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Abstract
We consider the problem of encoding two-dimensional arrays, whose elements come 
from a total order, for answering Top-k queries. The aim is to obtain encodings that 
use space close to the information-theoretic lower bound, which can be constructed 
efficiently. For an m × n array, with m ≤ n , we first propose an encoding for answer-
ing 1-sided ���-k queries, whose query range is restricted to [1…m][1… a] , for 
1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) 
���-k queries that takes (m lg

(

(k+1)n

n

)

+ 2nm(m − 1) + o(n)) bits, which generalizes 
the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial O(nm lg n)

-bit encoding, our encoding takes less space when m = o(lg n). In addition to the 
upper bound results for the encodings, we also give lower bounds on encodings for 
answering 1 and 4-sided ���-k queries, which show that our upper bound results are 
almost optimal.
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1  Introduction

Given a one-dimensional (1D) array A[1… n] of n elements from a total 
order, the range Top-k query on A ( ���-k(i, j,A), 1 ≤ i, j ≤ n ) returns the posi-
tions of k largest values in A[i… j] . In this paper, we refer to these queries as 
2-sided ���-k queries; and the special case where the query range is [1… i] , for 
1 ≤ i ≤ n , as the 1-sided ���-k queries. We can extend the definition to the two-
dimensional (2D) case—given an m × n 2D array A[1…m][1… n] of mn ele-
ments from a total order and a k ∈ {1,… ,mn} , the range Top-k query on A 
( ���-k(i, j, a, b,A), 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n ) returns the positions of k largest val-
ues in A[i… j][a… b] . Without loss of generality, we assume that all elements in 
A are distinct (by ordering equal elements based on the lexicographic order of their 
positions). Also, we assume that m ≤ n . In this paper, we consider the following 
types of ���-k queries.

•	 Based on the order in which the answers are reported

•	 Sorted query: the k positions are reported in sorted order of their correspond-
ing values.

•	 Unsorted query: the k positions are reported in an arbitrary order.

•	 Based on the query range

•	 1-sided query: the query range is A[1…m][1… b] , for 1 ≤ b ≤ n.
•	 4-sided query: the query range is A[i… j][a… b] , for i, j ∈ {1,m} , and 

a, b ∈ {1, n}.

We consider how to support these range ���-k queries on A in the encoding model. 
In this model, one needs to construct a data structure (an encoding) so that queries 
can be answered by only accessing the data structure, without accessing the original 
input array A. The minimum size of such an encoding is also referred to as the effec-
tive entropy of the input data [10]. Our aim is to obtain encodings that use space 
close to the effective entropy, which can be constructed efficiently. In the rest of the 
paper, we use ���-k(i, j, a, b) to denote ���-k(i, j, a, b,A) if A is clear from the con-
text. Also, unless otherwise mentioned, we assume that all ���-k queries are sorted, 
and 4-sided ���-k queries. Finally, we assume the standard word-RAM model [17] 
with word size Θ(lg n)1.

1.1 � Previous work

The problem of encoding 1D arrays to support ���-k queries has been widely stud-
ied in the recent years. Especially, the case when k = 1 , which is commonly known 
as the Range maximum query (RMQ) problem, has been studied extensively, and 
has a wide range of applications [1]. Fischer and Heun [6] proposed an optimal 

1  We use lg n to denote log2 n.
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2n + o(n)-bit data structure which answers RMQ queries on 1D array of size n in 
constant time. For a 2D array A of size m × n , a trivial way to encode A for answer-
ing RMQ queries is to store the rank of all elements in A, using O(nm lg n) bits. 
Golin et al. [10] show that when m = 2 and ��� encodings on each row are given, 
one can support ��� queries on A using n − O(lg n) extra bits by encoding a joint 
Cartesian tree of the two rows. By extending the above encoding, they obtained 
nm(m + 3)∕2-bit encoding for answering ��� queries on A, which takes less space 
than the trivial O(nm lg n)-bit encoding when m = o(lg n) . Brodal et al. [3] proposed 
an O(min (nm lg n,m2n))-bit data structure which supports ��� queries on A in con-
stant time. Finally, Brodal et al. [2] obtained an optimal O(nm lgm)-bit encoding for 
answering ��� queries on A (although the queries are not supported efficiently). 
For the case when k = 2 , Davoodi et al. [5] proposed a 3.272n + o(n)-bit data struc-
ture to encode a 1D array of size n, which supports ���-2 queries in constant time. 
The space was later improved by Gawrychowski and Nicholson [9] to the optimal 
2.755n + o(n) bits, although it does not support queries efficiently.

For general k, on a 1D array of size n, Grossi et al. [11] proposed an O(n lg k)-bit 
encoding which supports sorted ���-k queries in O(k) time, and showed that at least 
n lg k − O(n) bits are necessary for answering 1-sided ���-k queries; Gawrychowski 
and Nicholson [9] proposed a (k + 1)nH(1∕(k + 1)) + o(n)-bit2 encoding for ���-k 
queries (although the queries are not supported efficiently), and showed that at least 
(k + 1)nH(1∕(k + 1))(1 − o(1)) bits are required to encode ���-k queries. They also 
proposed a (k + 1.5)nH(1.5∕(k + 1.5)) + o(n lg k)-bit data structure for answering 
���-k queries in O(k6 lg2 nf (n)) time, for any strictly increasing function f. For a 2D 
array A of size m × n , one can answer ���-k queries using O(nm lg n) bits, by stor-
ing the rank of all elements in A. To support the queries efficiently on this encod-
ing, one can use some of the existing orthogonal range reporting data structures in 
3D, in which the z-coordinate stores the rank of the elements in A (while x- and 
y-coordinates correspond to the positions of the elements in A), while reporting the 
points in sorted order of their ranks. However, all the known 3D orthogonal range 
reporting data structures use at least linear space (i.e., O(nm lg n) bits), and take at 
least O(k ⋅ polylog(n)) time to answer sorted ���-k queries. See 7 [13] for details. 
Also Rahul and Tao considered the data structures for answering ���-k queries in 
ℝ

2 [19, 20]; all their data structures use super-linear space (for 4-sided queries). To 
the best of our knowledge, there are no results on encodings for range ���-k queries 
on 2D arrays for k > 1.

1.2 � Our results

Given an m × n array A, we first show that O(min {nm lg k, nk lgm}) bits are neces-
sary and sufficient for answering sorted 1-sided ���-k queries. For unsorted 1-sided 
queries, we show that O(min {nk lg (m∕k), nm lg (k∕m)}) bits are necessary and suf-
ficient. This space bound is strictly less than the space used to encode sorted 1-sided 

2  H(x) = x lg (1∕x) + (1 − x) lg (1∕(1 − x)) , i.e., an entropy of the binary string whose density of zero is x
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���-k queries. Thus it is interesting to note that in 2D, there is a gap between the 
space needed to encode the 1-sided ���-k queries for the sorted and unsorted cases. 
In contrast, in 1D, the space needed to encode the 1-sided ���-k queries for both 
sorted and unsorted cases are asymptotically the same (for k = o(n) ). We show that 
such encodings can be simply constructed in O(mn lg k + nk) time by using a min-
heap data structure.

Next, in Sect.  3, we consider encodings for 4-sided ���-k queries on an m × n 
array A. We first observe that one can obtain an O(mn lg n)-bit data structure which 
answers 4-sided ���-k queries on A in O(k) time, by combining the results of [3] 
and [4]. We then propose the alternative encoding which uses less space than the 
trivial mn⌈lg (mn)⌉-bit encoding (which stores all the positions of A in sorted order), 
for small m.

To be more precise, we first show that 4n bits are sufficient for answering sorted 
4-sided ���-k queries on 2 × n array, when encodings for answering sorted 2-sided 
���-k queries for each row are given. This encoding is obtained by a binary DAG 
for answering ���-2 queries on 2 × n array which generalizes the (5n − O(lg n))

-bit encoding of ��� query on 2 × n array proposed by Golin et al. [10], to gen-
eral k; and shows that we can encode a joint Cartesian tree for general k (which 
corresponds to the DAG in our paper) using 4n bits. Note that the additional 
space is independent of k. By extending the encoding on 2 × n array, we obtain 
(m lg

(

(k+1)n

n

)

+ 2nm(m − 1) + o(n))-bit encoding for answering 4-sided ���-k que-
ries on m × n arrays. This improves upon the trivial ⌈mn log (mn)⌉-bit encoding when 
m = o(lg n) , and also generalizes the mn(m + 3)∕2-bit encoding [10] for answering 
��� queries. The trivial encoding of the input array takes O(nm lg n) bits, whereas 
one can easily show a lower bound of Ω(nm lg (max (m, k))) bits for any encoding of 
an m × n array that supports ���-k queries since at least O(nm lgm) bits are neces-
sary for answering ��� queries [3], and at least n lg k bits are necessary for answer-
ing ���-k queries for each row [11]. Thus, there is only a small range of parameters 
where a strict improvement over the trivial encoding is possible. Our result closes 
this gap partially, achieving a strict improvement when m = o(lg n).

