
Vol:.(1234567890)

Algorithmica (2021) 83:1750–1785
https://doi.org/10.1007/s00453-021-00801-2

1 3

Improved Online Algorithms for Knapsack and GAP
in the Random Order Model

Susanne Albers1 · Arindam Khan2 · Leon Ladewig1 

Received: 21 August 2019 / Accepted: 13 January 2021 / Published online: 17 February 2021
© The Author(s) 2021

Abstract
The knapsack problem is one of the classical problems in combinatorial optimiza-
tion: Given a set of items, each specified by its size and profit, the goal is to find a
maximum profit packing into a knapsack of bounded capacity. In the online setting,
items are revealed one by one and the decision, if the current item is packed or dis-
carded forever, must be done immediately and irrevocably upon arrival. We study
the online variant in the random order model where the input sequence is a uniform
random permutation of the item set. We develop a randomized (1/6.65)-competitive
algorithm for this problem, outperforming the current best algorithm of competi-
tive ratio 1/8.06 (Kesselheim et al. in SIAM J Comput 47(5):1939–1964, 2018). Our
algorithm is based on two new insights: We introduce a novel algorithmic approach
that employs two given algorithms, optimized for restricted item classes, sequen-
tially on the input sequence. In addition, we study and exploit the relationship of the
knapsack problem to the 2-secretary problem. The generalized assignment problem
(GAP) includes, besides the knapsack problem, several important problems related
to scheduling and matching. We show that in the same online setting, applying the
proposed sequential approach yields a (1/6.99)-competitive randomized algorithm
for GAP. Again, our proposed algorithm outperforms the current best result of com-
petitive ratio 1/8.06 (Kesselheim et al. in SIAM J Comput 47(5):1939–1964, 2018).

Keywords  Online algorithms · Random order model · Packing problems

Work supported by the European Research Council, Grant Agreement No. 691672. A preliminary
version of this paper appeared in 22nd International Conference on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX 2019).
Arindam Khan: A part of this work was done when the author was at Technical University of
Munich.

 *	 Leon Ladewig
	 leon.ladewig@tum.de

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5998-8154
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00801-2&domain=pdf

1751

1 3

Algorithmica (2021) 83:1750–1785	

1  Introduction

Many real-world problems can be considered resource allocation problems. For exam-
ple, consider the loading of a cargo plane with (potential) goods of different weights.
Each item raises a certain profit for the airline if it is transported; however, not all goods
can be loaded due to airplane weight restrictions. Clearly, the dispatcher seeks for a
maximum profit packing fulfilling the capacity constraint. This example from [1] illus-
trates the knapsack problem: Given a set of n items, specified by a size and a profit
value, and a resource (called knapsack) of fixed capacity, the goal is to find a subset of
items (called packing) with maximum total profit and whose total size does not exceed
the capacity. Besides being a fundamental and extensively studied problem in combi-
natorial optimization, knapsack problems arise in many and various practical settings.
We refer the readers to textbooks [1, 2] and to the surveys of previous work in [3, 4] for
further references.

The introductory example from cargo logistics can be generalized naturally to
multiple airplanes of different capacities. Here, the size and the profit of an item may
depend on the airplane and on the schedule, respectively. This leads to the generalized
assignment problem (GAP) [2], where resources of different capacities are given, and
the size and the profit of an item depend on the resource to which it is assigned. The
GAP includes many prominent problems, such as the (multiple) knapsack problem [5],
weighted bipartite matching [6], AdWords [7], and the display ads problem [8]. Further
applications of GAP are outlined in the survey articles [9, 10].

We study online variants of the knapsack problem and GAP. Here, n items are pre-
sented sequentially, and the decision for each item must be made immediately upon
arrival. This setting would arise in our logistics example if the dispatcher needs to
answer customer requests immediately without knowledge of future requests. In fact,
many real-world optimization problems occur as online problems, as often decisions
must be made under uncertain conditions. The online knapsack problem has been stud-
ied in particular in the context of online auctions [11, 12].

Typically, the performance measure for online algorithms is the competitive ratio,
which is defined as the ratio between the values of the algorithmic solution and an
optimal offline solution for a worst-case input. The knapsack problem admits no rand-
omized algorithm of bounded competitive ratio in the general online setting [12]. This
holds even if only a single item can be packed, as known from the secretary problem
[13, 14]. However, these hardness results are based on a worst-case input presented in
adversarial order. In the random order model, the performance of an algorithm is evalu-
ated for a worst-case input, but the adversary has no control over the input order; the
input sequence is drawn uniformly at random among all permutations.

In order to define the competitive ratio of an algorithm A in this model formally, let
A(I) and OPT(I) denote the profits of the solutions of A and an optimal offline algo-
rithm, respectively, for input I  . We say that A is r-competitive (or has competitive ratio
r) in the random order model if

�[A(I)] ≥ (r − o(1)) ⋅ OPT(I)

1752	 Algorithmica (2021) 83:1750–1785

1 3

holds for all inputs I  . Here, the expectation is over the random permutation as well
as over random choices of the algorithm. The o(1)-term is asymptotic with respect
to the number n of items in the input.

The random order model became increasingly popular in the field of online algo-
rithms. An early and well-known example is the secretary problem [13, 14]. Nowadays,
the matroid secretary problem [15, 16] is considered as one of the most central prob-
lems in this field. Further multiple-choice generalizations [17, 18] are part of active
research as well. The model has also been successfully applied to other problem classes
including scheduling [19–21], packing [22–26], graph problems [27–29], facility loca-
tion [30], budgeted allocation [31], and submodular welfare maximization [32].

1.1 � Related Work

1.1.1 � Online Knapsack Problem

The online knapsack problem was first studied by Marchetti-Spaccamela and Vercellis
[33], who showed that no deterministic online algorithm for this problem can obtain
a constant competitive ratio. Moreover, Chakrabarty et al. [12] demonstrated that this
fact cannot be overcome by randomization.

Given such hardness results, several relaxations have been introduced and investi-
gated. Most relevant to our work are results in the random order model. Introduced as
the secretary knapsack problem [34], Babaioff et al. developed a randomized algorithm
of competitive ratio 1∕(10e) < 1∕27 . Kesselheim et al. [25] achieved a significant
improvement by developing a (1/8.06)-competitive randomized algorithm for the gen-
eralized assignment problem. Finally, Vaze [35] showed that there exists a determinis-
tic algorithm of competitive ratio 1∕(2e) < 1∕5.44 , assuming that the maximum profit
of a single item is small compared to the profit of the optimal solution.

Apart from the random order model, different further relaxations have been consid-
ered. Marchetti-Spaccamela and Vercellis [33] studied a stochastic model wherein item
sizes and profits are drawn from a fixed distribution. Lueker [36] obtained improved
bounds in this model. Chakrabarty et al. [12] studied the problem when the density
(profit-size ratio) of each item is in a fixed range [L, U]. Under the further assumption
that item sizes are small compared to the knapsack capacity, Chakrabarty et al. pro-
posed an algorithm of competitive ratio ln(U∕L) + 1 and provided a lower bound of
ln(U∕L) . Another branch of research considers removable models, where the algorithm
can remove previously packed items. Removing such items can incur no cost [37, 38]
or a cancellation cost (buyback model, [39–41]). Recently, Vaze [42] considered the
problem under a (weaker) expected capacity constraint. This variant admits a competi-
tive ratio of 1/4e.

1.1.2 � Online GAP

Since all hardness results for online knapsack also hold for online GAP, research
focuses on stochastic variants or modified online settings. Currently, the only result
for the random order model is the previously mentioned (1/8.06)-competitive

1753

1 3

Algorithmica (2021) 83:1750–1785	

randomized algorithm proposed by Kesselheim et al. [25]. To the best of our knowl-
edge, the earliest paper considering online GAP is due to Feldman et al. [8]. They
obtained an algorithm of competitive ratio tending to 1 − 1∕e in the free disposal
model. In this model, the total size of items assigned to a resource might exceed its
capacity; in addition, no item consumes more than a small fraction of any resource.
A stochastic variant of online GAP was studied by Alaei et al. [43]. Here, the size
of an item is drawn from an individual distribution that is revealed upon arrival of
the item, together with its profit. However, the algorithm learns the actual item size
only after the assignment. If no item consumes more than a (1/k)-fraction of any
resource, the algorithm proposed by Alaei et al. has competitive ratio 1 − 1∕

√
k.

1.1.3 � Online packing LPs

Packing problems where requests can consume d ≥ 1 different resources lead to
general online packing LPs. Note that the special case of d = 1 is the generalized
assignment problem. Buchbinder and Naor [44] initiated the study of online packing
LPs in the adversarial model. The random order model admits (1 − �)-competitive
algorithms assuming large capacity ratios, i.e., the capacity of any resource is large
compared to the maximum demand for it. This has been shown in a sequence of
papers [22, 23, 25, 26]. Recently, Kesselheim et al. [25] gave an algorithm of com-
petitive ratio 1 − O(

√
(log d)∕B) where B is the capacity ratio. Consequently, their

algorithm is (1 − �)-competitive if B = �((log d)∕�2) . For d = 1 , this result matches
the lower bound by Kleinberg [18].

1.2 � Our Contributions

As outlined above, for online knapsack and GAP in the adversarial input model,
nearly all previous works attain constant competitive ratios at the cost of either (a)
imposing structural constraints on the input or (b) significantly relaxing the original
online model. Therefore, we study both problems in the random order model, which
is less pessimistic than the adversarial model but still considers worst-case instances
without further constraints on the item properties. For the knapsack problem, our
main result is the following.

Theorem 1  There exists a (1/6.65)-competitive randomized algorithm for the online
knapsack problem in the random order model.

One challenge in the design of knapsack algorithms is that the optimal packing
can have, on a high level, at least two different structures. Either there are a few large
items, constituting the majority of the packing’s profit, or there are many small such
items. Previous work [25, 34] is based on splitting the input according to item sizes
and then employing algorithms tailored for these restricted instances. However, the
algorithms from [25, 34] choose a single item type via an initial random choice, and
then pack items of that type exclusively. In contrast, our approach considers different
item types in distinct time intervals, rather than discarding items of a specific type in

1754	 Algorithmica (2021) 83:1750–1785

1 3

advance. More precisely, we develop algorithms AL and AS which are combined in
a novel sequential approach: While large items appearing in early rounds are packed
using AL , algorithm AS is applied to pack small items revealed in later rounds. We
think that this approach may be helpful for other problems in similar online settings
as well.

The proposed algorithm AL deals with the knapsack problem where all items
consume more than 1/3 of the capacity (we call this problem 2-KS). The 2-KS prob-
lem is closely related to the k-secretary problem [18] for k = 2 . We also develop
a general framework that allows to employ any algorithm for the 2-secretary
problem to obtain an algorithm for 2-KS. As a side product, we obtain a simple
(1/3.08)-competitive deterministic algorithm for 2-KS in the random order model.
For items whose size is at most 1/3 of the resource capacity, we give a simple and
efficient algorithm AS . Here, a challenging constraint is that AL and AS share the
same resource, so we need to argue carefully that the decisions of AS are feasible,
given the packing of AL from previous rounds.

