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ABSTRACT

Recent theoretical research has shown that self-adjusting and self-

adaptive mechanisms can provably outperform static settings in

evolutionary algorithms for binary search spaces. However, the

vast majority of these studies focuses on unimodal functions which

do not require the algorithm to flip several bits simultaneously to

make progress. In fact, existing self-adjusting algorithms are not

designed to detect local optima and do not have any obvious benefit

to cross large Hamming gaps.

We suggest a mechanism called stagnation detection that can

be added as a module to existing evolutionary algorithms (both

with and without prior self-adjusting schemes). Added to a sim-

ple (1+1) EA, we prove an expected runtime on the well-known

Jump benchmark that corresponds to an asymptotically optimal

parameter setting and outperforms other mechanisms for multi-

modal optimization like heavy-tailed mutation. We also investigate

the module in the context of a self-adjusting (1+𝜆) EA and show

that it combines the previous benefits of this algorithm on unimodal

problems with more efficient multimodal optimization. To explore

the limitations of the approach, we additionally present an exam-

ple where both self-adjusting mechanisms, including stagnation

detection, do not help to find a beneficial setting of the mutation

rate. Finally, we investigate our module for stagnation detection

experimentally.
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1 INTRODUCTION

Recent theoretical research on self-adjusting algorithms in discrete

search spaces has produced a remarkable body of results show-

ing that self-adjusting and self-adaptive mechanisms outperform

static parameter settings. Examples include an analysis of the well-

known (1+(𝜆, 𝜆)) GA using a 1/5-rule to adjust its mutation rate on

OneMax [6], of a self-adjusting (1+𝜆) EA sampling offspring with

different mutation rates [13], matching the parallel black-box com-

plexity of the OneMax function, and a self-adaptive variant of the

latter [12]. Furthermore, self-adjusting schemes for algorithms over

the search space {0, . . . , 𝑟 }𝑛 for 𝑟 > 1 provably outperform static

settings [11] of the mutation operator. Self-adjusting schemes are

also closely related to hyper-heuristics which, e. g., can dynamically

choose between different mutation operators and therefore outper-

form static settings [25]. Besides the mutation probability, other

parameters like the population sizes may be adjusted during the

run of an evolutionary algorithm (EA) and analyzed from a runtime

perspective [23]. Moreover, there is much empirical evidence (e. g.

[14, 15, 18, 27]) showing that parameters of EAs should be adjusted

during its run to optimize its runtime. See also the survey article

[7] for an in-depth coverage of parameter control, self-adjusting

algorithms, and theoretical runtime results.

A common feature of existing self-adjusting schemes is that

they use different settings of a parameter (e. g., the mutation rate)

and – in some way – measure and compare the progress achiev-

able with the different settings. For example, the 2-rate (1+𝜆) EA

from [13] samples 𝜆/2 of the offspring with strength 𝑟/2 (where
we define strength as the expected number of flipping bits, i. e., 𝑛

times the mutation probability) and the other half with strength

2𝑟 . The strength is afterwards adjusted to the one used by a fittest

offspring. Similarly, the 1/5-rule [6] increases the mutation rate if

fitness improvements happen frequently and decreases it otherwise.

This requires that the algorithm is likely enough to make some im-

provements with the different parameters tried or, at least, that the

smallest disimprovement observed in unsuccessful mutations gives

reliable hints on the choice of the parameter. However, there are

situations where the algorithm cannot make progress and does not

learn from unsuccessful mutations either. This can be the case when

the algorithm reaches local optima escaping from which requires

an unlikely event (such as flipping many bits simultaneously) to

happen. Classical self-adjusting algorithms would observe many

unsuccessful steps in such situations and suggest to set the muta-

tion rate to its minimum although that might not be the best choice

to leave the local optimum. In fact, the vast majority of runtime

results for self-adjusting EAs is concerned with unimodal functions

that have no other local optima than the global optimum. An excep-

tion is the work [4] which considers a self-adaptive EA allowing
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two different mutation probabilities on a specifically designed mul-

timodal problem. Altogether, there is a lack of theoretical results

giving guidance on how to design self-adjusting algorithms that

can leave local optima efficiently.

In this paper, we address this question and propose a self-adjust-

ing mechanism called stagnation detection that adjusts mutation

rates when the algorithm has reached a local optimum. In contrast

to previous self-adjusting algorithms this mechanism is likely to

increase the mutation rate in such situations, leading to a more

efficient escape from local optima. This idea has been mentioned be-

fore, e. g., in the context of population sizing in stagnation [17]; also,

recent empirical studies of the above-mentioned 2-rate (1+𝜆) EA,

handling of stagnation by increasing the variance was explicitly

suggested in [36]. Our contribution has several advantages over

previous discussion of stagnation detection: it represents a simple

module that can be added to several existing evolutionary algo-

rithms with little effort, it provably does not change the behavior of

the algorithm on unimodal functions (except for small error terms),

allowing the transfer of previous results, and we provide rigorous

runtime analyses showing general upper bounds for multimodal

functions including its benefits on the well-known Jump benchmark

function.

In a nutshell, our stagnation detection mechanism works in the

setting of pseudo-boolean optimization and standard bit mutation.

Starting from strength 𝑟 = 1, it increases the strength from 𝑟 to 𝑟 +1
after a long waiting time without improvement has elapsed, mean-

ing it is unlikely that an improving bit string at Hamming distance 𝑟

exists. This approach bears some resemblance with variable neigh-

borhood search (VNS) [21]; however, the idea of VNS is to apply

local search with a fixed neighborhood until reaching a local op-

timum and then to adapt the neighborhood structure. There have

also been so-called quasirandom evolutionary algorithms [9] that

search the set of Hamming neighbors of a search point more sys-

tematically; however, these approaches do not change the expected

number of bits flipped. In contrast, our stagnation detection uses

the whole time an unbiased randomized global search operator in

an EA and just adjusts the underlying mutation probability. Sta-

tistical significance of long waiting times is used, indicating that

improvements at Hamming distance 𝑟 are unlikely to exist; this is

rather remotely related to (but clearly inspired by) the estimation-of-

distribution algorithm sig-cGA [8] that uses statistical significance

to counteract genetic drift.

