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1Department of Informatics, King’s College London, London, UK,
[panagiotis.charalampopoulos,manal.mohamed]@kcl.ac.uk
2Institute of Informatics, University of Warsaw, Warsaw, Poland,

[kociumaka,jrad,rytter,walen]@mimuw.edu.pl
3Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

Abstract

We introduce data structures answering queries concerning the occurrences of patterns from a
given dictionary D in fragments of a given string T of length n. The dictionary is internal in the
sense that each pattern in D is given as a fragment of T . This way, D takes space proportional to
the number of patterns d = |D| rather than their total length, which could be Θ(n · d).

In particular, we consider the following types of queries: reporting and counting all occurrences of
patterns from D in a fragment T [i . . j] and reporting distinct patterns from D that occur in T [i . . j].
We show how to construct, in O((n+ d) logO(1) n) time, a data structure that answers each of these
queries in time O(logO(1) n+ |output|).

The case of counting patterns is much more involved and needs a combination of a locally con-
sistent parsing with orthogonal range searching. Reporting distinct patterns, on the other hand,
uses the structure of maximal repetitions in strings. Finally, we provide tight—up to subpolynomial
factors—upper and lower bounds for the case of a dynamic dictionary.

1 Introduction

In the problem of dictionary matching, which has been studied for more than forty years, we are given a
dictionary D, consisting of d patterns, and the goal is to preprocess D so that presented with a text T we
are able to efficiently compute the occurrences of the patterns from D in T . The Aho–Corasick automaton
preprocesses the dictionary in linear time with respect to its total length and then processes T in time
O(|T |+|output|) [1]. Compressed indexes for dictionary matching [10], as well as indexes for approximate
dictionary matching [12] have been studied. Dynamic dictionary matching in its more general version
consists in the problem where a dynamic dictionary is maintained, text strings are presented as input
and for each such text all the occurrences of patterns from the dictionary in the text have to be reported;
see [2, 3].

Internal queries in texts have received much attention in recent years. Among them, the Internal
Pattern Matching (IPM) problem consists in preprocessing a text T of length n so that we can efficiently
compute the occurrences of a substring of T in another substring of T . A nearly-linear sized data
structure that allows for sublogarithmic-time IPM queries was presented in [28], while a linear sized data
structure allowing for constant-time IPM queries in the case that the ratio between the lengths of the
two substrings is constant was presented in [31]. Other types of internal queries include computing the
longest common prefix of two substrings of T , computing the periods of a substring of T , etc. We refer
the interested reader to [29], which contains an overview of the literature.

We introduce the problem of Internal Dictionary Matching (IDM) that consists in answering the
following types of queries for an internal dictionary D consisting of substrings of text T : given (i, j),
report/count all occurrences of patterns from D in T [i . . j] and report the distinct patterns from D that
occur in T [i . . j].

Some interesting internal dictionaries D are the ones comprising of palindromic, square, or non-
primitive substrings of T . In each of these three cases, the total length of patterns might be quadratic,
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but the internal dictionary is of linear size and can be constructed in O(n) time [20, 14, 7]. Our data
structure provides a general framework for solving problems related to the internal structure of the string.
The case of palindromes has already been studied in [38], where authors proposed a data structure of
size O(n log n) that returns the number of all distinct palindromes in T [i . . j] in O(log n) time.

Let us formally define the problem and the types of queries that we consider.

Internal Dictionary Matching

Input: A text T of length n and a dictionary D consisting of d patterns, each given as a substring
T [a . . b] of T .
Queries:

Exists(i, j): Decide whether at least one pattern P ∈ D occurs in T [i . . j].
Report(i, j): Report all occurrences of all the patterns of D in T [i . . j].
ReportDistinct(i, j): Report all patterns P ∈ D that occur in T [i . . j].
Count(i, j): Count the number of all occurrences of all the patterns of D in T [i . . j].
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Figure 1: Occurrences of patterns from the dictionary D in the text T .

Example 1.1. Let us consider the dictionary D = {aa, aaaa, abba, c} and the text T = adaaaabaabbaac;
see Fig. 1. We then have:

Exists(2, 12) = true

Report(2, 12) = {(aa, 3), (aaaa, 3), (aa, 4), (aa, 5), (aa, 8), (abba, 9)}
Count(2, 12) = 6

ReportDistinct(2, 12) = {aa, aaaa, abba}
Exists(1, 3) = false

Let us consider Report(i, j) queries. One could answer them in time O(j − i+ |output|) by running
T [i . . j] over the Aho–Corasick automaton of D [1] or in time Õ(d + |output|) 1 by performing internal
pattern matching [31] for each element of D individually. None of these approaches is satisfactory as
they can require Ω(n) time in the worst case.

Our results. A natural problem would be to consider a dynamic dictionary, in the sense that one
would perform interleaved IDM queries and updates to D (insertions/deletions of patterns). We show a
conditional lower bound for this problem. In particular, we show that the product of the time to process
an update and the time to answer whether any pattern from D occurs in T [i . . j] cannot be O(n1−ǫ)
for any constant ǫ > 0, unless the Online Boolean Matrix-Vector Multiplication conjecture [23] is false.
Interestingly, in our lower bound construction we only add single-letter patterns to an initially empty
dictionary.

We thus focus on the case of a static dictionary, as it was defined above. We propose an Õ(n+d)-sized
data structure, which can be built in time Õ(n+ d) and answers all IDM queries in time Õ(1 + |output|).
The exact complexities are shown in Table 1.

By building upon our solutions for static dictionaries, we provide algorithms for the case of a dynamic
dictionary, where patterns can be added to or removed from D. We show how to process updates in Õ(nα)
time and answer queries Exists(i, j), Report(i, j) and ReportDistinct(i, j) in Õ(n1−α + |output|)
time for any 0 < α < 1, matching—up to subpolynomial factors—our conditional lower bound.

1The Õ(·) notation suppresses logO(1)
n factors.
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Query Preprocessing time Space Query time

Exists(i, j) O(n + d) O(n) O(1)

Report(i, j) O(n + d) O(n + d) O(1 + |output|)
ReportDistinct(i, j) O(n logn + d) O(n + d) O(log n + |output|)

Count(i, j) O( n logn
log logn + d log3/2 n) O(n + d logn) O( log2 n

log log n )

Table 1: Our results.

Our techniques and a roadmap. First, in Section 3, we present straightforward solutions for queries
Exists(i, j) and Report(i, j). In Section 4 we describe an involved solution for ReportDistinct(i, j)
queries, that heavily relies on the periodic structure of the input text and on tools that we borrow from
computational geometry. In Section 5 we rely on locally consistent parsing and further computational
geometry tools to obtain an efficient solution for Count(i, j) queries. In Section 6 we extend our
solutions for the case of a dynamic dictionary and provide a matching conditional lower bound. Finally, in
Appendix A we consider yet another type of queries, CountDistinct(i, j), and develop an approximate
solution for them.