In Sect.  4, we also obtain a data structure for answering ���-k queries in 
O(k2 + kT(n, k)) time using 2S(n, k) + (4k + 7)n + ko(n) bits, if there exists an 
S(n, k)-bit encoding to answer sorted 2-sided ���-k queries on a 1D array of size n 
in T(n, k) time. Comparing to the 2S(n, k) + 4n + o(n)-bit encoding, this data struc-
ture uses more space but supports ���-k queries efficiently (the 2S(n, k) + 4n + o(n)

-bit encoding takes O(k2n2 + nkT(n, k)) time for answering ���-k queries).
Finally, in Sect. 5, given a 2 × n array A, we consider the lower bound on addi-

tional space required to answer unsorted (or sorted) ���-k on A when encodings of 
���-k query for each row are given. We show that at least 1.27(n − k∕2) − o(n) addi-
tional bits are necessary for answering unsorted 1-sided ���-k queries on A, when 
encodings of unsorted 1 or 2-sided ���-k query for each row are given. Note that 
this lower bound also gives the lower bound for answering unsorted 4-sided ���-k 
queries on 2 × n array under the same condition. We also show that 2n − O(lg n) 
additional bits are necessary for answering sorted 4-sided ���-k queries on A, when 
encodings of unsorted (or sorted) 2-sided ���-k query for each row are given. These 
lower bound results imply that our encodings in 3 are close to optimal (i.e., within 
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O(n) bits of the lower bound), since any ���-k encoding for the array A also needs to 
support the ���-k queries on the individual rows. All these results are summarized 
in Table 1.

2 � Encoding 1‑Sided Range ���-k Queries on Two Dimensional Array

In this section, we consider the encoding of sorted and unsorted 1-sided ���-k que-
ries on a 2D array A[1…m][1… n] . In the rest of the paper, we use (i, j) to denote 
the position in the i-th row and j-th column of a 2D array.

2.1 � Sorted 1‑sided queries

We first introduce an encoding by simply extending the encoding of sorted 
1-sided ���-k queries for 1D array proposed by Grossi et  al. [12]. Next we pro-
pose an optimal encoding for sorted 1-sided ���-k queries on A. For a 1D array 
A�[1… n] , define another 1D array X[1… n] as follows. For 1 ≤ i ≤ k , define 
X[i] = i . For k < i ≤ n , X[i] = X[i�] if there exists a position i′ which satisfies 
���-k(1, i,A�) = ���-k(1, i − 1,A) ⧵ {i�} ∪ {i} , and X[i] = k + 1 otherwise.

Table 1   Summary of the results of upper and lower bounds for ���-k encodings on 2D arrays

The lower bound results marked (*) (of Theorem 7 and 8) are for the additional space (in bits) necessary, 
assuming that encodings of ���-k queries for both rows are given. Results in [10] support O(1)-time que-
ries using o(n) extra bits

Dimension Query type Space (in bits) Reference

Upper bounds
2 × n 4-sided, sorted 5n − O(lg n) [10], k = 1

2 lg
(

3n

n

)

+ 3n + o(n) Theorem 4, k = 2

2 lg
(

(k+1)n

n

)

+ 4n + o(n) Theorem 3

m × n 1-sided, unsorted O(min {nk lg (m∕k), nm lg (k∕m)}) Theorem 2
1-sided, sorted O(min {nk lgm, nm lg k}) Theorem 1
4-sided, sorted O(min (nm lg n,m2n)) [10], k = 1

O(nm lgm) [2], k = 1

O(nm lg n) Trivial

m lg
(

(k+1)n

n

)

+ 2nm(m − 1) + o(n) Corollary 2

Lower bounds
2 × n 4-sided 5n − O(lg n) [10], k = 1

1(or 4)-sided, unsorted 1.27(n − k∕2) − o(n) (*) Theorem 7
4-sided, sorted 2n − O(lg n) (*) Theorem 8

m × n 1-sided, unsorted Same as the upper bound Theorem 2
1-sided, sorted Same as the upper bound Theorem 1
4-sided, sorted Ω(nm lg (max (m, k))) [3, 11]
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Then one can answer the ���-k(1, i,A�) by finding the rightmost occurrence of 
every element 1… k in X[1… i] . By representing X (along with some additional 
auxiliary structures) using n lg k + O(n) bits, Grossi et  al. [12] obtained an encod-
ing which supports 1-sided ���-k queries on A′ in O(k) time. For a 2D array A, one 
can encode A to support sorted 1-sided ���-k queries by writing down the values of 
A in column-major order into a 1D array, and using the encoding described above 
– resulting in the following encoding.

Proposition 1  A 2D array A[1…m][1… n] can be encoded using mn lg k + O(n) 
bits to support sorted 1-sided ���-k queries in O(k) time.

Now we describe an optimal encoding of A which supports sorted 1-sided ���-k 
queries. For 1D array A�[1… n] , we can define another 1D array B�[1… n] such that 
for 1 ≤ i ≤ n , B�[i] = l if A�[i] is the l-th largest element in A�[1… i] with l ≤ k , and 
B�[i] = k + 1 otherwise. Then we answer the ���-k(1, i,A�) query as follows. We 
first find the rightmost position p1 ≤ i such that B�[p1] ≤ k . Then we find the rest 
of k − 1 positions pk < pk−1 < ⋯ < p2 such that for 2 ≤ j ≤ k , pj is the rightmost 
position in A�[1… pj−1 − 1] with B�[pj] ≤ k − j + 1 . Finally, we return the posi-
tions p1, p2,… , pk . Therefore by storing B′ using n⌈lg (k + 1)⌉ bits, we can answer 
the sorted 1-sided ���-k queries on A′ . Also we can sort A�[p1],… ,A�[pk] using 
the property that for 1 ≤ b < a ≤ k , A�[pa] < A�[pb] if and only if one of the fol-
lowing two conditions hold: (i) B�[pa] ≥ B�[pb] , or (ii) B�[pa] < B�[pb] and there 
exist at least q = B�[pb] − B�[pa] positions j1, j2,… , jq between pa and pb where 
B�[jr] ≤ B�[pa] for all 1 ≤ r ≤ q.

We can extend this encoding for the sorted 1-sided ���-k queries on a 2D array A, 
to obtain an optimal encoding as stated in the following theorem.

Theorem  1  Given a 2D array A[1…m][1… n], there is an encoding of size 
O(min {nm lg k, nk lgm}) bits, which can answer sorted 1-sided ���-k queries. Also, 
the space bound is asymptotically optimum.

Proof  For 1 ≤ j ≤ n , we first define the elements of j-th column in A as a1j … amj . 
Then we define the sequence Sj = s1j … smj such that for 1 ≤ i ≤ m , sij = l if aij is the 
l-th largest element in A[1…m][1… j] with l ≤ k , and sij = k + 1 otherwise. Since 
there exist T =

∑min (m,k)

p=0

�

m

p

��

k

p

�

p! possible Sj sequences (T is the total number of 
ways in which we can choose p out of the m rows for new entries into the ���-k 
positions, summed over all possible values of p), we can store SA = S1 … Sn using 
n⌈lgT⌉ = O(min {nm lg k, nk lgm}) bits and we can answer the sorted 1-sided 
���-k(1,m, 1, j) queries on A by the following procedure. 

1.	 Find the rightmost column q, for some q ≤ j , such that Sq has � > 0 elements 
sp1q,… , sp

�
q where sp1q < ⋯ < sp

𝓁
q < k + 1 . If � = k , we return the positions of 

(p1, q)… (pk, q) as the answers of the query, and stop. Otherwise (if � < k ), we 
return the positions of (p1, q)… (p

�
, q) , and

2.	 Repeat Step 1 by setting k to k − � , and j to q − 1.
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We can return the positions in the sorted order of their corresponding values by 
applying the procedure to sort the answers of 1-sided ���-k queries on SA , described 
above. This shows the upper bound.

We now show that n lgT  bits are necessary to encode sorted 1-sided ���-k que-
ries on A. Suppose there are two distinct sequences SA = S1 … Si and SA�

= S�
1
… S�

i
 

which give sorted 1-sided ���-k encodings of 2D arrays A and A′ , respectively. For 
1 ≤ b ≤ n , if Sb ≠ S′

b
 then ���-k(1,m, 1, b,A) ≠ ���-k(1,m, 1, b,A�) by the definition 

of SA and SA′ . Since for an m × n array, there are Tn distinct sequences SA1 … SATn , 
We now prove for 1 ≤ q ≤ Tn , each SAq = S

q

1
… S

q
n has an array A such that SA = SAq , 

which completes the proof of the theorem.
Without loss of generality, suppose that all elements in A come from the set 

L = {1,… ,mn} . Then we can reconstruct A from the rightmost column using SAq as 
follows. If sq

jn
≤ k , for 1 ≤ j ≤ m , we assign the sq

jn
-th largest element in L to A[j][n]. 

After we assign all values in the rightmost column with sq
jn
≤ k , we discard all 

assigned values from L, move to (n − 1)-th column and repeat the procedure. After 
we assign all values in A whose corresponding values in SAq are smaller than k + 1 , 
we assign the remaining values in L to remaining positions in Aq which are not 
assigned yet. Thus for any 1 ≤ b ≤ n , if Sq

b
 has � > 0 elements sp1b,… , sp

�
b where 

sp1b < ⋯ < sp
𝓁
b < k + 1 , then the b-th column in A contains �-largest elements in 

A[1…m][1… b] by the above procedure. This shows that SA = SAq . 	�  ◻

Note that this encoding takes less space than the encoding in the Proposition 1.

