Top Tree Compression of Tries

Philip Bille
Technical University of Denmark, DTU Compute, Denmark
phbi@Qdtu.dk

Pawel Gawrychowski
University of Wroctaw, Poland
gawry@cs.uni.wroc.pl

Inge Li Ggrtz
Technical University of Denmark, DTU Compute, Denmark
inge@dtu.dk

Gad M. Landau
University of Haifa, Israel
landau@cs.haifa.ac.il

Oren Weimann
University of Haifa, Israel
oren@cs.haifa.ac.il

—— Abstract

We present a compressed representation of tries based on top tree compression [[CALP 2013] that
works on a standard, comparison-based, pointer machine model of computation and supports efficient
prefix search queries. Namely, we show how to preprocess a set of strings of total length n over
an alphabet of size o into a compressed data structure of worst-case optimal size O(n/log, n)
that given a pattern string P of length m determines if P is a prefix of one of the strings in time
O(min(mlog o, m + logn)). We show that this query time is in fact optimal regardless of the size of
the data structure.

Existing solutions either use 2(n) space or rely on word RAM techniques, such as tabulation,
hashing, address arithmetic, or word-level parallelism, and hence do not work on a pointer machine.
Our result is the first solution on a pointer machine that achieves worst-case o(n) space. Along
the way, we develop several interesting data structures that work on a pointer machine and are of
independent interest. These include an optimal data structures for random access to a grammar-
compressed string and an optimal data structure for a variant of the level ancestor problem.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms
Keywords and phrases pattern matching, tree compression, top trees, pointer machine

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.4

Related Version Draft of full version available at https://arxiv.org/abs/1902.02187.

Funding Philip Bille: Supported by the Danish Research Council (DFF — 4005-00267, DFF — 1323-
00178).

Inge Li Gprtz: Supported by the Danish Research Council (DFF — 4005-00267, DFF — 1323-00178).
Oren Weimann: Supported by the Israel Science Foundation grant 592/17.

1 Introduction

A string dictionary compactly represents a set of strings S = S1, ..., Sk to support efficient
y))

prefiz queries, that is, given a pattern string P determine if P is a prefix of some string in S.
Designing efficient string dictionaries is a fundamental data structural problem dating back
to the 1960’s. String dictionaries are a key component in a wide range of applications in
areas such as computational biology, data compression, data mining, information retrieval,
natural language processing, and pattern matching.
© Philip Bille, Pawel Gawrychowski, Inge Li Ggrtz, Gad M. Landau, and Oren Weimann;

37 licensed under Creative Commons License CC-BY
30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 4; pp. 4:1-4:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1120-5154
mailto:phbi@dtu.dk
https://orcid.org/0000-0002-6993-5440
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-8322-4952
mailto:inge@dtu.dk
https://orcid.org/0000-0002-5684-0629
mailto:landau@cs.haifa.ac.il
https://orcid.org/0000-0002-4510-7552
mailto:oren@cs.haifa.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2019.4
https://arxiv.org/abs/1902.02187
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Top Tree Compression of Tries

A key challenge and the focus of most of the recent work is to design efficient compressed
string dictionaries, that take advantage of repetitions in the strings to minimize space,
while still supporting efficient queries. While many efficient solutions are known, they all
rely on powerful word-RAM techniques, such as tabulation, address arithmetic, word-level
parallelism, hashing, etc., to achieve efficient bounds. A natural question is whether or
not such techniques are necessary for obtaining efficient compressed string dictionaries or if
simpler and more basic computational primitives such as pointer-based data structures and
character comparison suffice.

In this paper, we answer this question to the affirmative by introducing a new compressed
string dictionary based on top tree compression that works on a standard comparison-based,
pointer machine model of computation. We achieve the following bounds: let n = Zle |S;]
be the total length of the strings in S, let o be the size of the alphabet, and m be the
length of a query string P. Our compressed string dictionary uses O(n/log, n) space (space
is measured as the number of words and not bits, see discussion below) and supports
queries in O(min(mlogo, m 4 logn)) time. The space matches the information-theoretic
worst-case space lower bound, and we further show that the query time is optimal for any
comparison-based query algorithm regardless of the space. Compared to previous work our
string dictionary is the first o(n) space solution in this model of computation.

1.1 Computational Models

We consider three computational models. In the comparison-based model algorithms only
interact with the input by comparing elements. Hence they cannot exploit the internal
representation of input elements, e.g., for hashing or word-level parallelism. The comparison-
based model is a fundamental and well-studied computational model, e.g., in textbook
results for sorting [44], string matching [43], and computational geometry [53]. Modern
programming languages and libraries, such as the C++ standard template library, implement
comparison-based algorithms by supporting abstract and user-specified comparison functions
as function arguments. In our context, we say that a string dictionary is comparison-based if
the query algorithm can only access the input string P via single character comparisons of
the form PJi] < ¢, where ¢ is a character.

In the pointer machine model, a data structure is a directed graph with bounded out-
degree. Each node contains a constant number of data fields or pointer to other nodes
and algorithms must access the data structure by traversing the graph. Hence, a pointer
machine algorithm cannot implement random access structures such as arrays or perform
address arithmetic. The pointer machine captures linked data structures such as linked-
lists and search trees. The pointer machine model is a classic and well-studied model, see
e.g. [1,20,21,36,59].

Finally, in the word RAM model of computation [35] the memory is an array of memory
words, that each contain a logarithmic number of bits. Memory words can be operated on
in unit-time using a standard set of arithmetic operations, boolean operations, and shifts.
The word RAM model is strictly more powerful than the comparison-based model and the
pointer-machine model and supports random access, hashing, address arithmetic, word-level
parallelism, etc. (these are not possible in the other models).

The space of a data structure in the word RAM model is the number of memory words
used and the space in the pointer machine model is the total number of nodes. To compare
the space of the models, we assume that each field in a node in the pointer machine stores
a logarithmic number of bits. Hence, the total number of bits we can represent in a given
space in both models is within a constant factor of each other.

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

1.2 Previous work

The classic textbook string dictionary solution, due to Fredkin [30] from 1960, is to store
the trie T of the strings in S and to answer prefix queries using a top-down traversal of T,
where at each step we match a single character from P to the labels of the outgoing edges of
a node. If we manage to match all characters of P then P is a prefix of a string in .S and
otherwise it is not.

Depending on the representation of the trie and the model of computation we can obtain
several combinations of space and time complexity. On a comparison-based, pointer machine
model of computation, we can store the outgoing edges of each in a biased search tree [14],
leading to an O(n) space solution with query time O(min(mlogo, m + logn)).

We can compress this solution by merging maximal identical complete subtrees of T [27],
thus replacing T by a directed acyclic graph (DAG) D that represents 7. This leads to a
solution with the same query time as above but using only O(d) space, where d is the size of
the smallest DAG D representing T'. The size of D can be exponentially smaller than n, but
may not compress at all. Consider for instance the case where T is a single path of length n
where all edges have the same label (i.e., corresponding to a single string of the same letter).
Even though T is highly compressible (we can represent it by the label and the length of the
path) it does not contain any identical subtrees and hence its smallest DAG has size Q(n).

