, as well as the notations that we use in this paper. In Sections 4

and 5, respectively, we present the analysis for RLS and (1+1) EA,

and finally, we finish in Section 6 with some conclusions.

2 PRELIMINARIES
We consider two classical randomised search heuristics called RLS

and (1+1) EA, see Algorithms 1 and 2, which are intensively studied

in the theory of randomised search heuristics [1, 15]. The (1+1) EA

is a globally searching hill-climber, whereas RLS samples from

a neighbourhood of size at most 2. Note that for RLS, steps that

change two bits are crucial when the current search point has a

tight constraint but is not the optimum yet.

The running time (synonymously, optimisation time) of the al-

gorithms is defined as the random number of iterations until an

optimal search point has been sampled. Denoting this number by

a random variable T , in this paper we analyse the expected value

of T , E(T ), for both studied algorithms.

In our analysis for (1+1) EA, we use two important drift theo-

rems, which we list in this section in Theorem 2.1 and 2.2. The

variable drift theorem (Theorem 2.1) was independently proposed

in [16, 18] and generalised in [21]. The multiplicative drift theorem

(Theorem 2.2) is due to Doerr et al. [6] and was enhanced with tail

bounds by Doerr and Goldberg [3]. Both theorems are formulated

in a unified and slightly generalised manner here. The formulation

in terms of an arbitrary stochastic process can also be found in

Algorithm 2 Randomised Local Search (RLS)

t := 0.

Choose uniformly at random x0 ∈ {0, 1}n .

repeat
Choose b ∈ {1, 2} uniformly. Create x ′ by flipping b bits in xt
chosen uniformly at random.

xt+1 := x ′ if f (x ′) ≤ f (xt ), and xt+1 := xt otherwise.
t := t + 1.

until some stopping criterion is fulfilled.

[17]. The adaptation of the multiplicative drift theorem to arbitrary

positive smin-values has first been stated in Doerr et al. [6].

Theorem 2.1 (Variable Drift, cf. [16, 21]). Let (Xt )t ≥0, be a
stochastic process, adapted to a filtration Ft , over some state space
S ⊆ {0}∪[smin, smax], where smin > 0. Furthermore, letT B min{t |
Xt = 0} be the first hitting time of state 0. Suppose that there exists a
monotonically increasing function h : [smin, smax] → R+ such that
1/h is integrable, and for all t < T

E(Xt − Xt+1 | Ft ) ≥ h(Xt ).

Then,

E(T | F0) ≤
smin

h(smin)
+

∫ X0

smin

1

h(s)
ds .

Theorem 2.2 (Multiplicative Drift, cf. [3, 6]). Let (Xt )t ≥0, be
a stochastic process, adapted to a filtration Ft , over some state space
S ⊆ {0} ∪ [smin, smax], where smin > 0. Suppose that there exists a
δ > 0 such that for all t ≥ 0

E(Xt − Xt+1 | Ft ) ≥ δXt .

Then it holds for the first hitting time T := min{t | Xt = 0} that

E(T | F0) ≤
ln(X0/smin) + 1

δ
.

Moreover, Pr(T > (ln(X0/smin) + r )/δ ) ≤ e−r for any r > 0.

Finally, in our analysis, we will use the following simple lemma

dealing with convexity.

Lemma 2.3. Let a1, . . . ,aB ≥ 0 and C > 1. Then

(a1 + · · · + aB )
C ≤ BC−1

(
(a1)

C + · · · + (aB )
C
)
.

Proof.We write

(a1 + · · · + aB )
C = BC

(a1

B
+ · · · +

aB
B

)C
,

and interpret the expression in parentheses as a linear combination

of the B numbers with coefficient 1/B each. Applying Jensen’s

inequality, we have(a1

B
+ · · · +

aB
B

)C
≤

aC
1

B
+ · · · +

aCB
B
,

which, after multiplying with BC , gives the desired result. □

Notation. Throughout this paper, for natural numbers n we write

[n] B {1, . . . ,n}.
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3 SCENARIO
In this paper we analyse the expected optimisation time of RLS

and (1+1) EA and consider an optimisation problem with a linear

objective function under a uniform constraint. In contrast to earlier

work in this area [10], we assume that the objective function has to

be minimised since this perspective more naturally coincides with

the minimisation of the distance to the target 0 that is implicit in

the drift theorems (Theorems 2.1 and 2.2). The upper bounds on the

optimisation time obtained for RLS in Section 4 and for (1+1) EA

in Section 5, respectively, would equally hold if we adopted max-

imisation in the same way as in the previous work. See Section 5.3

for more discussion about assuming a minimisation problem or a

maximisation problem.

Formally, throughout this paper, we consider the search space

{0, 1}n of all bit strings x = xnxn−1 · · · x1, and the goal is to min-
imise the objective function of

f
obj

(x) =
n∑
i=1

wixi ,

wherewn ≥ · · · ≥ w1 are positive real weights, under the uniform

constraint

x1 + · · · + xn ≥ B

for some B ∈ {1, . . . ,n}. We are excluding B = 0, as it is equivalent

to having no constraints. Note that we follow common conventions

in the analysis of linear functions [4, 23] by writing down search

points in the order xn . . . x1, i. e., most significant bit first. Therefore,

an index i is called left of index j , i if i > j and right of j otherwise.
A search point is optimal if it minimises f

obj
and is placed in

the feasible region, i. e., the part of the search space where the

constraint is satisfied. Moreover, we say that a search point is tight
(in the constraint) if x1 + · · · + xn = B.