2 Preliminaries

We begin with basic definitions and notation generally following [13]. Let T = T [1]T [2] · · ·T [n] be a
string of length |T | = n over a linearly sortable alphabet Σ. The elements of Σ are called letters. By
ε we denote an empty string. For two positions i and j on T , we denote by T [i . . j] = T [i] · · ·T [j] the
fragment (sometimes called substring) of T that starts at position i and ends at position j (it equals ε if
j < i). It is called proper if i > 1 or j < n. A fragment of T is represented in O(1) space by specifying
the indices i and j. A prefix of T is a fragment that starts at position 1 (T [1 . . j], notation: T (j)) and a
suffix is a fragment that ends at position n (T [i . . n], notation: T(i)). We denote the reverse string of T
by TR, i.e. TR = T [n]T [n− 1] · · ·T [1].

Let U be a string of length m with 0 < m ≤ n. We say that there exists an occurrence of U in T , or,
more simply, that U occurs in T , when U is a fragment of T . We thus say that U occurs at the starting
position i in T when U = T [i . . i + m− 1].

If a string U is both a proper prefix and a proper suffix of a string T of length n, then U is called a
border of T . A positive integer p is called a period of T if T [i] = T [i+ p] for all i = 1, . . . , n− p. A string
T has a period p if and only if it has a border of length n − p. We refer to the smallest period as the
period of the string, and denote it as per(T ), and, analogously, to the longest border as the border of the
string. A string is called periodic if its period is no more than half of its length and aperiodic otherwise.

The elements of the dictionary D are called patterns. Henceforth we assume that ε 6∈ D, i.e. the
length of each P ∈ D is at least 1. If ε was in D, we could trivially treat it individually. We further
assume that each pattern of D is given by the starting and ending positions of its occurrence in T . Thus,
the size of the dictionary d = |D| refers to the number of strings in D and not their total length.

The suffix tree T (T ) of a non-empty string T of length n is a compact trie representing all suffixes
of T . The branching nodes of the trie as well as the terminal nodes, that correspond to suffixes of T ,
become explicit nodes of the suffix tree, while the other nodes are implicit. Each edge of the suffix tree
can be viewed as an upward maximal path of implicit nodes starting with an explicit node. Moreover,
each node belongs to a unique path of that kind. Thus, each node of the trie can be represented in the
suffix tree by the edge it belongs to and an index within the corresponding path. We let L(v) denote
the path-label of a node v, i.e., the concatenation of the edge labels along the path from the root to v.
We say that v is path-labelled L(v). Additionally, δ(v) = |L(v)| is used to denote the string-depth of
node v. A terminal node v such that L(v) = T(i) for some 1 ≤ i ≤ n is also labelled with index i. Each
fragment of T is uniquely represented by either an explicit or an implicit node of T (T ), called its locus.
Once T (T ) is constructed, it can be traversed in a depth-first manner to compute the string-depth δ(v)
for each explicit node v. The suffix tree of a string of length n, over an integer ordered alphabet, can
be computed in time and space O(n) [15]. In the case of integer alphabets, in order to access the child
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of an explicit node by the first letter of its edge label in O(1) time, perfect hashing [17] can be used.
Throughout the paper, when referring to the suffix tree T (T ) of T , we mean the suffix tree of T $, where
$ 6∈ Σ is a sentinel letter that is lexicographically smaller than all the letters in Σ. This ensures that all
terminal nodes are leaves.

We say that a tree is a weighted tree if it is a rooted tree with an integer weight on each node v,
denoted by ω(v), such that the weight of the root is zero and ω(u) < ω(v) if u is the parent of v. We say
that a node v is a weighted ancestor at depth ℓ of a node u if v is the highest ancestor of u with weight
of at least ℓ. After O(n)-time preprocessing, weighted ancestor queries for nodes of a weighted tree T
of size n can be answered in O(log logn) time per query [4]. If ω has a property that the difference of
weights of a child and its parent is always equal to 1, then the queries can be answered in O(1) time after
O(n)-time preprocessing [8]; in this special case the values ω are called levels and the queries are called
level ancestor queries. The suffix tree T (T ) is a weighted tree with ω = δ. Hence, the locus of a fragment
T [i . . j] in T (T ) is the weighted ancestor of the terminal node with path-label T(i) at string-depth j − i.

3 Exists(i, j) and Report(i, j) queries

We first present a convenient modification to the suffix tree with respect to a dictionary D; see Fig. 2.

Definition 3.1. A D-modified suffix tree of a string T is a tree with terminal nodes corresponding to
non-empty suffixes of T $ and branching nodes corresponding to {ε}∪D. A node corresponding to string
U is an ancestor of a node corresponding to string V if and only if U is a prefix of V . Each node stores
its level as well as its string-depth (i.e., the length of its corresponding string).

14 2

13 1

12

3 4 5 8

6 9

10

7 11

a b
c$
daaaabaabbaac$

a b
c$
daaaabaabbaac$

a b

c$

a
ba
a
bb
a
a
c$

ba
a
bba

a
c$ a

a
bb
a
a
c$ ba

a
c$

aa
bb
aa
c$

ba

a
c$

aa

baac$

bb
aa
c$ c$

ε

6 13 1 7 11 10 2

abba

9
14

c

aa

4 5 8 12

aaaa

3

Figure 2: Example of a D-modified suffix tree for dictionary D = {aa, aaaa, abba, c} and text T =
adaaaabaabbaac from Example 1.1. Top: the suffix tree of T with the nodes corresponding to elements
of D annotated in red; bottom: the D-modified suffix tree of T .

Lemma 3.2. A D-modified suffix tree of T has size O(n + d) and can be constructed in O(n + d) time.

Proof. The D-modified suffix tree is obtained from the suffix tree T (T ) in two steps.
In the first step, we mark all nodes of T (T ) with path-label equal to a pattern P ∈ D: if any of them

are implicit, we first make them explicit; see Fig. 3(a). We can find the loci of the patterns in T (T ) in
O(n + d) time by answering the weighted ancestor queries as a batch [30], employing a data structure
for a special case of Union-Find [18]. (If many implicit nodes along an edge are to become explicit, we
can avoid the local sorting based on depth if we sort globally in time O(n + d) using bucket sort and
then add the new explicit nodes in decreasing order with respect to depth.)

In the second step, we recursively contract any edge (u, v), where u is the parent of v if:
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1. both u and v are unmarked, or

2. u is marked and v is an unmarked internal node.

The resulting tree is the D-modified suffix tree and has O(n) terminal nodes and O(d) internal nodes;
see Fig. 3(b).

(a) Seven implicit nodes of T (T ) are made explicit. Each marked
node (big circles in blue) represents a pattern P ∈ D.

(b) D-modified suffix tree.

Figure 3: The two-step construction of the D-modified suffix tree.

We state the following simple lemma.

Lemma 3.3. With the D-modified suffix tree of T at hand, given positions a, j in T with a ≤ j, we can
compute all P ∈ D that occur at position a and are of length at most j − a + 1 in time O(1 + |output|).

Proof. We start from the root of the D-modified suffix tree and go down towards the terminal node with
path-label T(a). We report all encountered nodes v as long as δ(v) ≤ j− a+ 1 is satisfied. We stop when
this inequality is not satisfied.

The D-modified suffix tree enables us to answer Exists(i, j) and Report(i, j) queries.