Using the power of the word RAM model improved representations are possible. Benoit et
al. [13] and Raman et al. [54] gave succinct representations of tries that achieve O(n/log, n)
space and O(m) query time, thus simultaneously achieving optimal query time and matching
the worst-case information theoretic space lower bounds. These results rely on powerful
word RAM techniques to obtain the bounds, such as tabulation and hashing. Numerous trie
representations are known, see e.g., [4,5,6,7,8,17,25,33,39,40,52,58,60,61,62], but these all
use word RAM techniques to achieve near optimal combinations of time and space.

Another approach is to compress the strings according to various measures of repetitiveness,
such as the empirical k-th order entropy [34,45,49,55], the size of the Lempel-Ziv parse [9,
15,22,31,32,41,51], the size of the smallest grammar [23,24, 31], the run-length encoded
Burrows-Wheeler transform, [46, 47,48, 56], and others [5, 10, 11,29, 50, 57]. The above
solutions are designed to support more general queries on the strings, but as noted by Ars
and Fischer [5] they are straightforward to adapt to prefix queries. For example, if z is size
of the Lempel-Ziv parse of the concatenation of the strings in S, the result of Christiansen
and Etienne [22] implies a string dictionary of size O(zlog(n/z)) that supports queries in
time O(m + log®n). Since z can be exponentially smaller than n, the space is significantly
improved on highly-compressible strings. Since z = O(n/log, n) in the worst-case, the space
is always O(log’i —log (- TToa, ~)) = O(%jgn”") and thus almost optimal compared to the
information theoretic lower bound. Similar bounds are known for the other measures of
repetitiveness. As in the case of succinct representations of tries, all of these solutions use
word RAM techniques.

1.3 Our results

We propose a new compressed string dictionary that achieves the following bounds:

» Theorem 1. Let S be a set of strings of total length n over an alphabet of size o. On a
comparison-based, pointer machine model of computation, we can construct a compressed
string dictionary that uses O(n/log, n) space and answer queries in O(min(m log o, m+logn))
time.

4:3

ISAAC 2019

4:4

Top Tree Compression of Tries

Note that the space bound for Theorem 1 matches the information theoretic lower bound and
the time bound matches the classic linear space implementation of tries with biased search
trees. The result is the first o(n) space solution in this model of computation. Furthermore,
we show that this time bound is optimal.

» Theorem 2. For any n, m <n, and o > 2, there exists a set S of strings of total length
n over an alphabet of size o such that any comparison-based algorithm that checks if a given
pattern P of length m belongs to S needs to perform Q(min(mlog o, m + logn)) comparisons
in the worst case.

Note that Theorem 2 holds regardless of the space used, holds even for weaker membership
queries, and only assumes that the algorithm is a comparison-based algorithm. We note that
the upper bound holds on a pointer machine with comparisons and additions as arithmetic
operations, while the lower bound only assumes comparisons.

1.4 Techniques

In top tree compression [18] one transforms a labeled tree T into another tree 7 (called a
top tree) that is of height O(logn) and represents a hierarchical decomposition of T' into
connected subgraphs (called clusters). Each cluster overlaps with other clusters in at most
two nodes. Every leaf in T corresponds to a cluster consisting of a single edge in 7" and
every internal node in 7 corresponds to a merge of two clusters. The top tree 7 is then
compressed using the classical DAG compression resulting in the top DAG TD. The top DAG
supports basic navigational queries on T" in O(logn) time, has size O(n/log, n), can compress
exponentially better than DAG compression, and is never worse than DAG compression by
more than a O(logn) factor [16, 18,28, 38].

Our main technical contribution is implementing prefix search optimally on the top DAG.
To this end, we develop several optimal pointer machine data structures of independent
interest:

A data structure for the path extraction problem, that asks to compactly represent an
edge-labeled tree T such that given a node v we can efficiently return the labels on the
root-to-v path in 7. While an optimal solution for this problem can be obtained by
plugging in known tools, more specifically a fully persistent queue [37], we believe that
our self-contained solution is simpler and elegant.

A data structure for the weighted level ancestor problem, that asks to compactly represent
an edge-weighted tree T such that given a node v and a positive number x we can
efficiently return the rootmost ancestor of v whose distance from the root is at least x.
An immediate implication of our weighted level ancestor data structure is an optimal data
structure for the random access problem on grammar compressed strings. This improves
a SODA’11 result [19] that required word RAM bit tricks.

A data structure for the spine path extraction problem, that asks to compactly represent
a top-tree compression 7D such that given a cluster C' we can efficiently return the
characters of the unique path between the two boundary nodes of C.

For the lower bound, we show that any algorithm that given a string P[1,m] checks if
>t Pli] = 0 (mod 2) needs to perform Q(mlogo) comparisons in the worst case. We
then show that when n > mo™ this implies the Q(mlogo) bound for our problem and
when n < mo™ it implies the Q(m + logn) bound for our problem.

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

1.5 Roadmap

In Section 2 we recall top trees and how a top tree of a tree T is obtained by merging
(either vertically or a horizontally) the top trees of two subtrees of T' that overlap on a single
node. In Section 3 we present a simple randomized Monte-Carlo word RAM solution to the
compressed string indexing problem that is the basis of our deterministic pointer machine
solutions in the following sections. The solution is based on top trees and efficiently handles
horizontal merges (deterministically) and vertical merges (randomized Monte-Carlo). In
Section 4 we show how to handle vertical merges deterministically on a pointer machine, and
in Section 5 we show that this suffices to achieve the O(m + logn) query time in Theorem 1.
We show a different way to handle vertical merges in Section 6 and horizontal merges in
Section 7. In Section 8 we show that these suffice to achieve the O(mlogo) query time in
Theorem 1. Due to space constraints we defer the details of the lower bound and all proofs
to the full version of the paper.

2 Preliminaries

In this section we briefly review Karp-Rabin fingerprints [42], top trees [3], and top tree
compression [18].

2.1 Karp-Rabin Fingerprints

The Karp-Rabin fingerprint [42] of a string x is defined as ¢(x) = Z‘Zﬂl z[i] - ¢ mod p,
where ¢ is a randomly chosen positive integer, and 2N¢t* < p < 4AN°*t* is a prime. Karp-
Rabin fingerprints guarantee that given two strings = and y, if = y then ¢(x) = ¢(y).
Furthermore, if x # y, then with high probability ¢(x) # ¢(y). Fingerprints can be composed
and subtracted as follows.

» Lemma 3. Let z = yz be a string decomposable into a prefixy and suffix z. Given any two
of the Karp-Rabin fingerprints ¢(z), &(y) and ¢(z), it is possible to calculate the remaining
fingerprint in constant time.