2.2 � Unsorted 1‑sided queries

In this section, we consider the encoding of unsorted 1-sided ���-k(1,m, 1, b) 
queries on a 2D array A. Let unsorted ���-k(1,m, 1, b) = b1,… , bk be the k posi-
tions, ordered in their lexicographic order. Grossi et al [12] show that for any array 
B[1… n] of size n, one can support unsorted ���-k(1, i,B) queries for 1 ≤ i ≤ n 
using n lg k + O(n)) bits with O(k) query time. This implies that we can answer 
unsorted 1-sided ���-k queries on A using mn lg k + O(mn) bits with O(k) query 
time, by converting the unsorted 1-sided ���-k queries on A into the unsorted ���-k 
queries on a 1D array of size mn which is obtained by the values of A in column-
major order. Now we consider the another encoding which supports unsorted query 
using optimal space, if query time is not of concern, and show the following.

Theorem  2  Given a 2D array A[1…m][1… n], there is a data structure of size 
O(min {nk lg (m∕k), nm lg (k∕m)}) bits which supports unsorted 1-sided ���-k que-
ries. Moreover, the space bound is asymptotically optimal.

Proof  We first show the upper bound by considering the two cases, (i) k ≤ m , and 
(ii) k > m separately.

Case (i) k ≤ m . In this case, we first encode the answers of unsorted 
���-k(1,m, 1, 1) query using ⌈lg

�

m

k

�

⌉ bits. For b > 1 , the answers of ���-k(1,m, 1, b) 
are the positions of k largest values in A out of m + k positions, corresponding to the 
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positions in ���-k(1,m, 1, b − 1) along with the positions {(1, b),… , (m, b)} . Thus, 
for any 1 < b ≤ n , if we know the answers of unsorted ���-k(1,m, 1, b − 1) , we can 
encode the answers of unsorted ���-k(1,m, 1, b) using ⌈lg

�

k+m

k

�

⌉ bits. Hence, the total 
space for encoding the answers for all the n columns is ⌈lg

�

m

k

�

⌉ + (n − 1)⌈lg
�

k+m

k

�

⌉ 
bits. We can find the answers of a 1-sided ���-k(1,m, 1, b) query as follows. We first 
decode the answers of ���-k(1,m, 1, 1) , and decode the answers of unsorted 1-sided 
query from left to right until we decode the answers of b-th unsorted 1-sided ���-k 
query.

Case (ii) k > m . When 1 ≤ b ≤ ⌊k∕m⌋ , it is obvious that 
���-k(1,m, 1, b) = {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ b} , i.e., all the positions within the 
query range are part of the answer. Therefore no extra space is needed for storing the 
answers of unsorted ���-k(1,m, 1, b) queries for 1 ≤ b ≤ ⌊k∕m⌋ . When b > ⌊k∕m⌋ , 
we can encode the answers of ���-k(1,m, 1, b) queries using 
(n − 1 − ⌊k∕m⌋)⌈lg

�

k+m

k

�

⌉ + ⌈lg
�

m

k−m⌊k∕m⌋

�

⌉ bits by using the similar encoding as 
described above (using ⌈lg

�

m

k−m⌊k∕m⌋

�

⌉ bits for answering ���-k(1,m, 1, ⌊k∕m⌋ + 1) 
query and (n − 1 − ⌊k∕m⌋)⌈lg

�

k+m

k

�

⌉ bits for answering ���-k(1,m, 1, b) queries for 
any b > ⌊k∕m⌋ + 1 ). Also, we can find the answers of unsorted 1-sided 
���-k(1,m, 1, b) by a similar procedure as in Case (i). The only difference is when 
1 ≤ b ≤ ⌊k∕m⌋ , we just report all positions in the sub-array A[1…m][1… b].

From the above two cases, it follows that we can answer unosorted 1-sided ���-k 
queries on A using at most n log

(

k+m

k

)

 bits. If k < m , then n log
(

k+m

k

)

≈ nk log(m∕k) ; 
and if k > m , then n log

(

k+m

k

)

≈ nm log(k∕m) . Thus the space bound can be written 
as O(min {nk lg (m∕k), nm lg (k∕m)}) bits. This shows the upper bound stated in the 
theorem.

Now we show the lower bound. Without loss of generality, suppose that all ele-
ments in the array come from the set Ln = {1, ...,mn} , and k ≤ m (we can prove 
the case when k > m in a similar way). Then it is enough to show that there are 
N =

(

m

k

)(

k+m

k

)(n−1)
 arrays A1 …AN of size m × n such that for any 1 ≤ s ≠ t ≤ N , 

there exists 1 ≤ b ≤ n such that unsorted ���-k(1,m, 1, b,As) ≠ ���-k(1,m, 1, b,At).
We prove the above statement by induction on n. When n = 1 , we assign 

{m,…m − k + 1} to the answers of unsorted ���-k(1,m, 1, 1) , and assign 
L1 − {m,…m − k + 1} to remaining positions arbitrary. Since any k positions in 
(i, 1), 1 ≤ i ≤ m can be the answer of ���-k(1,m, 1, 1) query, there are 

(

m

k

)

 arrays 
such that any two of them have different answers for the ���-k(1,m, 1, 1) query.

Now assume the inductive hypothesis that the above statement holds for some n′ 
where 1 ≤ n′ < n , and that there are N� =

(

m

k

)(

k+m

k

)(n�−1)
 arrays A1 …AN� , satisfying 

the above statement. Let a set M = L(n�+1) − Ln� = {m(n� + 1),…m(n� + 1) − k + 1} 
and M� = �.

To prove the inductive step for n� + 1 , we first pick an arbitrary As , 1 ≤ s ≤ N′ 
from the set of arrays {A1 …AN� } and add the (n� + 1)-th column to As (none 
of the positions in this column have an assigned value). Then for some integer � 
where 0 ≤ � ≤ k , we pick the answers of unsorted ���-k(1,m, 1, n� + 1) query by 
choosing � positions from the set ���-k(1,m, 1, n�,As) = {n�

1
… n�

k
} and choos-

ing the remaining k − � positions from the (n� + 1)-th column. We then choose � 
elements from M and add them to the � positions chosen from the set {n�

1
… n�

k
} . 
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When we assign a value x ∈ M to (i, j) ∈ {n�
1
… n�

k
} , we delete x from M, set 

M� = M� ∪ As[i][j] and As[i][j] = x . Since n′
i
≤ n′m for all 1 ≤ i ≤ k , it is easy to 

show that this does not change the answers of unsorted ���-k(1,m, 1, b,As) for all 
1 ≤ b ≤ n′ . Next, we assign the remaining values in M to the k − � chosen posi-
tions in the (n� + 1)-th column, and finally assign the values in M′ to the remaining 
positions in that column arbitrarily. Since there are 

∑k

�=1

�

k

�

��

m

k−�

�

=
�

m+k

k

�

 ways to 
select the answers of unsorted ���-k(1,m, 1, n� + 1) query, and for each s, there are 
Q =

(

m+k

k

)

 arrays As1 …AsQ such that for all 1 ≤ t ≠ � ≤ Q and 1 ≤ b ≤ n′ , unsorted 
���-k(1,m, 1, b,Ast) = ���-k(1,m, 1, b,As�) = ���-k(1,m, 1, b,As) but unsorted 
���-k(1,m, 1, n� + 1,Ast) ≠ ���-k(1,m, 1, n� + 1,As�) . Therefore the above state-
ment holds for n� + 1 whenever it holds for n′ , which proves the theorem. 	�  ◻

Note that we can construct the encoding of Theorem 2 in O(mn lg k + nk) time by 
maintaining a min-heap of size at most k. More precisely, we insert the values of A 
in column-major order and delete the minimum value in the heap when the size of 
the heap is more than k. We can answer the position of the k largest values in A[1, m]
[1, i] for 1 ≤ i ≤ n , by scanning the heap after every m-th insertion, in O(k) time.

Remark  Let Ssorted and Sunsorted be the space needed to encode the sorted and 
unsorted 1-sided ���-k queries respectively. For 1D array, Gawrychowski and 
Nicholson showed that Ssorted∕Sunsorted ≤ 2 (thus, the space requirements are 
asymptotically same for both case) [8]. In contrast, in 2D array case when k = m , 
Ssorted∕Sunsorted ≤ lg k by Theorems  1 and 2, which implies the gap between the 
space needed to encode the 1-sided ���-k queries for sorted and unsorted case for a 
2D array is significantly more than the case for a 1D array.

3 � Encoding 4‑Sided ���-k Queries on on 2 × n Array

In this section, we give an encoding which supports general ���-k queries on m × n 
2D array A. Note that if query time is not of concern in the above data structure, one 
can simply consider the mn⌈lg (mn)⌉-bit trivial encoding for answering ���-k que-
ries on A, by storing the rank (i.e., the position in sorted order) of all the elements in 
A. We first introduce an O(mn lg n)-bit data structure which supports ���-k query in 
O(k) time by using the RMQ encoding of Brodal et al. [2].

Proposition 2  Given a 2D array A[1…m][1… n], there exists an O(mn lg n)-bit 
data structure to support unsorted ���-k(i, j, a, b,A) in O(k) time for 1 ≤ a, b ≤ m 
and 1 ≤ i, j ≤ n.