Theorem 3.4.

(a) Exists(i, j) queries can be answered in O(1) time with a data structure of size O(n) that can be
constructed in O(n + d) time.

(b) Report(i, j) queries can be answered in O(1+ |output|) time with a data structure of size O(n+d)
that can be constructed in O(n + d) time.

Proof. (a) Let us define an array B[a] = min{b : T [a . . b] ∈ D}. If there is no pattern from D starting in T
at position a, then B[a] = ∞. It can be readily verified that the answer to query Exists(i, j) is yes if and
only if the minimum element in the subarray B[i . . j] is at most j. Thus, in order to answer Exists(i, j)
queries, it suffices to construct the array B and a data structure that answers range minimum queries
(RMQ) on B. Using the D-modified suffix tree of T , whose construction time is the bottleneck, array B
can be populated in O(n) time as follows. For each terminal node with path-label T(a) and level greater
than 1, we set B[a] to the string-depth of its ancestor at level 1 using a level ancestor query. If the
terminal node is at level 1, then B[a] = ∞. A data structure answering range minimum queries in O(1)
time can be built in time O(n) [21, 9].

(b) We first identify all positions a ∈ [i . . j] that are starting positions of occurrences of some pattern
P ∈ D in T [i . . j] using RMQs over array B, which has been defined in the proof of part (a), as follows.
The first RMQ, is over the range [i . . j] and identifies a position a (if any such position exists). The range
is then split into two parts, namely [i, a − 1] and [a + 1, j]. We recursively, use RMQs to identify the
remaining positions in each part. Once we have found all the positions where at least one pattern from
D occurs, we report all the patterns occurring at each of these positions and being contained in T [i . . j].
The complexities follow from Lemmas 3.2 and 3.3.
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4 ReportDistinct(i, j) queries

Below, we present an algorithm that reports patterns from D occurring in T [i . . j], allowing for O(1)
copies of each pattern on the output. We can then sort these patterns, remove duplicates, and report
distinct ones using an additional global array of counters, one for each pattern.

Let us first partition D into D0, . . . ,D⌊log n⌋ such that Dk = {P ∈ D : ⌊log |P |⌋ = k}. We call Dk a
k-dictionary. We now show how to process a single k-dictionary Dk; the query procedure may clearly
assume k ≤ log |T [i . . j]|.

We precompute an array Lk[1 . . n] such that T [a . . Lk[a]] is the longest pattern in Dk is a prefix of
T(a). We can do this in O(n) time by inspecting the parents of terminal nodes in the Dk-modified suffix
tree. Next, we assign to all the patterns of Dk equal to some T [a . . a + Lk[a]] integer identifiers id (or
colors) in [1 . . n], and construct an array Ik[a] = id(P ), where P = T [a . . a+Lk[a]]. We then rely on the
following theorem.

Theorem 4.1 (Colored Range Reporting [36]). Given an array A[1 . . N ] of elements from [1 . . U ], we
can construct a data structure of size O(N) in O(N + U) time, so that upon query [i . . j] all distinct
elements in A[i . . j] can be reported in O(1 + |output|) time.

We first perform a colored range reporting query on the range [i . . j − 2k+1] of array Ik and obtain a
set of distinct patterns Ck, employing Theorem 4.1. We observe the following.

Observation 4.2. Any pattern of a k-dictionary Dk occurring in T at position p ∈ [i . . j − 2k+1] is a
prefix of a pattern P ∈ Ck.

Based on this observation, we will report the remaining patterns using the Dk-modified suffix tree,
following parent pointers and temporarily marking the loci of reported patterns to avoid double-reporting.
We thus now only have to compute the patterns from Dk that occur in T [t . . j], where t = max{i, j −
2k+1 + 1}.

We further partition Dk for k > 1 to a periodic k-dictionary and aperiodic k-dictionary:

Dp
k = {P ∈ Dk : per(P ) ≤ 2k/3} and Da

k = {P ∈ Dk : per(P ) > 2k/3}.

Note that we can partition Dk in O(|Dk|) time using the so-called 2-Period Queries of [31, 6, 29].
Such a query decides whether a given fragment of the text is periodic and, if so, it also returns its period.
It can be answered in O(1) time after an O(n)-time preprocessing of the text.

4.1 Processing aperiodic k-dictionary

We make use of the following sparsity property.

Fact 4.3 (Sparsity of occurrences). The occurrences of a pattern P of an aperiodic k-dictionary Da
k in

T start over 1
6 |P | positions apart.

Proof. If two occurrences of P started d ≤ 2k

3 positions apart, then d would be a period of P , contradicting
P ∈ Da

k . Then, since 2k ≤ |P | < 2k+1, we have that 2k/3 ≥ 1
6 |P |.

Lemma 4.4. ReportDistinct(t, j) queries for the aperiodic k-dictionary Da
k and j − t ≤ 2k+1 can be

answered in O(1 + |output|) time with a data structure of size O(n + |Da
k|), that can be constructed in

O(n + |Da
k |) time.

Proof. Since the fragment T [t . . j] is of length at most 2k+1, it may only contain a constant number
of occurrences of each pattern in Da

k by Fact 4.3. We can thus simply use a Report(t, j) query for
dictionary Da

k and then remove duplicates. The complexities follow from Theorem 3.4(b).

4.2 Processing periodic k-dictionary

Our solution for periodic patterns relies on the well-studied theory of maximal repetitions (runs) in
strings. A run is a periodic fragment R = T [a . . b] which can be extended neither to the left nor to the
right without increasing the period p = per(R), that is, T [a−1] 6= T [a+p−1] and T [b−p+1] 6= T [b+1]
provided that the respective letters exist. The number of runs in a string of length n is O(n) and all the
runs can be computed in O(n) time [32, 6].
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Observation 4.5. Let P be a periodic pattern. If P occurs in T [t . . j], then P is a fragment of a unique
run R such that per(R) = per(P ). We say that this run R extends P .

Let R be the set of all runs in T . Following [29], we construct for all k ∈ [0 . . ⌊log n⌋] the sets of

runs Rk = {R ∈ R : per(R) ≤ 2k

3 , |R| ≥ 2k} in O(n) time overall. Note that these sets are not disjoint;
however, |Rk| = O( n

2k
) (cf. Lemma 4.6 below) and thus their total size is O(n). If U is a fragment of

T , by Rk(U) ⊆ Rk we denote the set of all runs R ∈ Rk such that |R ∩ U | ≥ 2k, that is, runs whose
overlap with the frgment U is at least 2k.

Lemma 4.6 (see [29, Lemma 4.4.7]). |Rk(U)| = O
(

1
2k
|U |

)

.

Strategy. Given a fragment U = T [t . . j], we will first identify all runs Rk(U) of Rk that have a
sufficient overlap with U . There is a constant number of them by Lemma 4.6. For an occurrence of a
pattern P ∈ Dp

k in U , the unique run R extending this occurrence of P must be in Rk(U). We will
preprocess the runs in order to be able to compute a unique (the leftmost) occurrence induced by run R
for each such pattern P .

Lemma 4.7. Let U be a fragment of T of length at most 2k+1. Then Rk(U) can be retrieved in O(1)
time after an O(n)-time preprocessing.