2.2 Clustering

Let v be a node in T with children vy, ..., vg in left-to-right order. Define T'(v) to be the
subtree induced by v and all proper descendants of v. Define F'(v) to be the forest induced by
all proper descendants of v. For 1 < s <r <k let T'(v,vs, v,) be the connected component
induced by the nodes {v} UT (vs) UT (vs41) U---UT(v,).

A cluster with top boundary node v is a connected component of the form T'(v,vs,v,),
1 <s<r <k A cluster with top boundary node v and bottom boundary node u is a
connected component of the form T'(v,vs,v,) \ F(u), 1 < s <r <k, where u is a node in
T(vs)U---UT(v,). We denote the top boundary node of a cluster C' by top(C'). Clusters can
therefore have either one or two boundary nodes. For example, let p(v) denote the parent
of v then a single edge (v, p(v)) of T is a cluster where p(v) is the top boundary node. If v
is a leaf then there is no bottom boundary node, otherwise v is a bottom boundary node.
Nodes that are not boundary nodes are called internal nodes. The path between the top and
bottom boundary nodes in a cluster C' is called the cluster’s spine, and the string obtained
by concatenating the labels on the spine from top to bottom is denoted spine(C).

Two edge disjoint clusters A and B whose vertices overlap on a single boundary node can
be merged if their union C' = AU B is also a cluster. There are five ways of merging clusters
(see Figure 1). Merges of type (a) and (b) are called vertical merges (C is then a vertical

4:5

ISAAC 2019

4:6

Top Tree Compression of Tries

iPATATA

(a) (b)

Figure 1 Five ways of merging clusters. The e nodes are boundary nodes that remain boundary
nodes in the merged cluster. The o nodes are boundary nodes that become internal (non-boundary)
nodes in the merged cluster. Note that in the last four merges at least one of the merged clusters
has a top boundary node but no bottom boundary node.

cluster) and can be done only if the common boundary node is not a boundary node of any
other cluster except A and B. Merges of type (c),(d), and (e) are called horizontal merges
(C is then a horizontal cluster) and can be done only if at least one of A or B does not have
a bottom boundary node.

2.3 Top Trees

A top tree T of T is a hierarchical decomposition of T into clusters. It is an ordered, rooted,
labeled, and binary tree defined as follows (see Figure 2(a)—(c)).
The nodes of 7 correspond to clusters of T'.
The root of T corresponds to the cluster T itself. The top boundary node of the root of
T is the root of T.
The leaves of T correspond to the edges of T'. The label of each leaf is the label of the
corresponding edge (u,v) in T
Each internal node of T~ corresponds to the merged cluster of its two children. The label
of each internal node is the type of merge it represents (out of the five merging options).
The children are ordered so that the left child is the child cluster visited first in a preorder
traversal of T.

» Lemma 4 (Alstrup et al. [3]). Given a tree T of size ny, we can construct in O(nr) time
a top tree T of T that is of size O(nr) and height O(lognr).

2.4 Top Dags

Every labeled tree can be represented with a directed acyclic graph (DAG) by identifying
identical rooted subtrees and replacing them with a single copy. The top DAG of T, denoted
TD, is the minimal DAG representation of the top tree 7 of T. We can compute it in
O(ny) time from T [27]'. Top DAGs have important properties for compression and
computation [16,18,28,38]. We need the following optimal worst-case compression bound.

» Lemma 5 (Dudek and Gawrychowski [28]). Given an ordered tree with nr nodes over
an alphabet of size o, we can construct a top DAG TD in O(nr) time of size nyp =
O(nr/log, nr).

1 Here we use edge labels instead of nodes label. The two definitions are equivalent and edge labels are
more natural for tries.

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

Co/

o O

ar by b ay as be ar bg c9 dyo a b ¢ d

Figure 2 (a) A trie. Each edge label has a subscript to identify the corresponding leaf in the top
tree in (c). (b) A hierarchical clustering of (a). (c) The top tree corresponding to (a). Blue nodes
are vertical clusters and red nodes are horizontal clusters. (d) The top DAG of (c).

3 A Simple Index

We first present a simple randomized Monte-Carlo word RAM string index, that will be the
starting point for our deterministic, comparison-based pointer machine solution in the later
sections.

3.1 Data Structure

Let T be the trie of the strings S = S1,...,Sk and let TD be the corresponding top DAG of
T. Our data structure augments 7D with additional information. For each cluster C in TD
we store the following information.
If C is a leaf cluster representing an edge e, we store the label of e.
If C is an internal cluster with left and right child A and B, we store the label of the
edge to the rightmost child of the top boundary node, the fingerprint ¢(spine(C)), and
the length |spine(C)].
This requires constant space for each cluster and hence O(nyp) space in total.

3.2 Searching

Given a pattern P of length m, we denote the unique node in T" whose path from the root
matches the longest prefix of P, the

Given a pattern P of length m we find the longest matching prefix of P in T, i.e., the
unique node locusr(P) in T whose path from the root matches the longest prefix of P, as

follows. First, compute and store all fingerprints of prefixes of P in O(m) time and space.

By Lemma 3, we can then compute the fingerprint of any substring of P in O(1) time.

Next, we traverse 7D top-down while matching P. Initially, we search for P[1,m] starting
at the root of TD. Suppose we have reached cluster C' and have matched P[1,i]. If i =m
we return m. Otherwise (i < m) there are three cases:

4:7

ISAAC 2019

4:8

Top Tree Compression of Tries

Case 1: C is a leaf cluster. Let e be the edge stored in C'. We compare P[i + 1] with the
label of e. We return i + 1 if they match and otherwise 3.

Case 2: C' is a horizontal cluster. Let A and B be the left and right child of C, respectively.
We compare P[i+1] with the label « of the edge to the rightmost child of A. If P[i+1] < «,
we continue the search in A for P[i+1...m]. Otherwise, we continue the search in B for
Pli+1...m].

Case 3: C is vertical cluster. Let A and B be the left and right child of C, respectively. If
|spine(A)| > m — i we continue the search in A for P[i+ 1...m]. Otherwise, we compare
the fingerprint ¢(spine(A)) with ¢(P[i + 1...7 + 1 + |spine(A4)|]). If they match, we
continue the search in B for P[i+ 14 |spine(A)]...m]. Otherwise, we continue the search
in A for Pli +1...m].

» Lemma 6. The algorithm correctly computes the longest matching prefix of P in T.

Next consider the running time. We compute all fingerprints of P in O(m) time. Each
step of top-down traversal requires constant time and since the depth of 7D is O(logn) the
total time is O(m + logn). In summary, we have the following theorem.

» Theorem 7. Let S = Sy,...,Sk be a set of strings of total length n, and let TD be the
corresponding top DAG for the trie of S. On a word RAM model of computation, we can solve
the compressed string indexing problem in O(nyp) = O(n/log, n) space and O(m + logn)
time for any pattern of length m. The solution is randomized Monte-Carlo.