Finally, we show that the proposed sequential approach also improves the current
best result for GAP [25] from competitive ratio 1/8.06 to 1/6.99.

Theorem 2  There exists a (1/6.99)-competitive randomized algorithm for the online
generalized assignment problem in the random order model.

For this problem, we use the algorithmic building blocks AL , AS developed in
[25, 28]. However, we need to verify that AL , an algorithm for edge-weighted bipar-
tite matching [28], satisfies the desired properties for the sequential approach. We
point out that the assignments of our algorithm differ structurally from the assign-
ments of the algorithm proposed in [25]. In the assignments of the latter algo-
rithm, all items are either large or small compared to the capacity of the assigned
resource. In our approach, both situations can occur, because resources are managed
independently.

1.2.1 � Roadmap

We focus on the result on the knapsack problem (Theorem 1) in the first sections of
this paper. For this purpose, we provide elementary definitions and facts in Sect. 2.
Our main technical contribution is formally introduced in Sect. 3: Here, we describe
an algorithmic framework performing two algorithms AL , AS sequentially. In Sects.
4 and 5, we design and analyze the algorithms AL and AS for the knapsack problem.
Finally, in Sect. 6 we describe how the sequential approach can be applied to GAP.

2 � Preliminaries

Let [n] ∶= {1,… , n} . Further, let ℚ≥0 and ℚ>0 denote the set of non-negative and
positive rational numbers, respectively.

1755

1 3

Algorithmica (2021) 83:1750–1785	

2.1 � Knapsack Problem

We are given a set of items I = [n] , each item i ∈ I has size si ∈ ℚ>0 and a profit
(value) vi ∈ ℚ≥0 . The goal is to find a maximum profit packing into a knapsack of
size W ∈ ℚ>0 , i.e., a subset M ⊆ I such that

∑
i∈M si ≤ W and

∑
i∈M vi is maximized.

W.l.o.g. we can assume si ≤ W for all i ∈ I . In the online variant of the problem, a
single item i is revealed together with its size and profit in each round � ∈ [n] . The
online algorithm must decide immediately and irrevocably whether to pack i. We
call an item visible in round � if it arrived in round � or earlier.

We classify items as large or small, depending on their size compared to W and a
parameter � ∈ (0, 1) to be determined later.

Definition 1  We say an item i is �-large if si > 𝛿W and �-small if si ≤ �W . When-
ever � is clear from the context, we say an item is large or small for short. Based on
the given item set I, we define two modified item sets IL and IS , which are obtained
as follows:

•	 IL : Replace each small item by a large item of profit 0
•	 IS : Replace each large item by a small item of profit 0.

Therefore, IL only contains large items and IS only contains small items. We can
assume that no algorithm packs a zero-profit item, thus any algorithmic packing of
IL or IS can be turned into a packing of I having the same profit. Let OPT , OPTL , and
OPTS be the total profits of optimal packings for I, IL , and IS , respectively. A useful
upper bound for OPT is

2.2 � Bounding Sums by Integrals

In order to obtain lower or upper bounds on sums in closed form, we often make use
of the following facts.

Fact 1A Let f be a non-negative real-valued function and let a, b ∈ ℕ . If f is
monotonically decreasing, then ∫ b+1

a
f (i) di ≤ ∑b

i=a
f (i) ≤ ∫ b

a−1
f (i) di.

Fact 1B Let f be a non-negative real-valued function and let a, b ∈ ℕ . If f is
monotonically increasing, then ∫ b

a−1
f (i) di ≤ ∑b

i=a
f (i) ≤ ∫ b+1

a
f (i) di.

(1)OPT ≤ OPTL + OPTS.

1756	 Algorithmica (2021) 83:1750–1785

1 3

2.3 � Sequential Approach

A common approach in the design of algorithms for secretary problems is to set
two phases: a sampling phase, where all items are rejected, followed by a deci-
sion phase, where some items are accepted according to a decision rule. Typi-
cally, this rule is based on the information gathered in the sampling phase. We
take this concept a step further: The key idea of our sequential approach is to
use a part of the sampling phase of one algorithm as decision phase of another
algorithm, which itself can have a sampling phase. This way, two algorithms are
performed in a sequential way, which makes better use of the entire instance. We
combine this idea with using different strategies for small and large items.

Formally, let AL and AS be two online knapsack algorithms and IL and IS be
the item sets constructed according to Definition 1. Further, let 0 < c < d < 1 be
two parameters to be specified later. Our proposed algorithm samples the first cn
rounds; no item is packed during this time. From round cn + 1 to dn, the algo-
rithm considers large items exclusively. In this interval it follows the decisions
of AL . After round dn, the algorithm processes only small items and follows the
decisions of AS . However, it might be the case that an item accepted by AS cannot
be packed because the knapsack capacity is exhausted due to the packing of AL
in earlier rounds. Note that all rounds 1,… , dn can be considered as the sampling
phase for AS . A formal description is given in Algorithm 1. Here, for a given
input sequence � of I, let �L and �S denote the corresponding sequences from IL
and IS , respectively. Note that � is revealed sequentially and �L , �S can be con-
structed online. For any input sequence � , let �(�) denote the item at position
� ∈ [n].

In the final algorithm, we set the threshold for small items to � = 1∕3 and use
Algorithm 1 with parameters c = 0.42291 and d = 0.64570 . The choice of c and
d maximizes the minimum of �

[
AL

]
∕OPTL and �

[
AS

]
∕OPTS . For simplicity, we

assume cn, dn ∈ ℕ . If n is large enough, this assumption does not affect the com-
petitive ratio substantially. We next give a high-level description of the proof of
Theorem 1.

1757

1 3

Algorithmica (2021) 83:1750–1785	

Proof (of Theorem 1)  Let A be Algorithm 1 and let AL , AS be the algorithms devel-
oped in Sect. 4 and 5. In the next sections, we prove the following results for
r = 1∕6.65 − o(1) (see Lemmas 6 and 11): The expected profit from AL in rounds
cn + 1,… , dn is at least r ⋅ OPTL , and the expected profit from AS in rounds
dn + 1,… , n is at least r ⋅ OPTS . Together with inequality (1), we obtain

	� ◻

The order in which AL and AS are arranged in Algorithm 1 follows from two
observations. Algorithm AS is powerful if it samples roughly 2n/3 rounds; a part
of this long sampling phase can be used as the decision phase of AL , for which a
shorter sampling phase is sufficient. Moreover, the first algorithm should either
pack high-profit items, or should leave the knapsack empty for the following
algorithm with high probability. The algorithm AL we propose in Sect. 4 has this
property (see Lemma 7), in contrast to AS . If AS would precede AL , the knapsack
would be empty after round dn with very small probability, in which case we
would not benefit from AL at all.

Finally, note that stronger algorithms for the respective sub-problems can
be obtained by choosing different parameters or algorithmic approaches (see
Lemma 5 and [25]). However, we seek for maximizing the competitive ratio of
Algorithm 1 and therefore need algorithms AL and AS that perform well within
the sequential framework.

3 � Large Items

The approach presented in this section is based on the connection between the
online knapsack problem under random arrival order and the k-secretary problem
[18]. In the latter problem, the algorithm can accept up to k items and the goal is to

�[A] ≥ �
[
AL

]
+ �

[
AS

] ≥ r ⋅ OPTL + r ⋅ OPTS ≥
(

1

6.65
− o(1)

)
OPT .

1758	 Algorithmica (2021) 83:1750–1785

1 3

maximize the sum of their profits. Therefore, we assume that a k-secretary algorithm
can observe the actual profits of the items, as opposed to the ordinal version of the
problem, where an algorithm can only decide based on relative merits. This way, the
k-secretary problem generalizes the classical secretary problem [13, 14] and is itself
a special case of the online knapsack problem under random arrival order (if all
knapsack items have size W/k).

In our setting, each large item consumes more than � = 1∕3 of the knapsack
capacity. We call this problem 2-KS, since at most two items can be packed com-
pletely. Therefore, any 2-secretary algorithm can be employed to identify two high-
profit items for the knapsack packing. However, after packing the first item, the
resource might be exhausted, such that the second item identified by the 2-secretary
algorithm cannot be packed.

Although this idea can be generalized to any k-secretary algorithm and corre-
sponding �-large items, the approach seems stronger for small k: While 1-KS is
exactly 1-secretary, the characteristics of k-KS and k-secretary deviate with grow-
ing k. Our results show that the problems 2-secretary and 2-knapsack are still close
enough to benefit from such an approach.

In the following, let AL be Algorithm 2. This is an adaptation of the algorithm
single-ref developed for the k-secretary problem in [45]. As discussed above, 2-sec-
retary and 2-KS are similar, but different problems. Therefore, in our setting it is not
possible to apply the existing analysis from [45] or from any other k-secretary algo-
rithm directly. We further note that in the approach described below, in principle any
2-secretary algorithm can be employed. In Sect. 4.4, we discuss several alternative
algorithms.

Assumption. For this section, we assume that all profits are distinct. This is with-
out loss of generality, as ties can be broken by adjusting the profits slightly, using the
items’ identifiers. Further, we assume v1 > v2 > … > vn and say that i is the rank of
item i.

3.1 � Packing Types

As outlined above, in contrast to the 2-secretary problem, not all combinations of
two knapsack items can be packed completely. Therefore, we analyze the probability
that AL selects a feasible set of items whose profit can be bounded from below. We
restrict our analysis to packings where an item i ∈ {1, 2, 3, 4} is packed as the first
item and group such packings into several packing types A-M defined in the follow-
ing. Although covering more packings might lead to further insights into the prob-
lem and to a stronger result, we expect the improvement to be marginal.

Let pX be the probability that AL returns a packing of type X ∈ {A,… ,M} . In
addition, let pi for i ∈ [n] be the probability that AL packs i as the first item. Finally,
let pij for i, j ∈ [n] be the probability that AL packs i as the first item and j as the sec-
ond item.

In a packing of type A, the items 1 and 2 are packed in any order. Therefore,
pA = p12 + p21 . The types B and C are defined analogously using the items {1, 3}

1759

1 3

Algorithmica (2021) 83:1750–1785	

and {2, 3} , respectively. In a packing of type D, the item 1 is accepted as the first
item, together with no or any second item j. This happens with probability pD = p1 .
Accordingly, we define types E, F, and G using the items 2, 3, and 4, respectively.
Finally, for each item i ∈ {1, 2, 3} , we introduce two further packing types. For
i = 1 , types H and I cover packings where the first accepted item is 1, the second
accepted item j is not 2 (type H) and not 3 (type I), respectively. Therefore, we get
pH = p1 − p12 and pI = p1 − p13 . Packing types J-K and L-M describe analogous
packings for i = 2 and i = 3 , respectively. Table 1 shows all packing types A-M and
their probabilities expressed by pi and pij.