Proof. Periodic Extension Queries [29, Section 5.1], given a fragment V of the text T as input,
return the run R extending V . They can be answered in O(1) time after O(n)-time preprocessing.

Let us cover U using O( 1
2k
|U |) fragments of length 2k+1

3 with overlaps of at least 2k

3 and ask a
Periodic Extension Query for each fragment V in the cover. For each run R ∈ Rk(U) with sufficient
overlap, R ∩ U must contain a fragment V in the cover and its periodic extension must be R since
|V | ≥ 2 · per(R).

Preprocessing. We construct an array ℓk[1 . . n] such that T [i . . ℓk[i]] is the shortest pattern P ∈ Dp
k

that occurs at position i. Note that ℓk[i] can be retrieved in O(1) time using a level ancestor query in
the Dk

p -modified suffix tree (asking for a level-1 ancestor of the leaf corresponding to T(i), as in the proof
of Theorem 3.4(a)). We then preprocess the array ℓk for RMQ queries.

Processing a run at query. Let us begin with a consequence of the fact that the shortest period is
primitive.

Observation 4.8. If a pattern P occurs in a text Q and satisfies |P | ≥ per(Q), then P has exactly one
occurrence in the first per(Q) positions of Q.

We use RMQs repeatedly, as in the proof of Theorem 3.4(b), for the subarray of ℓk corresponding to
the first per(R) positions of R ∩U . This way, due to Observation 4.8, we compute exactly the positions
where a pattern P ∈ Dp

k has its leftmost occurrence in R ∩ U . The number of positions identified for a
single run R ∈ Rk(U) is therefore upper bounded by the number of distinct patterns occurring within
R ∩ U . We then report all distinct patterns occurring within R ∩ U by processing each such starting
position using Lemma 3.3. There is no double-reporting while processing a single run, by Observation 4.8
and hence the time required to process this run is O(1+ |output|) — |output| here refers to the number of
distinct patterns from Dp

k occurring within U . Since |Rk(U)| = O(1), we report each pattern a constant
number of times and the overall time required is O(1 + |output|).

4.3 Reducing the space

The space occupied by our data structure can be reduced to O(n + d). We store the D-modified suffix
tree and mark all nodes from each Di

k, for k ∈ [0 . . ⌊logn⌋]) and i ∈ {a, p}, with a different color. For
each dictionary D′ = Di

k, we further store, using O(|D′|) space, the D′-modified suffix tree without its
unmarked leaves.

We will show below that the only additional operation we now need to support is determining the
parent of a given unmarked leaf in the original D′-modified suffix tree (before the leaves were chopped).
This can be done using the nearest colored ancestor data structure of [19] over the D-modified suffix
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tree. For a tree of size N , it achieves O(log logN) time per query after O(N)-time preprocessing. We
can, however, exploit the fact that we only have colors = O(log n) colors to obtain constant-time queries
within the same construction time.

In [19] it is shown that, in order to answer nearest colored ancestor queries in a tree with N nodes, it
is enough to store some arrays of total size O(N) and predecessor data structures for O(colors) subsets
of [1 . . 2N ] whose total size is O(N). The time needed to compute the sets for the predecessor data
structures and the arrays is O(N). The time complexity of the query is proportional to the time required
for answering a constant number of predecessor queries over the aforementioned sets. We implement a
predecessor data structure for a set S ⊆ [1 . . 2N ] using O(N) bits of space as follows. We store a bitmap
that has the ith bit set if and only if i ∈ S and augment it with a data structure that answers rank

and select queries in O(1) time and requires o(N) additional bits of space [25, 11]. Such a component
can be constructed in O(N/ logN) time [5, 35]. Note that predS(i) = select(rank(i)). We thus use
O((n+ d) log n) bits, i.e., O(n+ d) machine words, in total for the part of the data structure responsible
for reporting occurrences starting at given positions.

It was shown in [16] that we can implement an O(1)-query-time RMQ data structure for an array of
size N using O(N) bits. This data structure only returns the index of the minimum value in the given
range.

For colored range reporting, the main component of the data structure underlying Theorem 4.1
from [36] is an RMQ data structure over array J [i] = max{j : j < i, A[i] = A[j]}. We build an O(N)-bits
RMQ data structure over J . The query procedure however, needs access to A, i.e. the colors. We can
retrieve the value of the i-th element in our array of colors using our representation of the D′-modified
suffix tree, since the its color corresponds to the respective leaf in the D′-modified suffix tree or, if it is
unmarked, to that of its parent.

Then, filtering O(|output|) starting positions in the periodic case, is based on RMQ queries over
multiple arrays of total length O(n log n). To construct them, we build the D′-modified suffix trees
one by one and build the relevant RMQ data structures that require O(n logn) bits in total before
chopping the unmarked leaves. The actual value at the indices returned by RMQ queries can, as above,
be determined using our representation of the D′-modified suffix tree.

We arrive at the main result of this section.

Theorem 4.9. ReportDistinct(i, j) queries can be answered in O(log n + |output|) time with a data
structure of size O(n + d) that can be constructed in O(n logn + d) time.

5 Count(i, j) queries

We first solve an auxiliary problem and show how it can be employed to give an unsatisfactory solution
to Count(i, j). We then refine our approach using recompression and obtain the following.

Theorem 5.1. Count(i, j) queries can be answered in O(log2 n/ log logn) time with a data structure

of size O(n + d logn) that can be constructed in O(n log n/ log logn + d log3/2 n) time.

5.1 An auxiliary problem

By inter-position i + 1/2 we refer to a location between positions i and i + 1 in T . We also refer to
inter-positions 1/2 and n + 1/2. We consider the following auxiliary problem, in which we are given a
set of inter-positions (breakpoints) B of P and upon query we are to compute all fragments of T [i . . j]
that align a specific inter-position (anchor) β of the text with some inter-position in B.

Breakpoints-Anchor IPM

Input: A length-n text T , its length-m substring P , and a set B of inter-positions (breakpoints) of
P .
Query: Countβ(i, j): the number of fragments T [r . . r +m− 1] of T [i . . j] that match P such that
β − r + 1 ∈ B (β is an anchor).

In the 2D orthogonal range counting problem, one is to preprocess an n× n grid with O(n) marked
points so that upon query [x1, y1] × [x2, y2], the number of points in this rectangle can be computed
efficiently. In the (dual) 2D range stabbing counting problem, one is to preprocess the grid with O(n)
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rectangles so that upon query (x, y) the number of (stabbed) rectangles that contain (x, y) can be
retrieved efficiently. The counting version of range stabbing queries in 2D reduces to two-sided range
counting queries in 2D as follows (cf. [37]). For each rectangle [x1, y1]× [x2, y2] in grid G, we add points
(x1, y1) and (x2 +1, y2 +1) with weight 1 and points (x1, y2 +1) and (x2, y1 +1) with weight −1 in a grid
G′. Then the number of rectangles stabbed by point (a, b) in G is equal to the sum of weights of points
in (−∞, a] × (−∞, b] in G′. We will use the following result in our solution to Breakpoints-Anchor

IDM (Lemma 5.4).