In the next sections we show how to convert the above algorithm from a randomized
algorithm on a word RAM machine into a deterministic algorithm on a pointer machine.
We note that Theorem 7 and our subsequent solutions can be extended to other variants of
prefix queries, such as counting queries, that return the number of occurrences of P. To do
so, we store the size of each cluster in 7D and use the above top-down search modified to
also record the highest cluster E whose top boundary is locusy(P). Since the size of F is
the number of occurrences of P, we obtain a solution that also supports counting within the
same complexities. From F we can also support reporting queries, that return the strings in
S with prefix P, by simply decompressing E incurring additional linear time in the lengths
of the strings with matching prefix.

4 Spine Extraction

We first consider how to handle vertical clusters (Case 3) deterministically on a pointer
machine. The key challenge is to efficiently extract the characters on the spine path of a
vertical cluster from top to bottom without decompressing the whole cluster. We will use
this to efficiently compute longest common prefixes between spine paths and substrings of P
in order to achieve total O(m + logn) time.

Given the top DAG TD, the spine path extraction problem is to compactly represent 7D
such that given any vertical cluster C' we can return the characters of spine(C'). We require
that the characters are reported online and from top-to-bottom, that is, the characters must
be reported in sequence and we can stop extraction at any point in time. The goal is to
obtain a solution that is efficient in the length of the reported prefix. In the following sections
we show how to solve the problem in O(nyp) space and O(m + logn) total time over all
spine path extractions.

We present a new data structure derived from the top DAG called the vertical top DAG
and show how to use this to extract characters from a spine path. We then use this to
compute the longest common prefixes between a spine path and any string and plug this in
to the top down traversal in the simple solution from Section 3 to obtain Theorem 1.

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

)

)
a by as be az

Figure 3 (a) The vertical top forest of the top tree from Figure 2(c). (b) The vertical top DAG
of (a). (c¢) The horizontal top forest of Figure 2(a). (d) The horizontal top DAG of (a).

b ¢ d

4.1 Vertical Top Forest and Vertical Top DAG

The wertical top forest V of T is a forest of ordered, rooted, and labeled binary trees. The
nodes in V are all the vertical clusters of 7 and the leaf clusters of 7 that correspond to
edges of a spine path of some cluster in 7. The edges of V are defined as follows. A cluster C
of type (a) with children A and B in 7 has two children in V. The left and right children are
the unique vertical or leaf descendants of C' in 7 whose spine path is spine(A) and spine(B),
respectively. A cluster C of type (b) with children A and B in T has a single child in V,
which is the unique vertical or leaf descendant of C' in T whose spine path is spine(A). See
Figure 3(a). We have the following correspondence between spine paths and subtrees in V.

» Lemma 8. Let C' be a vertical merge in V and L be the leaves of V(C). Then, L are
the edges on spine(C) and |V(C)| = O(|L|). Furthermore, the left-to-right ordering of L
corresponds to the top-down ordering of the edges on spine(C).

For instance in Figure 3(a), the descendant leaves of Cy are b3, a4, as in left-to-right
ordering corresponding to the edges in the spine of Cg in Figure 2(b).

The vertical top DAG VD is the DAG obtained by merging identical subtrees of V
according to the DAG compression of TD. See Figure 3(b).

4.2 Spine Extraction

We now show how to solve spine path extraction using the vertical top DAG VD. The key
idea is to simulate a depth-first left-to-right order traversal of V(C) using a recursive traversal
of VD. In order to use spine path extraction to search for a pattern we also need to be able
to continue the search in some horizontal cluster of the top DAG after extracting characters
on the spine. We will therefore define what we call a vertical exit cluster, from which we can
quickly find the cluster to continue the search from.

Define the vertical exit cluster, vexit(C,¢), for C at position ¢, 1 < £ < |spine(C)| to be
the lowest common ancestor of leaves £ — 1 and ¢ in V(C). Intuitively, if we have extracted
the first ¢ characters of spine(C), then vexit(C, ¢) is the cluster such that all leaves in the
left subtree have been extracted and only one leaf in the right subtree (corresponding to
the ¢th character) has been extracted. Our goal is to implement spine path extraction in
time O(¢ + height(C') — height(vexit(C, ¢))). This will yield a telescoping sum when doing
multiple extractions.

4:9

ISAAC 2019

4:10

Top Tree Compression of Tries

Our data structure consists of the vertical top DAG VD. We augment each internal
cluster by the label of the first edge on its spine path and each leaf cluster by the label of
the stored edge. This uses O(nyp) space.

Given a cluster C' we implement spine path extraction by simulating a depth-first left-
to-right order traversal of V(C) using a recursive traversal of VD. To extract the first
character we return the stored label at C. Suppose we have extracted £ — 1 characters,
1 < ¢ < |spine(C)|. To extract the next character continue the simulated depth-first search
until we reach a cluster D in V(C') whose leftmost leaf is the ¢th leaf of V(C). Return the
character stored at D and the parent of D in V(C) as vexit(C,¢). (Note the parent of D is
the cluster visited right before D in the simulated depth-first search.)

By Lemma 8, the algorithm correctly solves spine path extraction and the total time to
extract ¢ characters is O(¢ 4 height(C) — height(vexit(C, ¢))). We need a stack to keep track
of the current search path in the traversal using O(height(V(C))) = O(logny) = O(nyp)
space. In summary, we have the following lemma.

» Lemma 9. Let VD be the vertical top DAG. We can represent VD in O(nyp) space such
that given a vertical cluster C, we can support spine path extraction on C in O(£+height(C)—
height (vexit(C, £))) time, where ¢ is the length of the extracted prefix of spine(C).

Note that we can use Lemma 9 to compute the longest common prefix of spine(C') and any
string by reporting the characters on the spine path from top-to-bottom and comparing them
with the string until we get a mismatch. This uses O(¢+1+height(C)—height(vexit(C, £+1)))
time, where £ is the length of the longest common prefix.

5 An O(m + logn) Time Solution

We now plug in our spine path extraction algorithm from Section 4 into the simple algorithm
from Section 3.

Define the horizontal entry cluster for a vertical cluster C, denoted hentry(C'), to be
the highest horizontal cluster or leaf cluster in 7 (C') that contains all edges from top(C') to
children within C'. For a horizontal cluster or a leaf the horizontal exit cluster is the cluster
itself. Note hentry(C) is the highest horizontal cluster or leaf cluster on the path from C' to
the leftmost leaf of C.

Our data structure consists of the data structures from Section 3 without fingerprints and
Section 4. This uses O(nyp) space. To search for a string P of length m, we use the same
algorithm as in Section 3, but with the following new implementation of the vertical merges.