In Algorithms 1 and 2, x denotes the best search point found

so far, and x ′ is the new offspring, which replaces x if it is at least

as good as it with respect to a fitness function f that we define as

follows. We aim to handle the constraint of the problem by setting

a penalty for the violation. Therefore, we define the fitness function

below, to be used by the algorithms.

f (x) = f
obj

(x) +max{0, (B − b(x))} · (nwmax + 1)

where wmax = wn is the maximal weight, and b(x) =
∑n
i=1

xi
is the number of ones in the bit string x , which we also refer to

as the b-value of x . For feasible search points we have b(x) ≥ B,
which implies that max{0, (B−b(x))} = 0. Therefore, the penalty of

(B−b(x)) · (nwmax+1) is applied to search points that are infeasible,

making the value of this fitness function larger than that of any

feasible search points. Note that with this definition of the fitness

function, the search in infeasible region is also guided to the feasible

region, because as the extent of the constraint violation is reduced

the penalty also decreases.

We first find a tight bound on the expected optimisation time of

RLS on this problem in Section 4, and then focus on the challenging

analysis of (1+1) EA in the rest of the paper. Lemma 4.1, which is

presented in Section 4 holds for (1+1) EA as well as RLS, and is used

in analysis of both algorithms (Section 4 and Section 5).

4 ANALYSIS OF RLS
In Theorem 4.2, we prove that RLS (Algorithm 2) optimises the

linear function problem under a uniform constraint in expected

time O(n2). In Theorem 4.3 we also prove that this bound is tight.

We start with the following lemma, which proves that a feasible

search point is sampled by the studied algorithm in O(n log(n/(n −

B))). This lemma holds for (1+1) EA as well, and is also used in

analysis of Section 5. The proof of this lemma is similar to the proof

of Lemma 7 in [10] in which a maximisation problem for a linear

function under uniform constraint is considered. Here we adapt

the proof to match the minimisation problem.

Lemma 4.1. Starting with an arbitrary initial solution, the expected
time until RLS or (1+1) EA obtain a feasible solution isO(n log(n/(n−
B))).

Proof. Recall that we denote by b(x) the number of 1-bits in a

search point x . Due to the definition of the fitness function f , in
the infeasible region, a search point x with a larger b(x) is always
preferred to a search point with a smaller b-value. Therefore, the
problem can be seen as maximising b(x) until reaching b(x) ≥ B,
where the initial solution may have a b-value of 0. We consider the

potential function

д(x) =

{
n − b(x), if b(x) < B.

0, otherwise.

for which the initial value is at most n and the minimum value

before reaching 0 is n − B + 1. The value of this function is never

increased during the process of RLS or (1+1) EA, as larger b-values
are always preferred to smaller b-values before reaching д(x) = 0.

We find the drift on the value of д(xt ) for RLS, where xt is the

search point of the algorithm at step t , as

E(д(xt ) − д(xt+1) | д(xt );д(xt ) > 0) ≥
n − b(xt )

2n
=
д(xt )

2n

since RLS performs a 1-bit flip with probability 1/2 and flips a 0-bit

with probability (n − b(xt ))/n, improving д by 1. A similar drift of

E(д(xt ) − д(xt+1) | д(xt );д(xt ) > 0) ≥
д(xt )

en

is obtained for (1+1) EA, in which the probability of flipping one

0-bit and no other bits is
n−b(xt )

n · (1 − 1

n )
n−1 ≥

д(xt )
en .

Using the multiplicative drift theorem (Theorem 2.2) with δ =
1/en, X0 ≤ n and smin = n − B + 1 we find that the expected time

until reaching a feasible solution is upper bounded by

ln(n/(n − B + 1)) + 1

1/(en)
= O

(
n log

( n

n − B

))
.

□

Theorem 4.2. Starting with an arbitrary initial solution, the ex-
pected optimisation time of RLS on linear functions with a uniform
constraint is O(n2).

Proof. Due to Lemma 4.1, RLS finds a feasible solution in expected

time O(n log(n/(n − B))). Also, since all feasible solutions have

smaller fitness values than infeasible solutions, the algorithm does

not switch back to the infeasible region again. Moreover, note that

once a feasible solution has been found for the first time, the number

of ones in the solution cannot be increased. This is due to the fact
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that the penalty is 0 and all 1-bit flips flipping a 0 increase the fitness.

Also, all 2-bit flips that increase the number of ones (flipping two

zeros) increase the fitness as well.