This paper is structured as follows: In Section 2, we introduce the

concrete mechanism for stagnation detection and employ it in the

context of a simple, static (1+1) EA and the already self-adjusting

2-rate (1+𝜆) EA. Moreover, we collect tools for the analysis that

are used in the rest of the paper. Section 3 deals with concrete

runtime bounds for the (1+1) EA and (1+𝜆) EA with stagnation

detection. Besides general upper bounds, we prove a concrete result

for the Jump benchmark function that is asymptotically optimal for

algorithms using standard bit mutation and outperforms previous

mutation-based algorithms for this function like the heavy-tailed

EA from [10]. Elementary techniques are sufficient to show these

results. To explore the limitations of stagnation detection and other

self-adjusting schemes, we propose in Section 4 a function where

these mechanisms provably fail to set the mutation rate to a benefi-

cial regime. As a technical tool, we use drift analysis and analyses

of occupation times for processes with strong drift. To that purpose,

we use a theorem by Hajek [20] on occupation times that, to the

best of the knowledge, was not used for the analysis of random-

ized search heuristics before and may be of independent interest.

Finally, in Section 5, we add some empirical results, showing that

the asymptotically smaller runtime of our algorithm on Jump is

also visible for small problem dimensions. We finish with some

conclusions. Due to space restrictions, several proofs had to be

omitted from this paper and have been replaced by proof sketches,

but note that these proofs can be found in the preprint [26].

2 PRELIMINARIES

We shall now formally define the algorithms analyzed and present

some fundamental tools for the analysis.

2.1 Algorithms

We are concerned with pseudo-boolean functions 𝑓 : {0, 1}𝑛 →
R that w. l. o. g. are to be maximized. A simple and well-studied

EA studied in many runtime analyses (e. g., [16]) is the (1+1) EA

displayed in Algorithm 1. It uses a standard bit mutation with

strength 𝑟 , where 1 ≤ 𝑟 ≤ 𝑛/2, which means that every bit is

flipped independently with probability 𝑟/𝑛. Usually, 𝑟 = 1 is used,

which is the optimal strength on linear functions [35]. Smaller

strengths lead to less than 1 bit being flipped in expectation, and

strengths above 𝑛/2 in binary search spaces are considered “ill-

natured” [1] since a mutation at a bit should not be more likely

than a non-mutation.

Algorithm 1 (1+1) EA with static strength 𝑟

Select 𝑥 uniformly at random from {0, 1}𝑛
for 𝑡 ← 1, 2, . . . do

Create 𝑦 by flipping each bit in a copy of 𝑥 independently

with probability
𝑟
𝑛 .

if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then
𝑥 ← 𝑦.

The runtime (also called optimization time) of the (1+1) EA on

a function 𝑓 is the first point of time 𝑡 where a search point of

maximal fitness has been created; often the expected runtime, i. e.,

the expected value of this time, is analyzed. The (1+1) EA with 𝑟 = 1

has been extensively studied on simple unimodal problems like

OneMax(𝑥1, . . . , 𝑥𝑛) B |𝑥 |1,

and

LeadingOnes(𝑥1, . . . , 𝑥𝑛) B
𝑛∑
𝑖=1

𝑖∏
𝑗=1

𝑥 𝑗

but also on the multimodal Jump𝑚 function with gap size𝑚 defined

as follows:

Jump𝑚 (𝑥1, . . . , 𝑥𝑛) =
{
𝑚 + |𝑥 |1 if |𝑥 |1 ≤ 𝑛 −𝑚 or |𝑥 |1 = 𝑛
𝑛 − |𝑥 |1 otherwise

The classical (1+1) EA with 𝑟 = 1 optimizes these functions in

expected time Θ(𝑛 log𝑛), Θ(𝑛2) and Θ(𝑛𝑚 + 𝑛 log𝑛), respectively
(see, e. g., [16]).
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The first two problems are unimodal functions, while Jump for

𝑚 ≥ 2 is multimodal and has a local optimum at the set of points

where |𝑥 |1 = 𝑛 −𝑚. To overcome this optimum,𝑚 bits have to flip

simultaneously. It is well known [10] that the time to leave this

optimum is minimized at strength𝑚 instead of strength 1 (see below

for a more detailed exposition of this phenomenon). Hence, the

(1+1) EA would benefit from increasing its strength when sitting at

the local optimum. The algorithm does not immediately know that

it sits at a local optimum. However, if there is an improvement at

Hamming distance 1 then such an improvement has probability at

least (1 − 1/𝑛)𝑛−1/𝑛 ≥ 1/(𝑒𝑛) with strength 1, and the probability

of not finding it in 𝑒𝑛 ln𝑛 steps is at most

(1 − 1/(𝑒𝑛))𝑒𝑛 ln𝑛 ≤ 1/𝑛.

Similarly, if there is an improvement that can be reached by flipping

𝑘 bits simultaneously and the current strength equals 𝑘 , then the

probability of not finding it within ((𝑒𝑛)𝑘/𝑘𝑘 ) ln𝑛 steps is at most(
1 − 𝑘𝑘

(𝑒𝑛)𝑘

) ( (𝑒𝑛)𝑘/𝑘𝑘 ) ln𝑛
≤ 1

𝑛
.

Hence, after ((𝑒𝑛)𝑘/𝑘𝑘 ) ln𝑛 steps without improvement there is

high evidence for that no improvement at Hamming distance 𝑘

exists.

We put this ideas into an algorithmic framework by count-

ing the number of so-called unsuccessful steps, i. e., steps that do

not improve fitness. Starting from strength 1, the strength is in-

creased from 𝑟 to 𝑟 + 1 when the counter exceeds the threshold

2((𝑒𝑛)𝑟 /𝑟𝑟 ) ln(𝑛𝑅) for a parameter 𝑅 to be discussed shortly. Both

counter and strength are reset (to 0 and 1 respectively) when an

improvement is found, i. e., a search point of strictly better fitness.

In the context of the (1+1) EA, the stagnation detection (SD) is

incorporated in Algorithm 2. We see that the counter 𝑢 is increased

in every iteration that does not find a strict improvement. However,

search points of equal fitness are still accepted as in the classical

(1+1) EA. We note that the strength stays at its initial value 1 if find-

ing an improvement does not take longer than the corresponding

threshold 2𝑒𝑛 ln(𝑅𝑛); if the threshold is never exceeded the algo-

rithm behaves identical to the (1+1) EA with strength 1 according

to Algorithm 1.

