
MIT Open Access Articles

Approximating the Canadian Traveller
Problem with Online Randomization

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Demaine, Erik D, Huang, Yamming, Liao, Chung-Shou and Sadakane, Kunihiko. 2021.
"Approximating the Canadian Traveller Problem with Online Randomization."

As Published: https://doi.org/10.1007/s00453-020-00792-6

Publisher: Springer US

Persistent URL: https://hdl.handle.net/1721.1/136731

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/136731
http://creativecommons.org/licenses/by-nc-sa/4.0/

Algorithmica manuscript No.
(will be inserted by the editor)

Approximating the Canadian Traveller Problem

with Online Randomization

Erik D. Demaine · Yamming Huang ·

Chung-Shou Liao∗ · Kunihiko Sadakane

Received: date / Accepted: date

Abstract In this paper, we study online algorithms for the Canadian Trav-

eller Problem (CTP) defined by Papadimitriou and Yannakakis in 1991.
This problem involves a traveller who knows the entire road network in ad-
vance, and wishes to travel as quickly as possible from a source vertex s to
a destination vertex t, but discovers online that some roads are blocked (e.g.,
by snow) once reaching them. Achieving a bounded competitive ratio for the
problem is PSPACE-complete. Furthermore, if at most k roads can be blocked,
the optimal competitive ratio for a deterministic online algorithm is 2k + 1,
while the only randomized result known so far is a lower bound of k + 1.

We show, for the first time, that a polynomial time randomized algorithm
can outperform the best deterministic algorithms when there are at least two
blockages, and surpass the lower bound of 2k+1 by an o(1) factor. Moreover,
we prove that the randomized algorithm can achieve a competitive ratio of
(

1+
√
2

2

)

k+
√
2 in pseudo-polynomial time. The proposed techniques can also

be exploited to implicitly represent multiple near-shortest s-t paths.

An extended abstract of this paper appeared in the proceedings of the 41st International
Colloquium on Automata, Languages, and Programming (ICALP 2014).
This work was partially supported by MOST Taiwan under Grants MOST105-2628-E-007-
010-MY3, MOST105-2221-E-007-085-MY3, and JSPS KAKENHI 23240002.

Erik D. Demaine
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, USA
E-mail: edemaine@mit.edu

Yamming Huang · Chung-Shou Liao∗

Department of Industrial Engineering and Engineering Management, National Tsing Hua
University, Hsinchu 30013, Taiwan
E-mail: s100034528@m100.nthu.edu.tw; ∗csliao@ie.nthu.edu.tw

Kunihiko Sadakane
Department of Mathematical Informatics, the University of Tokyo, Tokyo, Japan
E-mail: sada@mist.i.u-tokyo.ac.jp

2

Keywords Canadian traveller problem · competitive ratio · randomized
algorithm · next-to-shortest path · strictly ith-shortest path

1 Introduction

Imagine a person attempting to drive across a country in the Northern Hemi-

sphere in the dead of winter. Snow is falling in unpredictable patterns, and

some roads are blocked due to the lack of snow plows or accident pile-ups.

The driver has purchased a complete road map, modeled as an edge-weighted

graph G = (V,E) in which the edges represent the roads and each edge weight

represents the time required to traverse that edge. However, the driver has

no knowledge of roads that are blocked due to the weather or accidents until

he/she reaches a vertex incident to such a road. Then, he/she can observe

the blockage directly before attempting traversal. The problem is called the

Canadian Traveller Problem (CTP), and was defined by Papadimitriou

and Yannakakis [22]. The objective is to design an efficient route from a source

to a destination under conditions of uncertainty. The major difficulty in de-

veloping a good strategy based on partial information is the need to make

decisions without being able to predict blockages.

Previous work on CTP. The CTP is actually a two-player game between a

traveller and a malicious adversary who sets up road blockages to maximize

the ratio between the performance of the online strategy and that of the offline

optimum in which the blocked edges are eliminated from the graph. Papadim-

itriou and Yannakakis [22] proved that devising a CTP strategy that guaran-

tees a bounded competitive ratio is PSPACE-complete. They also proved that

the stochastic model of the problem (in which the probability that each edge is

blocked, independent of all other edges, is given in advance) is #P-hard when

minimizing the expected competitive ratio to the offline optimum. Bar-Noy

and Schieber [1] investigated several variations of the CTP from the worst-

case perspective, where the objective is to find a static (offline) algorithm that

minimizes the maximum travel cost [2]. They considered the k-CTP in which

3

the number of blockages is bounded by k. Note that for an arbitrary k, the

problem of designing a strategy that guarantees a given travel time remains

PSPACE-complete, as shown in [1,22]. In addition, Bar-Noy and Schieber dis-

cussed the Recoverable k-CTP in which each blocked edge is associated with

a recovery time (which is not very long relative to the traversal time) for re-

opening. Subsequently, Karger and Nikolova [18] studied the stochastic CTP

in special graph classes and developed exact algorithms using techniques from

the theory of Markov Decision Processes.

In the past decades, there has been no significant progress in the develop-

ment of online approximation algorithms for solving the k-CTP. Basically, two

simple deterministic strategies are currently available [27,28]. The first is the

greedy algorithm (GA), which starts at a vertex v and finds the shortest v-t

path by using Dijkstra’s algorithm [8] in a greedy manner based on the cur-

rent blockage information. The second strategy, called the reposition algorithm

(RA), proposed by Westphal [27], requires the traveller to begin at the source

s and follow the shortest s-t path until he/she learns about a blockage on the

path to t. At that point, he/she returns to s and takes a new shortest s-t path

based on the updated blockage information. In addition, Westphal proved that

1) no deterministic online algorithm within a (2k+1)-competitive ratio exists

for the problem; and 2) the simple reposition algorithm can achieve the lower

bound. He also proved a lower bound of k + 1 on the competitive ratios of all

randomized online algorithms. Xu et al. [28] developed a similar determinis-

tic adaptive comparison strategy that incorporates the concept of reposition;

the approach achieves the tight deterministic lower bound as well. They also

showed that the competitive ratio of the GA algorithm is exponential in k in

the worst case. Liao and Huang [15] considered a generalization of the k-CTP,

called the Double-valued Graph, in which each edge is associated with two

possible distances. They proposed lower bounds and a simple algorithm that

meets the deterministic lower bound. They also extended the k-CTP to design

a tour through a set of vertices [16], where the traveller visits each vertex and

returns to the origin under the same uncertainty. This problem is similar to

4

the online Traveling Salesman Problem (TSP) and its variations [14,23]. While

deterministic algorithms have been extensively studied, there was a dearth of

research on randomized approaches for solving the problem. Recently, Bender

and Westphal proposed a randomized algorithm for special graphs in which

all s-t paths are vertex-disjoint [3]. There were also some recent work on the

k-CTP for special graphs [4,5,24] and the variants of the k-CTP [11,25,29].

Note that most of the algorithms are based on the RA strategy.