We split the analysis of the algorithm after obtaining a feasible

solution into two phases. In the first phase, the algorithm starts

with a solution x with b(x) > B and obtains a solution with exactly

B 1-bits (b(x) = B). Then the second phase starts, during which the

number of 1-bits of the solution does not change, because both 1-bit

flips and 2-bit flips that change the number of ones increase the

fitness. If the first feasible solution that is obtained by the algorithm

has b(x) = B, then we do not have a first phase. We first analyse

the expected time until the first phase ends, then we focus on the

second phase.

In the first phase, the algorithm starts with a solution x with

b(x) > B. In this situation, as explained above, b(x) does not in-
crease. Moreover, a 1-bit flip that flips a 1 to 0, which happens

with probability b(x)/(2n), is always accepted because it decreases

the fitness, while not violating the constraint yet. By defining a

potential function д(x) as

д(x) =

{
b(x), if b(x) > B.

0, otherwise.

and using multiplicative drift theorem with δ = 1/2n, X0 ≤ n and

smin = B + 1, we find the expected time of O(n log(n/B)) until a
solution with д(x) = 0 is found, which implies b(x) = B.

Now we analyse the second phase. Having obtained a solution

with exactly B ones, only 2-bit flips flipping a zero and a one are ac-

cepted. Let r be the number of bits of weightwB amongwB , . . . ,w1,

i.e. r = |{i | wi = wB , 1 ≤ i ≤ B}|. An optimal solution contains

all weights of weight less thanwB and exactly r weights of weight
wB .

Let x be the current solution and s(x) = max{0, r − |{i | wi =

WB ∧ xi = 1}|} be the number of 1-bits of weightwB missing in x .
Furthermore, let

t(x) = |{i | wi < wB ∧ xi = 0}|

be the number of 1-bits of weight less thanwB missing in x .
We denote by

k = s(x) + t(x)

the number of weights that are missing in the weight profile of the

current solution x compared to an arbitrary optimal solution.

As there are exactly B 1-bits in the current solution x , it implies

that there are exactly

k = {i | wi > wB ∧ xi = 1} +max{0, |{i | wi = wB ∧ xi = 1}| − r }

weights chosen in x that do not belong to an optimal weight profile.

Note that for a given solution x

r − |{i | wi = wB ∧ xi = 1}|

is a fixed value which is greater than 0 if 1-bits of weight wB are

missing and less than 0 if there are too many 1-bits of weightwB .

This implies that there are at k 1-bits which can be swapped

with an arbitrary 0-bit of the missing k weights in order to reduce

k . Hence, the probability of swapping a 1-bit with a 0-bit of the

missing weights is at least
k2

2n2
and the expected waiting time for

this event is bounded from above by 2n2/k2
. Sincek cannot increase,

it suffices to sum up these expected waiting times following the

idea of fitness-based partitions [22]. Hence, the expected time until

reaching k = 0 is

B∑
k=1

(2n2/k2) = O(n2),

which completes the proof. □

We now show that the previous bound is asymptotically tight.

Theorem 4.3. There is a linear function f and a bound B such
that, starting with a uniformly random initial solution, the expected
optimisation time of RLS on f under uniform constraint B is Ω(n2).

Proof. The same lower bound is proved for (1+1) EA in Theorem 10

of [10]. Since RLS does not flip more than 2 bits at each step, the

proof of this theorem is simpler. We use a function f that is similar

to the function that is used in [10] and is adapted for a minimisation

problem. We define f as

f (x) =
B∑
i=1

xi +
n∑

j=B+1

(1 + ε)x j

where ε is an arbitrary positive real number. Since the weights

that are assigned to the first B bits are smaller than the weights

of other bits, the optimal solution is selecting the first B bits. We

prove that with B = n/4, the expected optimisation time of RLS is

lower bounded by Ω(n2).

We denote the Hamming distance of a solution x to the optimal

solution by dH (x). By Chernoff bounds the initial solution has at

least n/3 1-bits with probability exponentially close to 1, which

implies a Hamming distance of at least n/12 to the optimal solution.

Since RLS can only decrease the Hamming distance by one or two

at each step, in order to reach the optimal solution, a solution x
has to be obtained at some point such that 2 ≤ dH (x) ≤ 3. We

investigate the process based on the number of 1-bits of solution x ,
which we denote by |x |1. Since the initial solution is feasible with

probability exponentially close to 1, we either have |x |1 = B or

|x |1 > B.
If |x |1 = B, then dH (x) = 2 and x can only have one 0-bit among

the first B bits and one 1-bit among other bits. In this case only

a swap on the two misplaced bits can improve the fitness, the

probability of which to happen is at most 1/n2
; hence, the waiting

time is Ω(n2) and the theorem follows.

If |x |1 > B, then flipping any of the 1-bits improves the fitness.

