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Abstract
A matching cut is a partition of the vertex set of a graph into two sets A and B such that each vertex
has at most one neighbor in the other side of the cut. The Matching Cut problem asks whether a
graph has a matching cut, and has been intensively studied in the literature. Motivated by a question
posed by Komusiewicz et al. [IPEC 2018], we introduce a natural generalization of this problem,
which we call d-Cut: for a positive integer d, a d-cut is a bipartition of the vertex set of a graph into
two sets A and B such that each vertex has at most d neighbors across the cut. We generalize (and
in some cases, improve) a number of results for the Matching Cut problem. Namely, we begin
with an NP-hardness reduction for d-Cut on (2d + 2)-regular graphs and a polynomial algorithm for
graphs of maximum degree at most d + 2. The degree bound in the hardness result is unlikely to be
improved, as it would disprove a long-standing conjecture in the context of internal partitions. We
then give FPT algorithms for several parameters: the maximum number of edges crossing the cut,
treewidth, distance to cluster, and distance to co-cluster. In particular, the treewidth algorithm
improves upon the running time of the best known algorithm for Matching Cut. Our main
technical contribution, building on the techniques of Komusiewicz et al. [IPEC 2018], is a polynomial
kernel for d-Cut for every positive integer d, parameterized by the distance to a cluster graph. We
also rule out the existence of polynomial kernels when parameterizing simultaneously by the number
of edges crossing the cut, the treewidth, and the maximum degree. Finally, we provide an exact
exponential algorithm slightly faster than the naive brute force approach running in time O∗(2n).
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1 Introduction

A cut of a graph G = (V,E) is a bipartition of its vertex set V (G) into two non-empty sets,
denoted by (A,B). The set of all edges with one endpoint in A and the other in B is the
edge cut, or the set of crossing edges, of (A,B). A matching cut is a (possibly empty) edge
cut that is a matching, that is, such that its edges are pairwise vertex-disjoint. Equivalently,
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19:2 Finding Cuts of Bounded Degree

(A,B) is a matching cut of G if and only if every vertex is incident to at most one crossing
edge of (A,B) [7, 15], that is, it has at most one neighbor across the cut.

Motivated by an open question posed by Komusiewicz et al. [18] during the presentation
of their article, we investigate a natural generalization that arises from this alternative
definition, which we call d-cut. Namely, for a positive integer d ≥ 1, a d-cut is a a cut (A,B)
such that each vertex has at most d neighbors across the partition, that is, every vertex in
A has at most d neighbors in B, and vice-versa. Note that a 1-cut is a matching cut. As
expected, not every graph admits a d-cut, and the d-Cut problem is the problem of deciding,
for a fixed integer d ≥ 1, whether or not an input graph G has a d-cut.

When d = 1, we refer to the problem as Matching Cut. Graphs with no matching
cut first appeared in Graham’s manuscript [15] under the name of indecomposable graphs,
presenting some examples and properties of decomposable and indecomposable graphs, leaving
their recognition as an open problem. In answer to Graham’s question, Chvátal [7] proved
that the problem is NP-hard for graphs of maximum degree at least four and polynomially
solvable for graphs of maximum degree at most three; in fact, as shown by Moshi [24], every
graph of maximum degree three and at least eight vertices has a matching cut.

Chvátal’s results spurred a lot of research on the complexity of the problem [1,5,18–21,25].
In particular, Bonsma [5] showed that Matching Cut remains NP-hard for planar graphs
of maximum degree four and for planar graphs of girth five; Le and Randerath [21] gave
an NP-hardness reduction for bipartite graphs of maximum degree four; Le and Le [20]
proved that Matching Cut is NP-hard for graphs of diameter at least three, and presented
a polynomial-time algorithm for graphs of diameter at most two. Beyond planar graphs,
Bonsma’s work [5] also proves that the matching cut property is expressible in monadic
second order logic and, by Courcelle’s Theorem [8], it follows that Matching Cut is FPT
when parameterized by the treewidth of the input graph; he concludes with a proof that the
problem admits a polynomial-time algorithm for graphs of bounded cliquewidth.

Kratsch and Le [19] noted that Chvátal’s original reduction also shows that, unless the
Exponential Time Hypothesis [16] (ETH) fails1, there is no algorithm solving Matching
Cut in time 2o(n) on n-vertex input graphs. Also in [19], the authors provide a first
branching algorithm, running2 in time O∗

(
2n/2), a single-exponential FPT algorithm when

parameterized by the vertex cover number τ(G), and an algorithm generalizing the polynomial
cases of line graphs [24] and claw-free graphs [5]. Kratsch and Le [19] also asked for the
existence a single-exponential algorithm parameterized by treewidth. In response, Aravind et
al. [1] provided a O∗

(
12tw(G)) algorithm for Matching Cut using nice tree decompositions,

along with FPT algorithms for other structural parameters, namely neighborhood diversity,
twin-cover, and distance to split graph.