Proof  We use a data structure similar to the one outlined in [4] (based on Fred-
erikson’s heap selection algorithm [7]) for answering unsorted ���-k queries in 1D 
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array3. First encode A using O(mn lg n) bits to support RMQ (range maximum) que-
ries in constant time for any rectangular range in A. This encoding also supports 
finding the rank of any element in A in O(1) time [3]. Next, let x = A[x1][x2] be the 
maximum value in A[i… j][a… b] , which can be found using an RMQ query on A. 
Then consider the 4-ary heap obtained by the following procedure. The root of the 
heap is x, and its four subtrees are formed by recursively constructing the 4-ary heap 
on the sub-arrays A[i… x1 − 1][a… b] , A[x1 + 1… j][a… b] , A[x1][a… x2 − 1] and 
A[x1][x2 + 1… b] , respectively. Now, we can find the k largest elements in the above 
4-ary heap in O(k) time using the algorithm proposed by Frederickson [7] (note that 
this algorithm only builds a heap with O(k) nodes which is a connected subgraph of 
the above 4-ary heap). 	�  ◻

We now introduce alternative encoding to support ���-k queries on an m × n 2D 
array A, which take less space than the trivial encoding for small m. The overall idea 
is as follows. We first show that 4n bits are sufficient for answering sorted 4-sided 
���-k queries on A for m = 2 when encodings for answering sorted 2-sided ���-k 
queries for each row are given. This encoding is obtained by encoding the binary 
DAG which is defined later. After that, we extend the encoding into m × n array and 
obtain (m lg

(

(k+1)n

n

)

+ 2nm(m − 1) + o(n))-bit encoding for answering ���-k queries 
on A. Note that this encoding takes less space than the trivial mn⌈lg (mn)⌉-bit encod-
ing when m = o(lg n).

Now we describe the encoding of sorted 4-sided ���-k on A when m = 2 . For 
1 ≤ i ≤ 2 , let Ai[1… n] be the array of the i-th row in A, and assume that sorted 
2-sided ���-k encodings on A1 and A2 are already given. When k = 1 , i.e., to answer 
��� queries on A, one can use the joint Cartesian tree of Golin et  al. [10]. The 
joint Cartesian tree of constructs a conceptual binary tree analogous to a Cartesian 
tree, storing a bit indicating which row the maximum element in the range comes 
from, splitting the range corresponding to the node at the position of the maxi-
mum element, and then recursing on each subrange. Thus by storing an extra n bits 
(one at each node of the conceptual binary tree), they showed that one can answer 
���(1, 2, a, b,A) queries for any 1 ≤ a, b ≤ n , if the encodings for answering ��� 
on A1 and A2 are given. See [10] for details. To answer the sorted 4-sided ���-k 
queries with k ≥ 2 , we extend the idea of a joint Cartesian tree into a DAG-based 
structure, denoted by Dk

A
 , which is defined as follows.

Every node p in Dk
A
 is labeled with some closed interval Ip = [a, b] , where 

1 ≤ a, b ≤ n . In this case, we use both ���-k(p) and ���-k(Ip) to refer to the sorted 
���-k(1, 2, a, b,A) query. For a node p with label Ip = [a, b] in Dk

A
 and 1 ≤ i ≤ k , let 

(pi
r
, pi

c
) be the position of the i-th largest element in A[1, 2][a… b] . Now we define 

Dk
A
 as follows (see Fig. 1 for an example.).

1.	 The root of Dk
A
 is labeled with the range [1, n].

3  Brodal et al. [4] also give another structure to answer sorted ���-k queries, with the same time and 
space bounds.
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2.	 A node p with label Ip = [a, b] does not have any child node (i.e., leaf node) if 
2(b − a + 1) ≤ k.

3.	 Suppose there exists a non-leaf node p with label Ip = [a, b] in Dk
A
 , and let a′ and 

b′ ( a ≤ a′ ≤ b′ ≤ b ) be the leftmost and rightmost column indices among the 
answers of ���-k(p) , respectively. If a < b′ , then the node p has a node with label 
[a, b� − 1] as a left child. Similarly, if a′ < b , the node p has a node with label 
[a� + 1, b] as a right child.

The following lemma states some useful properties of Dk
A
.

Lemma 1  Let A be a 2 × n array. The following statements hold.

	 (i)	 For any two distinct nodes p and q in Dk
A
, ���-k(p) ≠ ���-k(q) (i.e., any two 

distinct nodes have different ���-k answers).
	 (ii)	 Ip ⊂ Iq if and only if p is descendant of q in Dk

A
.

	 (iii)	 For any interval [a, b] with 1 ≤ a ≤ b ≤ n, there exists a unique node p in Dk
A
 

which satisfies (i) [a, b] ⊂ Ip, and (ii) label of any descendant of p does not 
contain [a, b]. Furthermore, for such a node p,  ���-k([a, b]) = ���-k(p).

Proof 

	 (i)	 From the construction of Dk
A
 , one can observe that if there is a node 

with label [a,  b] in Dk
A
 , with 1 < a ≤ b < n , then both (a − 1)-th and 

(b + 1)-th column contain at least one element that is larger than the ele-

A1 1 21 17 12 20 3 15 11 10
A2 6 5 16 14 19 2 18 4 7

[1,9]

[1,4] [3,9]

[1,2] [3,4] [3,6] [6,9]

[1,1] [2,2] [3,3] [4,4] [4,6] [6,7] [8,9]

[7,7] [8,8] [9,9]

[5,6]

[5,5] [6,6]

Fig. 1   2 × n array A and the DAG D3

A
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ments in ���-k([a, b]) , which implies ���-k([a, b]) ≠ ���-k([a, b + 1]) 
and ���-k([a − 1, b]) ≠ ���-k([a, b]) .  Now suppose that there are 
two distinct nodes with labels [a,  b] and [a�, b�] with b < b′ such that 
���-k([a, b]) = ���-k([a�, b�]) , then ���-k([a, b + 1]) = ���-k([a�, b�]) , con-
tradicting the fact that ���-k([a, b]) ≠ ���-k([a, b + 1]) . The case when b > b′ , 
a > a′ or a < a′ is analogous.

	 (ii)	 Let Ip = [ap, bp] and Iq = [aq, bq] . From the construction of Dk
A
 , it is the case 

that if p is a descendant of q, then Ip ⊂ Iq . Now, suppose that there are two 
nodes p, q ∈ Dk

A
 such that Ip ⊂ Iq but p is not descendant of q. Then there exists 

a node q′ which satisfies (i) q′ is a descendant of q, (ii) Ip ⊂ Iq′ , and (iii) no 
child of q′ whose label contains Ip . Since neither of labels of the children of q′ 
contain Ip , all the positions of ���-k(q�) are between ap-th and bp-th column. 
(otherwise, there always exists a child q′′ of q′ which satisfies Iq′′ ⊂ Ip ). But 
this would imply that ���-k(q�) = ���-k(p) , which leads to a contradiction 
with Lemma 1(i).

	 (iii)	 We first show that there exists a unique node p in Dk
A
 such that Ip contains the 

interval [a, b] and none of labels of the children of p contain [a, b]. We then 
show that the ���-k(p) = ���-k([a, b]).

Since label of the root in Dk
A
 contains all column indices in A, it is easy to see that 

there exists at least one node p with label Ip = [ap, bp] in Dk
A
 such that [a, b] ⊂ Ip 

but no child of Ip contains [a,  b]. Suppose that there exists another node p′ with 
label Ip� = [a�

p
, b�

p
] in Dk

A
 such that [a, b] ⊂ Ip� but there is no child of p′ whose label 

contains [a, b]. By Lemma 1(ii), it follows that Ip ⊄ Ip′ and Ip′ ⊄ Ip (otherwise, one 
of them would be a descendant of the other, contradicting the conditions on p and 
p′ ). Now, suppose that ap < a′

p
< bp < b′

p
 (the case when a′

p
< ap < b′

p
< bp is analo-

gous). Then there exists a column c < a′
p
 such that p has a child node with label 

[c, bp] where [a, b] ⊂ [c, bp] by the property of Dk
A
 (note that a′

p
≤ a ≤ b ≤ bp ), con-

tradicting the fact that p does not have such a child. This shows that there is a unique 
such p in Dk

A
.

Now we claim that ���-k([a, b]) = ���-k(p) . Suppose that there exist a c ∉ [a, b] 
in Ip such that column c contains at least one of the answers to ���-k(p) . Also with-
out loss of generality, we assume that c < a (the case when c > b can be handled in 
a similar way). Then by the property of Dk

A
 , p has a child with label [c + 1, bp] which 

still contains [a, b], contradicting the fact that p does not have such a child. 	�  ◻

By Lemma 1(iii), if the DAG Dk
A
 and the answers for each sorted 2-sided ���-k 

queries corresponding to all the nodes in Dk
A
 are given, then we can answer any 

sorted ���-k(1, 2, a, b,A) query by finding the corresponding node in p in Dk
A
 which 

satisfies ���-k(1, 2, a, b,A) = ���-k(p).
We now describe how to encode Dk

A
 using at most 4n bits. The main idea of our 

encoding is as follows. For each node in Dk
A
 , we assign at most 2 bits (except the 

root node, which is assigned k bits) while traversing all the nodes in the level order. 
These bits enable us to answer ���-k queries on the range corresponding to each 
node in Dk

A
 , using the ���-k answers of the nodes in the previous level (more spe-

cifically, one of the parent nodes), and the ���-k encodings of the individual rows. 
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By Lemma 1(iii), this encoding is enough to answer all possible ���-k(1, 2, a, b,A) 
queries for any 1 ≤ a, b ≤ n . However, since there exists at most O(kn) nodes in Dk

A
 

(see Lemma 2), this encoding takes O(kn) bits. To make the space independent to k, 
we skip some redundant nodes in Dk

A
 (i.e., nodes for which the answers of ���-k on 

that nodes can be answered using the information obtained by some of the already 
traversed nodes, without any extra information). We modify the original level order 
to modified level order, which will be describe later, and show that if we encode Dk

A
 

according to the modified level order, we can encode Dk
A
 at most 4n bits, by skipping 

the redundant nodes during the traversal.