Since there are more than n/4 1-bits in the solution, the probability

of decreasing the number of 1-bits is at least 1/8 at each time step

of RLS. Furthermore, the number of 0-bits does not decrease by

RLS due to the fitness function. Using a drift argument on |x |1 − B,
we find that in expected constant time (at most

3

1/8
) a solution x ′

is obtained such that |x ′ |1 = B. This implies that in a phase of

logn steps, with probability 1 − o(1) the solution x ′ is obtained.
If x ′ is not optimum, then we have to swap at least two bits and

the theorem follows as above. What remains is to show that x ′

is not optimum with probability 1 − o(1). Since dH (x) ≤ 3, the

probability of flipping a one-bit from x that is outside the first B
positions is at most 3/n at each step. Therefore, with probability

at least 1 − (1 − (1 − 1/n)logn )3 = 1 − o(1) at least one of these bits
does not flip in a phase of logn steps; hence, x ′ is not the optimal

solution with probability 1 − o(1), which completes the proof. □
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5 ANALYSIS OF (1+1) EA
In this sectionwe analyse the expected optimisation time of (1+1) EA

for the linear function under a uniform constraint. In Section 5.1

we present the statement of our results, and then in the following

section we prove the statement.

5.1 Main Theorem
For a linear function under uniform constraint of B, we aim to

prove that (1+1) EA finds an optimal solution in expected time

O(n2
log
+ B), where log

+(x) B max{1, logx}. Since Lemma 4.1

proves that a feasible solution is obtained by (1+1) EA in expected

time O(n log(n/(n − B))) and this upper bound is asymptotically

smaller than O(n2
log
+ B), we only focus on the analysis of the

algorithm after finding a feasible solution. The main theorem that

we prove in this section is stated below.

Theorem 5.1. Given an arbitrary linear function under a uniform
constraint x1 + · · · + xn ≥ B for B ∈ {1, . . . ,n}, the expected op-
timisation time of the (1+1) EA is upper bounded by O(n2

log
+ B),

where log
+(x) B max{1, logx}. Also, the time is O(n2

logn) with
probability 1 −O(n−c ) for any constant c > 0.

5.2 Adaptive Drift Analysis
To prove Theorem 5.1, we conduct an adaptive drift analysis, where

the underlying potential function д(x), to be minimised, depends

on both the weights (w1, . . . ,wn ) of the linear function and the

constraint value B. The exact definition of the potential function

is to some extent inspired by the techniques developed in Witt

[23] and further applied in Doerr and Pohl [7] and Doerr et al.

[8]. However, as these papers are concerned with unconstrained

problems only, additional effort has been made to transfer these

techniques to our scenario.

Once having defined the potential function, the idea is to anal-

yse the potential Xt := д(x (t )) of the random search point x (t )

maintained by the (1+1) EA on f at time t . We bound its expected

one-step change E(Xt − Xt+1 | Xt ), i. e., the expected decrease of

the potential function from time t to time t + 1. Then we use this

bound in the drift argument that proves the main theorem.

The following lemma (Lemma 5.2) states this bound as well as

a bound on the maximum value of the potential function, which

will be required in the drift theorems. We define д(x) later in Defi-

nition 5.3, and prove the statements of Lemma 5.2 for this function

afterwards. We first bring the statement of this lemma and show

how it can be used to prove Theorem 5.1.

Lemma 5.2. Considering a random variable Xt = д(x (t )), where
the function д is given in Definition 5.3 and x (t ) is the random search
point of (1+1) EA at time t , for all time steps t we have

(1) E(Xt − Xt+1 | Xt ) ≥
0.11Xt
en2

max{X
1/7

t /B1/7, 1}.
(2) 1 ≤ Xt ≤ n8 if x (t ) is not optimal.

Deferring the definition of the potential function д and the proof

of the previous lemma, we obtain our theorem.

Proof of Theorem 5.1. We apply the variable drift theorem (The-

orem 2.1) given the statements of Lemma 5.2. Using that Xt ≥ 1 C

smin and Xt ≤ n8
as well as the drift bound

h(Xt ) B
0.11Xt
en2

max{X
1/7

t /B1/7, 1},

the expected optimisation time is bounded by

smin

h(smin)
+

∫ n8

smin

1

h(x)
dx

= O(n2) +
en2

0.11

(∫ B

1

1

x
dx + B1/7

∫ n8

B+1

1

x8/7

dx

)
= O(n2) +O(n2)(O(logB) +O(1)) = O(n2

log
+ B),

which completes the proof of the O(n2
log
+ B) bound.

For the tail bound we use the multiplicative drift theorem (The-

orem 2.2) with the simple bound E(Xt − Xt+1 | Xt ) ≥
0.11Xt
en2

of

Lemma 5.2 along with Xt ≤ n8
that implies ln(Xt /smin) = O(logn).

Note that the theorem gives the upper bound O(n2
logn) on the

expected optimisation time so that the tail bound can be obtained

by setting r = c lnn. □

In the following, we unroll the proofs of the drift statements.

The proof of Lemma 5.2 relies on the analysis of the one-step drift

of the potential function д : {0, 1}m → R. We now introduce the

setup required to define д(x).

Definition 5.3. Let an arbitrary linear function f =
∑n
i=1

wixi ,
where wn ≥ · · · ≥ w1, under uniform constraint x1 + · · · + xn ≥

B be given and let xopt be the (not necessarily unique) optimal

search point having one-bits at the B least significant positions

only. Letm B |{wB+1, . . . ,wn }| be the number of distinct weights

at the n − B most significant positions and define s(i) = min{j |
|{wB+1, . . . ,w j }| ≥ i}, where i ∈ {1, . . . ,m}, as the start of the

block of indices having the ith largest weight as well as s(m + 1) B
n+1. Also, letKi B {s(i), . . . , s(i+1)−1} be the indices comprising

the ith block of equal weights.