Theorem 5.2 ([35]). Range counting queries for n points in 2D (rank space) can be answered in time
O(log n/ log logn) with a data structure of size O(n) that can be constructed in time O(n

√
logn).

Data structure. Let W1 = {P [⌈b⌉ . .m] : b ∈ B} and consider the set W2 obtained by adding U$ and
U# for each element U of W1 to an initially empty set, where $ is a letter smaller (resp. # is larger)
than all the letters in Σ. Let W be the compact trie for the set of strings W2. For each internal node v of
W that does not have an outgoing edge with label $, we add such a (leftmost) edge with a leaf attached
to its endpoint. W can be constructed in O(|B|) time after an O(n)-time preprocessing of T , allowing
for constant-time longest common prefix queries; cf. [13]. We also build the W1-modified suffix tree of T
and preprocess it for weighted ancestor queries. We keep two-sided pointers between nodes of W and of
the W1-modified suffix tree of T that have the same path-label. Similarly, let WR be the compact trie
for set Z2 consisting of elements U$ and U# for each U ∈ Z1 = {(P [1 . . ⌊b⌋])R : b ∈ B}. We preprocess
WR analogously. Each of the tries has at most k = O(|B|) leaves.

Let us now consider a 2D grid of size k×k, whose x-coordinates (resp. y-coordinates) correspond to the
leaves of W (resp. WR). For each b ∈ B we do the following. Let x1 and x2 be the leaves with path-label
P [⌈b⌉ . .m]$ and P [⌈b⌉ . .m]# in W , respectively. Similarly, let y1 and y2 be the leaves with path-label
(P [1 . . ⌊b⌋])R$ and (P [1 . . ⌊b⌋])R# in WR, respectively. We add the rectangle Rb = [x1, y1] × [x2, y2] in
the grid. An illustration is provided in Fig. 4. We then preprocess the grid for the counting version of
2D range stabbing queries, employing Theorem 5.2.

Query. Let the longest prefix of T [⌈β⌉ . . j] that is a prefix of an element of W1 be U and its locus in
W be u. This can be computed in O(log logn) time using a weighted ancestor query in the W1-modified
suffix tree of T and following the pointer to W . If u is an explicit node, we follow the edge with label $,
while if it is implicit along edge (p, q), we follow the edge with label $ from p. In either case, we reach a
leaf u′. We do the symmetric procedure with (T [i . . ⌊β⌋])R in WR and obtain a leaf v′.

Observation 5.3. The number of fragments T [r . . t] = P with r, t ∈ [i . . j] and β − r + 1 ∈ B is equal
to the number of rectangles stabbed by the point of the grid defined by u′ and v′.

The observation holds because this point is inside rectangle Rb for b ∈ B if and only if P [⌈b⌉ . .m] is
a prefix of T [⌈β⌉ . . j] and P [1 . . ⌊b⌋] is a suffix of T [i . . ⌊β⌋]. This concludes the proof of the following
result.

Lemma 5.4. Breakpoints-Anchor IPM queries can be answered in time O(logn/ log logn) with a
data structure of size O(n + |B|) that can be constructed in time O(n + |B|

√

log |B|).

For the analogously defined problem Breakpoints-Anchor IDM, we obtain the following lemma
by building trie W for the union of the sets W2 defined in the above proof for each pattern (similarly for
WR) and adding all rectangles to a single grid.

Lemma 5.5. Breakpoints-Anchor IDM queries can be answered in time O(logn/ log logn) with
a data structure of size O(n +

∑

P∈D |BP |). The data structure can be constructed in time O(n +√
logn

∑

P∈D |BP |).

A warm-up solution for Count(i, j). Lemma 5.5 can be applied naively to answer Count(i, j)
queries as follows. Let us set BP = {p+1/2 : p ∈ [1 . . |P |−1]} for each pattern P ∈ D and construct the
data structure of Lemma 5.5. We build a balanced binary tree BT on top of the text and for each node
v in BT define val(v) to be the fragment consisting of the characters corresponding to the leaves in the
subtree of v. Note that if v is a leaf, then |val(v)| = 1; otherwise, val(v) = val(uℓ)val(ur), where uℓ and
ur are the children of v. For each node v in BT, we precompute and store the count for val(v). If v is a
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Figure 4: Example of the construction of rectangles in the proof of Lemma 5.4 for P = abaabb and
breakpoints i + 1/2 for i = 0, 1, 2, 3, 4, 5, 6. Each rectangle is annotated with its breakpoint.

leaf, this count can be determined easily. Otherwise, each occurrence is contained in val(uℓ), is contained
in val(ur), or spans both val(uℓ) and val(ur). Hence, we sum the answers for the children uℓ and ur of
v and add the result of a Breakpoints-Anchor IDM query in val(v) with the anchor between val(uℓ)
and val(ur).

To answer a query concerning T [i . . j], we recursively count the occurrences in the intersection of
val(v) with T [i . . j], starting from the root r of BT as it satisfies val(r) = T [1 . . n]. If the intersection is
empty, the result is 0, and if val(v) is contained in T [i . . j], we can use the precomputed count. Otherwise,
we recurse on the children uℓ and ur of v and sum the resulting counts. It remains to add the number of
occurrences spanning across both val(uℓ) and val(ur). This value is non-zero only if T [i . . j] spans both
these fragments, and it can be determined from a Breakpoints-Anchor IDM query in the intersection
of val(v) and T [i . . j] with the anchor between val(uℓ) and val(ur).

The query-time is O(log2 n/ log logn) since non-trivial recursive calls are made only for nodes on the
paths from the root r to the leaves representing T [i] and T [j]. Nevertheless, the space required for this
“solution” can be Ω(nd), which is unacceptable. Below, we refine this technique using a locally consistent
parsing; our goal is to decrease the size of each set BP from Θ(|P |) to O(log n).
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5.2 Recompression

A run-length straight line program (RSLP) is a context-free grammar which generates exactly one string
and contains two kinds of non-terminals: concatenations with production of the form A → BC (for
symbols B,C) and powers with production of the form A → Bk (for a symbol B and an integer k ≥ 2).
Every symbol A generates a unique string denoted g(A).

Each symbol A is also associated with its parse tree PT(A) consisting of a root labeled with A to
which zero or more subtrees are attached: if A is a terminal, there are no subtrees; if A → BC is a
concatenation symbol, then PT(B) and PT(C) are attached; if A → Bk is a power symbol, then k copies
of PT(B) are attached. Note that if we traverse the leaves of PT(A) from left to right, spelling out the
corresponding non-terminals, then we obtain g(A). The parse tree PT of the whole RSLP generating T
is defined as PT(S) for the starting symbol S. We define the value val(v) of a node v in PT to be the
fragment T [a . . b] corresponding to the leaves T [a], . . . , T [b] in the subtree of v. Note that val(v) is an
occurrence of g(A), where A is the label of v. A sequence of nodes in PT is a chain if their values are
consecutive fragments in T .