Modified level-order For two nodes pi with label Ipi = [ai, bi] and pj with label 
Ipj = [aj, bj] which satisfy Ipi ⊄ Ipj and Ipj ⊄ Ipi , we say the node pi precedes the node 
pj if ai < aj . Now, let q be one of the parents of the node p with label Ip = [a, b] 
(note that a node can have multiple parents in a DAG). Note that 
1 ≤ |���-k(q) − ���-k(p)| ≤ 2 , since Ip contains all the answers of ���-k(q) except 
one or both positions from the column a − 1 or from the column b + 1 . Also let fp 
and sp be the number of positions in ���-k(q) ∩ ���-k(p) on the first and the second 
row respectively. Now we consider the following two cases:

•	 Case 1 ( |���-k(q) − ���-k(p)| = 1): In this case, the positions of ���-(k − 1)(p) 
are already contained in the answers of ���-k(q) , and the k-th largest element 
in A[1, 2][a,… , b] is either the (fp + 1)-th largest element in A1[a,… , b] or the 
(sp + 1)-th largest element in A2[a,… , b] (we call them as first-candidates at 
node p).

1. Mark the root of Dk
A as visited, and add its children into visit-list, which is an

ordered list such that for two nodes p and q in visit-list, p comes before q in visit-
list if and only if l(p) < l(q) or l(p) = l(q) and p precedes q in the DAG (l(p)
denotes the level of the node p which is defined as the number of edges in the
longest path from root to p in Dk

A).
2. Find the leftmost unvisited or half-visited node p from visit-list which satisfies one

of the following conditions (without loss of generality, assume that x ≤ y).
(a) Number of first or second candidates of p is less than 2.
(b) First or second candidates of p are (1, x) and (2, y), and there exists no node

p′ in visit-list such that (a) Ip ⊂ Ip′ , or (b) p′ precedes p and x ∈ Ip′ , or (c)
Ip precedes Ip′ and y ∈ Ip′ .

Then we continue the traversal from p.
3. Let q be a parent of p. If (i) |Top-k(q)−Top-k(p)| = 1, or (ii) |Top-k(q)−Top-k(p)| =

2 and p is half-visited, or (iii) the number of first or second candidates of p is less
than 2, then mark p as visited, delete p from the visit-list, and insert p’s children (if
any) to visit-list. If none of these three conditions hold, then mark p as half-visited.

4. Repeat Steps 2 and 3 until all the nodes in Dk
A are marked as visited.

Fig. 2   Modified level-order traversal of Dk

A



3392	 Algorithmica (2021) 83:3379–3402

1 3

•	 Case 2 ( |���-k(q) − ���-k(p)| = 2): In this case, the positions of ���-(k − 2)(p) 
are already contained in the answers of ���-k(q) , and the (k − 1)-th largest ele-
ment in A[1, 2][a,… , b] is the one of the the first-candidates at node p. Now sup-
pose (k − 1)-th largest element in A[1, 2][a,… , b] is on the first row (the other 
case is analogous). Then again, the k-th largest element in A[1, 2][a,… , b] is on 
the one of the positions of (fp + 2)-th largest element in A1[a,… , b] and (sp + 1)

-th largest element in A2[a,… , b] (we call them as second-candidates at node p).

Note that if fp and sp are given, the first and second-candidates at node p can be 
found using the ���-k encodings of A1 and A2 . Figure 2 shows the overall procedure 
of modified level-order. While traversing the nodes of Dk

A
 in the modified level order, 

we classify the nodes as visited, half-visited, or unvisited. All the nodes are initially 
unvisited, and the traversal continues until all the nodes in Dk

A
 are visited. For exam-

ple, we traverse the nodes of D3
A
 in Fig.  1 as: 

[1, 9] → [1, 4] → [1, 4] → [3, 9] → [1, 2] → [1, 2] → [3, 6] → [6, 9] → [6, 9] → [1, 1]

→ [8, 9] → [8, 9] → [3, 3] → [4, 4] → [5, 6] → [8, 8] → [9, 9] → [5, 5] → [6, 6] (here each 
node is denoted as its label).

Picking the positions For a node p = [a, b] ∈ Dk
A
 , p picks the position (x, y) if (i) 

(x,  y) is among the ���-k positions of p, and (ii) this information (that (x,  y) is 
among the answers to ���-k(p) query) does not follow from the ���-k positions of 
any of the visited or half-visited before p in the modified level-order. By storing the 
information of all picked positions at node p, we can answer ���-k(p) by combining 
the answers of ���-k positions of some visited or half-visited nodes before p.

When the traversal starts at the root node of Dk
A
 , the root node picks the positions 

of k-largest values among the answers of ���-k(1, n,A1) and ���-k(1, n,A2) que-
ries, and theses positions can be indicated using k bits, since we assume that ���-k 
encodings of A1 and A2 are given.

Next, suppose we visit an unvisited non-root node p where 
|���-k(q) − ���-k(p)| = 1 , where q is a parent of p (note that q is always visited 
before p in modified level order). In this case, since we can answer the positions of 
(k − 1) largest elements in A using ���-k(q) , p picks at most one position, which is 
among the first-candidates at p. Thus, we can store the picked position at node p 
using one extra bit. The case when |���-k(q) − ���-k(p)| = 2 can be handled simi-
larly, other than p picks at most two positions (one from the first-candidates and 
another from the second-candidates), and this information can be stored using at 
most two extra bits. The following lemma shows that the size of Dk

A
 is O(kn), which 

in turn gives a simple O(kn)-bit space bound by storing the information of all the 
picked positions at each node of Dk

A
.

Lemma 2  Given 2 × n array A and DAG Dk
A
, there are at most 6kn nodes in Dk

A
.

Proof  It is enough to show that there are at most 2kn non-leaf nodes in Dk
A
 . Let 

P[�,�] = {Ip1 = [a1, b1], Ip2 = [a2, b2]… Ipt = [at, bt]} be a set of labels of t non-leaf 
nodes p1, p2,… , pt in Dk

A
 where all the nodes p1, p2,… , pt picks (�, �).

Now we claim that t is at most k. To prove a claim, suppose t = k + 1.
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Then it is clear that for any Ipi , Ipj ∈ P[�,�] , Ipi ⊄ Ipj and Ipj ⊄ Ipi by the modified 
level-order traversal of Dk

A
 . Therefore without loss of generality, assume that 

a1 < a2⋯ < ak+1 < 𝛽 < b1 < b2⋯ < bk+1 . Also we can easily show that for 
1 ≤ i < k + 1 , there is a position at (bi + 1)-th column whose corresponding value is 
larger than A[pk

ir
][pk

ic
] by the construction algorithm of Dk

A
 . Therefore for 1 ≤ i ≤ k , 

the node A[1, 2][ak+1 … bk+1] has k positions at (bi + 1)-th columns which have 
larger values than both A[�][�] , contradicts to the fact that (�, �) ∈ ���-k(pk+1) . 	� ◻

We now describe how to make the space usage of our encoding to be inde-
pendent of k - from O(kn) to O(n). Suppose there exists two non-root nodes p 
and q in Dk

A
 where the first (or second) candidates of p are contained in q, and 

the candidates of p and q are not distinct. In this case, the modified level order 
always visits q prior to p, and gives a ‘chance’ not to pick any position at node p, 
although q is not an ancestor of p. Using this property, we now prove the follow-
ing lemma, which bounds the size of our encoding by showing that if we store the 
all picked positions according to the modified level order, we can encode Dk

A
 in 

space independent to k.

Lemma 3  Given 2 × n array A[1, 2][1… n] and DAG Dk
A
, any position in A is 

picked at most twice while we traverse all nodes in Dk
A
 in the modified level order.

Proof  Suppose that a position (i,  j) is among the answers of ���-k query on the t 
distinct nodes p1, p2,… , pt where Ipi = [ai, bi] for i ∈ {1, 2,… , t} , but not among the 
answers of ���-k query on their parent nodes. For 1 ≤ a, b ≤ t if pa is an ancestor of 
pb , we don’t pick (i, j) at the node pb by the modified level order traversal algorithm 
(Note that pa is traversed before pb ). Therefore without loss of generality, we assume 
that for all 1 ≤ a ≠ b ≤ t , Ipa ⊄ Ipb and Ipb ⊄ Ipa . Now we claim that for every posi-
tion (i, j) in A, at most two nodes from p1,… , pt pick (i, j).