The parameter 𝑅 can be used to control the probability of failing

to find an improvement at the “right” strength. More precisely,

the probability of not finding an improvement at distance 𝑟 with

strength 𝑟 is at most(
1 − 𝑟𝑟

(𝑒𝑛)𝑟

) (2(𝑒𝑛)𝑟 /𝑟𝑟 ) ln(𝑛𝑅)
≤ 1

(𝑛𝑅)2
.

As shown below in Theorem 3.3, if 𝑅 is set to the number of fitness

values of the underlying function 𝑓 , i. e., 𝑅 = |Im(𝑓 ) |, then the

probability of ever missing an improvement at the right strength is

sufficiently small throughout the run. We recommend at least 𝑅 = 𝑛

if nothing is known about the range of 𝑓 , resulting in a threshold

of at least 4((𝑒𝑛)𝑟 /𝑟𝑟 ) ln(𝑛) at strength 𝑟 .
We also add stagnation detection to the (1+𝜆) EA with self-

adjusting mutation rate defined in [13] (adapted to maximization

of the fitness function), where half of the offspring are created

with strength 𝑟/2 and the other half with strength 2𝑟 ; see Algo-

rithm 3. Unsuccessful mutations are counted in the same way as in

Algorithm 2, taking into account that 𝜆 offspring are used. The algo-

rithm can be in two states. Unless the counter threshold is reached

and a strength increase is triggered, the algorithm behaves the

same as the self-adjusting (1+𝜆) EA from [13] (State 2). If, however,

the counter threshold 2𝑒𝑛 ln(𝑛𝑅)/𝜆 is reached, then the algorithm

changes to the module that keeps increasing the strength until a

strict improvement is found (State 1). Since it does not make sense

to decrease the strength in this situation, all offspring use the same

strength until finally an improvement is found and the algorithm

changes back to the original behavior using two strengths for the

offspring. The boolean variable 𝑔 keeps track of the state.

From the discussion of these two algorithms, we see that the

stagnation detection consisting of counter for unsuccessful steps,

threshold, and strength increase also can be added to other algo-

rithms, while keeping their original behavior unless the counter

threshold it reached.

Algorithm 2 (1+1) EA with stagnation detection (SD-(1+1) EA)

Select 𝑥 uniformly at random from {0, 1}𝑛 and set 𝑟1 ← 1.

𝑢 ← 0.

for 𝑡 ← 1, 2, . . . do

Create 𝑦 by flipping each bit in a copy of 𝑥 independently

with probability
𝑟𝑡
𝑛 .

𝑢 ← 𝑢 + 1.
if 𝑓 (𝑦) > 𝑓 (𝑥) then

𝑥 ← 𝑦.

𝑟𝑡+1 ← 1.

𝑢 ← 0.

else if 𝑓 (𝑦) = 𝑓 (𝑥) and 𝑟𝑡 = 1 then

𝑥 ← 𝑦.

if 𝑢 > 2

(
𝑒𝑛
𝑟𝑡

)𝑟𝑡
ln(𝑛𝑅) then

𝑟𝑡+1 ← min{𝑟𝑡 + 1, 𝑛/2}.
𝑢 ← 0.

else

𝑟𝑡+1 ← 𝑟𝑡 .

2.2 Mathematical Tools

We now collect frequently used mathematical tools. The first one

is a simple summation formula used to analyze the time spent until

the strength is increased to a certain value.

Lemma 2.1. For𝑚 < 𝑛, we have
∑𝑚
𝑖=1

(
𝑒𝑛
𝑖

)𝑖
< 𝑛

𝑛−𝑚
(
𝑒𝑛
𝑚

)𝑚
.

Proof. For all 𝑖 < 𝑚, we have( 𝑒𝑛

𝑚 − 𝑖

)𝑚−𝑖
=

(𝑚
𝑒𝑛

)𝑖 ( 𝑚

𝑚 − 𝑖

)𝑚−𝑖 (𝑒𝑛
𝑚

)𝑚
, so

𝑚∑
𝑖=1

(𝑒𝑛
𝑖

)𝑖
=

𝑚−1∑
𝑖=0

( 𝑒𝑛

𝑚 − 𝑖

)𝑚−𝑖
=

(𝑒𝑛
𝑚

)𝑚𝑚−1∑
𝑖=0

(𝑚
𝑒𝑛

)𝑖 (
1 + 𝑖

𝑚 − 𝑖

)𝑚−𝑖
<

(𝑒𝑛
𝑚

)𝑚𝑚−1∑
𝑖=0

(𝑚
𝑛

)𝑖
<

𝑛

𝑛 −𝑚

(𝑒𝑛
𝑚

)𝑚
.

□
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Algorithm 3 (1+𝜆) EA with two-rate standard bit mutation and

stagnation detection (SASD-(1+𝜆) EA)

Select 𝑥 uniformly at random from {0, 1}𝑛 and set 𝑟1 ← 𝑟 init.

𝑢 ← 0.

𝑔 ← False (boolean variable indicating stagnation detection)

for 𝑡 ← 1, 2, . . . do

𝑢 ← 𝑢 + 1.
if 𝑔 = True then

State 1 – Stagnation Detection

for 𝑖 ← 1, . . . , 𝜆 do

Create 𝑥𝑖 by flipping each bit in a copy of 𝑥 independently

with probability
𝑟𝑡
𝑛
.

𝑦 ← argmax𝑥𝑖 𝑓 (𝑥𝑖 ) (breaking ties randomly).

if 𝑓 (𝑦) > 𝑓 (𝑥) then
𝑥 ← 𝑦.

𝑟𝑡+1 ← 𝑟 init.

𝑔 ← False.

𝑢 ← 0.

else

if 𝑢 > 2

(
𝑒𝑛
𝑟𝑡

)𝑟𝑡
ln(𝑛𝑅)/𝜆 then

𝑟𝑡+1 ← min{𝑟𝑡 + 1, 𝑛/2}.
𝑢 ← 0.

else

𝑟𝑡+1 ← 𝑟𝑡 .

else (i. e., 𝑔 = False)

State 2 – Self-Adjusting (1+𝜆) EA

for 𝑖 ← 1, . . . , 𝜆 do

Create 𝑥𝑖 by flipping each bit in a copy of 𝑥 independently

with probability
𝑟𝑡
2𝑛

if 𝑖 ≤ 𝜆/2 and with probability 2𝑟𝑡 /𝑛 otherwise.