The natural parameter – the number of edges crossing the cut – has also been considered.
Indeed, Marx et al. [23] tackled the Stable Cutset problem, to which Matching Cut can
be easily reduced via the line graph, and through a breakthrough technique showed that this
problem is FPT when parameterized by the maximum size of the stable cutset. Recently,
Komusiewicz et al. [18] improved on the results of Kratsch and Le [19], providing an exact
exponential algorithm for Matching Cut running in time O∗(1.3803n), as well as FPT
algorithms parameterized by the distance to a cluster graph and the distance to a co-cluster
graph, which improve the algorithm parameterized by the vertex cover number, since both
parameters are easily seen to be smaller than the vertex cover number. For the distance

1 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [16] for more details.
2 The O∗(·) notation suppresses factors that are bounded by a polynomial in the input size.
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to cluster parameter, they also presented a quadratic kernel; while for a combination of
treewidth, maximum degree, and number of crossing edges, they showed that no polynomial
kernel exists unless NP ⊆ coNP/poly.

A problem closely related to d-Cut is that of Internal Partition, first studied by
Thomassen [28]. In this problem, we seek a bipartition of the vertices of an input graph such
that every vertex has at least as many neighbors in its own part as in the other part. Such a
partition is called an internal partition. Usually, the problem is posed in a more general form:
given functions a, b : V (G)→ Z+, we seek a bipartition (A,B) of V (G) such that every v ∈ A
satisfies degA(v) ≥ a(v) and every u ∈ B satisfies degB(u) ≥ b(u), where degA(v) denotes the
number of neighbors of v in the set A. Such a partition is called an (a, b)-internal partition.
Originally, Thomassen asked in [28] whether for any pair of positive integers s, t, a graph
G with δ(G) ≥ s+ t+ 1 has a vertex bipartition (A,B) with δ(G[A]) ≥ s and δ(G[B]) ≥ t,
where δ(H) is the minimum degree of H. Stiebitz [27] answered that, in fact, for any graph
G and any pair of functions a, b : V (G)→ Z+ satisfying deg(v) ≥ a(v) + b(v) + 1 for every
v ∈ V (G), G has an (a, b)-internal partition; see [17,22] for follow-up results. It is conjectured
that, for every positive integer r, there exists some constant nr for which every r-regular
graph with more than nr vertices has an internal partition [2, 10] (the conjecture for r even
appeared first in [26]). The cases r ∈ {3, 4} have been settled by Shafique and Dutton [26];
the case r = 6 has been verified by Ban and Linial [2]. This latter result implies that every
6-regular graph of sufficiently large size has a 3-cut.

Our results. We aim at generalizing several of the previously reported results for Matching
Cut. First, we show in Section 2, by using a reduction inspired by Chvátal’s [7], that for
every d ≥ 1, d-Cut is NP-hard even when restricted to (2d + 2)-regular graphs and that,
if ∆(G) ≤ d + 2 (the maximum degree of G) finding a d-cut can be done in polynomial
time. The degree bound in the NP-hardness result is unlikely to be improved: if we had an
NP-hardness result for d-Cut restricted to (2d+ 1)-regular graphs, this would disprove the
conjecture about the existence of internal partitions on r-regular graphs [2, 10,26] for r odd,
unless P = NP. We conclude the section by giving a simple exact exponential algorithm
that, for every d ≥ 1, runs in time O∗(cn

d ) for some constant cd < 2, hence improving over
the trivial brute-force algorithm running in time O∗(2n).

We then proceed to analyze the problem in terms of its parameterized complexity.
Section 3 begins with a proof, using the treewidth reduction technique of Marx et al. [23],
that d-Cut is FPT parameterized by the maximum number of edges crossing the cut.
Afterwards, we present a dynamic programming algorithm for d-Cut parameterized by
treewidth running in time O∗

(
2tw(G)(d+ 1)2tw(G)); in particular, for d = 1 this algorithm

runs in time O∗
(
8tw(G)) and improves the one given by Aravind et al. [1] for Matching

Cut, which runs in O∗
(
12tw(G)) time. By employing the cross-composition framework of

Bodlaender et al. [4] and using a reduction similar to the one in [18], we show that, unless
NP ⊆ coNP/poly, there is no polynomial kernel for d-Cut parameterized simultaneously by
the number of crossing edges, the maximum degree, and the treewidth of the input graph. We
then present a polynomial kernel and an FPT algorithm when parameterizing by the distance
to cluster, denoted by dc(G). This polynomial kernel is our main technical contribution, and
it is strongly inspired by the technique presented by Komusiewicz et al. [18] for Matching
Cut. Finally, we give an FPT algorithm parameterized by the distance to co-cluster, denoted
by dc(G). These results imply the existence of a polynomial kernel for d-Cut parameterized
by the vertex cover number τ(G). We present in Section 4 our concluding remarks and some
open questions.

IPEC 2019



19:4 Finding Cuts of Bounded Degree

We use standard notation from graph theory and parameterized complexity; see [9,11–13]
for any undefined terminology. Due to space limitations, the proofs of the results marked
with ‘(?)’ can be found in the full version of this article, permanently available at https:
//arxiv.org/abs/1905.03134. Some basic preliminaries can also be found there.

1.1 Preliminaries
We use standard graph-theoretic notation, and we consider simple undirected graphs without
loops or multiple edges; see [11] for any undefined terminology. When the graph is clear from
the context, the degree (that is, the number of neighbors) of a vertex v is denoted by deg(v),
and the number of neighbors of a vertex v in a set A ⊆ V (G) is denoted by degA(v). The
minimum degree, the maximum degree, the line graph, and the vertex cover number of a
graph G are denoted by δ(G), ∆(G), L(G), and τ(G), respectively. For a positive integer
k ≥ 1, we denote by [k] the set containing every integer i such that 1 ≤ i ≤ k.