Case 3: C'is vertical cluster. Recall we have reached a vertical cluster C' and have matched
prefix P[1,i]. We check if the first character on spine(C) matches P[i + 1]. If it does
not, we continue the algorithm from hentry(C). If it does, we extract characters from
spine(C) in order to compute the length ¢ of the longest common prefix of spine(C) and
P[i + 1,m] and the corresponding vertical exit cluster F = vexit(C, £ + 1). Let B be the
right child of F in TD. We traverse the leftmost path from B to find hentry(B) and
continue the search for P[i + ¢+ 1, m] from there.

» Lemma 10. The algorithm correctly computes the longest matching prefix of P in T.

Consider the time used in a vertical step from a cluster C' . The time to compute the
longest common prefix computation extracting ¢ characters and walking to the corresponding
horizontal entry cluster hentry(vexit(C, ¢)) is O(¢ 4+ h(C) — h(vexit(C, £) + h(vexit(C, ¢)) —
h(hentry(vexit(C, £))) = O(¢+h(C)—h(hentry(vexit(C, £))). Hence, if we have z vertical steps
from clusters C1,...,C, extracting ¢1,..., ¢, characters ending in F; = hentry(vexit(C;, ¢;)),
respectively, we use time

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

z

> Ot + h(Ci) = h(E;)) = O (Z 6 + h(Cy) — h(Ez)> =O(m+lognrt) .
i=1 i=1
This follows from the fact that C1,...,C, and E, ..., E, all lie on the same root-to-leaf path
in 7 and that h(E;) > h(Ci+1). As in Section 3, the total time used at horizontal merges is
O(lognr), as Ey, ..., E, all lie on the same root-to-leaf path in 7 and we only walk down in
the tree during the horizontal merges. This concludes the proof of the O(m + logn) query
time in Theorem 1.

6 Spine Path Extraction with Constant Overhead

Next, we show how to achieve the O(mlog o) query time in Theorem 1. Our current solutions
for horizontal merges (Case 2) from Section 3 and vertical merges (Case 3) from Section 5
both require Q(m + logn) and hence we need new techniques for both cases to achieve the
O(mlog o) time bound. We consider vertical merges in this section and horizontal merges in
the next section.

In this section, we improve the total time used on spine extraction to optimal O(m) time.

To do so we first introduce and present a novel solution to a new path extraction problem on
trees in Section 6.1 and then show how to use this to extract characters from the spine in
Section 6.2.

6.1 Path Extraction in Trees

Given a tree T with n nodes, the path extraction problem is to compactly represent 7" such
that given a node v we can return the nodes on the path from the root of 7' to v in constant
time per node. We require that the nodes are reported online and from top-to-bottom, that
is, the nodes must be reported in sequence and we can stop the extraction at any point
in time. The ordering of the nodes from top to bottom is essential. The other direction
(from v to the root) is trivial since we can simply store parent pointers and traverse that
path using linear space and constant time per node. If we allow word RAM tricks then we
can easily solve the problem in the same bounds by using an existing level ancestor data
structure [2,12,26]. We present an optimal solution that does not use word RAM tricks
and works on a pointer machine. As mentioned in the introduction, an optimal solution
can be also obtained by plugging in known tools, but we believe that our method is simpler
and elegant.

Let depth(v) and height(v) be the distance from v to the root and to deepest leaf in v’s
subtree, respectively. Decompose T into a top part Tio, consisting of nodes v, such that
depth(v) < height(v), and a bottom part T}, consisting of the remaining nodes. For each
leaf u in Tiop we store the path from the root of Tiop to u explicitly in a linked list sorted by
increasing depth. (see Figure 4). Note that multiple copies of the same node may be stored
across different lists. Each such path to a leaf u uses O(depth(u)) space, and hence the total
space for all paths in Ti.p is

Z depth(u) < Z height(u) = O(n),

u a leaf in Tyop u a leaf in Tyop

where the first equality follows by definition of the decomposition and the second follows
since the longest paths from a descendant leaf in T'(u) to a leaf w in T}, are disjoint for all
the leaves u in Tiop. For all internal nodes in T}, we store a pointer to a leaf below it. For

4:11

ISAAC 2019

4:12

Top Tree Compression of Tries

@)

Figure 4 The tree decomposition for path extraction. The black nodes are the nodes in Tiop and
the white nodes are the nodes in Thot. The three root-to-leaf paths are stored as three linked lists
sorted by increasing depth. The total size of the lists is 24+3+2=17.

all nodes v in Tior We store a pointer to the unique ancestor v that is a leaf in Tiop. We
answer a path extraction query for a node v as follows. If v is in Ti,, we follow the leaf
pointer and output the path stored in this leaf from the root until we reach v. If v is in T},0¢
we jump to the unique ancestor leaf v of v in T;,,. We extract the path from the root to u,
while simultaneously following parent pointers from v until we reach u storing these nodes
on a stack. That is, each time we extract a node from the root-to-u path we follow a parent
pointer and put the next node on the stack. We stop pushing nodes to the stack when we
reach u. When we have output all nodes from the root to the leaf in Ti,, we output the
nodes from the stack. Since depth(u) < height(u) the path from the root to u is at least as
long as the path from v to w plus 1. Therefore, the whole path is extracted. We spend O(1)
time per node and hence we have the following result.

» Lemma 11. Given a tree T with n nodes, we can solve the path extraction problem in
linear space and preprocessing and constant time per reported node.

6.2 Optimal Spine Path Extraction

We plug the path extraction solution into our depth-first search traversal of the vertical top
DAG VD to speed up spine extraction and longest common prefix computation. Recall that
given a vertical cluster C, our goal is to simulate a depth-first left-to-right order traversal of
the subtree V(C) using the vertical top DAG VD.

We construct the left-path suffix forest L of VD as follows. The nodes of L are the nodes
of VD. If C has a left child A in VD then A is the parent of C' in L. Hence, any leftmost
path in VD corresponds to a path from a node to an ancestor of the node in L. We now store
L with the path extraction data structure from Lemma 11. We implement the depth-first
traversal as before except that whenever the traversal reaches an unexplored cluster C’ in
V(C) we begin path extraction for that cluster corresponding to the path from C’ to the
leftmost descendant leaf C'. We extract the leaf C' and then continue the depth-first traversal
from there. Hence, the current search path of the depth-first traversal is partitioned into an
alternating sequence of leftmost paths and right edges. Whenever we need to go up on a left
edge in the traversal we extract the next node for the corresponding path extraction instance.

To extract the topmost £ characters of spine(C) we now use constant time to find the
leftmost descendant leaf of V(C') and then O(¢) time to traverse the first £ leaves. Hence, we
improve the time from O(height(V(C)) + ¢) to O(£). At any point during the traversal we

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

maintain ongoing path extractions instances along the current search path. The stacks each
of these need are of size at most linear in the length of their corresponding subpath of the
search path and hence this requires at most O(lognyp) extra space.

» Lemma 12. We can represent the vertical top DAG VD in O(nyp) space such that given
a vertical cluster C, we can support spine path extraction on C in O(£) time, where £ is the
length of the extracted prefix of spine(C).