𝑦 ← argmin𝑥𝑖 𝑓 (𝑥𝑖 ) (breaking ties randomly).

if 𝑓 (𝑦) ≥ 𝑓 (𝑥) then
if 𝑓 (𝑦) > 𝑓 (𝑥) then

𝑢 ← 0.

𝑥 ← 𝑦.

Perform one of the following two actions with prob. 1/2:
– Replace 𝑟𝑡 with the strength that 𝑦 has been created with.

– Replace 𝑟𝑡 with either 𝑟𝑡 /2 or 2𝑟𝑡 , each with probability 1/2.
𝑟𝑡+1 ← min{max{2, 𝑟𝑡 }, 𝑛/4}.
if 𝑢 > 2

(
𝑒𝑛
𝑟𝑡

)𝑟𝑡
ln(𝑛𝑅)/𝜆 then

𝑟𝑡+1 ← 2.

𝑔 ← True.

𝑢 ← 0.

The following result due to Hajek applies to processes with a

strong drift towards some target state, resulting in decreasing oc-

cupation probabilities with respect to the distance from the target.

On top of this occupation probabilities, the theorem bounds occu-

pation times, i. e., the number of steps that the process spends in a

non-target state over a certain time period.

Theorem 2.2 (Theorem 3.1 in [20]). Let𝑋𝑡 , 𝑡 ≥ 0, be a stochastic

process adapted to a filtration F𝑡 on R. Let 𝑎 ∈ R. Assume for Δ𝑡 =
𝑋𝑡+1 − 𝑋𝑡 that there are 𝜂 > 0, 𝛿 < 1 and 𝐷 > 0 such that that

(a) E

(
𝑒𝜂Δ | F𝑡 ;𝑋𝑡 > 𝑎

)
≤ 𝜌

(b) E

(
𝑒𝜂Δ | F𝑡 ;𝑋𝑡 ≤ 𝑎

)
≤ 𝐷

If additionally 𝑋0 is of exponential type (i. e., E

(
𝑒𝜆𝑋0

)
is finite for

some 𝜆 > 0) then for any constant 𝜖 > 0 there exist absolute constants

𝐾 ≥ 0, 𝛿 < 1 such that for all 𝑏 ≥ 𝑎 and 𝑇 ≥ 1

Pr

(
1

𝑇

𝑇∑
𝑡=1

1𝑋𝑡 ≤𝑏 ≤ 1 − 𝜖 − 1 − 𝜖
1 − 𝜌 𝐷𝑒

𝜂 (𝑎−𝑏)
)
≤ 𝐾𝛿𝑇

3 ANALYSIS OF SD-(1+1) EA

In this section, we study the SD-(1+1) EA from Algorithm 2 in

greater detail. We show general upper and lower bounds on multi-

modal functions and then analyze the special case of Jump more

precisely. We also show the important result that on unimodal func-

tions, the SD-(1+1) EA with high probability behaves in the same

way as the classical (1+1) EA with strength 1, including the same

asymptotic bound on the expected optimization time.

3.1 Expected Times to Leave Local Optima

In the following, given a fitness function 𝑓 : {0, 1}𝑛 → R, we call
the gap of the point 𝑥 ∈ {0, 1}𝑛 the minimum hamming distance to

points with strictly larger fitness function value. Formally,

gap(𝑥) B min{𝐻 (𝑥,𝑦) : 𝑓 (𝑦) > 𝑓 (𝑥), 𝑦 ∈ {0, 1}𝑛}.
Obviously, it is not possible to improve fitness by changing less

than gap(𝑥) bits of the current search point. However, if the algo-

rithm creates a point of gap(𝑥) distance from the current search

point 𝑥 , we can make progress with a positive probability. Note

that gap(𝑥) = 1 is allowed, so the definition also covers points that

are not local optima.

Hereinafter, 𝑇𝑥 denotes the number of steps of SD-(1+1) EA to

find an improvement point when the current search point is 𝑥 . Let

phase 𝑟 consists of all points of time where strength 𝑟 is used in

the algorithm with stagnation counter. Let 𝐸𝑟 be the event of not

finding the optimum by the end of phase 𝑟 , and 𝑈𝑟 be the event of

not finding the optimum during phases 1 to 𝑟 − 1 and finding in

phase 𝑟 . In other words, 𝑈𝑟 = 𝐸1 ∩ · · · ∩ 𝐸𝑟−1 ∩ 𝐸𝑟 .
The following lemma will be used throughout this section. It

shows that the probability of not finding a search point with larger

fitness value in phases of larger strength than the real gap size is

small; however, by definition phase 𝑛/2 is not finished before the

algorithm finds an improvement. In the statement of the lemma,

recall that the parameter 𝑅 controls the threshold for the number

of unsuccessful steps in stagnation detection.

Lemma 3.1. Let 𝑥 ∈ {0, 1}𝑛 be the current search point of the

SD-(1+1) EA on a pseudo-boolean fitness function 𝑓 : {0, 1}𝑛 → R
and let𝑚 = gap(𝑥). Then

Pr (𝐸𝑟 ) ≤
{

1

(𝑛𝑅)2 if𝑚 ≤ 𝑟 < 𝑛/2
0 if 𝑟 = 𝑛/2.

Proof. The algorithm spends 2𝑒𝑟𝑛𝑟 /𝑟𝑟 ln(𝑛𝑅) steps at strength 𝑟
until it increases the counter. Then, the probability of not improving

at strength 𝑟 ≥ 𝑚 is at most

Pr (𝐸𝑟 ) =
(
1 −

(
1 − 𝑟

𝑛

)𝑛−𝑚 ( 𝑟
𝑛

)𝑚)
2𝑒𝑟𝑛𝑟 /𝑟𝑟 ln(𝑛𝑅)

≤ 1

(𝑛𝑅)2
.