We refer the reader to [9, 12] for basic background on parameterized complexity, and we
recall here only some basic definitions. A parameterized problem is a language L ⊆ Σ∗ × N.
For an instance I = (x, k) ∈ Σ∗ × N, k is called the parameter. A parameterized problem is
fixed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and
a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly
decides whether I ∈ L in time bounded by f(k) · |I|c.

A fundamental concept in parameterized complexity is that of kernelization; see [13] for
a recent book on the topic. A kernelization algorithm, or just kernel, for a parameterized
problem Π takes an instance (x, k) of the problem and, in time polynomial in |x|+k, outputs
an instance (x′, k′) such that |x′|, k′ 6 g(k) for some function g, and (x, k) ∈ Π if and only if
(x′, k′) ∈ Π. The function g is called the size of the kernel and may be viewed as a measure
of the “compressibility” of a problem using polynomial-time preprocessing rules. A kernel
is called polynomial (resp. quadratic, linear) if the function g(k) is a polynomial (resp.
quadratic, linear) function in k. A breakthrough result of Bodlaender et al. [3] gave the
first framework for proving that certain parameterized problems do not admit polynomial
kernels, by establishing so-called composition algorithms. Together with a result of Fortnow
and Santhanam [14] this allows to exclude polynomial kernels under the assumption that
NP * coNP/poly, otherwise implying a collapse of the polynomial hierarchy to its third
level [29].

2 NP-hardness, polynomial cases, and exact exponential algorithm

In this section we focus on the classical complexity of the d-Cut problem, and on exact
exponential algorithms.

Chvátal [7] proved that Matching Cut is NP-hard for graphs of maximum degree at
least four. In the next theorem, whose proof is inspired by the reduction of Chvátal [7] from
3-Uniform Hypergraph Bicoloring, we prove the NP-hardness of d-cut for (2d+ 2)-
regular graphs. In particular, for d = 1 it implies the NP-hardness of Matching Cut for
4-regular graphs, which is a strengthening of Chvátal’s [7] hardness proof.

I Theorem 1 (?). For every integer d ≥ 1, d-cut is NP-hard even when restricted to
(2d+ 2)-regular graphs.

The graphs constructed by Theorem 1 are neither planar nor bipartite, but they are
regular, a result that we were unable to find in the literature for Matching Cut. Note that
every planar graph has a d-cut for every d ≥ 5, so only the cases d ∈ {2, 3, 4} remain open,

https://arxiv.org/abs/1905.03134
https://arxiv.org/abs/1905.03134


G.C.M. Gomes and I. Sau 19:5

as the case d = 1 is known to be NP-hard [5]. Concerning graphs of bounded diameter, Le
and Le [20] prove the NP-hardness of Matching Cut for graphs of diameter at least three
by reducing Matching Cut to itself. It can be easily seen that the same construction given
by Le and Le [20], but reducing d-Cut to itself, also proves the NP-hardness of d-Cut for
every d ≥ 1.

I Corollary 2. For every integer d ≥ 1, d-Cut is NP-hard for graphs of diameter at least
three.

We leave as an open problem to determine whether there exists a polynomial-time
algorithm for d-Cut for graphs of diameter at most two for every d ≥ 2, as it is the case for
d = 1 [20].

We now turn to cases that can be solved in polynomial time. Our next result is a natural
generalization of Chvátal’s algorithm [7] for Matching Cut on graphs of maximum degree
three.

I Theorem 3 (?). For any graph G and integer d ≥ 1 such that ∆(G) ≤ d + 2, it can be
decided in polynomial time if G has a d-cut. Moreover, for d = 1 any graph G with ∆(G) ≤ 3
and |V (G)| ≥ 8 has a matching cut, for d = 2 any graph G with ∆(G) ≤ 4 and |V (G)| ≥ 6
has a 2-cut, and for d ≥ 3 any graph G with ∆(G) ≤ d+ 2 has a d-cut.

Theorems 1 and 3 present a “quasi-dichotomy” for d-cut on graphs of bounded maximum
degree. Specifically, for ∆(G) ∈ {d+ 3, . . . , 2d+ 1}, the complexity of the problem remains
unknown. However, we believe that most, if not all, of these open cases can be solved in
polynomial time; see the discussion in Section 4.

To conclude this section, we present a simple exact exponential algorithm which, for every
d ≥ 1, runs in time O∗(cn

d ) for some constant cd < 2. For the case d = 1, the currently known
algorithms [18, 19] exploit structures that appear to get out of control when d increases, and
so has a better running time than the one described below.

I Theorem 4 (?). For every fixed integer d ≥ 1 and n-vertex graph G, there is an algorithm
that solves d-Cut in time O∗((cd)n), for some constant 1 < cd < 2.

3 Parameterized algorithms and kernelization

In this section we focus on the parameterized complexity of d-Cut. More precisely, in
Section 3.1 we consider as the parameter the number of edges crossing the cut and in
Section 3.2 the distance to cluster (in particular, we provide a quadratic kernel). The FPT
algorithms parameterized by treewidth and the distance to co-cluster can be found in the
full version of the paper.

Before proceeding, we introduce the notion of monochromatic sets.