To prove the claim, for 1 ≤ a < b < c ≤ t , suppose there exists three nodes pa , pb , 
and pc where all of these three nodes picks (i, j), and let (i�, j�) be the another (first or 
second)-candidate of pb . Then by the modified level-order traversal algorithm we do 
not pick (i, j) at pb (note that j� ∈ Ipa or j� ∈ Ipb ), which contradicts the assumption. 	
� ◻

For example, during the traversal of D3
A
 in Fig. 1 according to modified level 

order, the position(s) picked at each node are: 
{(1, 2), (1, 5), (2, 5)} → (1, 3) → (2, 3) → (2, 7) → (1, 1) → (1, 2) → � → (1, 7) → (1, 8) → � → � → (2, 4)

→ � → (1, 6) → (1, 9) → (2, 9) → � → � → � → � → � → � → � , respectively ( � indicates that no 
position is picked). Now we prove our main theorem.

Theorem 3  Given a 2 × n array A, if there exists an S(n, k)-bit encoding to answer 
sorted 2-sided ���-k queries on a 1D array of size n in T(n, k) time and such encod-
ing can be constructed in C(n, k) time, then we can construct an encoding of A that 
uses 2S(n, k) + 4n bits which can be constructed in O(C(n, k) + k2n2 + knT(n, k)) 
time, for answering ���-k queries on A.
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Proof  For 1 ≤ i ≤ j ≤ n , we first use 2S(n,  k) bits to support sorted 2-sided 
���-k(1, 1, i, j,A) and ���-k(2, 2, i, j,A) queries. To answer ���-k(1, 2, i, j,A) que-
ries, from Lemma 1(iii), we note that it is enough to encode the answers to the sorted 
���-k queries corresponding to all the nodes in Dk

A
 . We encode these answers into 

a bit string X while traversing the DAG Dk
A
 as follows. When the traversal begins 

at the root, X is initialized to a k-bit string, which stores information for answering 
���-k(1, 2, 1, n,A) query (namely, the i-th bit stores 0 or 1 depending on whether the 
i-th largest element in the range comes from the top or bottom row, respectively). 
Now we traverse Dk

A
 in the modified level order from the root node. Whenever we 

find a node p in Step (2) of the traversal algorithm described above, and if we pick a 
position (x, y) at node p, we append a single bit to X to find the answer from p’s first 
(or second) candidate.

Note that we can find such p in O(kn) time by the Lemma 2 and find the first (or 
second) candidates of node p in T(n, k) + O(1) time using the encoding of ���-k 
queries on individual rows and pre-visited nodes other than root node, which takes 
T(n, k) + O(k lg k) time. Finally we can check whether one of the position in the first 
(or second candidates) of p is picked at node p or not in O(n) time. Therefore when-
ever we traverse node p, O(kn + T(n, k)) time is sufficient for encoding a bit in X to 
find the answer of ���-k(p) query. Since we traverse any node at most twice in the 
modified level order, and since Dk

A
 has at most 6kn nodes by Lemma 2, we can con-

struct the encoding in O(C(n, k) + k2n2 + knT(n, k)) time in total. Also by Lemma 3, 
|X| ≤ 4n after we traverse all the nodes in Dk

A
.

To decode answers of ���-k queries corresponding to the nodes in Dk
A
 from X, we 

first construct the root and its children from the first k bits, and whenever we find a 
node p with label Ip = [a, b] in Step (2) of the traversal algorithm described above, 
we decode (pk

r
, pk

c
) when p is unvisited and |���-k(q) − ���-k(p)| = 1 , or p is half-

visited and |���-k(q) − ���-k(p)| = 2 . Also we decode (pk−1
r

, pk−1
c

) when p is unvis-
ited and |���-k(q) − ���-k(p)| = 2 . The positions in ���-k(p) with larger positions 
can be easily answered by the answer of ���-k on the former traversed nodes. Now 
let (1, x) and (2, y) be the first or second candidates in such unvisited or half-visited 
node p, which can be found by ���-k(a, b,A1) and ���-k(a, b,A2).

If one of the candidates is already picked before at some node p′ (without 
loss of generality, assume that (1,  x) is picked by p′ ) and y ∈ p� , we can know 
A[1][x] > A[2][y] with no extra information. If there is no such node we read next 
1 bit to decode. Since X is encoded in the modified level order, one can easily show 
that such bit is encoded for pick (i,  j) at p. Therefore, we can encode to answer 
���-k(1, 2, i, j,A) queries at most 4n extra bits, if we can answer sorted 2-sided 
���-k queries on A1 and A2 . 	�  ◻

For the special case when k = 2 , the following theorem shows that the space 
bound of the encoding of Theorem 3 can be improved.

Theorem 4  Given a 2 × n array A, if there exists an S(n)-bit encoding to answer 
sorted 2-sided ���-2 queries on a 1D array of size n in T(n) time and such encoding 
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can be constructed in C(n) time, then we can encode A in 2S(n) + 3n bits using 
O(C(n) + n2 + nT(n)) time, for answering ���-2 queries on A.

Proof  It is enough to show that the bit string X, defined in the proof of Theorem 3, 
has length at most 3n when it is constructed under D2

A
 . We claim that after all nodes 

in D2
A
 are traversed in modified level-order, i-th column is picked (i.e., any position 

in the i-th column is picked) at most three times for all 1 ≤ i ≤ n , which proves the 
theorem.

To prove the claim, let f(i) (respectively, s(i)) be the position of the larger (respec-
tively, smaller) element between (1, i) and (2, i), and suppose p with label Ip = [a, b] 
be the first node in the modified level order at which the position s(i) is picked for 
the first time. Then by the traversing algorithm and definition of D2

A
 , f(i) is already 

picked before s(i) is picked. This implies that ���-2(p) = {f (i), s(i)} and the i-th col-
umn is not contained in all descendants of p (note that the labels of p’s children are 
[a, i − 1] and [i + 1, b] by the definition of D2

A
 ). Also, we claim that s(i) is not picked 

at any other node p′ with label Ip� = [a�, b�] where Ip ⊄ Ip′ and Ip′ ⊄ Ip . To prove 
this, suppose that s(i) is picked at the node p′ , and without loss of generality, p′ pre-
cedes the node p. Then by the definition of D2

A
 , the element in f (a − 1) is larger than 

f (i) ∈ ���-2(p�) ∩ ���-2(p) (note that the ancestor of p picks f (a − 1) , to have p as 
descendant). This implies s(i) ∉ ���-2(p�) and hence s(i) cannot picked at the node 
p′ . Thus, s(i) is only picked once at the node p, and f(i) can be picked at most twice 
by Lemma 3, which implies any column is picked at most three times. 	�  ◻

From the encoding of Theorem  3, the following theorem shows that we can 
obtain an encoding for answering sorted 4-sided ���-k queries on an m × n array by 
extending the encoding of a 2 × n array.

Theorem  5  Given an m × n array A, if there exists an S(n,  k)-bit encoding to 
answer sorted 2-sided ���-k queries on a 1D array of size n, then we can encode A 
in mS(n, k) + 2nm(m − 1) bits, to support sorted 4-sided ���-k queries on A.

Proof  For 1 ≤ i ≤ j ≤ n and 1 ≤ a ≤ b ≤ m , we first use mS(n,  k) bits to sup-
port sorted 2-sided ���-k(a, a, i, j,A) queries. Also we encode the answer 
���-k(1, 2, i, j,Aab) queries on 2 × n array Aab , whose first and second row are a-th 
and b-th row in A respectively. By Theorem 3, we can encode such queries on all 
possible Aab arrays using 2nm(m − 1) extra bits. For 1 ≤ a ≤ m and 1 ≤ � ≤ k , let 
�ij(a,�) be the position of �-th largest element in A[a][i… j] Note that we can find 
such �ij(a,�) using ���-k(a, a, i, j,A) query.

Now we describe how to answer ���-k(a, b, i, j,A) query. We first define 
(b − a + 1) values ca … cb and set ca = ca+1⋯ = cb = 1 . After that, we find a position 
of largest value in A[a… b][i… j] by comparing �ij(a, ca), �ij(a + 1, ca+1)… �ij(b, cb) 
and find a position with largest element among them. It is clear that for 
a ≤ a′ ≤ b′ ≤ b , we can compare values at the position �ij(a�, ca� ) and �ij(b�, cb� ) 
using ���-k(1, 2, i, j,Aa�b� ) query since at least one of the their corresponding posi-
tions in Aa′b′ is an answer of ���-k(1, 2, i, j,Aa�b� ) query. Suppose for a ≤ a′ ≤ b , 
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�ij(a
�, ca� ) a position with the largest value in A[a… b][i… j] . Then we increase ca′ 

by 1, and compare �ij(a�, ca� ) and �ij(b�, cb� ) again to find a position of the second 
largest value in A[a… b][i… j] . We do this procedure iteratively until we find a 
position of k-th largest value in A[a… b][i… j] . 	�  ◻

Corollary 1  Given an m × n array A, if there exists an S(n)-bit encoding to answer 
sorted 2-sided ���-2 queries on a 1D array of size n, then we can encode A in 
mS(n) + 1.5nm(m − 1) bits, to support sorted 4-sided ���-2 queries on A.