In Sect. 4.3, we use the packing types to describe a subset of packings whose
profit can be bounded against OPTL . For example, suppose that OPTL = v1 + v2 .
Then, all relevant packings are of type A, H, or J. As these types are disjoint by defi-
nition, we immediately obtain �

[
AL

] ≥ pA(v1 + v2) + pHv1 + pJv2.

3.2 � Acceptance Probabilities of Algorithm 2

In the following, we compute the probabilities pi and pij from Table 1 as functions
of c and d. Throughout the following proofs, we denote the position of an item i in a
given permutation with pos (i) ∈ [n] . Further, let a be the maximum profit item from
the sampling.

We think of the random permutation as being sequentially constructed. The fact
given below follows from the hypergeometric distribution and becomes helpful in
the proofs of Lemmas 1 and 2.

Table 1   Definition of packing
types A-M. We use set notation
{i, j} if i and j can be packed in
any order, and tuple notation
(i, j) if the packing order must
be as given

Type Content Constraint on j Probability pX

A {1, 2} – p12 + p21

B {1, 3} – p13 + p31

C {2, 3} – p23 + p32

D (1, j) – p1

E (2, j) – p2

F (3, j) – p3

G (4, j) – p4

H (1, j) j ≠ 2 p1 − p12

I (1, j) j ≠ 3 p1 − p13

J (2, j) j ≠ 1 p2 − p21

K (2, j) j ≠ 3 p2 − p23

L (3, j) j ≠ 1 p3 − p31

M (3, j) j ≠ 2 p3 − p32

1760	 Algorithmica (2021) 83:1750–1785

1 3

Fact 1  Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length

K is h(N,M,K) ∶=

(
M

K

)
∕

(
N

K

)
.

In the first lemma, we provide the exact probability pi for all i ∈ [n] and give
lower bounds for pi when i ∈ [4].

Lemma 1  The probability that item i ∈ [n] is accepted as the first item is

Moreover, we have the lower bound

Proof  In the first part of this proof, we analyze the probability that item i is accepted
as the first item at a fixed position k ≥ cn + 1 . As a is defined as the best sampling
item, pos (a) ≤ cn must hold. A permutation uniformly drawn at random satisfies
pos (i) = k and pos (a) ≤ cn with probability 1

n

cn

n−1
=

c

n−1
.

Next, we draw the remaining k − 2 items for the positions before k (see Fig. 1).
Since i is packed as the first item, all previous items (except for a) must have rank
greater than a. As these items are drawn from the remaining n − 2 items (of which
n − a have rank greater than a), the probability for this step is h(n − 2, n − a, k − 2)
according to Fact 1. Using the law of total probability for k ∈ {cn + 1,… , dn} and
a ∈ {i + 1,… , n} , we obtain

pi =
c

n − 1

dn∑
k=cn+1

(
n − i

k − 1

)

(
n − 2

k − 2

) .

pi ≥

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

c ln
d

c
− o(1) i = 1

c
�
ln

d

c
− d + c

�
− o(1) i = 2

c
�
ln

d

c
− 2(d − c) +

1

2
(d2 − c2)

�
− o(1) i = 3

c
�
ln

d

c
− 3(d − c) +

3

2
(d2 − c2) −

1

3
(d3 − c3)

�
− o(1) i = 4 .

cn+1

a

dn

i

k

Item

Pos. Sampling

Fig. 1   Input sequence considered in Lemma 1. The gray dashed slots represent items of rank greater than
a 

1761

1 3

Algorithmica (2021) 83:1750–1785	

Here, the last identity follows from
∑n

a=i+1

�
n − a

k − 2

�
=
∑n−i−1

a=0

�
a

k − 2

�
=

�
n − i

k − 1

�
.

In the second part of the proof, we derive a lower bound for pi . We first consider
the quotient of binomial coefficients from Eq. (2) and observe

Combining Equation (2) and inequality (3) yields

Now, the goal is to find a closed expression which bounds the last sum in inequal-
ity (4) from below. We have

and define f (k) = (n − k)i−1∕k . Since f is monotonically decreasing in k and
i − 1 ≥ 0 , we have

(2)

pi =
c

n − 1

dn∑
k=cn+1

n∑
a=i+1

h(n − 2, n − a, k − 2)

=
c

n − 1

dn∑
k=cn+1

1(
n − 2

k − 2

)
n∑

a=i+1

(
n − a

k − 2

)

=
c

n − 1

dn∑
k=cn+1

(
n − i

k − 1

)

(
n − 2

k − 2

) .

(3)

(
n − i

k − 1

)

(
n − 2

k − 2

) =
(n − i)!

(k − 1)! ⋅ (n − i − k + 1)!
⋅
(k − 2)! ⋅ (n − k)!

(n − 2)!

=
(n − i)!

(n − 2)!
⋅

(n − k)!

(n − i − k + 1)!
⋅

1

k − 1

>
1

(n − 2)i−2
⋅

(n − k)!

(n − i − k + 1)!
⋅
1

k

>
(n − k − i)i−1

ni−2
⋅
1

k
.

(4)pi >
c

n − 1

dn∑
k=cn+1

(n − k − i)i−1

ni−2
⋅
1

k
>

c

ni−1

dn∑
k=cn+1

(n − k − i)i−1

k
.

(5)
dn∑

k=cn+1

(n − k − i)i−1

k
=

dn+i∑
k=cn+1+i

(n − k)i−1

k − i
>

dn+i∑
k=cn+1+i

(n − k)i−1

k

1762	 Algorithmica (2021) 83:1750–1785

1 3

where we used that Fact 1A. Let F be a function such that
∫ dn

cn
f (k) dk = F(dn) − F(cn) . By combining inequalities (4–6) we obtain

Below we provide suitable functions F for i ∈ [4] .

i f(k) F(k) F(dn) − F(cn)

1 1

k
ln k ln

d

c

2 n−k

k
n ln k − k n ln

d

c
− dn + cn

3 (n−k)2

k
n2 ln k − 2nk +

k2

2
n2 ln

d

c
− 2n(dn − cn) +

d2n2−c2n2

2

4 (n−k)3

k
n3 ln k − 3n2k +

3

2
nk2 −

k3

3
n3 ln

d

c
− 3n3(d − c) +

3

2
n3(d2 − c2) −

1

3
n3(d3 − c3)

The claim follows by substituting F(dn) − F(cn) in inequality (7) by the corre-
sponding expression from the table and noting that (i + 1) ⋅

(1−c)i−1

n
= o(1) . 	� ◻

Next, we analyze the probabilities pij with i < j and give lower bounds for p12 ,
p13 , and p23.

Lemma 2  Let i and j be two items with i < j . The probability that i is selected as the
first item and j is selected as the second item is

Moreover, it holds that

(6)

dn+i∑
k=cn+1+i

(n − k)i−1

k
=

dn−1∑
k=cn

f (k) +

dn+i∑
k=dn

f (k) −

cn+i∑
k=cn

f (k)

> ∫
dn

cn

f (k) dk − (i + 1) ⋅ f (cn) = ∫
dn

cn

f (k) dk − (i + 1) ⋅
(n − cn)i−1

cn
,

(7)pi >
c

ni−1
⋅ (F(dn) − F(cn)) − (i + 1) ⋅

(1 − c)i−1

n
.

pij =
c

n − 1
⋅

1

n − 2
⋅

dn−1∑
k=cn+1

dn∑
l=k+1

(
n − j

l − 2

)

(
n − 3

l − 3

) .

cn+1 l

a

dn

i

k

j

Sampling

Item

Pos.

Fig. 2   Input sequence considered in Lemma 2. The gray dashed slots represent items of rank greater than
a 

1763

1 3

Algorithmica (2021) 83:1750–1785	

Proof  Let i, j be two items with i < j . The proof follows the same structure as the
proof of Lemma 1. Again, we construct the permutation by drawing the positions for
items i, j, and a first and afterwards all remaining items with position up to pos (j)
(see Fig. 2).

Fix positions k = pos (i) and l = pos (j) . Again, pos (a) ≤ cn must hold by defini-
tion of a. The probability that a random permutation satisfies these three position
constraints is � ∶=

1

n

1

n−1

cn

n−2
=

c

n−1
⋅

1

n−2
.

All remaining items up to position l must have rank greater than a. Thus, we need
to draw l − 3 items from a set of n − 3 remaining items, from which n − a have rank
greater than a. This happens with probability h(n − 3, n − a, l − 3) . Using the law of
total probability for k, l with cn + 1 ≤ k < l ≤ dn and a ∈ {j + 1,… , n} , we obtain

Again, by observing
∑n

a=j+1

�
n − a

l − 3

�
=
∑n−j−1

a=0

�
a

l − 3

�
=

�
n − j

l − 2

�
 , we obtain

finally

To prove the second part of the lemma, first note that Equation (8) does not depend
on i, thus we have p13 = p23 . It remains to find lower bounds for p12 and p23 . We
start with p12 . By Equation (8) and the definition of � , it holds that

Since
∑dn

l=k+1

1

l−2
=
∑dn−2

l=k−1

1

l
=
�∑dn−1

l=k

1

l

�
+

1

k−1
−

1

dn−1
 and 1/l is monotonically

decreasing, we have
∑dn−1

l=k

1

l
≥ ∫ dn

k

1

l
d� = ln

dn

k
 by Fact 1A. Therefore,

p12 ≥ c
(
d − c ln

d

c
− c

)
− o(1) ,

p13 = p23 ≥ c

(
d − c ln

d

c
− c −

d2

2
+ cd −

c2

2

)
− o(1) .

pij = �

dn−1∑
k=cn+1

dn∑
l=k+1

n∑
a=j+1

h(n − 3, n − a, l − 3)

= �

dn−1∑
k=cn+1

dn∑
l=k+1

1(
n − 3

l − 3

)
n∑

a=j+1

(
n − a

l − 3

)
.

(8)pij = �

dn−1∑
k=cn+1

dn∑
l=k+1

(
n − j

l − 2

)

(
n − 3

l − 3

) .

(9)p12 = 𝛽 ⋅

dn−1∑
k=cn+1

dn∑
l=k+1

(
n − 2

l − 2

)

(
n − 3

l − 3

) >
c

n
⋅

dn−1∑
k=cn+1

dn∑
l=k+1

1

l − 2
.

1764	 Algorithmica (2021) 83:1750–1785

1 3

Similarly, using Fact 1A, we obtain

and

By combining inequalities (9) to (12), we obtain

Since c
n
⋅

(
1 −

cn−1

dn−1

)
= o(1) , this gives the claim for p12.

Next, we find a lower bound for p23 . Equation (8) with j = 3 gives

By splitting this expression into two parts we obtain

where the inequality follows from inequality (9). Hence, using
the lower bound for p12 , the claim for p23 follows if we can show

(10)

dn−1∑
k=cn+1

dn∑
l=k+1

1

l − 2
≥

dn−1∑
k=cn+1

(
ln

dn

k
+

1

k − 1
−

1

dn − 1

)

=

(
dn−1∑

k=cn+1

ln
dn

k

)
+

(
dn−1∑

k=cn+1

1

k − 1

)
−

dn − 1 − cn

dn − 1
.