Our results. In this paper, we have developed randomized strategies for solving

the k-CTP. We have proposed a polynomial time randomized algorithm that

surpasses the deterministic lower bound of 2k+1 by an o(1) factor. In addition,

the competitive ratio of the algorithm can be improved to
(

1 +
√
2

2

)

k +
√
2 in

pseudo-polynomial running time. This result is the first demonstration that

randomization strictly helps in the k-CTP for arbitrary graphs.

The rationale behind the proposed randomized algorithm is as follows.

Given a connected edge-weighted graph G = (V,E) with a source s and a

destination t in V and a distance function d : E → R+, the algorithm first

selects a set S of near-shortest s-t paths whose distance cost does not exceed

the product of that of the shortest s-t path and a threshold factor. More

precisely, the set comprises all s-t paths of cost (1 + α)d(s, t), where d(s, t)

denotes the shortest travel time from s to t and α is a small constant. Let

the set of all such paths be represented by an apex tree T , which is a tree-like

graph that becomes a tree by removing a vertex. Then, the traveller traverses

T rather than the original graph G using an online randomized strategy under

the same uncertainty until all possible s-t paths in S are blocked. We repeat

a similar argument until the traveller arrives at the destination t.

Near-shortest paths. To implement the randomized algorithm in polynomial

time, we need to find all near-shortest s-t paths efficiently, which is of inde-

pendent interest. There has been a considerable amount of research on the

problem. Eppstein’s well-known approach for finding ℓ shortest s-t paths or

5

all s-t paths shorter than a given distance cost in a directed graph G = (V,A),

takes constant time for each of the ℓ paths after a fast preprocessing step that

runs in O(|V | log |V | + |A|) time [9,10]. That is, the ℓ shortest paths can be

obtained in O(ℓ) time. Note that ℓ may be exponential in |V |, even if all the

ℓ paths are the same distance. In Eppstein’s study, cycles of repeated vertices

were allowed. Recently, Carlyle and Wood [7], Hershberger et al. [13], and

Frieder and Roditty [12] studied finding the ℓ shortest simple (i.e., loopless)

paths in directed graphs. In addition, Katoh et al. [19] investigated finding ℓ

shortest simple paths in an undirected graph G = (V,E); and their algorithm,

which takes O(ℓ(|V | log |V |+ |E|)) time, is currently the best known result for

the problem in undirected graphs.

We propose an implicit representation, constructed in O(µ2|E|2) time and

O(µ|E|) space, of all strictly jth-shortest s-t paths, 1 ≤ j ≤ µ, where µ is at

most the sum of the distances of all the edges. That is, assume d1(s, t), d2(s, t),

d3(s, t), . . . denotes the strictly increasing sequence of all possible distinct s-

t path distances, where d1(s, t) = d(s, t). The technique can represent all

strictly jth-shortest paths of cost dj(s, t), 1 ≤ j ≤ µ. Note that a strictly

jth-shortest s-t path can be obtained by finding ℓ shortest s-t paths for a

sufficiently large value of ℓ; however, in the worst-case, the number of such

near-shortest s-t paths may be exponential in the order of G. The proposed

implicit representation can guarantee the pseudo-polynomial running time of

the randomized routing strategy.

2 Preliminaries

In this paper, we consider the k-CTP in which the number of blockages is

bounded by a given constant k. Given a connected edge-weighted graph G =

(V,E) with a source s and a destination t, let an s-t path p of length m be

p : s = v1 − v2 − · · · − vm − vm+1 = t. We denote the subset of blockages in E

identified by an online algorithm A during the trip as EA
i = {e1, e2, . . . , ei} ⊆

E, 1 ≤ i ≤ k, where ei is the ith blockage identified. In the following we simply

6

use Ei instead of EA
i if there is no confusion. Besides, we let E0 = ∅ and Ek

be the set of all blocked edges. Let dEA
i
(s, t) denote the travel cost from s to

t, derived by an adaptive algorithm A that learns about blockage information

EA
i during the trip; and let dEk

(s, t) be the offline optimum from s to t under

complete information Ek. For ease of convenience, we use x-path to denote

a route on which the traveller spends at most x. For example, dEi
(s, t)-path

denotes a route on which the traveller spends at most dEi
(s, t).

For all instances, the following property is immediately obtained, where

E1 ⊆ E2 ⊆ · · · ⊆ Ek.

d(s, t) = dE0
(s, t) ≤ dE1

(s, t) ≤ · · · ≤ dEk
(s, t). (1)

We refer to [6,26] and formally define the competitive ratio as follows. An

online randomized algorithm A is cA-competitive against an oblivious adver-

sary for the k-CTP if

E[dEA
i
(s, t)] ≤ cA · dEk

(s, t) + ε, 1 ≤ i ≤ k,

where E[dEA
i
(s, t)] is the expected travel cost of the randomized strategy A,

and cA and ε are constants. To analyze the performance of online algorithms

for the k-CTP, we make two basic assumptions [1,28]: 1) once a blocked edge

is discovered by the traveller, the edge remains blocked permanently; and 2)

the given connected graph G remains connected even if all the blocked edges

are eliminated.

Recall the two deterministic routing strategies GA and RA [27,28]. When

the traveller starts his/her journey at some vertex v, the distance cost of the

shortest v-t path derived by GA is dEi
(v, t) under blockage information Ei.

If all the k blocked edges are known at the outset, then the cost of the path

obtained by GA from the source s is the same as the offline optimum dEk
(s, t).

On the other hand, for a single blockage ei discovered by the RA strategy, the

travel cost is at most 2dEi
(s, t) under blockage information Ei. Therefore, RA

can derive the deterministic lower bound of 2k + 1 for k blockages.

7

The remainder of this paper is organized as follows. In Section 3, we analyze

the competitive ratio of our main algorithm based on the assumption that the

randomized strategy can help the traveller traverse an apex tree T efficiently;

and in Section 4, we describe the randomized strategy for traversing the apex

tree T . In Section 5, we present a simple implicit representation of multiple

near-shortest s-t paths; or more precisely, shortest to strictly µth-shortest s-

t paths for a sufficiently large value of µ. Section 6 contains our concluding

remarks.

3 Main Algorithm

Given a connected graph G = (V,E) with a source s and a destination t,

here we require a set S of all (1+α)dEi
(s, t)-paths from s to t under blockage

information Ei, where α is a small constant, 0 < α < 1. In contrast to previous

studies, we find strictly jth-shortest paths, 1 ≤ j ≤ µ, for a sufficiently large

value of µ to derive the set S of the s-t paths. We discuss the technique for

doing this in Section 5.