Finally, if we combine the encoding of Theorem  5 and Gawrychowski and 
Nicholson’s (lg

(

(k+1)n

n

)

+ o(n))-bit optimal encoding for sorted 2-sided ���-k que-
ries on a 1D array [9], we obtain an encoding as follows.

Corollary 2  Given an m × n array A, there exists an 
(m lg

(

(k+1)n

n

)

+ 2nm(m − 1) + o(n))-bit encoding, to support sorted 4-sided ���-k 
queries on A. Also when k = 2, there exists an (m lg

(

3n

n

)

+ 1.5nm(m − 1) + o(n))-bit 
encoding, to support sorted 4-sided ���-2 queries on A.

4 � Data Structure for 4‑Sided ���-k Queries on 2 × n Array

The encoding of Theorem 3 shows that 4n bits are sufficient for answering ���-k 
queries whose range spans both rows, when encodings for answering sorted 2-sided 
���-k queries for each row are given. However, this encoding does not support que-
ries efficiently (takes O(k2n2 + knT(n, k)) time) since we need to reconstruct all the 
nodes in DA to answer a query (in the worst case). We now show that the query 
time can be improved to O(k2 + kT(n, k)) time if we use (4k + 7)n + ko(n) addi-
tional bits. Note that if we simply use the data structure of Grossi et al. [11] (which 
takes 44n lg k + O(n lg lg k) bits to encode a 1D array of length n to support ���-k 
queries in O(k) time) on the 1D array of size 2n obtained by writing the values of 
A in column-major order, we can answer ���-k queries on A in O(k) time using 
88n lg k + O(n lg lg k) additional bits. Although our data structure takes more query 
time and takes asymptotically more space, it uses less space for small values of k 
(note that 4k + 7 < 88 lg k for all integers 2 ≤ k < 160 ) when n is sufficiently large. 
We now describe our data structure.

We first define a graph G12 = (V(G12),E(G12)) on A as follows. The set of ver-
tices V(G12) = {1, 2,… n} , and there exists an edge (i, j) ∈ E(G12) if and only if 
(i) i < j and A[1][i] < A[2][j] , (ii) there are at most k − 1 positions in A[1, 2][i… j] 
whose corresponding values are larger than both A[1][i] and A[2][j], and (iii) 
there is no vertex j� ∈ {i + 1, i + 2,… , n} where A[1][i] < A[2][j�] < A[2][j] and 
satisfies the condition (ii). We also define a graph G21 on A which is analogous 
to G12 , by replacing A[1][i], A[2][j] and A[2][j�] with A[2][i] A[1][j], and A[1][j�] , 
respectively in all three conditions. Each of the graphs G12 and G21 have n ver-
tices and at most n edges. Also for any vertex v ∈ V(G12) (resp., V(G21) ), there 
exists at most one vertex v′ in G12 (resp., G21 ) such that v is incident to v′ and 
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v < v′ . See Fig.  3 for an example. We now show that G12 (thus, also G21 ) is a 
k-page graph, i.e. there exist no k + 1 edges (i1, j1)… (ik+1, jk+1) ∈ E(G12) such 
that i1 < i2⋯ < ik+1 < j1 < j2⋯ < jk+1.

Lemma 4  Given 2 × n array A, a graph G12 on A is k-page graph.

Proof  Suppose that there are k + 1 edges (i1, j1)… (ik+1, jk+1) ∈ E(G12) such that 
i1 < i2⋯ < ik+1 < j1 < j2⋯ < jk+1 , and for 1 ≤ t ≤ k + 1 , let it be a position of the 
minimum element in A1[i1 … ik+1] . Then by the definition fo G12 , there are at least 
k positions (1, it+1),… , (1, ik+1), (2, j1),… , (2, jt−1) in A[1, 2][it … jt] whose corre-
sponding values in A are larger than both A[1][it] and A[2][jt] , which contradicts the 
definition of G12 . 	� ◻

From the above lemma and the succinct representation of k-page graphs of 
Munro and Raman [18] (with minor modification as described in [8]), we can 
encode G12 and G21 using (4k + 4)n + k ⋅ o(n) bits in total, and for any vertex v 
in V(G12) ∪ V(G21) , we can find a vertex with the largest index which incident 
to v in O(k) time. Also to compare the elements in the same column, we main-
tain a bit string PA[1… n] of size n such that for 1 ≤ i ≤ n , PA[i] = 0 if and only 
if A[1][i] > A[2][i] . Finally, for G12 (resp., G21 ), we maintain another bit string 
Q12[1… n − 1] (resp., Q21[1… n − 1] ) such that for 1 ≤ i ≤ n − 1 , Q12[i] = 1 (resp., 
Q21[i] = 1 ) if and only if all elements in A2[i + 1… n] (resp., A1[i + 1… n] ) are 
smaller than A[1][i] (resp., A[2][i]) (see Fig.  3 for an example). We now show 
that if there is an encoding which can answer the sorted ���-k queries on each 
row, then the encoding of G12 , G21 , and the additional arrays defined above are 
enough to answer 4-sided ���-k queries on A.

Fig. 3   G
12

 , G
21

 , P
A
 , Q

12

 , and Q
21

 to support ���-3 queries on 2 × n array A 
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Theorem 6  Given a 2 × n array A, if there exists an S(n, k)-bit encoding to answer 
sorted 2-sided ���-k queries on a 1D array of size n in T(n, k) time, then there is a 
2S(n, k) + (4k + 7)n + k ⋅ o(n)-bit data structure which can answer ���-k queries on 
A in O(k2 + kT(n, k)) time.

Proof  For 1 ≤ i ≤ j ≤ n , we first use 2S(n,  k) bits to support sorted 2-sided 
���-k(1, 1, i, j,A) and ���-k(2, 2, i, j,A) queries in T(n, k) time.

To answer ���-k(1, 2, i, j,A) query, we maintain succinct representations of G12 
and G21 [8, 18] using (4k + 4)n + ko(n) bits, and PA , Q12 , and Q21 using 3n bits. Now 
for 1 ≤ p ≤ k , let ap (resp., bp ) be the position of the p-th largest value in A1[i… j] 
(resp., A2[i… j] ), which can be answered in O(T(n, k)) time using the encoding of 
���-k queries on each row.

We first find the position of the largest value in A[1, 2][i… j] by comparing 
A[1][a1] and A[2][b1] . If A[1][a1] < A[2][b1](resp.,A[1][a1] > A[2][b1] ), we com-
pare A[1][a1] with A[2][b2] (resp., A[1][a2] with A[2][b1] ) to find the position of 
the second-largest value in A[1, 2][i… j] . By repeating this procedure iteratively k 
times, we can answer the ���-k(1, 2, i, j,A) query.

Now we describe how to compare A[1][ap] with A[2][bq] , for all p + q ≤ k + 1 
(in the above procedure, we do not need to compare A[1][ap] with A[2][bq] if 
p + q > k + 1 ). If ap = bq , the result of the comparison is already stored in the bit 
PA[ap] . Now suppose that ap < bq (if ap > bq , we use G21 and Q21 instead of G12 
and Q12 respectively, in the following procedure), and let a′

p
 be a vertex with the 

largest index in G12 which is incident to ap , if it exists. Note that we can find such 
a′
p
 in O(k) time [8, 18]. If there is no vertex incident to ap or a′

p
< ap , we show that 

A[1][ap] > A[2][bq] by considering the following two cases.

•	 (i) Q12[ap] = 1 : From the definition of Q12 , it follows that A[1][ap] > A[2][bq].
•	 (ii) Q12[ap] = 0 : In this case, (a) A[1][ap] < A[2][bq] , but there are at least k 

positions in A[1, 2][ap … bq] whose corresponding values are larger than both 
A[1][ap] and A[2][bq] or (b) A[1][ap] > A[2][bq] . However (a) cannot hold since 
there are at most (p − 1) + (q − 1) ≤ k − 1 positions in A[1, 2][ap … bq] whose 
corresponding values are larger than both A[1][ap] and A[2][bq] . Therefore 
A[1][ap] > A[2][bq].

Now consider the case ap < a′
p
 . If a′

p
≤ bq , then A[1][ap] < A[2][bq] if and only if 

A[2][a�
p
] < A[2][bq] by the definition of G12 . If a′p > bq , we first compare A[2][a�

p
] 

with A[2][bq] . If A[2][a�
p
] < A[2][bq] , then A[1][ap] < A[2][bq] by the defi-

nition of G12 . If not, (a) A[1][ap] < A[2][bq] , but there are at least k positions in 
A[1, 2][ap … bq] whose corresponding value is larger than both A[1][ap] and 
A[2][bq] , or (b) A[1][ap] > A[2][bq] . However, (a) cannot hold by the same reason as 
the case when there is no vertex incident to ap or a′

p
< ap , and Q12[ap] = 0 . Therefore 

A[1][ap] > A[2][bq] if A[2][a�p] > A[2][bq] . Also since (2, bq) is one of the answers 
of ���-k(i, j,A2) query, we can compare A[2][a�

p
] with A[2][bq] in T(n, k) time using 

the ���-k encoding on the second row. By the procedure describe above, each iter-
ation step takes at most O(k + T(n, k)) time, thus we can answer ���-k(1, 2, i, j.A) 
query in O(k2 + kT(n, k)) time. 	�  ◻
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5 � Lower Bounds for Encoding Range ���-k Queries on 2 × n Array

In this section, we consider the lower bound on space for encoding a 2 × n array A 
to support unsorted 1-sided and sorted 4-sided ���-k queries, when k > 1 . Specif-
ically for 1 ≤ i ≤ j ≤ n , we consider to lower bound on extra space for answering 
(i) unsorted ���-k(1, 2, 1, i) queries, assuming that we have access to the encod-
ings of the individual rows of A that can answer unsorted 1-sided (or 2-sided) 
���-k queries, and (ii) sorted ���-k(1, 2, i, j) queries, assuming that we have 
access to the encodings of the individual rows of A that can answer sorted 2-sided 
���-k queries. We show that for answering unsorted 1-sided queries on A, at least 
1.27n − o(n) (or 2n − O(lg n) ) extra bits are necessary, and for answering unsorted 
or sorted 4-sided queries on A, at least 2n − O(lg n) extra bits are necessary.