(11)

dn−1∑
k=cn+1

ln
dn

k
=

(
dn−1∑
k=cn

ln
dn

k

)
− ln

d

c
≥
(
�

dn

cn

ln
dn

k
dk

)
− ln

d

c

= dn − cn ⋅ ln
d

c
− cn − ln

d

c

(12)

dn−1∑
k=cn+1

1

k − 1
=

dn−2∑
k=cn

1

k
=

(
dn−1∑
k=cn

1

k

)
−

1

dn − 1
≥
(
�

dn

cn

1

k
dk

)
−

1

dn − 1

= ln
d

c
−

1

dn − 1
.

p12 >
c

n
⋅

((
cn − cn ⋅ ln

d

c
− cn − ln

d

c

)
+
(
ln

d

c
−

1

dn − 1

)
−

dn − 1 − cn

dn − 1

)

= c ⋅
(
d − c ln

d

c
− c

)
−

c

n
⋅

(
1 −

cn − 1

dn − 1

)
.

(13)p23 = �

dn−1∑
k=cn+1

dn∑
l=k+1

(
n − 3

l − 2

)

(
n − 3

l − 3

) = � ⋅

dn−1∑
k=cn+1

dn∑
l=k+1

n − l

l − 2
.

p23 =

(
𝛽 ⋅ n ⋅

dn−1∑
k=cn+1

dn∑
l=k+1

1

l − 2

)
− 𝛽 ⋅

dn−1∑
k=cn+1

dn∑
l=k+1

l

l − 2

> p12 − 𝛽 ⋅

dn−1∑
k=cn+1

dn∑
l=k+1

l

l − 2
,

1765

1 3

Algorithmica (2021) 83:1750–1785	

� ⋅
∑dn−1

k=cn+1

∑dn

l=k+1

l

l−2
≤ c ⋅

�
d2∕2 − cd + c2∕2

�
+ o(1) . Since l

l−2
 decreases mono-

tonically in l, Fact 1A implies

Therefore, with � =
∑dn−1

k=cn+1
ln(k − 2) , we have

Since
∑dn−1

k=cn+1
k =

(dn−1)⋅dn

2
−

cn⋅(cn+1)

2
 , it follows further

Using 𝛽 =
c

n−1
⋅

1

n−2
<

c

n2
⋅ (1 +

3

n−3
) , we get

where �1 =
3c

n−3
⋅

(
d2

2
− cd +

c2

2

)
= o(1) and

We observe that

(14)
dn∑

l=k+1

l

l − 2
≤ �

dn

k

l

l − 2
dl = dn + 2 ⋅ ln(dn − 2) − k − 2 ⋅ ln(k − 2) .

dn−1∑
k=cn+1

dn∑
l=k+1

l

l − 2
≤

dn−1∑
k=cn+1

(dn + 2 ⋅ ln(dn − 2) − k − 2 ⋅ ln(k − 2))

= (dn − 1 − cn) ⋅ (dn + 2 ⋅ ln(dn − 2)) −

(
dn−1∑

k=cn+1

k

)
− 2� .

dn−1∑
k=cn+1

dn∑
l=k+1

l

l − 2

≤ (dn − 1) ⋅ dn

2
+ 2(dn − 1) ln(dn − 2)

− cn ⋅
(
dn + 2 ⋅ ln(dn − 2) −

cn + 1

2

)
− 2𝜉

<
(dn)2

2
− n2cd +

(cn)2

2
+

cn

2
+ 2n(d − c) ⋅ ln(dn − 2) − 2𝜉 .

𝛽 ⋅

dn−1∑
k=cn+1

dn∑
l=k+1

l

l − 2
< c ⋅

(
d2

2
− cd +

c2

2

)
+ 𝜂1 + 𝜂2 ,

�2 =
c

n2
⋅

(
1 +

3

n − 3

)
⋅

(
cn

2
+ 2n(d − c) ⋅ ln(dn − 2) − 2�

)
.

1766	 Algorithmica (2021) 83:1750–1785

1 3

by Fact 1B. This implies �2 = o(1) and concludes the proof. 	� ◻

The remaining probabilities p21 and p32 can be obtained from the symmetry
property stated in the next lemma.

Lemma 3  For any two items i and j it holds that pij = pji.

Proof  Suppose i is accepted first and j is accepted as the second item in the input
sequence � . Consider the sequence �′ obtained from � by swapping i with j. Since
j and i are the first two elements beating the best sampling item in �′ , Algorithm 2
will select j and i on input �′ . Hence, the number of permutations must be the same
for both events, which implies the claim. 	� ◻

Therefore, we can obtain all probabilities from Table 1 using Lemmas 1, 2,
and 3.

3.3 � Analysis

Let T be the set of items in the optimal packing of IL . This set may contain a
single item, may be a two-item subset of {1, 2, 3} , or may be a two-item subset
containing an item j ≥ 4 . In the following, we analyze the performance of Algo-
rithm 2 for each case.

3.3.1 � Single‑item Case

If the optimal packing contains a single item, it is the most profitable item. Let case
1 be this case. Here, we have T = {1} and �

[
AL

] ≥ pD OPTL.

� =

dn−1∑
k=cn+1

ln(k − 2)

=

(
dn∑

k=cn+1

ln k

)
−

(
2∑

k=0

ln(dn − k)

)
+ ln(cn) + ln(cn − 1)

≥
(
�

dn

cn

ln k dk

)
− ln

d

c
− ln

dn − 1

cn − 1
− ln(dn − 2)

= n ⋅ (d ln dn − d − c ln cn + c) − ln
d

c
− ln

dn − 1

cn − 1
− ln(dn − 2)

1767

1 3

Algorithmica (2021) 83:1750–1785	

3.3.2 � Two‑item Cases

In cases 2-4, we consider packings of the form T = {i, j} with 1 ≤ i < j ≤ 3 . We
define cases 2, 3, and 4 as T = {1, 2} , T = {1, 3} , and T = {2, 3} , respectively. We
want to consider all algorithmic packings whose profit can be bounded in terms of
OPTL = vi + vj . For this purpose, for each case 2-4 we build three groups of feasi-
ble packing types, according to whether the profit of a packing is OPTL , at least vi ,
or in the interval [vj, vi) . We ensure that no packing is counted multiple times by
(a) choosing appropriate packing types and (b) grouping these packing types in a
disjoint way, according to their profit. Let �w be the probability that the algorithm
returns the optimal packing in case w ∈ {2, 3, 4} . It holds that �2 = pA , �3 = pB , and
�4 = pC . In addition, let �w be the probability that an item k ≤ i is packed as the first
item in case w ∈ {2, 3, 4} . We have �2 = pH , �3 = pI , and �4 = pD + pK . Finally, let
�w be the probability that an item k with i < k ≤ j is packed as the first item in case
w ∈ {2, 3, 4} . It holds that �2 = pJ , �3 = pE + pL , and �4 = pM.

Finally, we define case 5 as T = {i, j} with i ≥ 1 , j ≥ 4 , and i < j . In this case,
note that packings of type D contain an item of value at least vi , and packings of
type E, F, and G contain an item of value at least vj . Hence, we can slightly abuse the
notation and set �5 = 0 , �5 = pD , and �5 = pE + pF + pG , such that it holds that

To bound this term against OPTL = vi + vj , consider the following two cases: If
�w ≥ �w , we obtain from Chebyshev’s sum inequality1

If 𝛽w < 𝛾w , we trivially have 𝛽wvi + 𝛾wvj > 𝛽w(vi + vj).

3.3.3 � Competitive Ratio

The competitive ratio of AL is the minimum over all cases 1-5. Hence, setting
�1 = pD and �1 = �1 = 0 , we obtain

Clearly, inequality (15) simplifies depending on �w ≥ �w or 𝛽w < 𝛾w . The following
lemma gives a sufficient condition for �w ≥ �w.

Lemma 4  Let f (x) = 2 ln x − 6x + 2x2 −
x3

3
 . For parameters c, d with f (c) ≥ f (d)

and n → ∞ , it holds that �w ≥ �w , where 2 ≤ w ≤ 5.

�
[
AL

] ≥ �w(vi + vj) + �wvi + �wvj in case w ∈ {2, 3, 4, 5} .

�wvi + �wvj ≥ 1

2

(
�w + �w

)
(vi + vj) .

(15)�
[
AL

] ≥ min
w=1,…,5

{
�w +min

{
�w + �w

2
, �w

}}
⋅ OPTL .

1  Let a
1

≥ a
2

≥ … ≥ an and b
1

≥ b
2

≥ … ≥ bn . Chebyshev’s sum inequality states that ∑n

i=1
aibi ≥ (1∕n)

�∑n

i=1
ai
��∑n

i=1
bi
�
.

1768	 Algorithmica (2021) 83:1750–1785

1 3

Proof  We first show that f (c) ≥ f (d) is equivalent to �5 ≥ �5 . Note that �5 = pD = p1
and �5 = pE + pF + pG = p2 + p3 + p4 . Now, using Lemma 1 and ignoring lower
order terms, we have

Therefore, the claim for w = 5 holds by assumption. For 2 ≤ w ≤ 4 , the claims fol-
low immediately from f (c) ≥ f (d) and the symmetry property of Lemma 3:

	� ◻

We obtain the following two lemmas. If AL uses the entire input sequence
( d = 1 ), this algorithm is (1/3.08)-competitive.

Lemma 5  With c = 0.23053 and d = 1 as parameters, we have
�
[
AL

] ≥ (
1

3.08
− o(1)

)
OPTL.

Note that 2-KS includes the secretary problem (case 1); thus, no algorithm for
2-KS can have a better competitive ratio than 1∕e < 1∕2.71 . In the final algorithm
we set d < 1 to benefit from AS . The next lemma has already been used to prove
Theorem 1 in Sect. 3.

Lemma 6  With c = 0.42291 and d = 0.64570 as parameters, we have
�
[
AL

] ≥ (
1

6.65
− o(1)

)
OPTL.

p1 ≥ p2 + p3 + p4

⇔ c ln
d

c
≥ c

(
3 ln

d

c
− 6(d − c) + 2(d2 − c2) −

1

3
(d3 − c3)

)

⇔ 0 ≥ 2 ln
d

c
− 6(d − c) + 2(d2 − c2) −

1

3
(d3 − c3)

⇔ 0 ≥ 2 ln d − 2 ln c − 6d + 6c + 2d2 − 2c2 −
d3

3
+

c3

3

⇔ f (c) ≥ f (d) .

�2 = pH = p1 − p12 = p1 − p21 ≥ p2 − p21 = pJ = �2

�3 = pI = p1 − p13 = p1 − p31 ≥ p2 + p3 − p31 = pE + pL = �3

�4 = pD + pK = p1 + p2 − p23 ≥ p1 − p32 ≥ p3 − p32 = pM = �4 .