Algorithm 1: Greedy & Reposition Randomized Algorithm (GRR)

Input : A graph G = (V,E) with a source s and a sink t, and constants k and α;
Output : A random route from s to t;
1: Let i = 0; ⊲ no blockage found
2: do

3: Find a set S of all (1 + α)dEi
(s, t)-paths from s to t;

4: Randomly select an s-t path from S to traverse with the following probabilities;
k−i

k−i+1
: proceeding to t along an arbitrary dEi

(s, t)-path until a blockage is found;
1

k−i+1
: following procedure Traverse-Tree on the remaining s-t paths in S;

5: Let the number of blockages discovered by the traveller be j;
6: if the traveller has not arrived at t then
7: if j < k then

8: the traveller returns to s and i← j;
9: else if j = k then ⊲ find all blockages
10: the traveller returns to s and follows a dEk

(s, t)-path to t;
11: end if

12: end if

13: while (the traveller has not arrived at t)

The steps of the main algorithm (see Algorithm 1) are as follows. First, we

select a set S of all (1+α)dEi
(s, t)-paths from s to t under blockage information

8

Ei, 0 ≤ i ≤ k, for a small α. Then, the traveller uses the reposition RA

strategy, and when restarting at s, he/she 1) selects an arbitrary dEi
(s, t)-

path from S and traverses the path with probability k−i
k−i+1

; or 2) chooses the

remaining s-t paths in S and traverses them using the Traverse-Tree procedure

with probability 1

k−i+1
. This randomized strategy finds a balance between

these two operations in an online fashion. That is, the second operation could

compensate for some loss if we always use the RA strategy. Note that the

traveller may learn about more than one blocked edge while performing the

operations in Line 4. The algorithm repeats until the traveller arrives at t.

To analyze the competitive ratio of the entire GRR algorithm, the traveller

must be able to efficiently traverse the remaining s-t paths in S by following

the Traverse-Tree procedure, which we explain in the next section. More pre-

cisely, if the extra travel cost of the procedure is bounded within an acceptable

range for every blockage discovered, then the ratio can be improved over the

deterministic lower bound of 2k+1. We also prove the correctness of the claim

in the next section.

Claim 1: If the traveller uses the Traverse-Tree procedure on the (1+α)dEi
(s, t)-

paths from s to t in S and arrives at t, 0 ≤ i < k, then each blockage discovered

during the trip will increase the total travel cost of the algorithm by at most

(1 + α)dEi
(s, t) on average.

Based on the above claim, we derive the following theorem.

Theorem 1 The k-Canadian Traveller Problem can be approximated

within a competitive ratio
(

1+
√
2

2

)

k+
√
2 when the number of blockages is up

to a given constant k.

Proof We divide the proof into two cases, depending on if the traveller uses a

dEk
(s, t)-path to t (as indicated in Line 10 of the GRR algorithm). That is, 1)

the traveller exploits RA or the Traverse-Tree procedure to reach t in an apex

tree, or 2) the Traverse-Tree procedure fails in possibly many iterations of the

do-while loop and the traveller eventually follows a dEk
(s, t)-path to t. In

9

the worst-case scenario, suppose the traveller learns about only one blockage

in each iteration of the loop. Note that in Case 1, the traveller may learn k′

blockages, k′ ≤ k, while in Case 2, all the k blockages are discovered. Thus,

in every iteration r, r ≥ 1, assume the number of remaining undiscovered

blockages is k′ − r + 1 in Case 1 (k − r + 1 in Case 2). We let the cost of

implementing the Traverse-Tree procedure be c(r) for the blockages discovered

in iteration r, while the cost of performing RA is at most 2dEr−1
(s, t). In the

following, we consider the worst case by letting k′ = k.

Case 1: The traveller arrives at t by using RA or the Traverse-Tree procedure

in an apex tree; that is, at least one (1+α)dEi
(s, t)-path from s to t is unblocked

during the trip, where 0 ≤ i < k. Notice that (1 + α)dEi
(s, t) > dEk

(s, t)

possibly occurs in the GRR algorithm.

Based on Claim 1, we have c(r) ≤ (k − r + 1)(1 + α)dEi
(s, t) for some i,

i ≤ k − 1 in every iteration r of the loop. Consequently, the expected travel

cost of the GRR algorithm is formulated as follows:

E[dEGRR
k

(s, t)] ≤
[

k

k + 1
· 2d(s, t) + 1

k + 1
· c(1)

]

+
k

k + 1
·
[

k − 1

k
· 2dE1

(s, t) +
1

k
· c(2)

]

+
k

k + 1
· k − 1

k
·
[

k − 2

k − 1
· 2dE2

(s, t) +
1

k − 1
· c(3)

]

+ · · · · · ·

+

[

1

k + 1
· 2dEk−1

(s, t) +
1

k + 1
· c(k)

]

+ (1 + α)dEi
(s, t)

≤
(

k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)

· 2dEk−1
(s, t)

+

(

k

k + 1
+

k − 2

k + 1
+ · · ·+ 1

k + 1

)

· (1 + α)dEk−1
(s, t) + (1 + α)dEi

(s, t)

≤ k · dEk−1
(s, t) +

(

k

2
+ 1

)

(1 + α)dEk−1
(s, t)

≤

(

k +
1

2
k + 1

)

· dEk
(s, t), if (1 + α)dEk−1

(s, t) ≤ dEk
(s, t)

(

k +
1

2
(1 + α)k + (1 + α)

)

· dEk−1
(s, t), if (1 + α)dEk−1

(s, t) > dEk
(s, t).

As mentioned earlier, if (1 + α)dEk−1
(s, t) > dEk

(s, t) occurs, then the last

inequality is directly obtained. Otherwise, it leads to a simpler form in terms

of dEk
(s, t). Thus, in Case 1, due to dEk−1

(s, t) ≤ dEk
(s, t), the competitive

10

ratio of the GRR algorithm is at most
(

k + 1

2
(1 + α)k + (1 + α)

)

· dEk−1
(s, t)

dEk
(s, t)

≤ 3 + α

2
· k + (1 + α).

Case 2: The traveller fails to use RA or the Traverse-Tree procedure to

reach t in an apex tree and thus Claim 1 cannot be applied. That is, he/she

eventually restarts at s and follows a dEk
(s, t)-path to t, as indicated in Line 10

of the GRR algorithm. Precisely, every (1 + α)dEk−1
(s, t)-path is blocked

during the trip, which implies that the distance of an offline optimal s-t path

is dEk
(s, t) > (1 + α)dEk−1

(s, t).

Therefore, an upper bound on the cost c(r) of implementing the Traverse-

Tree procedure in iteration r can be derived by exploiting the RA strategy [27].

That is, c(r) ≤ (k−r+1)·2(1+ α)dEk−1
(s, t) for every iteration r. The expected

total travel cost of the GRR algorithm is formulated in a similar manner as

follows:

E[dEGRR
k

(s, t)] ≤
[

k

k + 1
· 2d(s, t) + 1

k + 1
· c(1)

]

+
k

k + 1
·
[

k − 1

k
· 2dE1

(s, t) +
1

k
· c(2)

]

+
k

k + 1
· k − 1

k
·
[

k − 2

k − 1
· 2dE2

(s, t) +
1

k − 1
· c(3)

]

+ · · · · · ·

+

[

1

k + 1
· 2dEk−1

(s, t) +
1

k + 1
· c(k)

]

+ dEk
(s, t)

≤
(

k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)

· 2dEk−1
(s, t)

+

(

k

k + 1
+

k − 1

k + 1
+ · · ·+ 1

k + 1

)

· 2(1 + α)dEk−1
(s, t) + dEk

(s, t)

≤ (k + k(1 + α)) · dEk−1
(s, t) + dEk

(s, t).