The recompression technique by Jeż [26, 27] consists in the construction of a particular RSLP generat-
ing the input text T . The underlying parse tree PT is of depth O(log n) and it can be constructed in O(n)
time. As observed by I [24], this parse tree PT is locally consistent in a certain sense. To formalize this
property, he introduced the popped sequence of every fragment T [a . . b], which is a sequence of symbols
labelling a certain chain of nodes whose values constitute T [a . . b].

Theorem 5.6 ([24]). If two fragments are equal, then their popped sequences are equal. Moreover, each
popped sequence consists of O(log n) runs (maximal powers of a single symbol) and can be constructed
in O(log n) time. The nodes corresponding to symbols in a run share a single parent. Furthermore, the
popped sequence consists of a single symbol only for fragments of length 1.

Let F p1

1 · · ·F pt

t be the run-length encoding of the popped sequence of a substring S of T . We define

L(S) = {|g(F1)|, |g(F p1

1 )|, |g(F p1

1 F p2

2 )|, . . . , |g(F p1

1 · · ·F pt−1

t−1 )|, |g(F p1

1 · · ·F pt−1

t−1 F pt−1
t )|}.

By Theorem 5.6, the set L(S) can be constructed in O(log n) time given the occurrence T [a . . b] = S.

Lemma 5.7. Let v be a non-leaf node of PT and let T [a . . b] be an occurrence of S contained in val(v),
but not contained in val(u) for any child u of v. If T [a . . c] is the longest prefix of T [a . . b] contained in
val(u) for a child u of v, then |T [a . . c]| ∈ L(S). Symmetrically, if T [c′ + 1 . . b] is the longest suffix of
T [a . . b] contained in val(u) for a child u of v, then |T [a . . c′]| ∈ L(S).

Proof. Consider a sequence v1, . . . , vp of nodes in the chain corresponding to the popped sequence of
S = T [a . . b]. Each of these nodes is a descendant of a child of v. Note that T [a . . c] = val(v1) · · · val(vq),
where v1, . . . , vq is the longest prefix consisting of descendants of the same child. If the labels of vq and
vq+1 are distinct, then they belong to distinct runs and |T [a . . c]| ∈ L(S). Otherwise, vq and vq+1 share
the same parent: v. Thus, q = 1 and |T [a . . c]| = |val(v1)| ∈ L(S). The proof of the second claim is
symmetric.

Data Structure. We use recompression to build an RSLP generating T and the underlying parse tree
PT. We also construct the component of Lemma 5.5 with BP = {i + 1

2 : i ∈ L(P )} for each pattern
P ∈ D. Moreover, for every symbol A we store the number of occurrences of patterns from D in g(A).
Additionally, if A → Bk is a power, we also store the number of occurrences in g(Bi) for i ∈ [1 . . k]. The
space consumption is O(n + d logn) since |BP | = O(log n) for each P ∈ D.

Efficient preprocessing. The RSLP and the parse tree are built in O(n) time, and the sets BP are
determined in O(d logn) time using Theorem 5.6. The data structure of Lemma 5.5 is then constructed

in O(n + d log3/2 n) time. Next, we process the RSLP in a bottom-up fashion. If A is a terminal, its
count is easily determined. If A → BC is a concatenation, we sum the counts for B and C and the
number of occurrences spanning both g(B) and g(C). To determine the latter value, we fix an arbitrary
node v with label A and denote its children uℓ, ur. By Lemma 5.7, any occurrence of P intersecting both
val(uℓ) and val(ur) has a breakpoint aligned to the inter-position between the two fragments. Hence, the
third summand is the result of a Breakpoints-Anchor IDM query in val(v) with the anchor between
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val(uℓ) and val(ur). Finally, if A → Bk, then to determine the count in g(Bi), we add the count for B,
the count in g(Bi−1), and the number of occurrences in Bi spanning both the prefix B and the suffix
Bi−1. To find the latter value, we fix an arbitrary node v with label A, denote its children u1, . . . , uk,
and make a Breakpoints-Anchor IDM query in val(u1) · · · val(ui) with the anchor between val(u1)
and val(u2). The correctness of this step follows from Lemma 5.7. The running time of the last phase is

O(n logn/ log logn), so the overall construction time is O(n log n/ log logn + d log3/2 n).

Query. Upon a query Count(i, j), we proceed essentially as in the warm-up solution: we recursively
count the occurrences contained in the intersection of T [i . . j] with val(v) for nodes v in PT, starting
from the root of PT. If the two fragments are disjoint, the result is 0, and if val(v) is contained in
T [i . . j], it is the count precomputed for the label of v. Otherwise, the label of v is a non-terminal. If
it is a concatenation symbol, we recurse on both children uℓ, ur of v and sum the obtained counts. If
T [i . . j] spans both val(uℓ) and val(ur), we also add the result of a Breakpoints-Anchor IDM query
in the intersection of T [i . . j] with val(v) and the anchor between val(uℓ) and val(ur). If the label is a
power symbol A → Bk, we determine which of the children u1, . . . , uk of v are spanned by T [i . . j]. We
denote these children by uℓ, . . . , ur and recurse on uℓ and on ur. If r > ℓ, we also make a Breakpoints-

Anchor IDM query in the intersection of T [i . . j] with val(uℓ) · · · val(ur) and anchor between val(uℓ)
and val(uℓ+1). If r > ℓ + 1, we further add the precomputed value for g(Br−ℓ−1) to account for the
occurrences contained in val(uℓ+1) · · · val(ur−1) and make a Breakpoints-Anchor IDM query in the
intersection of T [i . . j] with val(uℓ+1) · · · val(ur) and anchor between ur−1 and ur. By Lemma 5.7, the
answer is the sum of the up to five values computed. The overall query time is O(log2 n/ log logn), since
we make O(log n) non-trivial recursive calls and each of them is processed in O(logn/ log logn) time.

6 Dynamic dictionaries

In the Online Boolean Matrix-Vector Multiplication (OMv) problem, we are given as input an n × n
boolean matrix M . Then, we are given in an online fashion a sequence of n vectors r1, . . . , rn, each of
size n. For each such vector ri, we are required to output Mri before receiving ri+1.

Conjecture 6.1 (OMv Conjecture [23]). For any constant ǫ > 0, there is no O(n3−ǫ)-time algorithm that
solves OMv correctly with probability at least 2/3.

We now present a restricted, but sufficient for our purposes, version of [23, Theorem 2.2].

Theorem 6.2 ([23]). Conjecture 6.1 implies that there is no algorithm, for a fixed γ > 0, that given
as input an r1 × r2 matrix M , with r1 = ⌊rγ2 ⌋, preprocesses M in time polynomial in r1 + r2 and, then,
presented with a vector v of size r2, computes Mv in time O(r1+γ−ǫ

2 ) for ǫ > 0, and has error probability
of at most 1/3.

We proceed to obtain a conditional lower bound for IDM in the case of a dynamic dictionary. This
lower bound clearly carries over to the other problems we considered.

Theorem 6.3. The OMv conjecture implies that there is no algorithm that preprocesses T and D in time
polynomial in n, performs insertions to D in time O(nα), answers Exists(i, j) queries in time O(nβ),
in an online manner, such that α + β = 1 − ǫ for ǫ > 0, and has error probability of at most 1/3.

