Skip to main content
Log in

Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper, we study the convex-straight-skeleton Voronoi diagrams of line segments and convex polygons. We explore the combinatorial complexity of these diagrams, and provide efficient algorithms for computing compact representations of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A disadvantage of this approach is that relabeling of the input sites may change the diagram. One can adopt the rule of Klein and Wood [16], who break ties by the lexicographic order of the input points, that is, by the actual coordinates of the points, but with such a solution, the Voronoi diagram will not be invariant under rotation of the plane.

  2. A common tangent of two convex polygons is a line that passes through points on the boundaries of both polygons, such that both polygons are completely contained by one of the two closed halfplanes defined by the line. For two convex polygons, there are exactly two common tangents. We refer to the tangent that lies above the line segment s as the upper common tangent, and to the other one as the lower common tangent. If s is vertical, then we arbitrarily choose the left tangent as the upper one.

References

  1. Abel, Z., Demaine, E.D., Demaine, M.L., Itoh, J., Lubiw, A., Nara, C., O’Rourke, J.: Continuously flattening polyhedra using straight skeletons. In: Proc. 30th Ann. Symp. on Computational Geometry, Kyoto, Japan, pp. 396–405 (2014)

  2. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: Proc. 2nd Ann. Int. Conf. on Computing and Combinatorics, Hong Kong, pp. 117–126 (1996)

  3. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  4. Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi diagrams. Inf. Process. Lett. 100(6), 220–225 (2006)

    Article  MathSciNet  Google Scholar 

  5. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)

    Book  Google Scholar 

  6. Barequet, G., De, M.: Voronoi diagram for convex polygonal sites with convex polygon-offset distance function. In: Proc. 3rd Int. Conf. on Algorithms and Discrete Applied Mathematics, Goa, India, pp. 24–36 (2017)

  7. Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex polygon-offset distance functions. Discret. Comput. Geom. 25(2), 271–291 (2001)

    Article  MathSciNet  Google Scholar 

  8. Barequet, G., Goodrich, M.T., Levi-Steiner, A., Steiner, D.: Contour interpolation by straight skeletons. Graph. Models 66(4), 245–260 (2004)

    Article  Google Scholar 

  9. Barequet, G., De, M., Goodrich, M.T.: Computing convex-straight-skeleton Voronoi diagrams for segments and convex polygons. In: Proc. 24th Int. Conf. Computing and Combinatorics, Qingdao, China, pp. 130–142 (2018)

  10. Cheng, S.-W., Mencel, L., Vigneron, A.: A faster algorithm for computing straight skeletons. ACM Trans. Algorithms 12(3), 44:1–44:21 (2016)

    Article  MathSciNet  Google Scholar 

  11. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.-S.: Farthest-polygon Voronoi diagrams. Comput. Geom. Theory Appl. 44(4), 234–247 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)

    Article  MathSciNet  Google Scholar 

  13. Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motorcycle graphs. Int. J. Comput. Geom. Appl. 22(5), 471–498 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: Proc. 20th Ann. Symp. on Foundations of Computer Science, San Juan, Puerto Rico, pp. 18–27 (1979)

  15. Kirkpatrick, D.G., Snoeyink, J.: Tentative prune-and-search for computing fixed-points with applications to geometric computation. Fundam. Inform. 22(4), 353–370 (1995)

    Article  MathSciNet  Google Scholar 

  16. Klein, R., Wood, D.: Voronoi diagrams based on general metrics in the plane. In: Proc. 5th Ann. Symp. on Theoretical Aspects of Computer Science, Bordeaux, France, Lecture Notes in Computer Science, vol. 294, pp. 281–291. Springer, Berlin (1988)

  17. Leven, D., Sharir, M.: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams. Discret. Comput. Geom. 2, 9–31 (1987)

    Article  MathSciNet  Google Scholar 

  18. McAllister, M., Kirkpatrick, D.G., Snoeyink, J.: A compact piecewise-linear Voronoi diagram for convex sites in the plane. Discret. Comput. Geom. 15(1), 73–105 (1996)

    Article  MathSciNet  Google Scholar 

  19. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. Appl. 11(6), 583–616 (2001)

    Article  MathSciNet  Google Scholar 

  20. Menger, K.: Untersuchungen über allgemeine Metrik. Mathematische Annalen 100, 75–163 (1928)

    Article  MathSciNet  Google Scholar 

  21. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Int. J. Comput. Geom. Appl. 23(6), 443–460 (2013)

    Article  MathSciNet  Google Scholar 

  22. Papadopoulou, E., Zavershynskyi, M.: The higher-order Voronoi diagram of line segments. Algorithmica 74(1), 415–439 (2016)

    Article  MathSciNet  Google Scholar 

  23. Rappaport, D.: Computing the furthest site Voronoi diagram for a set of discs (preliminary report). In: Proc. 1st Int. Workshop on Algorithms and Data Structures, Ottawa, Canada, Lecture Notes in Computer Science, vol. 382, pp. 57–66 (1989)

  24. Rinow, W.: Die innere Geometrie der Metrischen Räume, Grundtehren der Mathematischen Wissenschaften in EinzeldarstelItmgen, vol. 105. Springer, Berlin (1961)

    Book  Google Scholar 

  25. Yap, C.-K.: An O$(n \log n)$ algorithm for the Voronoi diagram of a set of simple curve segments. Discret. Comput. Geom. 2, 365–393 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minati De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preliminary versions of this paper appeared in the proceedings of The 3rd Int. Conf. on Algorithms and Discrete Applied Mathematics, 2017 [6], and The 24th Int. Computing and Combinatorics Conference, 2018 [9]. Work on this paper by the first author has been supported in part by BSF Grant 2017684. Work on this paper by the second author has been supported in part by DST-INSPIRE Faculty Grant (DST-IFA14-ENG-75) and IIT Delhi New Faculty Seed Grant. Work on this paper by the third author has been supported in part by NSF Grant 1815073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barequet, G., De, M. & Goodrich, M.T. Convex-Straight-Skeleton Voronoi Diagrams for Segments and Convex Polygons. Algorithmica 83, 2245–2272 (2021). https://doi.org/10.1007/s00453-021-00824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00824-9

Keywords

Navigation