Hence, in Case 2, the ratio of the GRR algorithm is at most

k(2 + α) · dEk−1
(s, t) + dEk

(s, t)

dEk
(s, t)

≤ k(2 + α) · dEk−1
(s, t)

(1 + α) · dEk−1
(s, t)

+ 1 =
2 + α

1 + α
· k + 1.

By simple algebra, the competitive ratio of the GRR algorithm can be

minimized in the two cases by letting the constant α be
√
2−1. Consequently,

the expected competitive ratio is at most
(

1 +
√
2

2

)

k +
√
2. Note that for any

small constant α′, 0 < α′ ≤ α =
√
2 − 1, the competitive ratio is still smaller

than the deterministic lower bound of 2k + 1 when k ≥ 2. ✷

11

4 Apex Tree

In this section, we consider the Traverse-Tree procedure implemented in a tree-

like graph, called an apex tree, which can represent all (1 + α)dEi
(s, t)-paths

from s to t, 0 ≤ i < k, in a given graph G, for a small constant α.

We refer to the definition of an apex graph in planar graph theory and have

the following definition. A graph T = (V,E) is an apex tree if T contains a

source vertex s, a rooted tree that comprises a destination vertex t (as root)

and all other vertices in V , and edges that connect s to each leaf and some

internal vertices of the tree. That is, T \ {s} is actually a tree that is rooted

at t and there is exactly one path from each vertex to t in T \ {s}.
We claim that the Traverse-Tree procedure (see Algorithm 2) is an optimal

randomized strategy for solving the k-CTP in an apex tree T if the distance

cost of every s-t path in T is assumed to be identical. Note that the worst-case

instance, reported in [27], of establishing the lower bound of k + 1 is also an

apex tree in which all s-t paths have the same cost. Thus, the competitive

ratio of the algorithm can achieve the lower bound, and it follows that the

algorithm is optimal.

Algorithm 2: Traverse-Tree Procedure
Input : An apex tree T that represents s-t paths and a constant k;
Output : A random route from s to t, or the traveller fails to reach t;
1: Assign equal probabilities among the children of the root t, and sequentially repeat the

process for each descendant of t in the order of a breadth-first search;
2: The traveller begins at s, and randomly selects an s-t path based on the assigned prob-

ability and proceeds to t on that path;
3: while the traveller does not arrive at t and there is still an available s-t route do

4: Let the blocked edge discovered by the traveller be e = (vi, vi+1) along a path
p : s = v1 − v2 − · · · − vh = t;

5: The traveller returns to s and ignores the blocked s-vi path;
6: while every s-t path through the vertex vi+1 is currently blocked and i+1 ≤ h do

7: i← i+ 1; ⊲ depth-first search order of the path p
8: end while

9: if i+1 ≤ h then ⊲ there is still an s-t path; otherwise, the traveller cannot reach t
10: Reassign probabilities to the subtree that is rooted at vi+1 in a similar way;
11: The traveller randomly selects an s-t path through vi+1 based on the assigned

probability and proceeds to t on that path;
12: end if

13: end while

12

The main concept of the Traverse-Tree procedure is to incorporate ran-

domized operations into the reposition RA strategy and then explore subtrees

of an apex tree T in the order of a depth-first search. More precisely, we ini-

tially distribute the probabilities of path selection equally among the children

of the root t. Next, we sequentially distribute the probabilities equally among

the descendants in the order of a breadth-first search. When the traveller starts

at the source s, he/she randomly selects an s-t path according to the assigned

probability and follows the path to t in the apex tree T . If the traveller finds

a blockage on the way to t, he/she uses the RA strategy and returns to s.

We ignore the blocked path, and reassign the probabilities to the unblocked

subtrees in a similar manner. The traveller traverses the remaining routes in

T by exploring the subtrees in the order of a depth-first search. The argument

is repeated until the traveller arrives at the destination t.

Figure 1 shows an example with k = 3 that illustrates the steps of the

Traverse-Tree procedure for the k-CTP. The traveller starts at the source s

and randomly selects an s-t path based on the initial probabilities, as shown

in Figure 1(a). Suppose the traveller traverses the s-t path s− v2 − v4− v7 − t

with probability 1

12
until he/she finds a blocked edge (v2, v4) at v2. He/she

then returns to s and randomly selects an s-t path through v4 if any exists;

accordingly, he/she selects either s − v1 − v4 − v7 − t or s − v3 − v4 − v7 − t

(Figure 1(b)). If the next blockage occurs in (v4, v7) upon arrival at v4, the

traveller has exactly one s-t path via v7, which is s−v5−v6−v7− t, so he/she

returns to s and follows the path directly (Figure 1(c)). The last blocked edge

discovered by the traveller is (v7, t) when he/she reaches v7. The traveller

returns to s and randomly selects either s−v8−v10−v11−t or s−v9−v10−v11−t

(Figure 1(d)).

For the k-CTP in an apex tree T , there is at least one s-t path without

a blockage; that is, the offline optimal s-t path. Let the offline optimal s-t

path be p : s = v∗1 − v∗2 − · · · − v∗m = t; and let the number of children of a

vertex v∗j in the apex tree T be cj , such that v∗j has children vj,1, vj,2, . . . , vj,cj .

Without loss of generality, assume the last child of each v∗j , vj,cj , 2 ≤ j ≤ m,

13

Fig. 1 An example of the Traverse-Tree procedure

lies on the path p; that is, vj,cj = v∗j−1. In addition, suppose each subtree that

is rooted at vj,ℓ, 1 ≤ ℓ ≤ cj − 1, has bj,ℓ blockages. Consider the expected

total cost when the traveller uses the algorithm to traverse paths other than

the offline optimal path. Note that the malicious adversary does not block

any edge (s, v) ∈ E. Thus,
∑m

j=2

∑cj−1

ℓ=1
bj,ℓ ≤ k. That is, each blocked edge

is counted at most once when considering the subtrees rooted at each of the

children of every vertex along the offline optimal path (except those vertices

in the path themselves). We are ready to prove the following lemma.

Lemma 1 For the k-CTP in an apex tree T in which the distance costs of

all s-t paths are equal, there exists an optimal (k + 1)-competitive randomized

algorithm.

14

Proof We prove the statement in a top-down manner for an apex tree T .

Notice that the length of the offline optimal s-t path in T is the same as that

of every other s-t path. Let E(s, v∗i) be the expected total travel cost from

s to v∗i . For t = v∗m, we evaluate the cost. If cm = 1, we obtain E(s, v∗m) ≤
E(s, v∗m−1)+dEk

(v∗m−1, v
∗
m). If cm > 1, the traveller finds v∗m−1 as a predecessor

of v∗m with probability 1

cm
in the first trial. Then, the expected travel cost is

at most E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m). If the traveller cannot find v∗m−1 in the

first trial, he/she will find it in the second trial with probability
(

1− 1

cm

)

1

cm−1
.