During phase 𝑛/2, the algorithm does not increase the strength,

and it continues to mutate each bit with probability of 1/2. As
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each point on domain is accessible in this phase, the probability of

eventually failing to find the improvement is 0. □

We turn the previous observation into a general lemma on im-

provement times.

Theorem 3.2. Let 𝑥 ∈ {0, 1}𝑛 be the current search point of the

SD-(1+1) EA on a pseudo-boolean function 𝑓 : {0, 1}𝑛 → R. Define
𝑇𝑥 as the time to create a strict improvement and 𝐿𝑥,𝑘 B E (𝑇𝑥 ) if
gap(𝑥) = 𝑘 . Then, using 𝑚 = min{𝑘, 𝑛/2}, we have for all 𝑥 with

gap(𝑥) = 𝑘 that(𝑒𝑛
𝑚

)𝑚 (
1 − 𝑚2

𝑛 −𝑚

)
< 𝐿𝑥,𝑘 ≤ 2

(𝑒𝑛
𝑚

)𝑚 (
1 + 5𝑚

𝑛
ln(𝑛𝑅)

)
.

Proof. Using the law of total probability with respect to the

events𝑈𝑖 defined above, we have

E (𝑇𝑥 ) =
𝑛/2∑
𝑖=1

E (𝑇𝑥 | 𝑈𝑖 ) Pr (𝑈𝑖 ) . (1)

Note that the algorithm does not increase the strength to more

than 𝑛/2. By assuming that the algorithm pessimistically does not

find a better point for 𝑟 < 𝑚, we can bound the formula (1) as

follows:

E (𝑇𝑥 ) < E (𝑇𝑥 | 𝑈𝑚)︸        ︷︷        ︸
=:𝑆1

+
𝑛/2∑

𝑖=𝑚+1
E (𝑇𝑥 | 𝑈𝑖 ) Pr (𝑈𝑖 )︸                         ︷︷                         ︸

=:𝑆2

Regarding 𝑆1, it takes
∑𝑚−1
𝑖=1 2(𝑒𝑛/𝑖)𝑖 ln(𝑛𝑅) steps until the SD-

(1+1) EA increases the strength to𝑚. When themutation probability

is𝑚/𝑛, within an expected number of ((𝑚/𝑛)𝑚 (1 −𝑚/𝑛)𝑛−𝑚)−1
steps, a better point will be found. Thus, by using Lemma 2.1, we

have

E (𝑇𝑥 | 𝑈𝑚) ≤
𝑚−1∑
𝑖=1

2

(𝑒𝑛
𝑖

)𝑖
ln(𝑛𝑅) + 1

(𝑚/𝑛)𝑚 (1 −𝑚/𝑛)𝑛−𝑚

< 2

𝑛

𝑛 −𝑚 + 1

( 𝑒𝑛

𝑚 − 1

)𝑚−1
ln(𝑛𝑅) +

(𝑒𝑛
𝑚

)𝑚
<

(𝑒𝑛
𝑚

)𝑚 (
1 + 5𝑚

𝑒𝑛

(
1 + 1

𝑚 − 1

)𝑚−1
ln(𝑛𝑅)

)
≤

(𝑒𝑛
𝑚

)𝑚 (
1 + 5𝑚

𝑛
ln(𝑛𝑅)

)
.

In order to estimate 𝑆2, if 𝑚 = 𝑛/2, the value of 𝑆2 equals

zero. Otherwise, by using Lemma 3.1, Pr (𝑈𝑖 ) <
∏𝑖−1

𝑗=𝑚 Pr

(
𝐸 𝑗

)
<

𝑛−2(𝑖−𝑚) for 𝑖 ≥ 𝑚 + 1 since 𝑅 ≥ 1. We compute

𝑛/2∑
𝑖=𝑚+1

E (𝑇𝑥 | 𝑈𝑖 ) Pr (𝑈𝑖 ) ≤
𝑛/2∑

𝑖=𝑚+1
𝑂

((𝑒𝑛
𝑖

)𝑖
ln(𝑛𝑅)

)
𝑛−2(𝑖−𝑚)

= ln(𝑛𝑅)
𝑛/2∑

𝑖=𝑚+1
𝑂

((𝑒
𝑖

)𝑖
𝑛2𝑚−𝑖

)
= 𝑜 ((𝑒𝑛/𝑚)𝑚).

Altogether, we have

E (𝑇𝑥 ) ≤
(𝑒𝑛
𝑚

)𝑚 (
1 + 5𝑚

𝑛
ln(𝑛𝑅)

)
+ 𝑜 ((𝑒𝑛/𝑚)𝑚)

.

Moreover, the expected number of iterations for finding an im-

provement is at least 𝑝−𝑚 (1 − 𝑝)−(𝑛−𝑚) for any mutation rate 𝑝 .

Using the same arguments as in the analysis of the (1+1) EA on

Jump in [10], since
𝑚
𝑛 is the unique minimum point in the interval

[0, 1],

E (𝑇𝑥 ) ≥ (𝑚/𝑛)−𝑚 (1 −𝑚/𝑛)−(𝑛−𝑚) ≥ (𝑒𝑛/𝑚)𝑚
(
1 − 𝑚2

𝑛 −𝑚

)
.

□

We now present the above-mentioned important “simulation re-

sult” implying that on unimodal functions, the stagnation detection

of SD-(1+1) EA is unlikely ever to trigger a strength increase during

its run. Moreover, for a wide range of runtime bounds obtained via

the fitness level method [30], we show that these bounds transfer

to the SD-(1+1) EA up to vanishingly small error terms. The proof

carefully estimates the probability of the strength ever exceeding 1.

Lemma 3.3. Let 𝑓 : {0, 1}𝑛 → R be a unimodal function and

consider the SD-(1+1) EA with 𝑅 ≥ |Im(𝑓 ) |. Then, with probability

1 − 𝑜 (1), the SD-(1+1) EA never increases the strength and behaves

stochastically like the (1+1) EA before finding an optimum of 𝑓 .

Denote by 𝑇
sd
and 𝑇

classic
the runtime of the SD-(1+1) EA and the

classical (1+1) EA with strength 1 on 𝑓 , respectively. If𝑈 is an upper

bound on E

(
𝑇𝑇classic

)
obtained by summing up worst-case expected

waiting times for improving over all fitness values in Im(𝑓 ), then

E (𝑇
sd
) ≤ 𝑈 + 𝑜 (1) .