For j ∈ {B + 1, . . . ,n}, let

γj B (j − B)7

and γ1 = · · · = γB B 0. Based on this, define for all blocks i ∈ [m]

дs(i) = · · · = дs(i+1)−1
B min{γs(i),дs(i−1) ·ws(i)/ws(i−1)}

as well as дB+1 B 1, д1 = · · · = дB B 0, and д(x) B
∑n
i=1

дixi . For
any block i ∈ {1, . . . ,m}, we also define:

• κ(i) := max{j ≤ i | дs(j) = γs(j)}, the most significant block

right of i (possibly i itself) capping according to the sequence
γi ,

• L(i) := {m, . . . ,κ(i)}, the block indices left of (and including)
the block κ(i),

• R(i) := {κ(i) − 1, . . . , 1}, the block indices right of block κ(i).

Considering the original weightsw1, . . . ,wn in increasing order,

the potential function assigns the same д-value to all indices within
a block Ki of equalw-value. Note that blocks may be of size 1. We

also observe that the weights of д can be equivalently defined as

дj = min{γj ,дj−1 ·w j/w j−1} for j ∈ {B + 1, . . . ,n}.
The idea of the potential function is to cap the original weights

at γi at the indices where the original weights increase too steeply

and to rebuild their slope otherwise. In particular, we have дi ≤ γi
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for all i ∈ [n]. The intuition is that the potential function will un-

derestimate the progress made at blocks being at least as significant

as κ(i), i. e., the blocks in L(i). In all less significant blocks (those

in R(i)), we will pessimistically assume that they contribute a loss,

and the choice of κ(i) guarantees that this loss is overestimated.

Also, the potential function assigns a value of zero to one-bits

at the rightmost B positions since these correspond to an optimal

setting.

As mentioned above, we will analyse the stochastic process

(Xt )t ≥0 where Xt = д(x (t )) for all t , and define ∆t := Xt − Xt+1.

Recall that we are interested in the first point in time t whereXt = 0

holds. The one-step drift E(∆t | Xt ) of the potential function will

be worked out conditioned on certain events depending on two

flipping bits. The following notions prepare the definition of these

events.

Definition 5.4. Given x (t ) ∈ {0, 1}n , denote by x ′ the random

search point created by mutation of x (t ) (before selection). We

define

• I := {i ∈ [n] | x
(t )
i = 1} the one-bits in x (t ),

• I∗ := {i ∈ I | x ′i = 0} the one-bits flipping to 0,

• Z := {i ∈ [n] | x
(t )
i = 0} the zero-bits in x (t ),

• Z ∗
:= {i ∈ Z | x ′i = 1} the zero-bits flipping to 1.

• σi B |I∗ ∩ Ki | − |Z ∗ ∩ Ki | the surplus of flipping one-bits

within block Ki , where i ∈ [m].

Note that the random sets I∗ and Z ∗
are disjoint and that the

remaining bits in [n] contribute nothing to the ∆t -value.

Obviously, for ∆t , 0 it is necessary that x (t+1) , x (t ). We fix an

arbitrary search point x (t ) and let A be the event that x (t+1) , x (t ).
Then event A requires that

I∗ , ∅ and

∑
j ∈I ∗

w j −
∑
j ∈Z ∗

w j ≥ 0.

To simplify the analysis of blocks of equal weights, we from now

on use the equivalence∑
j ∈I ∗

w j −
∑
j ∈Z ∗

w j =

m∑
i=1

σiws(i)

Hence, for A to occur it is necessary that∑
i |σi>0

|σi |ws(i) −
∑

i |σi<0∧i≥k

|σi |ws(i) ≥ 0,

for arbitrary k ∈ [m] since we only ignore the loss due to the bits

right of block k . In the following, k = κ(i) will be used where i is
the leftmost block such that σi > 0.

We now decompose the event A according to two indices i ∈
[m], ℓ ∈ [n], where i relates to the leftmost block that flips more

ones than zeros, and ℓ to the leftmost flipping one-bit from block i .

Definition 5.5. The event Ai ,ℓ , where i ∈ [m] and ℓ ∈ [n], occurs
iff the following conditions hold simultaneously.

(1) I∗ , ∅.

(2) i B max{i | σi > 0}.

(3) ℓ = max(I∗ ∩ Ki )
(4)

∑
j |σj>0

|σj |ws(j) −
∑
j |σj<0∧j≥κ(i) |σj |ws(j) ≥ 0.

(5) A feasible search point is obtained by flipping the bits from

I∗ ∪ Z ∗
in x (t ).

Obviously, the events Ai ,ℓ are mutually disjoint. Since each ac-

cepted, non-copying mutation must flip at least one one-bit, the

union of the events Ai ,ℓ is a superset of A (in other words, is neces-

sary for A). The key inequality used to bound the one-step drift is

stated in the following lemma.