Suppose the traveller selects vm,ij , 1 ≤ ij ≤ cm − 1 in a random order, when

trying to find v∗m−1 = vm,cm . That is, without loss of generality, he/she selects

the next one from vm,i1 to vm,icm−1
. In this case, the expected travel cost is at

most
{

2bm,i1dEbm,i1
(s, vm,i1) + E(s, v∗m−1) + dEk

(v∗m−1, v
∗
m)
}

. This is because

RA may return to s bm,i1 times and find the way to v∗m−1 with E(s, v∗m−1)

expected cost, and finally go to v∗m with cost dEk
(v∗m−1, v

∗
m). We obtain

E(s, v∗m) ≤ 1

cm

{

E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)
}

+

(

1− 1

cm

)

1

cm − 1

{

2bm,i1dEbm,i1
(s, vm,i1) + E(s, v∗m−1) + dEk

(v∗m−1, v
∗
m)
}

+

(

1− 1

cm

)(

1− 1

cm − 1

)

1

cm − 2

{

2bm,i1dEbm,i1
(s, vm,i1) + 2bm,i2dEbm,i2

(s, vm,i2)

+ E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)
}

+ · · ·

≤ 2

cm

{

((cm − 1)bm,i1 + (cm − 2)bm,i2 + · · ·+ bm,icm−1
)dEk

(s, t)
}

+ E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)

=
2

cm

{

cm(cm − 1)

2

(

1

cm − 1

cm−1
∑

ℓ=1

bm,ℓ

)

dEk
(s, t)

}

+ E(s, v∗m−1) + dEk
(v∗m−1, v

∗
m)

=

cm−1
∑

ℓ=1

bm,ℓdEk
(s, t) + E(s, v∗m−1) + dEk

(v∗m−1, v
∗
m)

Therefore, irrespective of whether cm = 1, we obtain E(s, v∗m) ≤∑cm−1

ℓ=1
bm,ℓdEk

(s, t)+

E(s, v∗m−1)+dEk
(v∗m−1, v

∗
m). Similarly, we obtain E(s, v∗m−1) ≤

∑cm−1−1

ℓ=1
bm−1,ℓdEk

(s, t)+

E(s, v∗m−2)+dEk
(v∗m−2, v

∗
m−1). This implies that E(s, v∗m) ≤∑m

j=2

∑cj−1

ℓ=1
bj,ℓdEk

(s, t)+

dEk
(v∗1 , v

∗
2)+dEk

(v∗2 , v
∗
3)+· · ·+dEk

(v∗m−1, v
∗
m) ≤ (k+1)dEk

(s, t). Consequently,

15

the expected total cost of the algorithm (including the distance cost of the of-

fline optimal path) is at most (k + 1)dEk
(s, t). Hence, the competitive ratio

can achieve the lower bound for randomized online algorithms in apex trees.

✷

Note that the lemma also holds if some blockages are not discovered by

the Traverse-Tree procedure, i.e.
∑m

j=2

∑cj−1

ℓ=1
bj,ℓ = k′ < k. Precisely, the total

expected cost is at most (k′+1)dEk
(s, t). Moreover, the result can be extended

to a more general apex tree T in which the distance cost of each s-t path in

T is at most (1 + α)dEi
(s, t), 0 ≤ i < k. That is, the upper bound on the

total expected travel cost of the procedure is
∑m

j=2

∑cj−1

ℓ=1
bj,ℓ(1+α)dEi

(s, t)+

dEk
(v∗1 , v

∗
m) ≤ k(1+α)dEi

(s, t)+dEk
(s, t). Note that dEk

(s, t) ≤ (1+α)dEi
(s, t)

because every s-t path in T is bounded by (1 + α)dEi
(s, t). The competitive

ratio is (k(1 + α)dEi
(s, t) + dEk

(s, t))/dEk
(s, t) = (1 + α)k + 1. It proves the

claim made in Section 3, i.e., each blockage increases the total travel cost by

at most (1 +α)dEi
(s, t) on average in the Traverse-Tree procedure. The next

theorem follows immediately.

Theorem 2 For the k-CTP in an apex tree T in which each s-t path is a

(1 + α)dEi
(s, t)-path, 0 ≤ i < k, the competitive ratio of the Traverse-Tree

procedure is at most (1 + α)k + 1.

Recall the proof of our main result, Theorem 1. Claim 1 is applied when

the traveller reaches t by using RA or the Traverse-Tree procedure in an apex

tree T , irrespective of whether every blockage has been discovered. In fact, the

traveller should follow a (1+α)dEi
(s, t)-path to t in the apex tree represented

by a set of (1 + α)dEi
(s, t)-paths, where i ≤ k − 1. Precisely, when all the

k blockages have been discovered, the (1 + α)dEi
(s, t)-path is actually the

dEk
(s, t)-path. If the traveller fails to reach t in an apex tree, he/she follows a

dEk
(s, t)-path to t. That is, the distance cost of the last trial/path cannot be

bounded by Claim 1.

We also remark that when the Traverse-Tree procedure performs, it does

no need to know about the number of blockages, similar to the RA strategy.

16

Furthermore, the procedure can achieve the optimal competitive ratio in apex

trees, irrespective of whether it finds all k blockages, which can guarantee the

correctness of Theorem 1.

5 Implicit Representation of Near-shortest Paths

Given a connected undirected graph G = (V,E) with a source s and a desti-

nation t, we provide two simple data structures for storing all the shortest s-t

paths, strictly second-shortest s-t paths, to strictly µth-shortest s-t paths, for

a large value of µ. More precisely, we set µ to be the sum of the distances of all

edges in order to derive a sufficient number of near shortest s-t paths. The first

representation is for storing shortest to strictly jth-shortest simple s-t paths

provided that dj(s, t) is given, 1 ≤ j ≤ µ; and the second is for representing

possibly non-simple paths whose distances are between the cost d(s, t) and the

cost dµ(s, t).

Recall the definition of strictly jth-shortest s-t paths, 1 ≤ j ≤ µ, where µ is

at most the sum of the distances of all the edges. That is, let d1(s, t), d2(s, t), d3(s, t), . . .

denote the strictly increasing sequence of all possible distinct s-t path weights,

where d1(s, t) = d(s, t). Our technique can represent all strictly jth-shortest

paths of cost dj(s, t), 1 ≤ j ≤ µ.

5.1 Strictly second-shortest paths

First, we define some notations. For each vertex v 6= s, let Sj(v) be the ver-

tex set that comprises all of v’s predecessors, each of which is v’s preceding

neighbor lying on a strictly ith-shortest s-v path, 1 ≤ i ≤ j. To represent

all shortest to strictly jth-shortest s-t paths, we define the jth-shortest path

digraph, denoted by Dj(G) = (V j , Aj) of G. In the graph, an arc
−−−→
(u, v) ∈ Aj if

and only if there exists a strictly ith-shortest s-t path p in G, 1 ≤ i ≤ j, such

that (u, v) ∈ p; all isolated vertices in V j are eliminated. Previous studies [17,

20,21] have investigated the strictly second-shortest path problem (i.e., next-

to-shortest path) based on the shortest path digraph, i.e., D1(G) = (V 1, A1).