The same statements hold with SD-(1+1) EA replaced with SASD-

(1+𝜆) EA, and (1+1) EA replaced with the self-adjusting (1+𝜆) EA

without stagnation detection.

3.2 Analysis on Jump

It is well known that strength 1 for the (1+1) EA leads to an expected

runtime ofΘ(𝑛𝑚) on Jump𝑚 if𝑚 ≥ 2 [16]. The asymptotically domi-

nating term comes from the fact that𝑚 bits must flip simultaneously

to leave the local optimum at 𝑛 −𝑚 one-bits. To minimize the time

for such an escaping mutation, mutation rate𝑚/𝑛 is optimal [10],

leading to an expected time of (1 + 𝑜 (1)) (𝑛/𝑚)𝑚 (1 −𝑚/𝑛)𝑚−𝑛 to

optimize Jump, which is Θ((𝑒𝑛/𝑚)𝑚) for𝑚 = 𝑜 (
√
𝑛). However, a

static rate of𝑚/𝑛 cannot be chosen without knowing the gap size𝑚.

Therefore, different heavy-tailed mutation operators have been pro-

posed for the (1+1) EA [10, 19], which most of the time choose

strength 1 but also use strength 𝑟 , for arbitrary 𝑟 ∈ {1, . . . , 𝑛/2}
with at least polynomial probability. This results in optimization

times on Jump of Θ((𝑒𝑛/𝑚)𝑚 · 𝑝 (𝑛)) for some small polynomial

𝑝 (𝑛) (roughly, 𝑝 (𝑛) = 𝜔 (
√
𝑚) in [10] and 𝑝 (𝑛) = Θ(𝑛) in [19]).

Similar polynomial overheads occur with hypermutations as used

in artificial immune systems [3]; in fact such overheads cannot

be completely avoided with heavy-tailed mutation operators, as

proved in [10]. We also remark that Jump can be optimized faster

than𝑂 ((𝑒𝑛/𝑚)𝑚) if crossover is used [29, 31], by simple estimation-

of-distribution algorithms [5] or specific black-box algorithms [2].

All of this is outside the scope of this study that concentrates on

mutation-only algorithms.

We now state our main result, implying that the SD-(1+1) EA

achieves an asymptotically optimal runtime on Jump𝑚 for 𝑚 =
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𝑜 (
√
𝑛), hence being faster than the heavy-tailed mutations men-

tioned above. Recall that this does not come at a significant ex-

tra cost for simple unimodal functions like OneMax according to

Lemma 3.3.

Theorem 3.4. Let 𝑛 ∈ N. For all 2 ≤ 𝑚 = 𝑜 (𝑛), the expected
runtime E (𝑇 ) of the SD-(1+1) EA on Jump𝑚 satisfies

Ω

((𝑒𝑛
𝑚

)𝑚 (
1 − 𝑚2

𝑛 −𝑚

))
≤ E (𝑇 ) ≤ 𝑂

((𝑒𝑛
𝑚

)𝑚)
.

Proof. It is well known that the (1+1) EA with mutation rate

1/𝑛 finds the optimum of the 𝑛-dimensional OneMax function in

an expected number of at most 𝑒𝑛 ln𝑛 −𝑂 (𝑛) iterations.
Until reaching the plateau consisting of all points of 𝑛 −𝑚 one-

bits, Jump is equivalent to OneMax; hence, according to Lemma 3.3,

the expected time until SD-(1+1) EA reaches the plateau is at most

𝑂 (𝑛 ln𝑛) (noting that this bound was obtained via the fitness level

method).

Every plateau point 𝑥 with 𝑛 −𝑚 one-bits satisfies gap(𝑥) =𝑚
according to the definition of Jump. Thus, using Theorem 3.2, the

algorithm finds the optimum within expected time

Ω

((𝑒𝑛
𝑚

)𝑚 (
1 − 𝑚2

𝑛 −𝑚

))
≤ E (𝑇𝑥 ) ≤ 𝑂

((𝑒𝑛
𝑚

)𝑚)
.

This dominates the expected time of the algorithm before the

plateau point.

Finally,

Ω

((𝑒𝑛
𝑚

)𝑚 (
1 − 𝑚2

𝑛 −𝑚

))
≤ E (𝑇 ) ≤ 𝑂

((𝑒𝑛
𝑚

)𝑚)
.

□

It is easy to see (similarly to the analysis of Theorem 3.4) that

for all𝑚 = Θ(𝑛), the expected runtime E (𝑇 ) of the SD-(1+1) EA on

Jump𝑚 satisfies E (𝑇 ) = 𝑂
( (
𝑒𝑛
𝑚

)𝑚
ln𝑛

)
.

3.3 General Bounds

The Jump function only has one local optimum that usually has to

be overcome on the way to the global optimum. We generalize the

previous analysis to functions that have multiple local optima of

possibly different gap sizes. As a special case, we can asymptotically

recover the expected runtime on the LeadingOnes function in

Corollary 3.6.

Theorem 3.5. The expected runtime of the SD-(1+1) EA on a

pseudo-Boolean fitness function 𝑓 is at most

E (𝑇 | 𝑉1, . . . ,𝑉𝑛) = 𝑂
(
𝑛∑

𝑘=1

𝑉𝑘𝐿𝑘

)
,

where 𝑉𝑘 is the number of points 𝑥 of gap(𝑥) = 𝑘 visited by the

algorithm and 𝐿𝑘 := max{𝐿𝑥,𝑘 | 𝑥 ∈ {0, 1}𝑛 ∧ gap(𝑥) = 𝑘} with
𝐿𝑥,𝑘 as defined in Theorem 3.2. Moreover,

E (𝑇 ) = 𝑂
(
𝑛∑

𝑘=1

E (𝑉𝑘 ) 𝐿𝑘

)
,

Proof. The SD-(1+1) EA visits a random trajectory of search

points {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑚 = 𝑥∗} in order to find an optimumpoint𝑥∗.

For any search point 𝑥 with gap(𝑥) = 𝑘 , the expected time to

find a better search point when 𝑟 ≤ 𝑚 is E (𝑇𝑥 ) = 𝐿𝑘 according to

Theorem 3.2.