Lemma 5.6. E(∆t | Ai ,ℓ) ≥ 0.11дs(i) for all i ∈ [m] and ℓ ∈ Ki
such that Pr(Ai ,ℓ) > 0, and all t ≥ 0.

Before we prove Lemma 5.6, let us show how it can be used to

prove Lemma 5.2.

Proof of Lemma 5.2. We still fix an arbitrary search point x (t ),

denote by Xt = д(x
(t )) its potential and investigate the following

step. As observed above, in the step the potential remains either

unchanged or a certain event Ai ,ℓ occurs. The total drift can then

be expressed as

E(Xt − Xt+1 | Xt ) =
∑

i ∈[m],ℓ∈Ki ,Pr(Ai ,ℓ )>0

E(∆t | Ai ,ℓ) · Pr(Ai ,ℓ).

Using Lemma 5.6, the last expression is at least∑
i ∈[m],ℓ∈Ki ,Pr(Ai ,ℓ )>0

0.11дs(i) Pr(Ai ,ℓ), (1)

so we have to bound Pr(Ai ,ℓ) from below for those events that are

possible.

If Pr(Ai ,ℓ) > 0 then there is a one-bit at position ℓ. If the current

search point is not tight, already flipping bit ℓ only is accepted.

Hence, we now pessimistically assume that the constraint is tight

so that there are B−1 other one-bits in x (t ). Considering a mutation

that flips bit ℓ the mutation is accepted if it flips a zero-bit right of ℓ

and does not flip any further bits. Even if all B one-bits are right

of (and including) bit ℓ, there are at least ℓ − B zero-bits right of ℓ.

Noting that the probability of not flipping n − 2 bits is (1 − 1/n)n−2
,

we conclude that

Pr(Ai ,ℓ) ≥
ℓ − B

n2

(
1 −

1

n

)n−2

≥
ℓ − B

en2
(2)

if Ai ,ℓ is possible. We will now relate this bound to the factor дs(i)
appearing in (1). First of all, since ℓ appears in block i and all bits

in a block have equal weight, we have дs(i) = дℓ . Next we note that

дℓ ≤ γℓ = (ℓ−B)7 by Definition 5.3. Plugging this into Equation (2),

we obtain (if Ai ,ℓ is possible) that

Pr(Ai ,ℓ) ≥
(дs(i))

1/7

en2
(3)

and of course also Pr(Ai ,ℓ) ≥ 1/(en2) by just estimating ℓ − B ≥ 1

in (2).

Furthermore, the one-bits outside positions 1, . . . ,B altogether

make up the current д-value. Let Ĩ be the set of these bits. Since
for each i ∈ [m] there are Ki ∩ Ĩ disjoint events Ai ,ℓ of probability

at least (дs(i))
1/7/(en2) each, namely one for each one-bit ℓ within
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block i , we obtain by combining (1) and (3) that

E(Xt − Xt+1 | Xt )

≥
∑

i ∈[m] |Ki∩Ĩ,∅

|Ki ∩ Ĩ |0.11дs(i) Pr(Ai ,ℓ)

≥
∑

i ∈[m] |Ki∩Ĩ,∅

|Ki ∩ Ĩ |
0.11(дs(i))

8/7

en2

≥
0.11(д(x (t ))8/7)

B1/7en2

where the last inequality used the estimate

(a1 + · · · + aB )
8/7 ≤ B1/7((a1)

8/7 + · · · + (aB )
8/7)

proved in Lemma 2.3. Using also the simple bound Pr(Ai ,ℓ) ≥

1/(en2) and recalling that Xt = д(x
(t )), we altogether have

E(Xt − Xt+1 | Xt ) ≥
0.11Xt
en2

max

{
X

1/7

t /B1/7, 1
}
.

This proves the first statement of Lemma 5.2.

For the second statement of Lemma 5.2, we simply use that

дi ≤ i7, so for all x (t ) it holds that д(x (t )) ≤
∑n
i=1

дi ≤ n · n7 = n8
.

Also, sinceдB+1 = 1 each non-optimal search point x (t ) must satisfy

д(x (t )) ≥ 1. □

The still outstanding proof of Lemma 5.6 requires a careful anal-

ysis of the one-step drift, taking into account the specific structure

of the drift function.

Proof of Lemma 5.6. Recall that we want to condition on the

event Ai ,ℓ (Definition 5.5), where i is the leftmost block flipping

more ones than zeros. Moreover, recall the notions introduced in

Definitions 5.3 and 5.4. Let

∆L(i) B
©­«

∑
j |σj>0

|σj |дs(j) −
∑

j |σj<0∧j≥κ(i)

|σj |дs(j)
ª®¬ · 1A,

∆R (i) B
©­«

∑
j |σj>0∧j<κ(i)

|σj |дs(j)
ª®¬ · 1A,

where 1A denotes the indicator random variable of event A. Recall
that∆t = 0 ifA does not occur. Otherwise,∆t =

∑
j |σj>0

|σ (j)|дs(j)−∑
j |σj<0

|σ (j)|дs(j). Hence, we have ∆t = (∆L(i) − ∆R (i)) for all i ∈

[m]. By linearity of expectation, we obtain

E(∆t | Ai ,ℓ) = E(∆L(i) | Ai ,ℓ) − E(∆R (i) | Ai ,ℓ). (4)

We first show that

(
∆L(i) | Ai ,ℓ

)
is a non-negative random vari-

able, i. e., the probability of any negative outcome is 0. To prove

this, assume that Ai ,ℓ holds, which implies that no block left of i
flips more ones than zeros.