Proof. Let us suppose that there is such an algorithm and set γ = (α+ ǫ/2)/(β + ǫ/2). Given an r1 × r2
matrix M , satisfying r1 = ⌊rγ2 ⌋, we construct a text T of length n = r1r2 as follows. Let T ′ be a text
created by concatenating the rows of M in increasing order. Then obtain T by assigning to each non-zero
element of T ′ the column index of the matrix entry it originates from. Formally, for i ∈ [1 . . r1r2], let
a[i] = ⌊(i − 1)/r2⌋ and b[i] = i− a[i]r2 and set T [i] = b[i] ·M [a[i] + 1, b[i]].

We compute Mv as follows. We add the indices of its at most r2 non-zero entries in an initially
empty dictionary. We then perform queries Exists(1+ tr2, (t+1)r2) for t = 0, . . . , r1−1. The answer to
query Exists(1 + tr2, (t+ 1)r2) is equal to the product of the tth row of M with v. We thus obtain Mv.
In total we perform O(r2) insertions to D and O(r1) Exists queries. Thus, the total time required is

O(r2n
α + r1n

β) = O(nβ+ǫ/2nα + nα+ǫ/2nβ) = O(n1−ǫ/2) = O(r1+γ−ǫ′

2 ) for ǫ′ > 0. Conjecture 6.1 would
be disproved due to Theorem 6.2.
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Example 6.4. For the matrix

M =









1 0 1 0

0 0 1 1

0 1 0 1









we construct the text T = 1 0 3 0 0 0 3 4 0 2 0 4. For the vector v =
[

1 1 0 0
]T

, the dictionary is

D = {1, 2}. The answers to Exists(1, 4), Exists(5, 8), Exists(9, 12) are Yes, No, Yes, respectively,

which corresponds to Mv =
[

1 0 1
]T

.

In the remainder of this section we focus on providing algorithms matching this lower bound.
We first summarize what is known for different kinds of internal pattern matching queries, in which

at query time we are given a fragment T [i . . j] and a substring P of the text and ask queries analogous to
those that we have defined for internal dictionary matching. Note that we assume that the pattern P is a
substring of T and is given by one of its occurrences. We answer Count(P, i, j) queries as follows, similar
to [33]. We construct the suffix tree T (T ) and preprocess it so that each node stores the lexicographic
range of suffixes of which its path-label is a prefix. We also construct a 2D orthogonal range counting
data structure over an n × n grid G, in which, for each suffix T [a . . n], we insert a point (a, b), where b
is the lexicographic rank of this suffix among all suffixes. We answer Count(P, i, j) as follows. We first
locate the locus of P in T (T ) using a weighted ancestor query in Õ(1) time and retrieve the associated
lexicographic range [l, r]. Next, we perform a counting query for the range [i, j − |P | + 1] × [l, r] of G,
which returns the desired count; see also [34].

Theorem 6.5 ([28, 33]). Exists(P, i, j), Report(P, i, j) and Count(P, i, j) queries can be answered
in time Õ(1 + |output|) with an Õ(n)-sized data structure that can be constructed in Õ(n) time.

Let us denote the dictionary we start with by D0. Further, let u1, u2, . . . be the sequence of dictionary
updates and Dr be the dictionary after update ur. Each update is an insertion or a deletion of a pattern
in D. We first discuss how to answer ReportDistinct queries.

ReportDistinct(i, j). We maintain the invariant that after update ut we have access to the static
data structure of Section 4 for answering ReportDistinct queries in T with respect to dictionary Dr,
for some r = t − O(m); note that m will depend on n + d. This can be achieved by rebuilding the
data structure of Section 4 every m updates in Õ(n + d) time, which amortizes to Õ((n + d)/m) time
per update. (The time complexity can be made worst-case by application of the standard time-slicing
technique.) We also store updates ur+1, . . . , ut (or the differences between Dr and Dt).

To answer a ReportDistinct query, we do the following:

1. use the static data structure to answer the ReportDistinct query for Dr;

2. filter out the O(m) reported patterns that are in Dr \ Dt;

3. search for the O(m) patterns in Dt\Dr individually in Õ(1) time per pattern by performing internal
pattern matching queries, employing Theorem 6.5.

Each query thus requires time Õ(m + |output|). We arrive at the following proposition.

Proposition 6.6. The ReportDistinct(i, j) queries for a dynamic dictionary can be answered in
Õ(m+ |output|) time per query and Õ((n+d)/m) time per update for any m ∈ [1 . . n + d] using Õ(n+d)
space.

We next show how to attain Õ(nα) update time and Õ(n1−α+ |output|) query time for any 0 < α < 1.
In other words, we show how to avoid the direct dependency on the size of the dictionary.

We store D as an array D of collections so that a pattern P ∈ D is stored in D[p], where p is the
starting position of the leftmost occurrence of P in T . We can find the desired position p for a pattern
P in O(log logn) time by locating its locus on T (T ) using a weighted ancestor query; we can have
precomputed the leftmost occurrence of the path-label of each explicit node in a DFS traversal of T (T ).
Let each collection store its elements in a min heap with respect to their lengths.

The dictionary D′ = {minD[p] : 1 ≤ p ≤ n} is of size O(n). An insertion in D corresponds to a
possible insertion followed by a possible deletion in D′, while a deletion in D corresponds to a possible
deletion in D′, followed by an insertion if the collection in D where the deletion occurs is non-empty. We
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observe that if some P ∈ D \D′ occurs in T [i . . j], then the minimum element in the collection in which
P belongs also occurs in T [i . . j].

We thus use the solution for ReportDistinct(i, j) from Proposition 6.6 for D′. We then iterate
over the elements of each collection from which an element has been reported in the order of increasing
length, while they occur in T [i . . j]; we check whether this is the case using Theorem 6.5.

Report(i, j). We first perform a ReportDistinct(i, j) query and then find all occurrences of each
returned pattern in T [i . . j] in time Õ(1 + |output|) by Theorem 6.5.

Exists(i, j). We again use D′. We first use the static version of Count(i, j), presented in Section 5 and
then the counting version of internal pattern matching for removed/added patterns using Theorem 6.5,
incrementing/decrementing the counter appropriately. We rebuild the data structure every m updates.

Count(i, j). We first build the data structure of Section 5 for Count(i, j) queries for dictionary D0.
For the subsequent m updates, we answer Count(i, j) queries, using this data structure and treating
individually the added/removed patterns using Theorem 6.5. These queries are thus answered in Õ(m)
time.

After every m updates, we update our data structure to refer to the current dictionary as follows.
(We focus on D0 and Dm for notational simplicity.) We update the counts of occurrences for all nodes
of PT by computing the counts for the set of added and the set of removed patterns in Õ(n) time and
updating the previously stored counts accordingly.

As for Breakpoints-Anchor IDM, we also have to do something smarter than simply recompute
the whole data structure from scratch, as we do not want to spend Ω(d) time. At preprocessing, we set
our grid G to be of size K ×K for K = O(n2) and identify x-coordinate i with the ith smallest element
of the set W = {Ux : U a substring of T and x ∈ {$,#}}. (Similarly for y-coordinates and TR.)