Table 2   Competitive ratios of Algorithm 2 for the parameters from Lemmas 5 and 6 in different cases

Bold values indicate the minimum over all cases and thus the competitive ratio

c d Case 1 Two-item cases

Case 2 Case 3 Case 4 Case 5

Lemma 5 0.23053 1 0.33827 0.34898 0.32705 0.32705 0.32471
Lemma 6 0.42291 0.64570 0.17897 0.15039 0.16033 0.16033 0.16231

1769

1 3

Algorithmica (2021) 83:1750–1785	

Proof (of Lemmas 5 and 6)  Let f be the function defined in Lemma 4 and let
(c1, d1) = (0.23053, 1) and (c2, d2) = (0.42291, 0.64570) be the two parameter pairs
from Lemmas 5 and 6, respectively. It holds that

and

Hence, by Lemma 4 we have �w ≥ �w for any case w ∈ {2, 3, 4, 5} . Therefore, ine-
quality (15) simplifies to �

[
AL

] ≥ minw=1,…,5

{
�w +

�w+�w

2

}
⋅ OPTL . Using the defi-

nitions of �w , �w , and �w from Sect. 4.3, the definitions of pX from Table 1, and the
symmetry property of Lemma 3, we obtain after simplifying terms

Note that the algorithm attains the same competitive ratio in case 3 and 4, since
p13 = p23 by Lemma 2. Table 2 shows the competitive ratios for all five cases. For
the overall competitive ratio, we have

Evaluating this expression for the parameter pairs (c1, d1) and (c2, d2) yields
0.32471 ≥ 1∕3.08 and 0.15039 ≥ 1∕6.65 as competitive ratios, respectively. This
concludes the proofs of Lemmas 5 and 6. 	� ◻

Recall that in Algorithm 1, we can only benefit from AS if AL has not filled the
knapsack completely. Thus, the following property is crucial in the final analysis.

Lemma 7  With a probability of at least c/d, no item is packed by AL.

Proof  Fix any set of dn items arriving in rounds 1,… , dn . The most profitable item
v∗ from this set arrives in the sampling phase with probability c/d. If this event
occurs, no item in rounds cn + 1,… , dn beats v∗ and AL will not select any item. 	� ◻

f (c1) = f (0.23053) > −4.22 > −
13

3
= f (1) = f (d1)

f (c2) = f (0.42291) > −3.93 > −4.00 > f (0.64570) = f (d2) .

�2 +
�2 + �2

2
= pA +

pH + pJ

2
=

p1 + p2

2
+ p12

�3 +
�3 + �3

2
= pB +

pI + (pE + pL)

2
=

p1 + p2 + p3

2
+ p13

�4 +
�4 + �4

2
= pC +

(pD + pK) + pM

2
=

p1 + p2 + p3

2
+ p23

�5 +
�5 + �5

2
= 0 +

pD + (pE + pF + pG)

2
=

p1 + p2 + p3 + p4

2
.

�
�
AL

� ≥ min

�
p1, p12 +

p1 + p2

2
, p23 +

p1 + p2 + p3

2
,

∑4

i=1
pi

2

�
OPTL .

1770	 Algorithmica (2021) 83:1750–1785

1 3

3.4 � Discussion of other 2‑Secretary Algorithms

As mentioned in the introduction of Sect. 4, the approach and its analysis of this
section are general enough to cover all two-choice secretary algorithms. Therefore,
a natural question to ask is which algorithm is a good choice within this framework.
Algorithm 2 is based on the algorithm single-ref developed for the k-secretary
problem in [45]. In the following, we discuss several algorithms for 2-secretary and
related problems.

The optimistic algorithm by Babaioff et al. [34] was developed for the k-secretary
problem and performs slightly better than single-ref in the case k = 2 ; the com-
petitive ratios of both algorithms are 0.4168 and 0.4119, respectively [45]. However,
optimistic has a weaker threshold for accepting the first item than single-ref, thus
the probability considered in Lemma 7 would fall below c/d. In the present analysis
of the sequential approach, we can only benefit from the second algorithm AS if AS
starts with an empty knapsack (we will use this property later in Lemma 11). Hence,
it is not clear if the slight gain in the expected profit compensates the drawback of an
early resource consumption.

A strong algorithm for the 2-secretary problem has been developed by Chan et al.
[17]. The algorithm is based on a sophisticated set of decision rules, leading to a
competitive ratio of 0.49. Again, the probability considered in Lemma 7 would be
smaller for this algorithm. Moreover, it seems overly elaborate to find equivalents of
Lemmas 1, 2, 4, and 7.

Another candidate algorithm is due to Nikolaev [46] and Tamaki [47] who pro-
posed an algorithm for a slightly different secretary problem: Here, the objective is
to maximize the probability of selecting the best two items. This algorithm depends
on two parameters 0 ≤ c1 ≤ c2 ≤ 1 . The first item is selected just as in single-ref
with sampling size c1n (select the first item beating the best sampling item). The
second item must beat the first item if it arrives before round c2n , or (merely) the
best sampling item if it arrives later than this round. The success probability tends
asymptotically to 0.2254 with c1 = 0.2291 and c2 = 0.6065 , which is best possible
[47]. If we use this algorithm within our framework, it turns out that the best com-
petitive ratio is achieved for c1 = c2 . However, for c1 = c2 , this algorithm is equal to
single-ref in the case k = 2.

Therefore, we conclude that even though various algorithms for the 2-secretary
problem stronger than single-ref exist, it is not clear if they can improve the perfor-
mance of the overall algorithm within the sequential framework. On the other side,
Algorithm 2 (based on single-ref) is fairly easy to analyze and selects high-profit
items with sufficient high probability.

4 � Small Items

For (1/3)-small items, we use solutions for the fractional problem variant and
obtain an integral packing via randomized rounding. This approach has been
applied successfully to packing LPs [25]; however, for the knapsack problem it is
not required to solve LP relaxations in each round (as in [25]). Instead, here, we

1771

1 3

Algorithmica (2021) 83:1750–1785	

use solutions of a greedy algorithm, which is well-known to be optimal for the
fractional knapsack problem. Particularly, this algorithm is both efficient in run-
ning time and easy to analyze.

We next formalize the greedy solution for any set T of items. Let the density
of an item be the ratio of its profit to its size. Consider any list L containing the
items from T ordered by non-increasing density. We define the rank �(i) of item
i as its position in L and �(l) as the item at position l in L. Thus, �(l) = �−1(l)
denotes the l-th densest item. Let k be such that

∑k−1

i=1
s𝜎(i) < W ≤ ∑k

i=1
s𝜎(i) . The

fraction of item i in the greedy solution � is now defined as

i.e., the k − 1 densest items are packed integrally and the remaining space is filled
by the maximum feasible fraction of the k-th densest item. Let OPT(T) and OPT∗(T)
denote the profits of optimal integral and fractional packings of T, respectively. It is
easy to see that � satisfies

∑
i∈T �ivi = OPT∗(T) ≥ OPT(T) and

∑
i∈T �isi = W.

4.1 � Algorithm

The algorithm AS for (1/3)-small items, which is formally defined in Algorithm 3,
works as follows. During the initial sampling phase of dn rounds, the algorithm
rejects all items. In each round � ≥ dn + 1 , the algorithm computes a greedy solu-
tion x(�) for IS(�) . Here, IS(�) denotes the subset of IS revealed up to round � . The
algorithm packs the current online item i with probability x(�)

i
 . However, gener-

ally, this can only be done if the remaining capacity of the knapsack is at least
(1∕3) ⋅W ≥ si.

Note that in case of an integral coefficient x(�)
i

∈ {0, 1} , the packing step is
completely deterministic. Moreover, in any greedy solution x(�) , there is at most
one item i with fractional coefficient x(�)

i
∈ (0, 1) . Therefore, in expectation, there

is only a small number of rounds where the algorithm actually requests random-
ness. Although this is not relevant for the proof of the competitive ratio, we pro-
vide a short proof of this observation in the following.

Observation 1  Let X denote the number of rounds where Algorithm 3 packs an item
with probability xi ∈ (0, 1) . It holds that �[X] ≤ ln(1∕d) ≤ 0.44.

Proof  Consider any round � and let x(�) be the greedy knapsack solution computed
by Algorithm 3. By definition of x(�) , at most one of the � visible items has a frac-
tional coefficient x(�)

i
∈ (0, 1) . The probability that this item i arrives in round �

is 1∕� in a random permutation. Let X
�
 be an indicator variable for the event that

Algorithm 3 packs an item at random in round � . By the above argument, we have

𝛼i =

⎧
⎪⎨⎪⎩

1 if 𝜌(i) < k�
W −

∑k−1

i=1
s𝜎(i)

�
∕si if 𝜌(i) = k

0 else ,

1772	 Algorithmica (2021) 83:1750–1785

1 3

��
[
X
�
= 1

] ≤ 1∕� . Since Algorithm 3 selects items starting in round dn + 1 , we
obtain

	� ◻

Note that Algorithm 2 and the sequential approach (Algorithm 1) are determinis-
tic algorithms. Therefore, our overall algorithm requests randomness in expectation
in less than one round.

4.2 � Analysis

Before we analyze the competitive ratio of AS in a sequence of lemmas, we make a
few technical observations and introduce further notation.

In round dn + 1 , the knapsack might already have been filled by AL with large
items from previous rounds. For now, we assume an empty knapsack after round dn
and denote this event by � . In the final analysis, we will use the fact that ��[�] can be
bounded from below, which is according to Lemma 7.

The description of Algorithm 3 is tailored to (1/3)-small items, in order to com-
plement Algorithm 2. Anyway, it is straightforward to generalize this algorithm to
arbitrary maximum item size � . In order to show similarities with the analysis from
Sect. 6 later, we state the following lemmas with � as a parameter. For this purpose,
we define � =

1

1−�
 (and obtain � = 3∕2 in the final analysis).

Finally, let � be a greedy (offline) solution for IS . By the following lemma, the
probability that an item i ∈ IS is packed by AS is proportional to �i . By treating �i
as a parameter in the next two lemmas, it is not required to analyze the profit in
each round in expectation over all items. The latter approach appears in related
work [28], where stochastic dependencies need to be handled carefully.

�[X] =

n∑
�=dn+1

�
[
X
�

] ≤
n∑

�=dn+1

1

�
≤ ln

1

d
≤ 0.44 .

1773

1 3

Algorithmica (2021) 83:1750–1785	

Lemma 8  Let i ∈ IS and Ei(�) be the event that the item i is packed by AS in round � .
For � ≥ dn + 1 , it holds that ��

[
Ei(�) ∣ �

] ≥ 1

n
�i(1 − � ln

�

dn
).

Proof  In a random permutation, item i arrives in round � with probability 1/n. In
round � ≥ dn + 1 , the algorithm decides to pack i with probability x(�)

i
 . Note that the

rank of item i in IS(�) is less than or equal to its rank in IS . According to the greedy
solution’s definition, this implies x(�)

i
≥ �i.