I Definition 5. A set of vertices X ⊆ V (G) is said to be monochromatic if, for any d-
cut (A,B) of G, X ⊆ A or X ⊆ B. A subgraph H of G is monochromatic if V (H) is
monochromatic.

3.1 Crossing edges
In this section we consider as the parameter the maximum number of edges crossing the cut.
In a nutshell, our approach is to use as a black box one of the algorithms presented by Marx
et al. [23] for a class of separation problems. Their fundamental problem is G-MinCut, for a
fixed class of graphs G, which we state formally, along with their main result, below.

IPEC 2019



19:6 Finding Cuts of Bounded Degree

G-MinCut
Instance: A graph G, vertices s, t, and an integer k.
Parameter: The integer k.
Question: Is there an induced subgraph H of G with at most k vertices such that H ∈ G
and H is an s− t separator?

I Theorem 6 (Theorem 3.1 in [23]). If G is a decidable and hereditary graph class, G-MinCut
is FPT.

To be able to apply Theorem 6, we first need to specify a graph class to which, on the line
graph, our separators correspond. We must also be careful to guarantee that the removal of a
separator in the line graph leaves non-empty components in the input graph. To accomplish
the latter, for each v ∈ V (G), we add a private clique of size 2d adjacent only to it, choose
one arbitrary vertex v′ in each of them. The algorithm asks, for each pair v′, u′, whether
or not a “special” separator of the appropriate size between v′ and u′ exists. We assume
henceforth that these private cliques have been added to the input graph G. For each integer
d ≥ 1, we define the graph class Gd as follows.

I Definition 7. A graph H belongs to Gd if and only if its maximum clique size is at most d.

Note that Gd is clearly decidable and hereditary for every integer d ≥ 1.

I Lemma 8 (?). G has a d-cut separating v′ and u′ if and only if the line graph of G has a
vertex separator belonging to Gd that separates ev and eu, where ev corresponds to the edge
vv′ ∈ E(G) and eu to the edge uu′ ∈ E(G).

I Theorem 9. For every d ≥ 1, there is an FPT algorithm for d-Cut parameterized by k,
the maximum number of edges crossing the cut.

Proof. For each pair of vertices s, t ∈ V (G) that do not belong to the private cliques, our
goal is to find a subset of vertices S ⊆ V (L(G)) of size at most k that separates s and t such
that L(G)[S] ∈ Gd. This is precisely what is provided by Theorem 6, and the correctness of
this approach is guaranteed by Lemma 8. Since we perform a quadratic number of calls to
the algorithm given by Theorem 6, our algorithm still runs in FPT time. J

As to the running time of the FPT algorithm given by Theorem 9, the treewidth reduction
technique of [23] relies on the construction of a monadic second order logic (MSOL) expression
and Courcelle’s Theorem [8] to guarantee fixed-parameter tractability, and therefore it is
hard to provide an explicit running time in terms of k.

3.2 Kernelization and distance to cluster
The proof of the following theorem consists of a simple generalization to every d ≥ 1 of the
construction given by Komusiewicz et al. [18] for d = 1.

I Theorem 10. For any fixed d ≥ 1, d-Cut does not admit a polynomial kernel when
simultaneously parameterized by k, ∆, and tw(G), unless NP ⊆ coNP/poly.

Proof. We show that the problem cross-composes into itself. Start with t instances G1, . . . , Gt

of d-Cut. First, pick an arbitrary vertex vi ∈ V (Gi), for each i ∈ [t]. Second, for i ∈ [t− 1],
add a copy of K2d, call it K(i), every edge between vi and K(i), and every edge between
K(i) and vi+1. This concludes the construction of G, which for d = 1 coincides with that
presented by Komusiewicz et al. [18].
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Suppose that (A,B) is a d-cut of some Gi and that vi ∈ A. Note that (V (G) \B,B) is
a d-cut of G since the only edges in the cut are those between A and B. For the converse,
take some d-cut (A,B) of G and note that every vertex in the set {vt}

⋃
i∈[t−1]{vi} ∪K(i)

is contained in the same side of the partition, say A. Since B 6= ∅, there is some i such
that B ∩ V (Gi) 6= ∅, which implies that there is some i (possibly more than one) such that
(A ∩ V (Gi), B ∩ V (Gi)) must be a d-cut of Gi.

That the treewidth, maximum degree, and number of edges crossing the partition are
bounded by n, the maximum number of vertices of the graphs Gi, is a trivial observation. J

We now proceed to show that d-Cut admits a polynomial kernel when parameterizing
by the distance to cluster parameter, denoted by dc. A cluster graph is a graph such that
every connected component is a clique; the distance to cluster of a graph G is the minimum
number of vertices we must remove from G to obtain a cluster graph. Our results are heavily
inspired by the work of Komusiewicz et al. [18]. Indeed, most of our reduction rules are
natural generalizations of theirs. However, we need some extra observations and rules that
only apply for d ≥ 2, such as Rule 8.

We denote by U = {U1, . . . , Ut} a set of vertices such that G− U is a cluster graph, and
each Ui is called a monochromatic part or monochromatic set of U , and we will maintain the
invariant that these sets are indeed monochromatic. Initially, we set each Ui as a singleton.
In order to simplify the analysis of our instance, for each Ui of size at least two, we will
have a private clique of size 2d adjacent to every vertex of Ui, which we call Xi. The merge
operation between Ui and Uj is the following modification: delete Xi ∪Xj , set Ui as Ui ∪Uj ,
Uj as empty, and add a new clique of size 2d, Xi,j , which is adjacent to every element of the
new Ui. We say that an operation is safe if the resulting instance is a YES instance if and
only if the original instance was.