17

Fig. 2 (a) An instance graph G; (b) the shortest path digraph D1(G) with d1(s, t) = 14
in which for each pair associated with a vertex v, the first number corresponds to dj(s, v),
and the second to Sj(v), where j = 1; (c) the second-shortest path digraph D2(G) with
d2(s, t) = 15 for storing all shortest to strictly second-shortest s-t paths

Notably, for any graph G, D1(G) is acyclic and can be constructed in O(|V |2)
time [17,20]. Additionally, for every vertex v 6= s, d1(s, v) and S1(v) can be

obtained.

Figure 2(b) shows an example of the shortest path digraph of a given graph.

Based on the key property below, Kao et al.’s algorithm [17] can derive the

cost of a strictly second-shortest s-t path, d2(s, t), and construct such a path

in O(|V |2) time for a graph G.

Proposition 1 [17,21] For each strictly second-shortest s-t path p, there is at

least one edge e =
−−−→
(u, v) /∈ A1 in p such that the s-u subpath and v-t subpath

of p are exactly the shortest s-u path and the shortest v-t path respectively.

We design the Find-2nd-Shortest procedure to search for all strictly second-

shortest simple s-t paths and construct the representation D2(G) = (V 2, A2).

The main step of the procedure is simply a breadth-first search. We start

at t and traverse all other vertices backward until s, and determine whether

each vertex lies on a strictly second-shortest s-t path. Figure 2(c) shows the

representation D2(G) of the instance graph. As shown in the figure, there is

one type of strictly second-shortest path of cost 15: s − . . . − v4 − t because

18

1: procedure Find-2nd-Shortest(G, s, t,D1(G)) ⊲ find each d2(s, v) and S2(v) in
D2(G)

2: Use Kao et al.’s algorithm to compute d2(s, t) based on D1(G);
3: Initialize a queue Q = {t}, D2(G) = (V 1, ∅), and S2(v) = ∅, ∀v ∈ V ;
4: while the queue Q 6= ∅ do
5: u← Dequeue(Q);

6: for every w adjacent to u in G and
−−−→
(u, w) /∈ A2 do ⊲ breadth-first search

7: if d2(s, u)− d(w, u) ≥ d1(s, w) then

8: A2 ← A2 ∪
−−−→
(w, u) and S2(u)← S2(u) ∪ {w};

9: if d2(s, u)− d(w, u) > d1(s,w) or ⊲ add w into D2(G)
d2(s, u)− d(w, u) = d1(s, w) and w ∈ V \V 1 then ⊲ update d2(s,w)

10: d2(s,w)← d2(s, u)− d(w, u) and V 2 ← V 2 ∪ {w};
11: end if

12: Enqueue(Q, w) if w is not in the queue Q;
13: end if

14: end for

15: end while

16: end procedure

v4 ∈ S2(t) \ S1(t). Additionally, there are two other types of strictly second-

shortest paths: s − . . . − v3 − v6 − t and s − . . . − v5 − v6 − t because v3,

v5 ∈ S2(v6) \ S1(v6).

The correctness of the procedure follows from Proposition 1 and the opti-

mal substructure property. That is,
−−−→
(w, u) is included in A2 in D2(G) (and w

is put into S2(u)) if the shortest s-w path plus
−−−→
(w, u) can construct a strictly

second-shortest s-u path. Moreover, the resulting graph D2(G), which is a

directed acyclic graph from s to t, can represent an apex tree. Note that in

an apex tree, there is a unique path from each vertex to t, while in D2(G)

there may exist multiple paths to t. We duplicate each vertex that has multi-

ple outgoing edges when assigning probabilities from t to its descendants. As

the traveller selects a random path from s to t, he/she excludes the vertices

already visited in previous iterations. Thus, Algorithm 2 can work in D2(G).

In addition, the procedure can be generalized to find all strictly third-

shortest to µth-shortest simple s-t paths, provided that the cost dj(s, t) is

given, 3 ≤ j ≤ µ; note that Proposition 1 holds between every strictly (j−1)th-

shortest path and strictly jth-shortest path. However, Kao et al.’s method

cannot be extended straightforwardly to compute dj(s, t), j ≥ 3. (A brute-

19

Fig. 3 (a) An example of the data structure for storing up to strictly third-shortest s-t
paths; (b) the graph for storing the shortest s-t paths of cost 14; (c) the graph for storing
s-t paths of cost 15

force approach whose running time is exponential in j is intuitive.) We leave

finding an efficient way to derive dj(s, t), j ≥ 3 as an open problem.

Clearly, the data structure D2(G) can be constructed in polynomial time

and linear space. In each iteration of the loop in the GRR algorithm, we

find all shortest to strictly second-shortest s-t paths whose cost is at most

d2(s, t) = (1 + α′)d(s, t) for some α′ > 0. If α′ < α =
√
2− 1, the competitive

ratio would be max{(3+α′

2
)k + (1 + α′) , (2+α′

1+α′
)k + 1} < 2k + 1. Otherwise,

α′ ≥ α leads to a better competitive ratio when we just use the RA strategy

on the remaining s-t paths. Therefore, the GRR algorithm can improve the

deterministic lower bound for the k-CTP in polynomial time.

Theorem 3 The GRR algorithm can approximate the k-Canadian Trav-

eller Problem with a competitive ratio less than 2k+1 in polynomial time,

by using the Find-2nd-Shortest procedure to store the set of near shortest s-t

paths.

20

5.2 Strictly µth-shortest paths

The steps of the algorithm for finding possibly non-simple strictly µth-shortest

paths are as follows. To compute the sets of strictly jth-shortest paths for

j = 1, 2, . . . , µ, we use the Find-Multiple-Shortest procedure, which is also

a breadth-first search that traverses backward from t to s. Next, we define

some notations. In the ith iteration, we keep a set of vertices Si, which

are reached from t using exactly i edges; and S0 = {t} initially. Let a set

DV (u) store the shortest to strictly µth-shortest distances from u to t; that

is, DV (s) = {d1(s, t), d2(s, t), . . . , dµ(s, t)}. In addition, let two sets DE(
−−−→
(u, v))

andDE(
−−−→
(v, u)) for an edge e = (u, v) store the distances from u to t and the dis-

tances from v to t respectively, using the edge e. More precisely, ℓ ∈ DE(
−−−→
(u, v))

for an edge e = (u, v) if and only if there is a path of distance ℓ, starting at u

and passing through the edge e to t; i.e., ℓ is the shortest to strictly µth-shortest

distances from u along e to t. Note that the breadth-first search traverses a

vertex multiple times. It is sufficient to repeat the iteration µ|E| times because

a strictly µth-shortest s-t path uses at most µ|E| edges. Figure 3(a) shows an

example of the data structure that represents all the shortest to strictly third-

shortest s-t paths in the instance graph G in Figure 2(a). In the graph, the

set of numbers associated with a vertex u corresponds to DV (u).
1

Based on the above data structure, we can exploit the Implicit-Representation

procedure to construct a graph G′ = (V ′, E′) that represents all (possibly non-

simple) s-t paths whose distances are in a given set L ⊆ {d1(s, t), . . . , dµ(s, t)}.