Finally, the �-small item i can be packed successfully if the current resource con-
sumption X is at most (1 − �)W . In the following, we investigate the expectation of
X to give a probability bound using Markov’s inequality at the end of this proof.

Let Xk be the resource consumption in round k < � . By assumption, the knapsack
is empty after round dn, thus X =

∑�−1

k=dn+1
Xk . Let Q be the set of k visible items in

round k. The set Q can be seen as uniformly drawn from all k-item subsets and any
item j ∈ Q is the current online item of round k with probability 1/k. The algorithm
packs any item j with probability x(k)

j
 , thus

where the last inequality holds because x(k) is a feasible solution for a knapsack of
size W. By the linearity of expectation and the previous inequality, the expected
resource consumption up to round � is

Using Markov’s inequality, we obtain

which concludes the proof. 	� ◻

Using Lemma 8 we easily obtain the total probability that a specific item will
be packed.

Lemma 9  Let i ∈ IS and Ei be the event that the item i is packed by AS . It holds that

��
[
Ei ∣ �

] ≥ �i

(
(1 − d)(1 + �) − � ⋅

(
1 +

1

n

)
⋅ ln

1

d

)
.

Proof  Summing the probabilities from Lemma 8 over all rounds � ≥ dn + 1 gives

�
[
Xk

]
=
∑
j∈Q

��
[
j occurs in round k

]
sjx

(k)

j
=

1

k

∑
j∈Q

sjx
(k)

j
≤ W

k
,

�[X] =

�−1∑
k=dn+1

�
[
Xk

] ≤
�−1∑

k=dn+1

W

k
≤ W ln

�

dn
.

��[X < (1 − 𝛿)W] = 1 − ��[X ≥ (1 − 𝛿)W] ≥ 1 −
�[X]

(1 − 𝛿)W
≥ 1 − 𝛥 ln

�

dn
,

1774	 Algorithmica (2021) 83:1750–1785

1 3

By Fact 1B, we obtain

and resolving the integral yields

The claim follows by combining inequalities (16) and (17) and by rearranging
terms. 	� ◻

The following lemma bounds the expected profit of the packing of AS , assum-
ing the event �.

Lemma 10  We have �
[
AS ∣ �

] ≥ (
(1−d)(1+�) − � ⋅

(
1+

1

n

)
⋅ ln

1

d

)
OPTS.

Proof  Let � = (1 − d)(1 + �) − � ⋅

(
1 +

1

n

)
⋅ ln

1

d
 . By Lemma 9, the probability that

an item i is packed, assuming � , is ��
[
Ei ∣ �

] ≥ �i� . Therefore,

	� ◻

The conditioning on � can be resolved using Lemma 7. We obtain the follow-
ing lemma, which is the second pillar in the proof of Theorem 1 and concludes
this section.

(16)

��
[
Ei ∣ �

]
=

n∑
�=dn+1

��
[
Ei(�) ∣ �

]

≥
n∑

�=dn+1

1

n
�i

(
1 − � ln

�

dn

)

=
1

n
�i

(
n − dn − �

n∑
�=dn+1

ln
�

dn

)

= �i

(
1 − d −

�

n

n∑
�=dn+1

ln
�

dn

)
.

n∑
�=dn+1

ln
�

dn
=

(
n−1∑
�=dn

ln
�

dn

)
+ ln

1

d
≤
(
�

n

dn

ln
�

dn
d�

)
+ ln

1

d

(17)

n∑
𝓁=dn+1

ln
𝓁

dn
≤ n ⋅

(
ln

n

dn
− 1

)
− dn ⋅

(
ln

dn

dn
− 1

)
+ ln

1

d

= n ⋅ ln
1

d
− n + dn + ln

1

d
.

�
[
AS ∣ �

]
=
∑
i∈IS

��
[
Ei ∣ �

]
vi ≥

∑
i∈IS

�i�vi ≥ �OPTS .

1775

1 3

Algorithmica (2021) 83:1750–1785	

Lemma 11  We have �
[
AS

] ≥ c

d

(
(1 − d)(1 + �) − � ⋅

(
1 +

1

n

)
⋅ ln

1

d

)
OPTS . In par-

ticular, the algorithm AS is (1/6.65)-competitive with respect to OPTS setting
� = 3∕2 , c = 0.42291 , and d = 0.64570.

Proof  By Lemma 7, the probability for an empty knapsack after round dn is
��[�] ≥ c

d
 . Thus, we obtain from Lemma 10

Setting � = 3∕2 , which corresponds to � = 1∕3 , leads to

Noting that c

d

3

2n
ln

1

d
= o(1) , we obtain that �

[
AS

] ≥ (
1

6.65
− o(1)

)
OPTS for

c = 0.42291 and d = 0.64570 . 	� ◻

5 � Extension to GAP

In this section, we show that the sequential approach introduced in Sect. 3 can be
easily adapted to GAP, yielding a (1/6.99)-competitive randomized algorithm. We
first define the problem formally.

GAP. We are given a set of items I = [n] and a set of resources R = [m] of capaci-
ties Wr ∈ ℚ>0 for r ∈ R . If item i ∈ I is assigned to resource r ∈ R , this raises profit
(value) vi,r ∈ ℚ≥0 , but consumes si,r ∈ ℚ>0 of the resource’s capacity. The goal is
to assign each item to at most one resource such that the total profit is maximized
and no resource exceeds its capacity. We call the tuple (vi,r, si,r) an option of item i
and w.l.o.g. assume that options for all resources exist. This can be ensured by intro-
ducing dummy options with vi,r = 0 . In the online version of the problem, in each
round an item is revealed together with its set of options. The online algorithm must
decide immediately and irrevocably, if the item is assigned. If so, it has to specify
the resource according to one of its options.

Again, we construct restricted instances IL and IS according to the following def-
inition, which generalizes Definition 1. Let � ∈ (0, 1).

Definition 2  We call an option (vi,r, si,r) �-large if si,r > 𝛿Wr and �-small if si,r ≤ �Wr .
Whenever � is clear from the context, we say an option is large or small for short.
Based on a given instance I for GAP, we define two modified instances IL and IS
which are obtained from I as follows.

–	 IL : Replace each small option (vi,r, si,r) by the large option (0,Wr).
–	 IS : Replace each large option (vi,r, si,r) by the small option (0, �Wr).

�
[
AS

]
= ��[�]�

[
AS ∣ �

]

≥ c

d

(
(1 − d)(1 + �) − � ⋅

(
1 +

1

n

)
⋅ ln

1

d

)
OPTS .

�
[
AS

] ≥ c

d

(
5

2
(1 − d) −

3

2
ln

1

d
−

3

2n
ln

1

d

)
OPTS .

1776	 Algorithmica (2021) 83:1750–1785

1 3

Thus, IL only contains large options and IS only contains small options. How-
ever, by construction no algorithm will assign an item according to a zero-profit
option. We define OPT , OPTL , and OPTS accordingly. Note that the inequality
OPT ≤ OPTL + OPTS holds also for GAP.

The sequential framework of Algorithm 1 can be adapted in a straightforward
manner by replacing terms like packing with assignment to resource r. Here, we set
the threshold parameter to � = 1∕2 . In the following subsections, we specify algo-
rithms AL and AS for (1/2)-large and (1/2)-small options, respectively.

5.1 � Large Options

If each item consumes more than one half of a resource, no two items can be
assigned to this resource. Thus, we obtain the following matching problem.

Edge-weighted bipartite matching. Given a bipartite graph G = (L ∪ R,E) and
a weighting function w ∶ E → ℚ≥0 , the goal is to find a bipartite matching M ⊆ E
such that w(M) ∶=

∑
e∈M w(e) is maximal. In the online version, the (offline) nodes

from R and the number n = |L| are known in advance, whereas the nodes from L are
revealed online together with their incident edges. In the case of GAP, L is the set
of items, R is the set of resources, and the weight of an edge e = {l, r} is w(e) = vl,r.

Kesselheim et al. [28] developed an optimal (1/e)-competitive algorithm for the
online problem under random arrival order. Adapting this algorithm to the sequen-
tial approach with parameters c and d leads to the following algorithm AL : Dur-
ing the first cn rounds, no edge is added to the matching. Then, in each round � ,
the algorithm computes a maximum edge-weighted matching M(�) for the graph
revealed up to this round. Let l ∈ L be the online vertex of round � . If l is matched in
M(�) to some node r ∈ R , we call e(�) = {l, r} the tentative edge of round � . Now, if r
is still unmatched and � ≤ dn , the tentative edge is added to the matching.

A formal description of this algorithm is given in Algorithm 4. The proof
of the approximation guarantee relies mainly on the following two lemmas; for

1777

1 3

Algorithmica (2021) 83:1750–1785	

completeness, we give the proofs from [28] here. The first lemma shows that the
expected weight of any tentative edge can be bounded from below.

Lemma 12  ([28]) In any round � , the tentative edge (if it exists) has expected weight
�
[
w(e(�))

] ≥ 1

n
OPTL.

Proof  We use the fact that the random sequence of visible items in round � can be
obtained from the following process: First, the set Q of visible items in round � is
drawn uniformly at random from all �-element subsets of L. Then, the online vertex
of round � is drawn uniformly at random from Q. Note that these random experi-
ments are independent.

After the first step, the matching M(�) is already fixed. Let M∗ = M(n) be a maxi-
mum weight (offline) matching and M∗

Q
= {e = {l, r} ∈ M∗ ∣ l ∈ Q} the matching

M∗ projected to visible nodes. We have w(M(�)) ≥ w(M∗
Q
) , since M(�) is an optimal

and M∗
Q
 a feasible matching for the graph revealed in round � . As described above,

each vertex l ∈ L has probability �∕n to be in Q, thus

For the second step, we observe that each vertex from Q has the same probability of
1∕� to arrive in round � . Let M be the domain of the random variable M(�) . We have

Combining (19) and (18) concludes the proof. 	� ◻

However, we only gain the weight of the tentative edge e(�) = {l, r} if it can be
added to the matching, i.e., if r has not been matched previously. The next lemma
bounds the probability for this event from below.

Lemma 13  ([28]) Let �(r,�) be the event that the offline vertex r ∈ R is unmatched
after round � ≥ cn + 1 . It holds that ��[�(r,�)] ≥ cn

�
.

Proof  In each round k, the vertex r can only be matched if it is incident to the tenta-
tive edge e(k) ∈ M(k) of this round, i.e., e(k) = {l, r} where l ∈ L is the online vertex of
round k. As l can be seen as uniformly drawn among all k visible nodes (particularly,
independent of the order of the previous k − 1 items), l has probability 1/k to arrive

(18)�
[
w(M(�))

] ≥ �

[
w(M∗

Q
)
]
=

∑
e={l,r}∈M∗

��[l ∈ Q]w(e) =
�

n
w(M∗) .