I Observation 1. If Ui ∪ Uj is monochromatic, merging Ui and Uj is safe.

It is worth mentioning that the second case of the following rule is not needed in the
corresponding rule in [18]; we need it here to prove the safeness of Rules 7 and 8.

I Reduction Rule 1. Suppose that G− U has some cluster C such that
1. (C, V (G) \ C) is a d-cut, or
2. |C| ≤ 2d and there is C ′ ⊆ C such that (C ′, V (G) \ C ′) is a d-cut.
Then output YES.

After applying Rule 1, for every cluster C, C has some vertex with at least d+1 neighbors
in U , or there is some vertex of U with at least d+ 1 neighbors in C. Moreover, note that no
cluster C with at least 2d+ 1 vertices can be partitioned in such a way that one side of the
cut is composed only by a proper subset of vertices of C, i.e., C is monochromatic

The following definition is a natural generalization of the definition of the set N2 given
by Komusiewicz et al. [18]. Essentially, it enumerates some of the cases where a vertex, or set
of vertices, is monochromatic, based on its relationship with U . However, there is a crucial
difference that keeps us from achieving equivalent bounds both in terms of running time and
size of the kernel, and which makes the analysis and some of the rules more complicated
than in [18]. Namely, for a vertex to be forced into a particular side of the cut, it must have
at least d+ 1 neighbors in that side; moreover, a vertex of U being adjacent to 2d vertices of
a cluster C implies that C is monochromatic. Only if d = 1, i.e., when we are dealing with
matching cuts, the equality d+ 1 = 2d holds. This gap between d+ 1 and 2d is the main
difference between our kernelization algorithm for general d and the one shown in [18] for
Matching Cut, and the main source of the differing complexities we obtain. In particular,

IPEC 2019



19:8 Finding Cuts of Bounded Degree

for d = 1 the fourth case of the following definition is a particular case of the third one,
but this is not true anymore for d ≥ 2. Figure 1 illustrates the set of vertices introduced in
Definition 11.

I Definition 11. For a monochromatic part Ui ⊆ U , let N2d(Ui) be the set of vertices
v ∈ V (G) \ U for which at least one of the following holds:

1. v has at least d+ 1 neighbors in Ui.
2. v is in a cluster C of size at least 2d+ 1 in G− U such that there is some vertex of C

with at least d+ 1 neighbors in Ui.
3. v is in a cluster C of G− U and some vertex in Ui has 2d neighbors in C.
4. v is in a cluster C of G − U of size at least 2d + 1 and some vertex in Ui has d + 1

neighbors in C.

Ui

Figure 1 The four cases that define membership in N2d(Ui) for d = 2, from left to right.

I Observation 2. For every monochromatic part Ui, Ui ∪N2d(Ui) is monochromatic.

The next rules aim to increase the size of monochromatic sets. In particular, Rule 2
translates the transitivity of the monochromatic property, while Rule 3 identifies a case where
merging the monochromatic sets is inevitable.

I Reduction Rule 2. If N2d(Ui) ∩N2d(Uj) 6= ∅, merge Ui and Uj.

I Reduction Rule 3. If there there is a set of 2d+ 1 vertices L ⊆ V (G) with two common
neighbors u, u′ such that u ∈ Ui and u′ ∈ Uj, merge Ui and Uj.

Proof of safeness of Rule 3. Suppose that in some d-cut (A,B), u ∈ A and u′ ∈ B, this
implies that at most d elements of L are in A and at most d are in B, which is impossible
since |L| = 2d+ 1. J

We say that a cluster is small if it has at most 2d vertices, and big otherwise. Moreover,
a vertex in a cluster is ambiguous if it has neighbors in more than one Ui. A cluster is
ambiguous if it has an ambiguous vertex, and fixed if it is contained in some N2d(Ui).

I Observation 3. If G is reduced by Rule 1, every big cluster is ambiguous or fixed.

Proof. Since Rule 1 cannot be applied, every cluster C has either one vertex v with at least
d+ 1 neighbors in U or there is some vertex of a set Ui with d+ 1 neighbors in C. In the
latter case, by applying the fourth case in the definition of N2d(Ui), we conclude that C
is fixed. In the former case, either v has d+ 1 neighbors in the same Ui, in which case C
is fixed, or its neighborhood is spread across multiple monochromatic sets, and so v and,
consequently, C are ambiguous. J



G.C.M. Gomes and I. Sau 19:9

Our next goal is to bound the number of vertices outside of U .

I Reduction Rule 4. If there are two clusters C1, C2 contained in some N2d(Ui), then add
every edge between C1 and C2.

Proof of safeness of Rule 4. It follows directly from the fact that adding edges between
vertices of a monochromatic set preserves the existence of a d-cut. J

The next lemma follows from the pigeonhole principle and exhaustive application of
Rule 4.

I Lemma 12. If G has been reduced by Rules 1 through 4, then G has O(|U |) fixed clusters.

I Reduction Rule 5. If there is some cluster C with at least 2d+ 2 vertices such that there
is some v ∈ C with no neighbors in U , remove v from G.