For simplicity (to avoid writing floors and ceilings, and to avoid consider-
ing some boundary cases), we assume that k is even. (Also, if k is odd we can 
consider the lower bound on extra space for answering 4-sided ���-k queries 
as the lower bound of extra space for answering 4-sided ���-(k − 1) queries—
it is clear that former one requires more space.) For both unsorted and sorted 
query cases, we assume that all elements in A are distinct, and come from the set 
{1, 2,… 2n} ; and also that each row in A is sorted in the ascending order. Finally, 
for 1 ≤ � ≤ 2n , we define the mapping A−1(�) = (i, j) if and only if A[i][j] = �.

Unsorted 1-sided Top-k query The following theorem gives the lower bound 
for answering unsorted 1-sided ���-k queries on 2 × n array A, when the encod-
ings for answering unsorted 1-sided (or 2-sided) ���-k queries on both rows are 
already given. Note that this lower bound also gives the lower bound for answer-
ing unsorted 4-sided ���-k queries on 2 × n array under the same condition.

Theorem  7  Given a 2 × n array A and encodings for answering 
unsorted 1-sided (or 2-sided) ���-k queries on both rows in A, at least 
⌈(n − k∕2) lg (1 +

√

2)⌉ − o(n) = 1.27(n − k∕2) − o(n) additional bits are necessary 
for answering unsorted 1-sided ���-k queries on A.

Proof  If n ≤ k∕2 we do not need any extra space since all positions are answers 
of unsorted ���-k(1, 2, 1, i,A) queries for i ≤ n . Now suppose that n > k∕2 . In this 
case, let Ui be a set of all possible arrays of size 2 × n which satisfies the following 
properties:

•	 For any B ∈ Ui , all of {1, 2… 2i} are in B[1, 2][1… i] and each row in B is 
sorted in the ascending order (thus, all the arrays in Ui have same encodings 
for answering unsorted 1 and 2-sided ���-k queries on their individual rows), 
and

•	 for any two distinct arrays B,C ∈ Ui , there exists 1 ≤ j ≤ i such that 
{B−1(2j − 1),B−1(2j)} ≠ {C−1(2j − 1),C−1(2j)}.

By the definition of Ui , for any 1 ≤ i ≤ n − k∕2 and two distinct arrays B,C ∈ Ui , 
there exists a position 1 ≤ j ≤ i where B and C have distinct answers of unsorted 
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���-k(1, 2, 1, k∕2 + j) queries, which implies log |Un| gives the lower bound 
of additional space for answering the 1-sided ���-k queries on 2 × n array. We 
compute the size of Ui as follows. |U1| = 1 since there exists only one case as 
{B−1(1),B−1(2)} = {(1, 1), (2, 1)} . For i = 2 , we can consider three cases as 
(1, 2, 3, 4), (1, 3, 2, 4), or (1, 4, 2, 3) if we write a elements of B[1, 2][1, 2] for 
B ∈ U2 in row-major order (note that each row is sorted in ascending order).

Next, consider the case when 2 < i ≤ n − k∕2 . In this case for any B ∈ Ui−1 , 
{B−1(2i − 3),B−1(2i − 2)} ⊂ {{(1, i), (2, i)}, {(1, i − 1), (1, i)}, {(2, i − 1), (2, i)}}   . 
To construct arrays in Ui , we construct a set EB ⊂ Ui from the array 
in B ∈ Ui−1 such that for any B1,B2 ∈ EB and 1 ≤ j < i + k∕2 , 
���-k(1, 2, 1, j,B1) = ���-k(1, 2, 1, j,B2) = ���-k(1, 2, 1, j,B) and 
���-k(1, 2, 1, i + k∕2,B1) ≠ ���-k(1, 2, 1, i + k∕2,B2) . It is clear that 
�Ui� =

∑

B∈Ui−1
�EB� . Now we consider two cases as follows.

•	 Case 1. B−1(2i − 3) and B−1(2i − 2) are in different rows: In this case, 
for any C ∈ EB the position of the first and the second largest value in 
C[1, 2][1… 2(i − 1)] are (1, i − 1) and (2, i − 1) respectively and for any 
B1,B2 ∈ EB , {B−1

1
(2i − 1),B−1

2
(2i)} are distinct. In this case, |EB| = 3 since only 

{(1, i), (2, i)} , {(1, i − 1), (1, i)} , or {(2, i − 1), (2, i)} can be {B−1(2i − 1),B−1(2i)} 
for any array C ∈ EB respectively, which satisfy the above condition and main-
taining both rows in C as sorted in ascending order. Furthermore, since both 
B−1(2i − 3) and B−1(2i − 2) are in (i − 1)-th column, the number of B ∈ Ui−1 in 
this case is |Ui−2|.

•	 Case 2. B−1(2i − 3) and B−1(2i − 2) are in the same row: Without loss of 
generality, assume that both B−1(2i − 3) and B−1(2i − 2) are in the first row. 
Then for any C ∈ EB the position of the first and the second largest value 
in C[1, 2][1… 2(i − 1)] are (1, i − 2) and (1, i − 1) respectively, and for any 
B1,B2 ∈ EB , {B−1

1
(2i − 1),B−1

2
(2i)} are distinct. Therefore |EB| = 2 in this case 

since only {(1, i), (2, i)} or {(1, i − 1), (1, i)} can be {C(2i − 1),C(2i)} for any array 
C ∈ EB respectively which satisfy the above condition and maintaining both rows 
in C as sorted in ascending order. Also since all the B is in the Case 1 or 2, the 
number of B ∈ Ui−1 in this case is |Ui−1 − Ui−2|.

By the statement described above, we obtain a recursive relation 
|Ui| = 3|Ui−2| + 2(|Ui−1| − |Ui−2|) . By solving the recursive relation using charac-
teristic equation, we obtain �Ui� ≤ (1 +

√

2)i − o(n) , which proves the theorem. 	�  ◻

Sorted and 4-sided ���-k query  In this case we divide a 2 × n array A into 2n/k 
blocks A1 …A2n∕k of size 2 × k∕2 as for 1 ≤ � ≤ k∕2 , A

�
[i][j] = A[i][2(� − 1) + j] 

and all values of A
�
 are in {k(� − 1) + 1… k�} . Then for any 2 × n array A and A′ , 

sorted ���-k(1, 2, k(i − 1)∕2 + 1, ki∕2,A) ≠ ���-k(1, 2, k(i − 1)∕2 + 1, ki∕2,A�) , 
and ���-k(1, 2, 1, ki∕2,A) ≠ ���-k(1, 2, 1, ki∕2,A�) , if there exists a position 
1 ≤ i ≤ 2n∕k where Ai ≠ A′

i
 . Let Si be the set of all possible arrays of size 2 × i such 

that for any B ∈ Si , all values of B are in {1, 2i} and both rows of B are sorted in 
ascending order, which implies all the arrays in Si have same encodings for answer-
ing unsorted and sorted 2-sided ���-k queries on their individual rows. Since the 
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size of Si is same as central binomial number, 
(

2i

i

)

 , which is well-known as at least 
4i∕

√

4i [16]. Therefore, at least ⌈2n lg �Sk∕2�∕k⌉ ≥ 2n − O(lg n) additional bits are 
necessary for answering sorted ���-k queries that span both the rows, when encod-
ings for answering sorted (or unsorted) on both rows are given.

Theorem 8  Given a 2 × n array A, at least 2n − O(lg n) additional bits are neces-
sary for answering sorted 4-sided ���-k queries on A if encodings for answering 
sorted (or unsorted) 2-sided ���-k queries on both rows in A are given.

6 � Conclusions and Open Problems

In this paper, we proposed encodings for answering ���-k queries on 2D 
arrays. For 2 × n arrays, we proposed upper and lower bounds on space for 
answering sorted and unsorted 4-sided ���-k queries. Finally, we obtained an 
(m lg

(

(k+1)n

n

)

+ 2nm(m − 1) + o(n))-bit encoding for answering 4-sided sorted ���-k 
queries on m × n arrays. We end with the following open problems:

•	 Can we support 4-sided sorted ���-k queries with efficient query time on m × n 
arrays using less than O(nm lg n) bits when m = o(lg n)?

•	 Can we obtain an improved lower or upper bound for answering 4-sided sorted 
���-k queries on 2 × n arrays?
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