1 Due to space limit, the value of each DE(
−−−→
(u, v)) is shown: DE(

−−−→
(s, v1)) = {14, 15, 16},

DE(
−−−→
(s, v2)) = {14, 15, 16}, DE(

−−−→
(s, v3)) = {15, 18, 19}; DE(

−−−→
(v1, s)) = {19, 20, 21},

DE(
−−−−→
(v1, v2)) = {11, 12, 13}, DE(

−−−−→
(v1, v4)) = {9, 10, 11}, DE(

−−−−→
(v1, v5)) = {9, 10, 11};

DE(
−−−→
(v2, s)) = {18, 19, 20}, DE(

−−−−→
(v2, v1)) = {10, 11, 12}, DE(

−−−−→
(v2, v3)) = {11, 14, 15},

DE(
−−−−→
(v2, v5)) = {12, 13, 14}, DE(

−−−−→
(v2, v6)) = {10, 13, 14}; DE(

−−−→
(v3, s)) = {20, 21, 22},

DE(
−−−−→
(v3, v2)) = {12, 13, 14}, DE(

−−−−→
(v3, v6)) = {9, 12, 13}; DE(

−−−−→
(v4, v1)) = {13, 14, 15},

DE(
−−−−→
(v4, v5)) = {5, 6, 7}, DE(

−−−→
(v4, t)) = {6, 12, 14}; DE(

−−−−→
(v5, v1)) = {14, 15, 16},

DE(
−−−−→
(v5, v2)) = {18, 19, 20}, DE(

−−−−→
(v5, v4)) = {6, 7, 8}, DE(

−−−−→
(v5, v6)) = {5, 8, 9}, DE(

−−−→
(v5, t)) =

{4, 10, 12}; DE(
−−−−→
(v6, v2)) = {17, 18, 19}, DE(

−−−−→
(v6, v3)) = {15, 18, 19}, DE(

−−−−→
(v6, v5)) =

{6, 7, 8}, DE(
−−−→
(v6, t)) = {3, 9, 11}; DE(

−−−→
(t, v4)) = {11, 12, 13}, DE(

−−−→
(t, v5)) = {8, 9, 10},

DE(
−−−→
(t, v6)) = {6, 9, 10}. Note that for a directed edge (u, v), DE(

−−−→
(u, v)) = {ℓ + d(u, v) |

ℓ ∈ DV (v)}.

21

1: procedure Find-Multiple-Shortest(G, s, t, µ) ⊲ find each DV (u) and DE(
−−−→
(u, v))

2: Duplicate each edge in the input graph G = (V, E) to make G directed;
3: Let S0 = {t};
4: Let DV (v) = {∞}, ∀v ∈ V , and DV (t) = {0};

5: Let DE(
−−−→
(u, v)) = {∞} for each edge e =

−−−→
(u, v) ∈ E;

6: for i = 0 to µ|E| do
7: Si+1 ← ∅;
8: for each v ∈ Si do

9: for each e =
−−−→
(u, v) ∈ E do

10: Si+1 ← Si+1 ∪ {u}; ⊲ Let L comprise possible distances from u to t
11: L← {d(u, v) + ℓ | ℓ ∈ DV (v)};

12: Let DE(
−−−→
(u, v)) be the set of the smallest µ values in DE(

−−−→
(u, v)) ∪ L;

13: end for

14: end for

15: for each u ∈ V do

16: for each e =
−−−→
(u, v) ∈ E do

17: Let DV (u) be the set of the smallest µ values in DV (u) ∪DE(
−−−→
(u, v));

18: end for

19: end for

20: end for

21: end procedure

Starting from s, we only traverse an edge e = (u, v) if the set DE(
−−−→
(u, v)) of

distances to t contains the given set of distances. Similarly, in the ith itera-

tion, we keep a set of vertices Si, which are reached from s using exactly i

edges; and S0 = {s} initially. Let L(v) be the set of distances from v to t for

each vertex v ∈ V ′. More precisely, if ℓ ∈ L(v), then ℓ ∈ DV (v) and there

is a v-t path of cost ℓ. The number of iterations in the procedure is also at

most µ|E|. As shown in Figures 3 (b) and (c), the procedure constructs two

graphs, which represent all the shortest s-t paths of distance cost 14 and all

strictly second-shortest s-t paths of cost 15, respectively. Similarly, the set of

numbers associated with a vertex u corresponds to DV (u), and the set of green

numbers associated with an edge e = (u, v) corresponds to DE(
−−−→
(u, v)). Note

that 1) the second-shortest path digraph D2(G) in Figure 2(c) merges the two

graphs; and 2) the representation graph in Figure 3(b) is actually the same as

the shortest path digraph D1(G) in Figure 2(b).

The resulting graph G′ is a directed graph from s to t. However, because

there may exist non-simple paths, the graph may contain cycles, as shown

in Figure 4(a). The graph represents all the s-t paths of cost 16. There are

22

1: procedure Implicit-Representation(G,s, t, L) ⊲ construct G′ = (V ′, E′) to store
all s-t paths whose distances are in L

2: Initially, i = 0, Si = {s}, V ′ = {s}, E′ = ∅, L(v) = ∅, ∀v ∈ V , and L(s) = DV (s)∩L;
3: while Si 6= ∅ do
4: Si+1 ← ∅;
5: for each u ∈ Si do

6: for each e = (u, v) ∈ E do

7: L← {ℓ− d(u, v) | ℓ ∈ L(u)};
8: L(v) ← L(v) ∪ (DV (v) ∩ L); ⊲ find possible distances in L(v) using e
9: if L(v) 6= ∅ then
10: Si+1 ← Si+1 ∪ {v} and V ′ ← V ′ ∪ {v};
11: E′ ← E′ ∪ {e};
12: end if

13: end for

14: end for

15: i← i+ 1;
16: end while

17: end procedure

multiple edges between v1 and v2, and v4 and v5. We can convert G′ into a

directed acyclic graph G′′ as follows. For each ℓ ∈ L(v), we create a vertex vℓ;

and for each pair of vertices vℓ and wℓ′ , we create an edge from vℓ to wℓ′ if

and only if (v, w) ∈ E′ and ℓ − d(v, w) = ℓ′. The graph G′ in Figure 4(a) is

converted so that vertices v1, v2, v4, v5 are duplicated to eliminate multiple

edges. Each vertex is identified with the name of the vertex in the original

graph and the unique distance to t. Then, the new graph containing the newly

inserted vertices and edges becomes a directed acyclic graph, as shown in

Figure 4(b). Therefore, the graph G′′ can represent an apex tree, as described

in Section 5.1.

In summary, the simple implicit representation has at most µ|V | vertices
and at most µ|E| edges, and it can be constructed in O(µ2|E|2) time. Hence,

we can obtain a set of paths whose distances are at most (1 + α)d(s, t) by

setting µ to be the sum of the distances of all edges. The number of iterations

of the loop in the GRR algorithm is at most k, so the whole process takes

O(kµ2|E|2) time in the worst case; that is, the proposed
(

1 +
√
2

2

)

k +
√
2-

competitive randomized algorithm runs in pseudo-polynomial time.