7 Horizontal Access

We now show how to efficiently handle horizontal merges (Case 2). In the simple algorithm
from Section 3 we use constant time at each horizontal merge leading to an O(logny) total
time solution. Since we cannot afford O(logny) time we instead show how to handle all
horizontal merges in O(mlogo) time. The key idea is to convert the problem into a variant
of the random access problem for grammar compressed strings, and then design a linear-
space logarithmic-query solution to the random access problem. We describe the random
access problem in Section 7.1 and present our solution to it in Section 7.2, we introduce the
horizontal top DAG in Section 7.3, and define and solve the horizontal access problem in
Section 7.4.

7.1 Grammars and Random Access

Grammar compression replaces a long string S by a small context-free grammar (CFG) G.
We view a grammar G as a DAG, where each node is a grammar symbol and each rule
defines directed ordered edges from the righthand side to the lefthand side. Given a node C
in G, we define T'(C') to be the parse tree rooted at C and S(C') to be the string consisting
of the leaves of T'(C) in left-to-right order. Note that given a rule C — C1Cs...Cy we
have that S(C) = S(Cy) - S(C3) - - - S(Ck), where - denotes concatenation. Given a grammar
G representing a string S, the random access problem is to compactly represent G while
supporting fast access queries, that is, given an index 4 in S report S[i]. Bille et al. [19]
showed how to do random access in O(log |S|) time using O(ng - ax(ng)) space? on a pointer
machine model. Furthermore, given a node C in G, access queries can be supported on the
string S(C) in time O(log|S(C)]).

For our purposes, we need to slightly extend this result to gapped grammars. A
gapped grammar is a grammar except that each internal rule is now of the form C' —
C191Cs ... gr—1Ck, where g; is a non-negative integer called the gap. The string gen-
erated by G is now S(C) = S(C1)0915(Cy) -+ S(Ck—1)09-15(C}) and hence the result-
ing string generated is as before except for the inserted gaps of runs of 0’s. Note that
|S(C)] = |S(C1)| + 91 +|S(C2)| + -+ + gk—1 + |S(Ck|. The above random access result is
straightforward to generalize to gapped grammars:

» Lemma 13 (Bille et al. [19]). Let S be a string compressed into a gapped grammar S of size
ns. Given a node v in S, we can support random access queries in S(v) in O(log(|S(v)|)) time
using O(ns - ag(ns)) space. The solution works on a pointer machine model of computation.

2 Here ay(n) for any constant k denotes the inverse of the k*" row of Ackermann’s function, defined as
ar(n) =1+ ar(ar—1(n)) so that a1 (n) = n/2, az(n) =logn, az(n) =log™ n, and so on.

4:13

ISAAC 2019

4:14

Top Tree Compression of Tries

7.2 Horizontal Access in Linear Space

Bille et al. [19] further showed that the inverse-Ackermann factor in the space complexity of
Lemma 13 can be removed if we assume a word RAM model of computation. In this section
we show that this can also be achieved on a pointer machine. To this end, we need to replace
a single component in the solution of Bille et al., their weighted level ancestor structure. In
the weighted level ancestor problem, we are given a tree T on n nodes with positive weights
on the edges. For every node u € T, let d(u) be its distance to the root, and let parent(u) be
its parent. Then, the goal is to preprocess T' to answer the following weighted level ancestor
queries: given a non-root node v € T and a positive number z < d(u), find an ancestor v
such that d(v) > z but d(parent(v)) < x.

Without getting into the proof of Lemma 13, it suffices to say that (1) performing a
random access query boils down to performing O(log(]S(v)|)) weighted level ancestor queries,
and (2) in order for all these O(log(]S(v)|)) queries to be done in total O(log(|.S(v)[)) time,
the time for each weighted level ancestor query should be proportional to log WM.
Intuitively, we seek a position on an edge at distance x from the root, and the longer the
found edge is the smaller the query time should be. We next show how to achieve such
query time using linear space on a pointer machine, implying an inverse- Ackermann factor

improvement to Lemma 13.

» Lemma 14. A tree T on n nodes can be preprocessed in O(n) space to answer a weighted
level ancestor query for a node u € T and a number x in O(1 + log m) time,
where v is the found ancestor of u.

» Corollary 15. Let S be a string compressed into a gapped grammar S of size ns. Given a
node v in S, we can support random access queries in S(v) in log(|S(v)|) time using O(ns)
space. The solution works on a pointer machine model of computation.

7.3 Horizontal Top Tree and Horizontal Top DAGs

Similar to the vertical top forest we define the horizontal top forest H of T as a forest of
ordered and rooted trees that consists of all horizontal clusters of 7 and leaves of 7 whose
top boundary is shared with a horizontal cluster. We define the edges in of C' in H as follows.
Let C be a horizontal cluster C' with children A and B in 7. If A is a horizontal cluster or
a leaf then the left child of C' is A, and if A is a vertical cluster then the left child of C' is
hentry(A). Similarly, the right child of C is either B or hentry(B). See Figure 3. We have
the following property of H.

» Lemma 16. Let C be a horizontal merge in H. Then, the leaves of H(C') are the edges to
children of the top boundary node of C and the left-to-right ordering of the leaves correspond
to the left-to-right ordering of the children of C in T. All nodes in H(C) has top(C) as top
boundary node.

For instance in Figure 3(c) the descendant leaves of C7 are ar, bs, cg, and djg in left to right
ordering corresponding to the edges to the children of top(C7). Given the horizontal top
forest we define the horizontal top DAG HD as the DAG obtained by merging the subtrees
of H according to the DAG compression of 7 into TD.

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

7.4 Gapped Grammars and Horizontal Access

Let C be an internal cluster in H. The spine child of C' is the unique child of C' that contains
the first edge of spine(C). A descendant cluster D of C' is a spine descendant of C' if all
clusters on the path from C to D are spine children of their parent. Define the horizontal
exit cluster for a horizontal cluster C' and character «, denoted hexit(C, «), to be the highest
cluster in H(C) that has the unique leaf in H(C') labeled « as a spine descendant.

Given the horizontal top DAG HD, the horizontal access problem, is to compactly represent
‘HD such that given a horizontal merge C' and a character a € X, we can efficiently determine
if top(C) has an edge to a child labeled o within C' and if so return the horizontal exit cluster
hexit(C, «). In this section, we show how to solve the horizontal access problem in O(nup)
space and O(logo) time.

The characteristic vector of a cluster C is a binary string encoding the labels of edges
to children of top(C'). More precisely, given a character a € ¥ define rank(a) € {1,...,0}
as the rank of « in the sorted order of characters of ¥. Also, given a cluster C in H
define rank(C) to be the set of ranks of leaf labels in H(C'). We define the characteristic
vector S(C) recursively as follows. If C' is a leaf cluster S(C) = 1 and if C' is an internal
cluster with children Cy, ..., Cy, then S(C) = S(C1)091S(Cy) - - - S(Cy—1)09%-15(C}), where
g; = min(rank(C;11)) — max(rank(C;)) + 1. Note that |S(C)| < o for any cluster C. From
the definition we have the following correspondence between the characteristic vector and
the leaf labels of a cluster.