We can preprocess the suffix tree T (T ) in O(n) time so that the rank of a given T [a . . b]$ or T [a . . b]#
in W can be computed in Õ(1) time. Let us assume that T (T ) has been built for T , without $ appended
to it. We make a DFS traversal of T (T ), maintaining a global counter cr, which is initialized to zero
at the root. The DFS visits the children of a node in a left-to-right order. When traversing an edge,
we increment cr by the size of the path-label of this edge. When an explicit node v is visited for the
first time we set the rank of L(v)$ equal to cr; if v is a leaf then cr is incremented by one. The rank of
L(v)# is set to cr when v is visited for the last time. Let q be the locus of T [a . . b] in T (T ), which can
be computed in O(log logn) time using a weighted ancestor query. If q is an explicit node, the ranks of
T [a . . b]$ and T [a . . b]# are already stored at q. Otherwise, these ranks can be inferred from the ranks
of L(v)$ and L(v)# stored at the nearest explicit descendant v of q by, respectively, subtracting and
adding the distance between v and q.

Thus, instead of explicitly building trees W and WR as in the proof of Lemma 5.4, we use T (T )
and T (TR) and maintain rectangles in G. After m updates, we remove (resp. add) the Õ(m) rectangles
corresponding to patterns in D0 \ Dm (resp. Dm \ D0). We can maintain a data structure of size
O(r)for the counting version of range stabbing in a 2D grid of size K × K with r rectangles with
O(logK log r/(log log r)2) time per update and query [22].

To wrap up, updating the data structure every m updates requires Õ(1 + n/m) amortized time. We
can deamortize the time complexities using the time-slicing technique. This concludes the proof of the
following theorem.

Theorem 6.7. Exists(i, j), Report(i, j), ReportDistinct(i, j), and Count(i, j) queries for a dy-
namic dictionary can be answered in Õ(m + |output|) time per query and Õ(n/m) time per update for
any parameter m ∈ [1 . . n] using Õ(n + d) space.

7 Final Remarks

The question of whether answering queries of the type CountDistinct(i, j), i.e. returning the number
c of patterns from D that occur in T [i . . j], can be answered in time o(min{c, |j− i|}) or even Õ(1) with a
data structure of size Õ(n+ d) is left open for further investigation. It turns out that our techniques can
be used to efficiently answer such queries O(log n)-approximately; details can be found in Appendix A.
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[34] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theoretical Computer
Science, 387(3):332–347, 2007. doi:10.1016/j.tcs.2007.07.013.

[35] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Fast construction of wavelet trees. Theoretical
Computer Science, 638:91–97, 2016. doi:10.1016/j.tcs.2015.11.011.

[36] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In David Eppstein, editor,
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002,
pages 657–666. SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545469.
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A An approximation for CountDistinct(i, j)

In this section we consider queries of the type CountDistinct(i, j), i.e. returning the number of patterns
from D that occur in T [i . . j]. It turns out that our techniques can be used to efficiently answer such
queries O(logn)-approximately.

Let us first note that the hardness of the considered problem partially stems from the fact that it
is not decomposable. In this section we adapt the data structure presented in Section 5 for answering
Count(i, j) queries and show the following result.

Theorem A.1. Queries of the form CountDistinct(i, j) can be answered O(log n)-approximately in
O(log2 n/ log logn) time with a data structure of size O(n+d log2 n) that can be constructed in O(n logn+

d log5/2 n) time.

A.1 An O(log2 n)-approximation

We modify the data structure of Section 5 for Count(i, j) as follows. For each symbol A in PT, we store
the number of patterns from D that occur in g(A). Additionally, if A → Bk is a power, we also store
the number of patterns from D that occur in g(Bi) for i ∈ [1 . . k].

At query, we imitate the algorithm for Count(i, j). We count each distinct pattern that occurs in
T [i . . j] at least once and at most O(log2 n) times—at most once per visited node v such that val(v) is
contained in T [i . . j] and at most O(log n) times for each considered anchor. The latter follows from the
fact that the grid G that is used to answer Breakpoint-Anchor IDM has O(log n) rectangles for each
pattern.

Efficient preprocessing. We first show how to compute the desired counts for all nodes of the parse
tree in time O(d +

∑

v∈PT
|val(v)|) = O(d + n logn) in total. For a symbol A, with g(A) = T [a . . b], for

each i ∈ [a . . b], we compute the locus of the longest prefix of T [i . . b] that is in D in the D-modified suffix
tree of T using a weighted ancestor query. (We answer all weighted ancestor queries for all nodes as a
batch, similar to before, in the stated time complexity.) Let the respective loci be u1, u2, . . . , ub−a+1,
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sorted in the lexicographical order of their path-labels. We process the loci in this order. We process ui

by incrementing the count by the number of nodes on the path (LCA(ui−1, ui), ui], where u0 is the root
of the tree.2 (We assume that we have precomputed the number of ancestors of each node of the tree.)
The correctness of this algorithm follows from a straightforward inductive argument and the fact that
the deepest node among LCA(uj , ui), for j < i, is LCA(ui−1, ui).

Finally, we argue that the time required to compute the number of patterns from D that occur in
g(Bi) for i ∈ [1 . . k] for a symbol A → Bk is also O(d + n logn). This follows from the fact that any
pattern occurring in g(Bi) has an occurrence in the first |g(B)| positions. Hence, it suffices to compute
the required loci only for these for each i. We thus consider k · |g(B)| = |g(A)| such loci in total for this
step of the computation as well.

A.2 Refinement through Colored Range Stabbing Counting

We improve the approximation ratio as follows. We color all rectangles corresponding to the same pattern
with the same color in our data structure for Breakpoint-Anchor IDM and upon query ask a color
rectangle stabbing query, i.e. ask for the number of distinct colors that the rectangles stabbed by the
point have.

Lemma A.2. Given k 4-sided colored rectangles in 2D, such that the number of rectangles colored with
each color are O(c), we can answer colored range stabbing counting queries in O(log k/ log log k) time
with a data structure of size O(c · k) that can be constructed in O(c · k√log k) time.

Proof. We first make the following claim.

Claim A.3. Given a collection R of O(c) axes-parallel rectangles in 2D, we can construct a collection
R′ of O(c2) non-overlapping rectangles in 2D in O(c2) time such that for every (a, b) ∈ Z

2, (a, b) stabs
some rectangle in R if and only if it stabs some rectangle in R′.

Proof. We run a textbook line-sweeping algorithm, efficiently maintaining information about points
contained in some rectangle using a segment tree.

We apply the above claim to the rectangles of each color. Let us now note that a colored stabbing
counting query for our original set of rectangles corresponds to a simple stabbing counting query for the
new set and we can thus employ Theorem 5.2.

Recall that there are O(d log n) rectangles in total, O(logn) with each color. We plug in the data
structure of Lemma A.2 in our solution for Breakpoint-Anchor IDM and obtain Theorem A.1.

2A lowest common ancestor (LCA) query takes as input two nodes of a rooted tree and returns the deepest node of the
tree that is an ancestor of both. Such queries can be answered in constant time after a linear-time preprocessing of the
tree [9].
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