Proof of safeness of Rule 5. That G has a d-cut if and only if G − v has a d-cut follows
directly from the hypothesis that C is monochromatic in G and the fact that |C \{v}| ≥ 2d+1
implies that C \ {v} is monochromatic in G− v. J

By Rule 5, we now have the additional property that, if C has more than 2d+ 1 vertices,
all of them have at least one neighbor in U . The next rule provides a uniform structure
between a big cluster C and the sets Ui such that C ⊆ N2d(Ui).

I Reduction Rule 6. If a cluster C has at least 2d+ 1 elements and there is some Ui such
that C ⊆ N2d(Ui), remove all edges between C and Ui, choose u ∈ Ui, {v1, . . . , vd+1} ⊆ C

and add the edges {uvi}i∈[d+1] to G.

Proof of safeness of Rule 6. Let G′ be the graph obtained after the operation is applied. If
G has some d-cut (A,B), since Ui ∪N2d(Ui) is monochromatic, no edge between Ui and C
crosses the cut, so (A,B) is also a d-cut of G′. For the converse, take a d-cut (A′, B′) of G′.
Since C has at least 2d+ 1 vertices and there is some u ∈ Ui such that |N(u) ∩ C| = d+ 1,
C ∈ N2d(Ui) in G′. Therefore, no edge between C and Ui crosses the cut and (A′, B′) is also
a d-cut of G. J

We have now effectively bounded the number of vertices in big clusters by a polynomial
in U , as shown below.

I Lemma 13. If G has been reduced by Rules 1 through 6, then G has O
(
d|U |2

)
ambiguous

vertices and O
(
d|U |2

)
big clusters, each with O(d|U |) vertices.

Proof. To show the bound on the number of ambiguous vertices, take any two vertices
u ∈ Ui, u′ ∈ Uj . Since we have

(|U |
2
)
such pairs, if we had at least (2d+ 1)

(|U |
2
)
ambiguous

vertices, by the pigeonhole principle, there would certainly be 2d+ 1 vertices in V \ U that
are adjacent to one pair, say u and u′. This, however, contradicts the hypothesis that Rule 3
has been applied, and so we have O

(
d|U |2

)
ambiguous vertices.

The above discussion, along with Lemma 12 and Observation 3, imply that the number
of big clusters is O

(
d|U |2

)
. For the bound on their sizes, take some cluster C with at least

2d+ 2 vertices. Due to the application of Rule 5, every vertex of C has at least one neighbor
in U . Moreover, there is at most one Ui such that C ⊆ N2d(Ui), otherwise we would be able
to apply Rule 2.

Suppose first that there is such a set Ui. By Rule 6, there is only one u ∈ Ui that has
neighbors in C; in particular, it has d+1 neighbors. Now, every v ∈ Uj , for every j 6= i, has at
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most d neighbors in C, otherwise C ⊆ N2d(Uj) and Rule 2 would have been applied. Therefore,
we conclude that C has at most (d+ 1) +

∑
v∈U\Ui

|N(u) ∩ C| ≤ (d+ 1) + d|U | ∈ O(d|U |)
vertices.

Finally, suppose that there is no Ui such that C ⊆ N2d(Ui). A similar analysis from
the previous case can be performed: every u ∈ Ui has at most d neighbors in C, otherwise
C ⊆ N2d(Ui) and we conclude that C has at most

∑
v∈U |N(u) ∩ C| ≤ d|U | ∈ O(d|U |)

vertices. J

We are now left only with an unbounded number of small clusters. A cluster C is simple
if it is not ambiguous, that is, if for each v ∈ C, v has neighbors in a single Ui. Otherwise, C
is ambiguous and, because of Lemma 13, there are at most O

(
d|U |2

)
such clusters. For a

simple cluster C and a vertex v ∈ C, we denote by U(v) the monochromatic part of U to
which v is adjacent.

I Reduction Rule 7. If C is a simple cluster with at most d+ 1 vertices, remove C from G.

Proof of safeness of Rule 7. Let G′ = G−C. Suppose G has a d-cut (A,B) and note that
A * C and B * C since Rule 1 does not apply. This implies that (A \ C,B \ C) is a valid
d-cut of G′. For the converse, take a d-cut (A′, B′) of G′, define CA = {v ∈ C | U(v) ⊆ A},
and define CB similarly; we claim that (A′ ∪ CA, B

′ ∪ CB) is a d-cut of G. To see that this
is the case, note that each vertex of CA (resp. CB) has at most d edges to CB (resp. CA)
and, since C is simple, CA (resp. CB) has no other edges to B′ (resp. A′). J

After applying the previous rule, every cluster C not yet analyzed has size d+2 ≤ |C| ≤ 2d
which, in the case of the Matching Cut problem, where d = 1, is empty. To deal with
these clusters, given a d-cut (A,B), we say that a vertex v is in its natural assignment if
v ∪ U(v) is in the same side of the cut; otherwise the vertex is in its unnatural assignment.
Similarly, a cluster is unnaturally assigned if it has an unnaturally assigned vertex, otherwise
it is naturally assigned.

I Observation 4. Let C be the set of all simple clusters with at least d+ 2 and no more than
2d vertices, and (A,B) a partition of V (G). If there are d|U |+ 1 edges uv, v ∈ C ∈ C and
u ∈ U , such that uv is crossing the partition, then (A,B) is not a d-cut.