» Lemma 17. Given a cluster C in H and a character o € ¥, o is a leaf label in H(C) iff
S(C)[rank(«) — min(rank(C))] = 1.

Let Ry,..., R, be the root clusters of the trees in H and note that if we add a virtual
root cluster R as the parent of Ry,...,R,, H is a gapped parse tree for the string S =

S(Ry)---S(R,). Hence, the horizontal top DAG HD is a gapped grammar for the same string.

By Lemma 17 we can determine if there is an edge labeled a out of top(C') in C' using a random

access query on the corresponding gapped grammar using time O(log |S(C)|) = O(log o).

If this edge exists, we can also find hexit(C, «) in the same time using similar ideas. More
precisely, we have the following result.

» Lemma 18. Given a cluster C in H and a character o € ¥ we can solve the horizontal
acces problem in O(nyp) space and O(logo) time.

8 An O(mlogo) Solution

We can now plug in the spine extraction from Section 6.2 and the horizontal access from
Section 7 into the simple algorithm from Section 3. Define the vertical entry cluster for a
horizontal cluster C, denoted ventry(C), to be the highest vertical cluster or leaf cluster in
T(C) that contains the first edge on spine(C').

Our data structure consists of the data structure from Section 6.2 for spine path extraction
and the data structure from Section 7.3 for horizontal access. Furthermore, we store for each
vertical cluster in 7D a pointer to its horizontal entry cluster and for each horizontal cluster
a pointer to its vertical entry cluster. In total this uses O(nyp) space.

To search we alternate between horizontal accesses using Lemma 18 and spine path
extractions using Lemma 12. Instead of traversals to find entry clusters we jump directly
using the new pointers. Specifically, we have the following modified algorithm:

4:15

ISAAC 2019

4:16

Top Tree Compression of Tries

Initially, we search for P[1,m] starting at the root of TD. Suppose we have reached
cluster C' and have matched P[1,i]. If i = m we return m. Otherwise (i < m) there are
three cases:

Case 1: C is a leaf cluster. Let e be the edge stored in C. We compare P[i + 1] with the
label of e. We return ¢ + 1 if they match and otherwise 3.

Case 2: C is a horizontal cluster. Compute E = hexit(C, P[i + 1]). If P[i + 1] does not
match return 4. Otherwise, continue the search for P[i 4+ 1, m] from ventry(E).

Case 3: C is vertical cluster. We check if the first character on spine(C') matches P[i + 1].
If it does not we continue the algorithm from hentry(C'). Otherwise, we extract characters
from spine(C) in order to compute the length ¢ of the longest common prefix of spine(C)
and P[i+ 1, m] and the corresponding vertical exit cluster E = vexit(C, ¢ + 1). Continue
the search for P[¢ + 1,m| from hentry(E).

» Lemma 19. The algorithm correctly computes the longest matching prefix of P in T.

Consider the alternating sequence of horizontal accesses and spine extractions. Each time
we go from a horizontal access to a spine extraction the current character of P must match
the first character on the spine. Hence, each horizontal access is on a distinct character
of P and the total number of horizontal accesses is at most m. By Lemma 18 it follows
that the total time for horizontal accesses is O(mlogo). Since the sequence is alternating
the number of spine extractions is at most m + 1. Hence, by Lemma 12 the total time for
spine extractions is at most O(m). This concludes the proof of the O(mlogo) query time
in Theorem 1.

—— References

1 Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-dimensional orthogonal range
reporting and rectangle stabbing in the pointer machine model. In Proc. 28th SoCG, pages
323-332, 2012.

2 Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dynamic
trees. In Proc. 27th ICALP, pages 73-84, 2000.

3 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining
Information in Fully Dynamic Trees with Top Trees. ACM Trans. Algorithms, 1(2):243-264,
2005.

4 J-1 Aoe. An efficient digital search algorithm by using a double-array structure. IEEE Trans.
Soft. Eng., 15(9):1066-1077, 1989.

5 Julian Arz and Johannes Fischer. LZ-compressed string dictionaries. In Proc. 24th DCC,
pages 322-331, 2014.

6 Julian Arz and Johannes Fischer. Lempel-Ziv-78 Compressed String Dictionaries. Algorithmica,
pages 1-36, 2018.

7 Nikolas Askitis and Ranjan Sinha. Engineering scalable, cache and space efficient tries for
strings. The VLDB Journal, 19(5):633-660, 2010.

8 Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Proc. 17th
SPIRE, pages 159-172, 2010.

9 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Com-
posite repetition-aware data structures. In Proc. 26th CPM, pages 26-39, 2015.

10 Djamal Belazzougui, Travis Gagie, Pawel Gawrychowski, Juha Kérkkéinen, Alberto Ordénez,
Simon J Puglisi, and Yasuo Tabei. Queries on LZ-bounded encodings. In Proc. 25th DCC;
pages 83-92, 2015.

11 Djamal Belazzougui, Travis Gagie, Simon Gog, Giovanni Manzini, and Jouni Sirén. Relative
FMe-indexes. In Proc. 21st SPIRE, pages 52—64, 2014.

P. Bille, P. Gawrychowski, I. L. Ggrtz, G. M. Landau, and O. Weimann

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

Michael A. Bender and Martin Farach-Colton. The Level Ancestor Problem simplified. Theoret.
Comput. Sci., 321(1):5-12, 2004.

David Benoit, Erik D Demaine, J lan Munro, Rajeev Raman, Venkatesh Raman, and S Srinivasa
Rao. Representing trees of higher degree. Algorithmica, 43(4):275-292, 2005.

Samuel W. Bent, Daniel D. Sleator, and Robert E. Tarjan. Biased Search Trees. SIAM J.
Comput., 14(3):545-568, 1985.

Philip Bille, Mikko B. Ettienne, Inge Li Ggrtz, and Hjalte W. Vildhgj. Time-space trade-offs
for Lempel-Ziv compressed indexing. Theor. Comput. Sci., 713:66-77, 2018.

Philip Bille, Finn Fernstrgm, and Inge Li Ggrtz. Tight Bounds for Top Tree Compression. In
Proc. 24th SPIRE, pages 97-102, 2017.

Philip Bille, Inge Li Ggrtz, and Frederik Rye Skjoldjensen. Deterministic Indexing for Packed
Strings. In Proc. 28th CPM, 2017.

Philip Bille, Inge Li Ggrtz, Oren Weimann, and Gad M. Landau. Tree compression with top
trees. Inf. Comput., 243:166-177, 2015. Announced at ICALP 2013.

Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random Access to Grammar-Compressed Strings and Trees. SIAM J. Comput.,
44(3):513-539, 2015. Announced at SODA 2011.

Barnard Chazelle. Lower bounds for orthogonal range searching: I. The reporting case. J.
ACM, 37(2):200-212, 1990.