Theorem 4 The GRR algorithm can approximate the k-Canadian Trav-

eller Problem within a competitive ratio of
(

1 +
√
2

2

)

k +
√
2 in pseudo-

23

Fig. 4 The data structure for storing all s-t paths of distance cost 16

polynomial time, by using the Find-Multiple-Shortest procedure to store the

set of near shortest s-t paths.

We remark that our simple implicit representations can be used to find the

µth-best distinct values among all possible solutions for many optimization

problems that can be expressed as shortest path problems. The applications

are similar in spirit to finding the ℓ best solutions in Eppstein’s study [9,10] for

problems that can be solved by dynamic programming, such as the Knapsack

problem and the sequence alignment problem.

6 Concluding Remarks

In this study, we have investigated the k-Canadian Traveller Problem

when the number of blockages is up to a given constant k. Our major con-

tribution is the first polynomial time randomized algorithm that can surpass

the barrier of the deterministic lower bound of (2k+1). The competitive ratio

of the algorithm can be improved to
(

1 +
√
2

2

)

k +
√
2 in pseudo-polynomial

running time. Moreover, the proposed technique can be exploited to implicitly

represent all strictly jth-shortest s-t paths, 1 ≤ j ≤ µ, in O(µ2|E|2) time and

O(µ|E|) space.
We conclude this work by highlighting two open issues. First, it would be

of great interest if all strictly jth-shortest paths could be computed more effi-

24

ciently. Second, the probability assignment of our randomized GRR algorithm

is based on the known number of blockages. The issue concerns the difficulty a

traveller may experience in using a randomized strategy without information

about the number of blockages. Note that the reposition RA algorithm can

reach the deterministic lower bound without knowing the number of block-

ages. In addition, the proposed Traverse-Tree procedure also works even if the

number of blockages is unknown, and can achieve the lower bound for ran-

domized algorithms in apex trees in which the distance cost of every s-t path

is identical.

Acknowledgements The authors would like to thank anonymous referees for their helpful
comments, as well as Dr. Fan Chung with UC San Diego, Dr. Kazuo Iwama with Kyoto
University and Dr. Wing-Kai Hon with National Tsing Hua University for discussions on
this work.

References

1. A. Bar-Noy and B. Schieber. The Canadian traveller problem. In Proc. of the 2nd ACM-
SIAM Symposium on Discrete Algorithms (SODA), (1991), pp. 261–270.

2. S. Ben-David and A. Borodin. A new measure for the study of online algorithms. Algo-
rithmica, (1994), 11(1), pp. 73–91.

3. M. Bender and S. Westphal. An optimal randomized online algorithm for the k-Canadian
traveller problem on node-disjoint paths. Journal of Combinatorial Optimization, (2015),
30(1), pp. 87–96.

4. P. Bergé, J. Hemery, A. Rimmel, and J. Tomasik. The competitiveness of randomized
strategies for Canadians via systems of linear inequalities. In Proc. of 32nd International
Symposium on Computer and Information Sciences (ISCIS) (2018), Springer, pp. 96–103.

5. P. Bergé, J. Hemery, A. Rimmel, and J. Tomasik. On the competitiveness of memoryless
strategies for the k-Canadian traveller problem. In Proc. of 12th International Conference
on Combinatorial Optimization and Applications (COCOA) (2018), LNCS 11346, pp.
566–576.

6. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, Cambridge, (1998).

7. W.M. Carlyle and R.K. Wood. Near-shortest and k-shortest simple paths, Networks,
(2005), 46(2), pp. 98–109.

8. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, (1959), 1(1) pp. 269–271.

9. D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, (1998), 28(2),
pp. 652–673.

10. D. Eppstein. k-Best enumeration. Encyclopedia of Algorithms, Springer, (2014), pp. 1–4.
11. D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner. Complexity of Canadian traveler
problem variants. Theoretical Computer Science, (2013), 487(27), pp. 1–16.

12. A. Frieder and L. Roditty. An experimental study on approximating k shortest simple
paths. ACM Journal of Experimental Algorithmics, (2014), 19(1).

13. J. Hershberger, M. Maxel and S. Suri. Finding the k shortest simple paths: A new
algorithm and its implementation. ACM Transactions on Algorithms, (2007), 3(4), No.45.

14. P. Jaillet and M.R.Wagner. Generalized online routing: New competitive ratios, resource
augmentation, and asymptotic analyses. Operations Research, (2008), 56(3), pp. 745–757.

25

15. C.S. Liao and Y. Huang. Generalized Canadian traveller problems. Journal of Combi-
natorial Optimization, (2015), 29(4), pp. 701–712.

16. C.S. Liao and Y. Huang. The Covering Canadian traveller problem. Theoretical Com-
puter Science, (2014), 530(17), pp. 80–88.

17. K.H. Kao, J.M. Chang, Y.L. Wang and J.S.T. Juan. A quadratic algorithm for finding
next-to-shortest paths in graphs. Algorithmica, (2011), 61, pp. 402–418.

18. D. Karger and E. Nikolova. Exact algorithms for the Canadian traveller problem on
paths and trees. Technical report, MIT Computer Science & Artificial Intelligence Lab,
(2008).

19. N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for k shortest simple paths.
Networks, (1982), 12(4), pp. 411–427.

20. I. Krasikov and S.D. Noble. Finding next-to-shortest paths in a graph. Information
Processing Letters, (2004), 92, pp. 117–119.

21. K.N. Lalgudi and M.C. Papaefthymiou. Computing strictly-second shortest paths. In-
formation Processing Letters, (1997), 63, pp. 177–181.

22. C.H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical
Computer Science, (1991), 84(1), pp. 127–150.

23. H.N. Psaraftis, M. Wen, and C.A. Kontovas. Dynamic vehicle routing problems: Three
decades and counting. Networks, (2016), 67(1), pp. 3–31.

24. D. Shiri and F. S. Salman. On the randomized online strategies for the k-Canadian
traveler problem. Journal of Combinatorial Optimization, (2019), Published Online, pp.
1–14.

25. D. Shiri and F. S. Salman. On the online multi-agent O-D k-Canadian Traveler Problem.
Journal of Combinatorial Optimization, (2017), 34(2), pp. 453–461.

26. D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Com-
munications of the ACM, (1985), 28, pp. 202–208.

27. S. Westphal. A note on the k-Canadian traveller problem. Information Processing Let-
ters, (2008), 106, pp. 87–89.

28. Y.F. Xu, M.L. Hu, B. Su, B.H. Zhu, and Z.J. Zhu. The Canadian traveller problem and
its competitive analysis. Journal of Combinatorial Optimization, (2009), 18, pp. 195–205.

29. H. Zhang, Y.F. Xu, and L. Qin. The k-Canadian Travelers Problem with communication.
Journal of Combinatorial Optimization, (2013), 26(2), pp. 251–265.