Also, we have𝑇 = 𝑇𝑥1 +𝑇𝑥2 +· · ·+𝑇𝑥𝑚 =
∑𝑛
𝑘=1

𝑉𝑘 · (𝑇𝑥 | gap(𝑥) =
𝑘). Therefore, as the strength 𝑟 is reset to 1 after each improvement,

we have

E (𝑇 | 𝑉1, . . . ,𝑉𝑛) = 𝑂
(
𝑛∑

𝑘=1

𝑉𝑘𝐿𝑘

)
,

which proves the first statement of this theorem. The second follows

by the law of total expectation. □

Corollary 3.6. The expected runtime of the SD-(1+1) EA on Lead-

ingOnes is at most 𝑂 (𝑛2).

Proof. On LeadingOnes, there are at most𝑛 points of gap size 1,

so according to Theorem 3.5, the expected runtime is 𝑂 (𝑛2). □

Corollary 3.6 can be also inferred from Lemma 3.3 since Lead-

ingOnes is unimodal and the 𝑂 (𝑛2) bound was inferred via the

fitness level method.

We finally specialize Theorem 3.5 into a result for thewell-known

Trap function [16] that is identical for OneMax except for the all-

zeros string that has optimal fitness 𝑛 + 1. We obtain a bound of

2
Θ(𝑛)

instead of the Θ(𝑛𝑛) bound for the classical (1+1) EA. The

base of our result is somewhat larger than for the fast GA from [10];

however, it is still close to the 2
𝑛
bound that would be obtained by

uniform search.

Corollary 3.7. The expected runtime of SD-(1+1) EA on Trap is

at most 𝑂 (2.34𝑛 ln𝑛).

Proof. On Trap, there are one point of gap size 𝑛 and 𝑂 (𝑛)
points with gap size of 1. So according to Theorem 3.5, the expected

runtime is 𝑂 ((2.34)𝑛 ln𝑛). □

4 AN EXAMPLE WHERE SELF-ADAPTATION

FAILS

While our previous analyses have shown the benefits of the self-

adjusting scheme, in particular highlighting stagnation detection on

multimodal functions, it is clear that our scheme also has limitations.

In this section, we present an example of a pseudo-Boolean function

where stagnation detection does not help to find its global optimum

in polynomial time; moreover, the function is hard for other self-

adjusting schemes since measuring the number of successes does

not hint on the location of the global optimum. In fact, the function

demonstrates a more general effect where the behavior is very

sensitive with respect to choice of the the mutation probability.

More precisely, a plain (1+1) EA with mutation probability 1/𝑛
with overwhelming probability gets stuck in a local optimum from

which it needs exponential time to escape while the (1+1) EA with

mutation probability 2/𝑛 and also above finds the global optimum in

polynomial time with overwhelming probability. Since the function

is unimodal except at the local optimum, our self-adjusting (1+1) EA

with stagnation detection fails as well.

To the best of our knowledge, a phase transition with respect

to the mutation probability where an increase by a small constant

factor leads from exponential to polynomial optimization time has

been unknown in the literature of runtime analysis so far and may
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be of independent interest. We are aware of opposite phase transi-

tions on monotone functions [24] where increasing the mutation

rate is detrimental; however, we feel that our function and the

general underlying construction principle are easier to understand

than these specific monotone functions.

The construction of our function, called NeedHighMut, is based

on a general principle that was introduced in [32] to show the bene-

fits of populations and was subsequently applied in [22] to separate

a coevolutionary variant of the (1+1) EA from the standard (1+1) EA.

Section 5 of the latter paper also beautifully describes the general

construction technique that involves creating two differently pro-

nounced gradients for the algorithms to follow. Further applications

are given in [33] and [34] to show the benefit of populations in

elitist and non-elitist EAs. Also [28] use very similar construction

technique for their Balance function that is easier to optimize in

frequently changing than slowly changing environments; however,

they did not seem to be aware that their approach resembles earlier

work from the papers above.

We now describe the construction of our function NeedHigh-

Mut. The crucial observation is that strength 1 (i. e., probabil-

ity 𝑝 = 1/𝑛) makes it more likely to flip exactly one specific bit

than strength 2 – in fact strength 1 is asymptotically optimal since

the probability of flipping one specific bit is 𝑝 (1 − 𝑝)𝑛−1 ≈ 𝑝𝑒−𝑝𝑛 ,
which is maximized for 𝑝 = 1/𝑛. However, to flip specific two

bits, which has probability 𝑝2 (1 − 𝑝)𝑛−2 ≈ 𝑝2𝑒−𝑝𝑛 , the choice

𝑝 = 2/𝑛 is asymptotically optimal and clearly better than 1/𝑛.
Now, given a hypothetical time span of𝑇 , we expect approximately

𝑇1 (𝑝) B 𝑇𝑝𝑒−𝑝/𝑛 specific one-bit and 𝑇2 (𝑝) B 𝑇𝑝2𝑒−𝑝/𝑛 specific

two-bit flips. Assuming the actual numbers to be concentrated and

just arguing with expected values, we have 𝑇1 (1/𝑛) ≫ 𝑇2 (1/𝑛) but
𝑇2 (2/𝑛) ≫ 𝑇1 (2/𝑛), i. e., there will be considerably more two-bit

flips at strength 2 than at strength 1 and considerably less 1-bit flips.

The fitness function will account for this. It leads to a trap at a local

optimum if a certain number of one-bit flips is exceeded before a

certain minimum number of two-bit flips has happened; however,

if the number of one-bit flips is low enough before the minimum

number of two-bit flips has been reached, the process is on track to

the global optimum.

We proceed with the formal definition of NeedHighMut, mak-

ing these ideas precise and overcoming technical hurdles. Since

we have at most 𝑛 specific one-bit flips but a specific two-bit flip

is already by a factor of 𝑂 (1/𝑛) less likely than a one-bit flip, we

will work with two-bit flips happening in small blocks of size
4

√
𝑛,

leading to a probability of roughly 𝑛−3/2 for a two-bit flip in a block.