Bernard Chazelle and Burton Rosenberg. Simplex range reporting on a pointer machine.
Comput. Geom., 5(5):237-247, 1996.

Anders R. Christiansen and Mikko B. Ettienne. Compressed Indexing with Signature Grammars.
In Proc. 13th LATIN, pages 331-345, 2018.

Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundamenta
Informaticae, 111(3):313-337, 2011.

Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In
Proc. 19th SPIRE, pages 180-192, 2012.

John J Darragh, John G Cleary, and Ian H Witten. Bonsai: a compact representation of trees.
Softw. Pract. Ezxper., 23(3):277-291, 1993.

Paul F. Dietz. Finding level-ancestors in dynamic trees. In Proc. 2nd WADS, pages 32-40,
1991.

Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758-771, 1980.

Bartlomiej Dudek and Pawetl Gawrychowski. Slowing Down Top Trees for Better Worst-Case
Compression. In Proc. 29th CPM, pages 16:1-16:8, 2018.

Andrea Farruggia, Travis Gagie, Gonzalo Navarro, Simon J Puglisi, and Jouni Sirén. Relative
suffix trees. Comput. J., 61(5):773-788, 2017.

Edward Fredkin. Trie Memory. Commun. ACM, 3(9):490-499, 1960.

Travis Gagie, Pawel Gawrychowski, Juha Kéarkkéinen, Yakov Nekrich, and Simon J. Puglisi.

A Faster Grammar-Based Self-index. In Proc. 6th LATA, pages 240-251, 2012.

Travis Gagie, Pawet Gawrychowski, Juha Kéarkk&inen, Yakov Nekrich, and Simon J. Puglisi.

LZ77-based self-indexing with faster pattern matching. In Proc. 11th LATIN, pages 731-742,
2014.

Roberto Grossi and Giuseppe Ottaviano. Fast compressed tries through path decompositions.

ACM J. Ezp. Alg., 19:3-4, 2015.

Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378-407, 2005.
Torben Hagerup. Sorting and Searching on the Word RAM. In Proc. 15th STACS, pages
366-398, 1998.

Meng He, J. Ian Munro, and Gelin Zhou. Data Structures for Path Queries. ACM Trans.
Algorithms, 12(4):53:1-53:32, 2016.

Robert Hood and Robert Melville. Real-Time Queue Operation in Pure LISP. Inf. Process.
Lett., 13(2):50-54, 1981.

4:17

ISAAC 2019

4:18

Top Tree Compression of Tries

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Lorenz Hiibschle-Schneider and Rajeev Raman. Tree compression with top trees revisited. In
Proc. 14th SEA, pages 15-27, 2015.

Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Compressed double-array tries for
string dictionaries supporting fast lookup. Knowl. Inf. Syst., 51(3):1023-1042, 2017.
Shunsuke Kanda, Kazuhiro Morita, and Masao Fuketa. Practical implementation of space-
efficient dynamic keyword dictionaries. In Proc. 24th SPIRFE, pages 221-233, 2017.

Juha Kérkkéinen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In Proc. 3rd WSP, pages 141-155, 1996.

Richard M. Karp and Michael O. Rabin. Efficient Randomized Pattern-Matching Algorithms.
IBM Journal of Research and Development, 31(2):249-260, 1987.

Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM J. Comput., 6(2):323-350, 1977.

Donald Erwin Knuth. The Art of Computer Programming, Volume 1. Addison Wesley, 1969.
Veli Makinen. Compact suffix array—a space-efficient full-text index. Fundamenta Informaticae,
56(1-2):191-210, 2003.

Veli Mékinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.
Nordic J. Comput., 12(1):40-66, 2005.

Veli Mékinen, Gonzalo Navarro, Jouni Sirén, and Niko Vé&liméki. Storage and retrieval of
individual genomes. In Proc. 13th RECOMB, pages 121-137, 2009.

Veli Mékinen, Gonzalo Navarro, Jouni Sirén, and Niko Valiméki. Storage and retrieval of
highly repetitive sequence collections. J. Comp.Bio., 17(3):281-308, 2010.

Gonzalo Navarro and Veli Méakinen. Compressed Full-text Indexes. ACM Comput. Surv.,
39(1), 2007.

Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theor. Comput.
Seci., 762:41-50, 2019.

Takaaki Nishimoto, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Dynamic index and LZ factorization in compressed space. Disc. App. Math., 2019.

Andreas Poyias and Rajeev Raman. Improved practical compact dynamic tries. In Proc. 22nd
SPIRE, pages 324-336, 2015.

Franco P Preparata and Se June Hong. Convex hulls of finite sets of points in two and three
dimensions. Communications of the ACM, 20(2):87-93, 1977.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007.

Kunihiko Sadakane. Compressed text databases with efficient query algorithms based on the
compressed suffix array. In Proc. 11th ISAAC, pages 410-421, 2000.

Jouni Sirén, Niko Valiméki, Veli Mékinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In Proc. 15th SPIRFE, pages
164-175, 2008.

Takuya Takagi, Keisuke Goto, Yuta Fujishige, Shunsuke Inenaga, and Hiroki Arimura. Linear-
size CDAWG: new repetition-aware indexing and grammar compression. In Proc. 24th SPIRE,
pages 304-316, 2017.

Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki Arimura. Packed compact
tries: A fast and efficient data structure for online string processing. IEICE Trans. on Fund.
Elect., Comm. and Comp. Sci., 100(9):1785-1793, 2017.

Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of Computer and System Sciences, 18(2):110-127, April 1979.

Kazuya Tsuruta, Dominik Képpl, Shunsuke Kanda, Yuto Nakashima, Shunsuke Inenaga, Hideo
Bannai, and Masayuki Takeda. Dynamic Packed Compact Tries Revisited. arXiv preprint,
2019. arXiv:1904.07467.

Susumu Yata. Dictionary compression by nesting prefix/patricia tries. In Proc. 17th Meeting
of the Association for Natural Language, 2011.

Naoki Yoshinaga and Masaru Kitsuregawa. A self-adaptive classifier for efficient text-stream
processing. In Proc. 25th COLING, pages 1091-1102, 2014.

http://arxiv.org/abs/1904.07467

	Introduction
	Computational Models
	Previous work
	Our results
	Techniques
	Roadmap

	Preliminaries
	Karp-Rabin Fingerprints
	Clustering
	Top Trees
	Top Dags

	A Simple Index
	Data Structure
	Searching

	Spine Extraction
	Vertical Top Forest and Vertical Top DAG
	Spine Extraction

	An O(m + log n) Time Solution
	Spine Path Extraction with Constant Overhead
	Path Extraction in Trees
	Optimal Spine Path Extraction

	Horizontal Access
	Grammars and Random Access
	Horizontal Access in Linear Space
	Horizontal Top Tree and Horizontal Top DAGs
	Gapped Grammars and Horizontal Access

	An O(m log sigma) Solution