We now inspect the relation between the weights of the original

function and the potential function. Here we exploit that the ratio

of д-values and w-values of two blocks i > j is the same unless

the weight of block i is capped by the minimum operator in the

definition of дs(i) in Definition 5.3. Otherwise, the ratio may be

smaller. Looking also into symmetrical cases, for any i ∈ [m] we

obtain from Definition 5.3 that

дs(j)

дs(κ(i))
=

ws(j)

ws(κ(i))
for i ≥ j ≥ κ(i). (5)

дs(j)

дs(κ(i))
≤

ws(j)

ws(κ(i))
for j ≥ κ(i) (6)

дs(j)

дs(κ(i))
≥

ws(j)

ws(κ(i))
for j < κ(i). (7)

Hence,

(∆L(i) | Ai ,ℓ) =
©­«

∑
j |σj>0

|σj |дs(j) −
∑

j |σj<0∧j≥κ(i)

|σj |дs(j)
ª®¬

≥
©­«

∑
j |σj>0

|σj |дs(κ(i))
ws(j)

ws(κ(i))
−

∑
j |σj<0∧j≥κ(i)

|σj |дs(κ(i))
ws(j)

ws(κ(i))

ª®¬
≥ 0

where the first inequality uses (5)–(7) along with the fact that no

block left of i has positive σ -value, and the last inequality holds by

the fourth item from the definition of Ai ,ℓ (Definition 5.5)

We note that according to the fifth item of Definition 5.5, this

event may imply that a bit j∗ ∈ Z flips to 1 simultaneously with

a one-bit in block i flipping to 0. This is the case if the constraint

is tight in the search point x (t ), which we again pessimistically

assume to be the case (if x (t ) had more than B one-bits, flipping

only ℓ would already be accepted).

Now let Si ,ℓ be the event that the following three events happen
simultaneously:

(1) |{I∗ ∪ Z ∗} ∩ Kj | = 0 for all j ∈ {κ(i), . . . ,m} \ {i}
(2) |I∗ ∩ Ki | = 1 and ℓ ∈ I∗ ∩ Ki ,
(3) |Z ∗ ∩ Ki | = 0,

i. e., block i is the only one in L(i) that contributes to ∆L by flipping

exactly one one-bit at position ℓ. We have

E(∆L(i) | Ai ,ℓ) = E(∆L(i) | Ai ,ℓ ∩ Si ,ℓ) · Pr(Si ,ℓ | Ai ,ℓ)

+ E(∆L(i) | Ai ,ℓ ∩ S̄i ,ℓ) · Pr(S̄i ,ℓ | Ai ,ℓ)

by the law of total expectation. As the randomvariable

(
∆L(i) | Ai ,ℓ

)
cannot have any negative outcomes, all these conditional expecta-

tions are non-negative as well. From (4) we thus derive

E(∆t | Ai ,ℓ) ≥ E(∆L(i) | Ai ,ℓ∩Si ,ℓ)·Pr(Si ,ℓ | Ai ,ℓ)−E(∆R (i) | Ai ,ℓ).
(8)

We will now bound the terms from (8) from below to obtain our

result. For (Si ,ℓ | Ai ,ℓ) to occur, it is sufficient that all bits in the

blocks in L(i) except the one-bit ℓ in block i and bit j∗ do not flip

(note that these bits flip since we condition on Ai ,ℓ ). Consequently,

Pr(Si ,ℓ | Ai ,ℓ) ≥ (1 − 1/n)n−2 ≥ 1/e . Moreover, since no zero-bits

in L(i) flip under Ai ,ℓ ∩ Si ,ℓ , j
∗
must be in a block in R(i). Hence,

E(∆L(i) | Ai ,ℓ ∩ Si ,ℓ) ≥ дs(i). Altogether,

E(∆L(i) | Ai ,ℓ ∩ Si ,ℓ) · Pr(Si ,ℓ | Ai ,ℓ) ≥
дs(i)

e
. (9)

Finally, we need a bound on E(∆R (i) | Ai ,ℓ), which is determined

by the bits in R(i) that flip to 1, i. e., bits from blocks 1, . . . ,κ(i) − 1.

Note that event Ai ,ℓ might imply that at least one of these bits

flips to 1 for sure to maintain feasibility of the search point. We

still pessimistically assume this to happen and denote by j∗ the
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random index of the zero-bit that is forced to flip. Furthermore,

we pessimistically assume that bits 1, . . . ,B − 1 are all 1 in x (t ) so
that the contribution of bit j∗ becomes as large as possible. Then,

since the flips in R(i) are not part of the fourth item in the defi-

nition of Ai ,ℓ (Definition 5.5), we conclude that j∗ is uniform on

{B, . . . , s(κ(i)) − 1} and contributes at most

1

s(κ(i)) − B

s(κ(i))−1∑
k=B

дk =
1

s(κ(i)) − B

s(κ(i))−1∑
k=B+1

дk .