Proof. Since there are d|U |+ 1 edges crossing the partition between C and U , there must be
at least one u ∈ U with d+ 1 neighbors in the other set of the partition. J

I Corollary 14. In any d-cut of G, there are at most d|U | unnaturally assigned vertices.

Our next lemma limits how many clusters in C relate in a similar way to U ; we say that
two simple clusters C1, C2 have the same pattern if they have the same size s and there is
a total ordering of C1 and another of C2 such that, for every i ∈ [s], v1

i ∈ C1 and v2
i ∈ C2

satisfy U(v1
i ) = U(v2

i ). Essentially, clusters that have the same pattern have neighbors
in exactly the same monochromatic sets of U and the same multiplicity in terms of how
many of their vertices are adjacent to a same monochromatic set Ui. Note that the actual
neighborhoods in the sets Ui’s do not matter in order for two clusters to have the same
pattern. Figure 2 gives an example of a maximal set of unnaturally assigned clusters; that is,
any other cluster with the same pattern as the one presented must be naturally assigned,
otherwise some vertex of U will violate the d-cut property. As shown by the following Lemma,
we may discard clusters that must be naturally assigned, as we can easily extend the kernel’s
d-cut, if it exists, to include them.
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U2

U1

Figure 2 Example for d = 4 of a maximal set of unnaturally assigned clusters. Squared (resp.
circled) vertices would be assigned to A (resp. B).

I Lemma 15. Let C∗ ⊆ C be a subfamily of simple clusters, all with the same pattern, with
|C∗| > d|U |+ 1. Let C be some cluster of C∗, and G′ = G− C. Then G has a d-cut if and
only if G′ has a d-cut.

Proof. Since by Rule 1 no subset of a small cluster is alone in a side of a partition and,
consequently, U intersects both sides of the partition, if G has a d-cut, so does G′.

For the converse, let (A′, B′) be a d-cut of G′. First, by Corollary 14, we know that at
least one of the clusters of C∗ \ {C}, say Cn, is naturally assigned. Since all the clusters in
C∗ have the same pattern, this guarantees that any of the vertices of a naturally assigned
cluster cannot have more than d neighbors in the other side of the partition.

Let (A,B) be the bipartition of V (G) obtained from (A′, B′) such that u ∈ C is in A
(resp. B) if and only if U(u) ⊆ A (resp. U(u) ⊆ B); that is, C is naturally assigned. Define
CA = C ∩A and CB = C ∩B. Because |C| = |Cn| and both belong to C∗, we know that for
every u ∈ CA, it holds that |N(u) ∩ CB | ≤ d; moreover, note that N(u) ∩ (B \ C) = ∅. A
symmetric analysis applies to every u ∈ CB . This implies that no vertex of C has additional
neighbors in the other side of the partition outside of its own cluster and, therefore, (A,B)
is a d-cut of G. J

The safeness of our last rule follows directly from Lemma 15.

I Reduction Rule 8. If there is some pattern such that the number of simple clusters with
that pattern is at least d|U |+ 2, delete all but d|U |+ 1 of them.

I Lemma 16. After exhaustive application of Rules 1 through 8, G has O
(
d|U |2d

)
small

clusters and O
(
d2|U |2d+1) vertices in these clusters.

Proof. By Rule 7, no small cluster with less than d+ 2 vertices remains in G. Now, for the
remaining sizes, for each d + 2 ≤ s ≤ 2d, and each pattern of size s, by Rule 8 we know
that the number of clusters with s vertices that have the same pattern is at most d|U |+ 1.
Since we have at most |U | possibilities for each of the s vertices of a cluster, we end up with
O(|U |s) possible patterns for clusters of size s. Summing all of them up, we get that we have
O
(
|U |2d

)
patterns in total, and since each one has at most d|U |+ 1 clusters of size at most

2d, we get that we have at most O
(
d2|U |2d+1) vertices in those clusters. J
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The exhaustive application of all the above rules and their accompanying lemmas are
enough to show that indeed, there is a polynomial kernel for d-Cut when parameterized by
distance to cluster.

I Theorem 17. When parameterized by distance to cluster dc(G), d-Cut admits a polynomial
kernel with O

(
d2 · dc(G)2d+1) vertices that can be computed in O

(
d4 · dc(G)2d+1(n+m)

)
time.

Proof. The algorithm begins by finding a set U such that G− U is a cluster graph. Note
that |U | ≤ 3dc(G) since a graph is a cluster graph if and only if it has no induced path on
three vertices: while there is some P3 in G, we know that at least one its vertices must be
removed, but since we don’t know which one, we remove all three; thus, U can be found in
O(dc(G)(n+m)) time. After the exhaustive application of Rules 1 through 8, by Lemma 13,
V (G) \ U has at most O

(
d2 · dc(G)3) vertices in clusters of size at least 2d+ 1. By Rule 7,

G has no simple cluster of size at most d+ 1. Ambiguous clusters of size at most 2d, again
by Lemma 13, also comprise only O

(
d2 · dc(G)2) vertices of G. Finally, for simple clusters of

size between d+ 2 and 2d, Lemmas 15 and 16 guarantee that there are O
(
d2 · dc(G)2d+1)

vertices in small clusters and, consequently, this many vertices in G.
As to the running time, first, computing and maintaining N2d(Ui) takes O(d · dc(G)n)

time. Rule 1 is applied only at the beginning of the kernelization, and runs in O
(
22dd(n+m)