(19)

�
[
w(e(𝓁))

]
=

∑
M�∈M

�
[
w(e(𝓁)) ∣ M(𝓁) = M�

]
⋅ ��

[
M(𝓁) = M�

]

=
∑

M�∈M

(∑
e={l,r}∈M�

1

𝓁
w(e)

)
⋅ ��

[
M(𝓁) = M�

]

=
1

𝓁
⋅

∑
M�∈M

w(M�) ⋅ ��
[
M(𝓁) = M�

]

=
1

𝓁
⋅ �

[
w(M(𝓁))

]
.

1778	 Algorithmica (2021) 83:1750–1785

1 3

in round k. Consequently, r is not matched in round k with probability 1 − 1∕k . This
argument applies to all rounds cn + 1,… ,� . Therefore,

	� ◻

Using Lemmas 12 and 13, we can bound the competitive ratio of AL in the fol-
lowing lemma. Note that we obtain the optimal (1/e)-competitive algorithm from
[28] for c = 1∕e and d = 1.

Lemma 14  It holds that �
[
AL

] ≥ (
c ln

d

c
− o(1)

)
OPTL.

Proof  Let A
�
 be the gain of the matching weight in round � . As the tentative edge

e(�) = {l, r} can only be added if r has not been matched in a previous round, we
have �

[
A
�

]
= �

[
w(e(�))

]
��[�(r,�)] for the event �(r,�) from Lemma 13. Therefore,

from Lemmas 12 and 13, we have �
[
A
�

] ≥ 1

n
OPTL

cn

�
=

c

�
OPTL . Summing over all

rounds from cn + 1 to dn yields

The last inequality follows from
∑dn

�=cn+1

1

�
=
�∑dn−1

�=cn

1

�

�
−

1

cn
+

1

dn
 and, according

to Fact 1A,
∑dn−1

�=cn

1

�
≥ ∫ dn

cn

1

�
d� = ln

d

c
 . 	� ◻

5.2 � Small Options

For small options, we use the LP-based algorithm from [25, Sec. 3.3] and analyze
it within our algorithmic framework. In order to make this paper self-contained, we
give a linear program for fractional GAP (LP 1), the algorithm, and its correspond-
ing proofs.

��[�(r,�)] ≥
�∏

k=cn+1

1 −
1

k
=

�∏
k=cn+1

k − 1

k
=

cn

�
.

�
[
AL

]
=

dn∑
�=cn+1

�
[
A
�

] ≥
(
c

dn∑
�=cn+1

1

�

)
OPTL ≥

(
c ln

d

c
−

1 − c∕d

n

)
OPTL .

(LP 1)

maximize
∑
i ∈ IS
r ∈ R

vi,rxi,r

subject to
∑
i∈IS

si,rxi,r ≤ Wr ∀r ∈ R

∑
r∈R

xi,r ≤ 1 ∀i ∈ IS

0 ≤ xi,r ≤ 1 ∀(i, r) ∈ IS × R

1779

1 3

Algorithmica (2021) 83:1750–1785	

Let AS be Algorithm 5. After a sampling phase of dn rounds, in each round
� , the algorithm computes an optimal solution x(�) of LP 1 for IS(�) . Here, IS(�)
denotes the instance of small options revealed so far. Now, the decision to which
resource the current online item i is assigned, if at all, is made at random using
x(�) : Resource r ∈ R is chosen with probability x(�)

i,r
 and the item stays unassigned

with probability 1 −
∑

r∈R x
(�)

i,r
 . Note that the item can only be assigned to the cho-

sen resource if its remaining capacity is at least (1∕2) ⋅Wr.
To analyze Algorithm 5, we consider the gain of profit in round

� ≥ dn + 1 , denoted by A
�
 . For this purpose, let i(�) be the item of that

round and r(�) the resource chosen by the algorithm. Now, it holds that
�
[
A
𝓁

]
= �

[
vi(𝓁),r(𝓁)

]
⋅ ��

[
i(𝓁) can be assigned to r(𝓁)

]
 , where in the first term, the

expectation is over the item arriving in round � and the resource chosen by the
algorithm. The latter term only depends on the resource consumption of r(�) in
earlier rounds. In the next two lemmas, we give lower bounds for both terms. As
in the proofs of Sect. 6.1, it is helpful to construct the random permutation of the
first � items in two independent steps: First, the set of � visible items is drawn
uniformly, without determining the order of items. Second, the online item arriv-
ing in round � is drawn uniformly from this set.

Lemma 15  ([25, Sec. 3.3]) For any round � ≥ dn + 1 , we have �
[
vi(�),r(�)

] ≥ 1

n
OPTS.

Proof  The proof is similar to the proof of Lemma 12. As we consider a fixed round
� , we write i and r instead of i(�) and r(�) for ease of presentation. Further, we write
v(�) ∶=

∑
j∈IS

∑
s∈R �j,svj,s for the profit of a fractional assignment �.

First, the set of visible items Q in round � is drawn uniformly at random among
all subsets of � items. Let x(n) be an optimal (offline) solution to LP 1 and let x(n)|Q
denote the restriction of x(n) to the items in Q, i.e., (x(n)|Q)j,s = x

(n)

j,s
 if j ∈ Q and

(x(n)|Q)j,s = 0 if j ∉ Q . Since x(n)|Q is a feasible and x(�) is an optimal solution for Q,
we have �

[
v(x(�))

] ≥ �
[
v(x(n) ∣Q)

]
.

As each item has the same probability of �∕n to be in Q, it holds that

1780	 Algorithmica (2021) 83:1750–1785

1 3

In the second step, the online item of round � is determined by choosing one item
from Q uniformly at random. Let X be the domain of x(�) and x� ∈ X  . We have

where we used that each item from Q arrives in round � with probability 1∕� and the
algorithm assigns item j to resource s with probability x′

j,s
 , given x(�) = x� . By the

law of total expectation, it follows that �
[
vi,r

]
=

1

�
�
[
v(x(�))

]
 . Combining with (20)

gives the claim. 	� ◻

Hence, by the previous lemma, the expected gain of profit in each round is at
least a (1/n)-fraction of OPTS , supposing the remaining resource capacity is large
enough. The probability for the latter event is considered in the following lemma.
Here, a crucial property is that we deal with �-small options. As in Sect. 5.2, we
define � =

1

1−�
.

Lemma 16  For any round � ≥ dn + 1 , it holds that

Proof  Let � be the event that no item is assigned to r after round dn. Note that �
does not necessarily hold, since AL might already have assigned items to r in
earlier rounds. By Lemma 13, ��[�] ≥ c

d
 . Therefore, it is sufficient to show

��
[
i(�) can be assigned to r(�) ∣ �

] ≥ 1 − � ln
�

dn
.

For this purpose, assume that � holds and let X denote the resource consumption
of r after round � − 1 . Further, let Xk be the resource consumption of r in round
k < � . We have X =

∑�−1

k=dn+1
Xk . Let Q be the set of k visible items in round k. The

set Q can be seen as uniformly drawn from all k-item subsets and any item j ∈ Q is
the current online item of round k with probability 1/k. Now, the algorithm assigns
any item j to resource r with probability x(k)

j,r
 , thus

where the last inequality follows from the capacity constraint for resource r in LP 1.
By linearity of expectation and inequality (22), the expected resource consumption
up to round � is thus

(20)

�
[
v(x(𝓁))

] ≥ �
[
v(x(n) ∣Q)

]
=
∑
j∈IS

∑
s∈R

��
[
j ∈ Q

]
⋅ x

(n)

j,s
⋅ vj,s

=
𝓁

n
v(x(n)) ≥ 𝓁

n
OPTS .

(21)

�
[
vi,r ∣ x

(𝓁) = x�
]
=
∑
j∈Q

∑
s∈R

��
[
j = i, s = r

]
vj,s

=
∑
j∈Q

∑
s∈R

1

𝓁
⋅ x�

j,s
⋅ vj,s =

1

𝓁
v(x�) ,

��
[
i(�) can be assigned to r(�)

] ≥ c

d

(
1 − � ln

�

dn

)
.

(22)�
[
Xk

]
=
∑
j∈Q

��
[
j occurs in round k

]
sj,rx

(k)

j,r
=

1

k

∑
j∈Q

sj,rx
(k)

j,r
≤ Wr

k
,

1781

1 3

Algorithmica (2021) 83:1750–1785	

Now, since i(�) is �-small, X < (1 − 𝛿)Wr implies X + si(�),r(�) ≤ Wr , in which case the
assignment is feasible. Using (23) and Markov’s inequality, we obtain

	� ◻

The next lemma finally gives the competitive ratio of AS.

Lemma 17  It holds that

Proof  We add the expected profits in single rounds using Lemmas 15 and 16.

Since �
dn

 is monotonically increasing in � , we have

by Fact 1B. The integral ∫ n

dn
ln

�

dn
d� evaluates to n ⋅

(
ln

1

d
− 1 + d

)
 , so combining

the previous inequalities yields

(23)�[X] =

�−1∑
k=dn+1

�
[
Xk

] ≤
�−1∑

k=dn+1

Wr

k
≤ Wr ln

�

dn
.

��
[
X < (1 − 𝛿)Wr

]
= 1 − ��

[
X ≥ (1 − 𝛿)Wr

] ≥ 1 −
�[X]

(1 − 𝛿)Wr

≥ 1 − 𝛥 ln
�

dn
.

�
[
AS

] ≥ c

d

(
(1 − d)(1 + �) − � ⋅

(
1 +

1

n

)
⋅ ln

1

d

)
OPTS .

�
[
AS

]
=

n∑
�=dn+1

�
[
A
�

]

=

n∑
�=dn+1

�
[
vi(�),r(�)

]
��

[
i(�) can be assigned to r(�)

]

≥
n∑

�=dn+1

1

n
OPTS

c

d

(
1 − � ln

�

dn

)

=
c

dn

(
n∑

�=dn+1

1 − � ln
�

dn

)
OPTS

=
c

dn

(
n − dn − �

n∑
�=dn+1

ln
�

dn

)
OPTS .

n∑
�=dn+1

ln
�

dn
=

(
n−1∑
�=dn

ln
�

dn

)
+ ln

n

nd
≤
(
�

n

dn

ln
�

dn
d�

)
+ ln

1

d

�
[
AS

]
>

c

d

(
1 − d − 𝛥 ⋅

(
ln

1

d
− 1 + d

)
−

𝛥

n
⋅ ln

1

d

)
OPTS

=
c

d

(
(1 − d)(1 + 𝛥) − 𝛥 ⋅

(
1 +

1

n

)
⋅ ln

1

d

)
OPTS .

1782	 Algorithmica (2021) 83:1750–1785

1 3

Note that we obtain the same competitive ratio as in Lemma 11.	� ◻

5.2.1 � Remark

The setting of large capacities (compared to the respective resource demands) has
been addressed in several papers [8, 12, 43]. For instance, such settings arise in
online auctions, where the budgets are very high compared to single bids. Although
the algorithm AS is not tailored for this setting, a corresponding bound can be
obtained easily from Lemma 17. Setting c = d clearly maximizes the performance
of AS with respect to OPTS , thus the factor c/d vanishes. Assuming that the maxi-
mum resource demand is � → 0 , the competitive ratio of AS tends to 2(1 − d) − ln

1

d
 ,

since � → 1 . This function is maximized for d = 1∕2 , yielding a competitive ratio of
1 − ln(2) ≥ 0.3068.