With respect to the bits different from j∗, we exploit that they are

flipped independently. Hence, on Ai ,ℓ , the probability that k ∈

Z ∩ {B + 1, . . . , s(κ(i)) − 1} \ {j∗} flips is bounded from above by

1

n . Pessimistically, we assume that A occurs in such a mutation. By

using linearity of expectation and combining with the contribution

of j∗, it follows that

E(∆R (i) | Ai ,ℓ) ≤

s(κ(i))−1∑
k=B+1

1

n
дk +

1

s(κ(i)) − B

s(κ(i))−1∑
k=B+1

дk

which is at most

2

s(κ(i)) − B

s(κ(i))−1∑
k=B+1

дk ≤
2

s(κ(i)) − B

s(κ(i))−1∑
k=B+1

γk ,

where we used that дk ≤ γk for all k ∈ [n] by Definition 5.3. Along

with (8) and (9), we get

E(∆t | Ai ,ℓ) ≥
дs(i)

e
−

2

s(κ(i)) − B

s(κ(i))−1∑
k=B+1

γk

We are left with the sum over k . Plugging in the definition of γk ,
this is estimated by

s(κ(i))−1∑
k=B+1

γk =

s(κ(i))−1−B∑
k=1

k7

≤
(s(κ(i)) − B)8

8

≤
(s(κ(i)) − B)дs(κ(i))

8

≤
(s(κ(i)) − B)дs(i)

8

,

where we used that дs(κ(i)) = γs(κ(i)) = (s(κ(i)) − B)7 according to

the definition of κ(i) as well as дs(i) ≥ дs(κ(i)).
Hence, finally,

E(∆t | Ai ,ℓ) ≥
дs(i)

e
−

2дs(i)(s(κ(i)) − B)

8(s(κ(i)) − B)
≥ 0.11дs(i).

□

5.3 Minimisation versus Maximisation
The results we presented in this paper have been formulated with

respect to the minimisation of the linear function under a uniform

lower constraint x1+ · · ·+xn ≥ B. This perspective of minimisation

fits more naturally the minimisation of potential functions used

in drift theorems (Theorems 2.1 and 2.2) and is therefore de-facto

standard in many recent papers dealing with the optimisation of

linear functions [4, 23].

However, previous works about the optimisation of linear func-

tions under constraints considered the maximisation of a linear

function under an upper uniform constraint x1 + · · · + xn ≤ B. It is
not difficult to see that our main theorems (Theorems 4.2 and 5.1)

also hold for this scenario. Since this is rather straightforward to

realise for RLS, we only discuss the result for (1+1) EA now. The

potential function д from Definition 5.3 would have to be adapted

to assign weight 0 to the B most significant positions and increasing

weights from bits 1 to n − B in the same way as before, with the

exception that 0-bits instead of 1-bits would contribute: roughly

speaking we would define д(x) B
∑n−B
i=1

дi (1−xi ). The logB-factor
that the bound from Theorem 5.1 includes stems from the fact that

once having reached a tight search point, B one-bits have to be

brought to the correct positions, more precisely the B least signifi-

cant ones in the case of minimisation and the B most significant

ones in the case of maximisation. Hence, the logB factor will be

maintained also in the scenario of maximisation and does not turn

into log(n − B) as one might think at first glance.

Interestingly, the time to reach the feasible region analysed in

Lemma 4.1 will be O(n log(n/B)) instead of O(n log(n/(n − B)) in
the scenario of maximisation, as proved in earlier work [10]. This

is due to the fact that a large B corresponds to a large infeasible

region in the maximisation case but a small one in the minimisation

case. However, in both cases the time to reach the feasible region

is always bounded by an asymptotically smaller expression than

our bound for the time to find an optimal search point after having

reached the feasible region.

6 CONCLUSION
We have carried out a rigorous theoretical analysis on the expected

optimisation time of RLS and (1+1) EA on the problem of minimis-

ing a linear function under uniform constraint. Our results include

a tight expected bound ofO(n2) for RLS, as well as an improved ex-

pected bound ofO(n2
logB) for (1+1) EA, where B is the constraint

value, i. e., the minimum number of 1-bits that a solution should

have to be considered feasible. We have also proved an upper bound

of O(n2
logn) for (1+1) EA with high probability. In order to prove

our results for (1+1) EA, we have conducted an adaptive drift anal-

ysis with a potential function that depends on the weights of the

linear function and the constraint value B. We are optimistic that

the developed techniques can be helpful in finding upper bounds

on the expected optimisation time of (1+1) EA on more complicated

problems for which currently best upper bounds depend on the

weights of the given input. This includes the minimum spanning

tree problem where the best proven upper bound for general graphs

is O(n2(logn + logwmax))) and conjectured to be O(n2
logn).
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