)
time. Rules 2 and 3 can both be verified in O

(
d · dc(G)2(n+m)

)
time, since we are just

updating N2d(Ui) and performing merge operations. Both are performed only O
(
dc(G)2)

times, because we only have this many pairs of monochromatic parts. The straightforward
application of Rule 4 would yield a running time of O

(
n2). However, we can ignore edges

that are interior to clusters and only maintain which vertices belong together; this effectively
allows us to perform this rule in O(n) time, which, along with its O(n) possible applications,
yields a total running time of O

(
n2) for this rule. Note that, when outputting the instance

itself, we must write the edges explicitly; this does not change the final complexity of the
algorithm, as each of the O

(
dc(G)2d+1) clusters has O(d · dc(G)) vertices. Rule 5 is directly

applied in O(n) time; indeed, all of its applications can be performed in a single pass. Rule 6
is also easily applied in O(n+m) time. Moreover, it is only applied O(dc(G)) times, since,
by Lemma 13, the number of fixed clusters is linear in dc(G); furthermore, we may be able
to reapply Rule 6 directly to the resulting cluster, at no additional complexity cost. The
analysis for Rule 7 follows the same argument as for Rule 5. Finally, Rule 8 is the bottleneck
of our kernel, since it must check each of the possible O

(
dc(G)2d

)
patterns, spending O(n)

time for each of them. Each pattern is only inspected once because the number of clusters
in a pattern can no longer achieve the necessary bound for the rule to be applied once the
excessive clusters are removed. J

In the next theorems, we provide FPT algorithms for d-Cut parameterized by distance
to cluster and distance to co-cluster, respectively. Both are based on dynamic programming,
with the first being considerably simpler than the one given by Komusiewicz et al. [18] for
d = 1, which applies four reduction rules and encodes the problem in a 2-SAT formula.
However, for d = 1 our algorithm is slower, namely O∗

(
4dc(G)) compared to O∗

(
2dc(G)).

Observe that the minimum distance to cluster and co-cluster sets can be computed in time
1.92dc(G) · O

(
n2) and 1.92dc(G) · O

(
n2), respectively [6]. Thus, in the proofs of Theorems 18

and 19, we can safely assume that we have these sets at hand.

I Theorem 18 (?). For every integer d ≥ 1, there is an algorithm that solves d-Cut in time
O
(
4d(d+ 1)dc(G)2dc(G)dc(G)n2).
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I Theorem 19 (?). For every integer d ≥ 1, there is an algorithm solving d-Cut in time
O
(
32d2dc(G)(d+ 1)dc(G)+d(dc(G) + d)n2).
Using Theorems 18 and 19, and the relation τ(G) ≥ max{dc(G), dc(G)} [18], we obtain

the following corollary.

I Corollary 20. For every d ≥ 1, d-Cut parameterized by vertex cover is in FPT.

4 Concluding remarks

We presented a series of algorithms and complexity results; many questions, however, remain
open. For instance, all of our algorithms have an exponential dependency on d on their
running times. While we believe that such a dependency is an intrinsic property of d-cut,
we have no proof for this claim. Similarly, the existence of a uniform polynomial kernel
parameterized by the distance to cluster, i.e., a kernel whose degree does not depend on d,
remains an interesting open question.

Also in terms of running time, we expect the constants in the base of the exact exponential
algorithm to be improvable. However, exploring small structures that yield non-marginal
gains as branching rules, as done by Komusiewicz et al. [18] for d = 1 does not seem a viable
approach, as the number of such structures appears to rapidly grow along with d.

The distance to cluster kernel is hindered by the existence of clusters of size between
d+ 2 and 2d, an obstacle that is not present in the Matching Cut problem. Aside from the
extremal argument presented, we know of no way of dealing with them. We conjecture that
it should be possible to reduce the total kernel size from O

(
d2dc(G)2d+1) to O(d2dc(G)2d

)
,

matching the size of the smallest known kernel for Matching Cut [18].
We also leave open to close the gap between the polynomial and NP-hard cases in terms

of maximum degree. We showed that, if ∆(G) ≤ d + 2 the problem is easily solvable in
polynomial time, while for graphs with ∆(G) ≥ 2d+ 2, it is NP-hard. But what about the
gap d+ 3 ≤ ∆(G) ≤ 2d+ 1? After some effort, we were unable to settle any of these cases. In
particular, we are interested in 2-Cut, which has a single open case: ∆(G) = 5. After some
weeks of computation, we found no graph with more than 18 vertices and maximum degree
five that had no 2-cut, in agreement with the computational findings of Ban and Linial [2].
Interestingly, all graphs on 18 vertices without a 2-cut are either 5-regular or have a single
pair of vertices of degree 4, which are actually adjacent. In both cases, the graph is maximal
in the sense that we cannot add edges to it while maintaining the degree constraints. We
recall the initial discussion about Internal Partition; closing the gap between the known
cases for d-Cut would yield significant advancements on the former problem.

Finally, the smallest d for which G admits a d-cut may be an interesting additional
parameter to be considered when more traditional parameters, such as treewidth, fail to
provide FPT algorithms by themselves. Unfortunately, by Theorem 1, computing this
parameter is not even in XP, but, as we have shown, it can be computed in FPT time under
many different parameterizations.
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