5.3 � Proof of Theorem 2

Finally, we prove our main theorem for GAP.

Proof (of Theorem 2)  We set the threshold between large and small options to
� = 1∕2 and consider Algorithm 1 with the algorithms AL and AS as defined previ-
ously. By Lemma 14, the expected gain of profit in rounds cn + 1,… , dn is
�[AL] ≥

(
c ln

d

c
− o(1)

)
OPTL . In the following rounds, we gain

according to Lemma 17 (with � = 2 ). Setting c = 0.5261 and d = 0.6906 gives
c ln

d

c
≈

c

d

(
3(1 − d) − 2 ln

1

d

)
 and thus, using OPTL + OPTS ≥ OPT,

	� ◻

Acknowledgements  We thank the anonymous reviewers for many valuable comments on an earlier ver-
sion of this manuscript.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is

�
[
AS

] ≥ c

d

(
3(1 − d) − 2 ln

1

d
− o(1)

)
OPTS

�
[
AL

]
+ �

[
AS

] ≥ c

d

(
3(1 − d) − 2 ln

1

d
− o(1)

)(
OPTL + OPTS

)

≥ (
1

6.99
− o(1)

)
OPT .

1783

1 3

Algorithmica (2021) 83:1750–1785	

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
	 2.	 Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New

York (1990)
	 3.	 Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for

multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)
	 4.	 Gálvez, W., Grandoni, F., Heydrich, S., Ingala, S., Khan, A., Wiese, A.: Approximating geomet-

ric knapsack via L-packings. In: Proceedings of 58th IEEE annual symposium on foundations of
computer science (FOCS), pp. 260–271 (2017)

	 5.	 Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack
problem. SIAM J. Comput. (SICOMP) 35(3), 713–728 (2005)

	 6.	 Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching
and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)

	 7.	 Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized online matching.
J. ACM 54(5), 22 (2007)

	 8.	 Feldman, J., Korula, N., Mirrokni, V.S., Muthukrishnan, S., Pál, M.: Online ad assignment with
free disposal. In: Proceedings of 5th international workshop internet and network economics
(WINE), pp 374–385 (2009)

	 9.	 Cattrysse, D.G., Wassenhove, L.N.V.: A survey of algorithms for the generalized assignment
problem. Eur. J. Oper. Res. 60(3), 260–272 (1992)

	10.	 Öncan, T.: A survey of the generalized assignment problem and its applications. Inf. Syst. Oper.
Res. INFOR 45(3), 123–141 (2007)

	11.	 Borgs, C., Chayes, J.T., Immorlica, N., Jain, K., Etesami, O., Mahdian, M.: Dynamics of bid
optimization in online advertisement auctions. In: Proceedings of 16th International Conference
on World Wide Web (WWW), pp 531–540 (2007)

	12.	 Zhou, Y., Chakrabarty, D., Lukose, R.M.: Budget constrained bidding in keyword auctions and
online knapsack problems. In: Proceedings 4th international workshop internet and network eco-
nomics (WINE), pp 566–576 (2008)

	13.	 Dynkin, E.B.: The optimum choice of the instant for stopping a Markov process. Sov. Math. 4,
627–629 (1963)

	14.	 Lindley, D.V.: Dynamic programming and decision theory. Appl. Stat. 10, 39–51 (1961)
	15.	 Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Matroid secretary problems. J. ACM

65(6), 35:1-35:26 (2018)
	16.	 Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive algorithm for

the matroid secretary problem. Math. Oper. Res. 43(2), 638–650 (2018)
	17.	 Chan, T.H., Chen, F., Jiang, S.H.: Revealing optimal thresholds for generalized secretary prob-

lem via continuous LP: impacts on online K-item auction and bipartite K-matching with ran-
dom arrival order. In: Proceedings of 26th annual ACM-siam symposium on discrete algorithms
(SODA), pp 1169–1188 (2015)

	18.	 Kleinberg, R.D.: A multiple-choice secretary algorithm with applications to online auctions. In:
Proceedings of 16th Annual ACM-SIAM symposium on discrete algorithms (SODA), pp 630–
631 (2005)

	19.	 Albers, S., Janke, M.: Scheduling in the random-order model. In: Proceedings of 47th interna-
tional colloquium on automata, languages, and programming, (ICALP) 2020, pp 68:1–68:18
(2020)

	20.	 Göbel, O., Kesselheim, T., Tönnis, A.: Online appointment scheduling in the random order
model. In: Proceedings 23rd annual European symposium on algorithms (ESA), pp 680–692
(2015)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1784	 Algorithmica (2021) 83:1750–1785

1 3

	21.	 Molinaro, M.: Online and random-order load balancing simultaneously. In: P.N. Klein (ed.) Pro-
ceedings 28th annual ACM-SIAM symposium on discrete algorithms (SODA). SIAM. pp 1638–
1650 (2017)

	22.	 Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear programming.
Oper. Res. 62(4), 876–890 (2014)

	23.	 Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic packing applied
to display ad allocation. In: Proceedings 18th annual european symposium on algorithms (ESA), pp
182–194 (2010)

	24.	 Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of 7th annual ACM-SIAM
symposium on discrete algorithms (SODA), pp 359–364 (1996)

	25.	 Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online packing LPs in the
random-order model. SIAM J. Comput. 47(5), 1939–1964 (2018)

	26.	 Molinaro, M., Ravi, R.: The geometry of online packing linear programs. Math. Oper. Res. 39(1),
46–59 (2014)

	27.	 Bahmani, B., Mehta, A., Motwani, R.: A 1.43-competitive online graph edge coloring algorithm in
the random order arrival model. In: Proceedings of 21st annual ACM-SIAM symposium on discrete
algorithms (SODA), pp 31–39 (2010)

	28.	 Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: An optimal online algorithm for weighted
bipartite matching and extensions to combinatorial auctions. In: Proceedings of 21st annual Euro-
pean symposium on algorithms (ESA), pp 589–600 (2013)

	29.	 Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on
strongly factor-revealing lps. In: Proceedings of 43rd annual ACM symposium on theory of comput-
ing (STOC), pp 597–606 (2011)

	30.	 Meyerson, A.: Online facility location. In: Proceedings of 42nd IEEE annual symposium on founda-
tions of computer science (FOCS), pp 426–431 (2001)

	31.	 Mirrokni, V.S., Gharan, S.O., Zadimoghaddam, M.: Simultaneous approximations for adversarial
and stochastic online budgeted allocation. In: Proceedings of 23rd annual ACM-SIAM symposium
on discrete algorithms (SODA), pp 1690–1701 (2012)

	32.	 Korula, N., Mirrokni, V.S., Zadimoghaddam, M.: Online submodular welfare maximization: greedy
beats 1/2 in random order. SIAM J. Comput. 47(3), 1056–1086 (2018)

	33.	 Marchetti-Spaccamela, A., Vercellis, C.: Stochastic on-line knapsack problems. Math. Progr. 68,
73–104 (1995)

	34.	 Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with appli-
cations. In: Proceedings of 10th international workshop on approximation, randomization, and
combinatorial optimization and 11th international workshop on randomization and computation
(APPROX/RANDOM), pp 16–28 (2007)

	35.	 Vaze, R.: Online knapsack problem and budgeted truthful bipartite matching. Proc. IEEE Conf.
Comput. Commun. (INFOCOM) 2017, 1–9 (2017)

	36.	 Lueker, G.S.: Average-case analysis of off-line and on-line knapsack problems. J. Algorithms 29(2),
277–305 (1998)

	37.	 Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack problems. Theor.
Comput. Sci. 562, 395–405 (2015)

	38.	 Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Proceedings of 29th interna-
tional colloquium on automata, languages and programming (ICALP), pp 293–305 (2002)

	39.	 Babaioff, M., Hartline, J., Kleinberg, R.: Selling banner ads: online algorithms with buyback. In:
Fourth workshop on ad auctions (2008)

	40.	 Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algorithms with cancel-
lations. In: Proceedings of 10th ACM conference on electronic commerce (EC), pp 61–70 (2009)

	41.	 Han, X., Kawase, Y., Makino, K.: Online unweighted knapsack problem with removal cost. Algo-
rithmica 70(1), 76–91 (2014)

	42.	 Vaze, R.: Online knapsack problem under expected capacity constraint. Proc. IEEE Conf. Comput.
Commun. (INFOCOM) 2018, 2159–2167 (2018)

	43.	 Alaei, S., Hajiaghayi, M., Liaghat, V.: The online stochastic generalized assignment problem. In:
Proceedings of 16th international workshop on approximation, randomization, and combinatorial
optimization and 17th international workshop on randomization and computation (APPROX/RAN-
DOM), pp 11–25 (2013)

	44.	 Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing. Math. Oper. Res.
34(2), 270–286 (2009)

1785

1 3

Algorithmica (2021) 83:1750–1785	

	45.	 Albers, S., Ladewig, L.: New results for the k-secretary problem. In: Proceedings of 30th interna-
tional symposium on algorithms and computation (ISAAC), pp 18:1–18:19 (2019)

	46.	 Nikolaev, M.: On a generalization of the best choice problem. Theory Probab. Appl. 22(1), 187–190
(1977)

	47.	 Tamaki, M.: Recognizing both the maximum and the second maximum of a sequence. J. Appl.
Prob. 16(4), 803–812 (1979)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Susanne Albers1 · Arindam Khan2 · Leon Ladewig1 

	 Susanne Albers
	 albers@in.tum.de

	 Arindam Khan
	 arindamkhan@iisc.ac.in

1	 Department of Computer Science, Technische Universität München, Boltzmannstr. 3,
85748 Garching, Germany

2	 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore 560012, India

http://orcid.org/0000-0001-5998-8154

	Improved Online Algorithms for Knapsack and GAP in the Random Order Model
	Abstract
	1 Introduction
	1.1 Related Work
	1.1.1 Online Knapsack Problem
	1.1.2 Online GAP
	1.1.3 Online packing LPs

	1.2 Our Contributions
	1.2.1 Roadmap

	2 Preliminaries
	2.1 Knapsack Problem
	2.2 Bounding Sums by Integrals
	2.3 Sequential Approach

	3 Large Items
	3.1 Packing Types
	3.2 Acceptance Probabilities of Algorithm 2
	3.3 Analysis
	3.3.1 Single-item Case
	3.3.2 Two-item Cases
	3.3.3 Competitive Ratio

	3.4 Discussion of other 2-Secretary Algorithms

	4 Small Items
	4.1 Algorithm
	4.2 Analysis

	5 Extension to GAP
	5.1 Large Options
	5.2 Small Options
	5.2.1 Remark

	5.3 Proof of Theorem 2

	Acknowledgements
	References