In the following, we will imagine a bit string 𝑥 of length 𝑛 as being

split into a prefix 𝑎 B 𝑎(𝑥) of length 𝑛 −𝑚 and a suffix 𝑏 B 𝑏 (𝑥)
of length𝑚, where𝑚 still has to be defined. Hence, 𝑥 = 𝑎(𝑥) ◦𝑏 (𝑥),
where ◦ denotes the concatenation.

The prefix 𝑎(𝑥) is called valid if it is of the form 1
𝑖
0
𝑛−𝑚−𝑖

, i. e., 𝑖

leading ones and 𝑛 −𝑚 − 𝑖 trailing zeros. The prefix fitness pre(𝑥)
of a string 𝑥 ∈ {0, 1}𝑛 with valid prefix 𝑎(𝑥) = 1

𝑖
0
𝑛−𝑚−𝑖

equals

just 𝑖 , the number of leading ones. The suffix consists of ⌈ 2
3
𝜉
√
𝑛⌉,

where 𝜉 ≥ 1 is a parameter of the function, consecutive blocks of

⌈𝑛1/4⌉ bits each, altogether𝑚 ≤ 𝜉 2
3
𝑛3/4 = 𝑜 (𝑛) bits. Such a block

is called valid if it contains either 0 or 2 one-bits; moreover, it is

called active if it contains 2 and inactive if it contains 0 one-bits. A

suffix where all blocks are valid and where all blocks following first

inactive block are also inactive is called valid itself, and the suffix

fitness suff(𝑥) of a string 𝑥 with valid suffix 𝑏 (𝑥) is the number of

leading active blocks before the first inactive block. Finally, we call

a string 𝑥 ∈ {0, 1}𝑛 valid if both its prefix and suffix are valid.

Our final fitness function is a weighted combination of pre(𝑥)
and suff(𝑥). We define for 𝑥 ∈ {0, 1}𝑛 , where 𝑥 = 𝑎 ◦ 𝑏 with the

above-introduced 𝑎 and 𝑏,

NeedHighMut𝜉 (𝑥) B
𝑛2suff(𝑥) + pre(𝑥) if pre(𝑥) ≤ 9(𝑛−𝑚)

10
∧ 𝑥 valid

𝑛2𝑚 + pre(𝑥) + suff(𝑥) − 𝑛 − 1 if pre(𝑥) > 9(𝑛−𝑚)
10

∧ 𝑥 valid

−OneMax(𝑥) otherwise.

We note that all search points in the second case have a fitness

of at least 𝑛2𝑚 − 𝑛 − 1, which is bigger than 𝑛2 (𝑚 − 1) + 𝑛, an
upper bound on the fitness of search points that fall into the first

case without having𝑚 leading active blocks in the suffix. Hence,

search points 𝑥 where pre(𝑥) = 𝑛 − 𝑚 and suff(𝑥) = ⌈ 2
3
𝜉
√
𝑛⌉

represent local optima of second-best overall fitness. The set of

global optima equals the points where pre(𝑥) = 9(𝑛 −𝑚)/10 and
suff(𝑥) =𝑚, which implies that (𝑛−𝑚)/10 = Ω(𝑛) bits have to be
flipped simultaneously to escape from the local toward the global

optimum.

The parameter 𝜉 ≥ 1 controls the target strength that allows the

algorithm to find the global optimum with high probability. In the

simple setting 𝜉 = 1, strength 1 usually leads to the local optimum

first while strengths above 2 usually lead directly to the global

optimum. Using larger 𝜉 increases the threshold for the strength

necessary to find the global optimum instead of being trapped in

the local one.

We now formally show with respect to different algorithms that

NeedHighMut is challenging to optimize without setting the right

mutation probability in advance. We start with an analysis of the

classical (1+1) EA, where we for simplicity only show the negative

result for 𝑝 = 1/𝑛 even though it would even hold for 𝜉/𝑛.

Theorem 4.1. Consider the plain (1+1) EA with mutation proba-

bility 𝑝 on NeedHighMut𝜉 for a constant 𝜉 ≥ 1. If 𝑝 = 1/𝑛 then with
probability 1 − 2−Ω (𝑛) , its optimization time is 𝑛Ω (𝑛) . If 𝑝 = (𝑐𝜉)/𝑛
for any constant 𝑐 ≥ 2 then the optimization time is 𝑂 (𝑛2) with
probability 1 − 2−Ω (

√
𝑛)
.

For space reasons, we had to omit the proofs of all theorems in

this section. They can be found in the preprint [26]. The underlying

idea is to apply Chernoff bounds on the number of improving mu-

tations with respect to prefix and suffix. Recalling the discussion

above, we expect more prefix-improving than suffix-improving mu-

tations for mutation strength 1 and the opposite for sufficiently

large mutation strength 𝑐𝜉 . As the definition of NeedHighMut sug-

gest, the small strength then leads to the local optimum, while the

global optimum is reached efficiently in the other case (both with

high probability). Some technical difficulties have to be overcome

to handle steps that simultaneously improve both prefix and suffix.

This can be transferred to the SD-(1+1) EA with stagnation de-

tection, showing that this mechanism does not help to increase the

success probability significantly compared to the plain (1+1) EA

with 𝑝 = 1/𝑛. The proof shows that the SD-(1+1) EA with high
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probability does not behave differently from the (1+1) EA. The

only major difference is visible after reaching the local optimum of

NeedHighMut, where stagnation detection kicks in. This results

in the bound 2
Ω (𝑛)

in the following theorem, compared to 𝑛Ω (𝑛)

in the previous one.

Theorem 4.2. The SD-(1+1) EA needs at least 2
Ω (𝑛)

steps to opti-

mize NeedHighMut𝜉 for 𝜉 ≥ 1 with probability at least 1 −𝑂 (1/𝑛).

Finally, we also show that the self-adaptation scheme of the

SASD-(1+𝜆) EA does not help to concentrate the mutation rate

on the right regime for NeedHighMut𝜉 if 𝜉 is a sufficiently large

constant and 𝜆 is not too large. This still applies in connection with

stagnation detection.

Theorem 4.3. Let 𝜉 be a sufficiently large constant and assume

𝜆 = 𝑜 (𝑛) and 𝜆 = 𝜔 (1). Then with probability at least 1 −𝑂 (1/𝑛),
the SASD-(1+𝜆) EA with stagnation detection (Algorithm 3) needs at

least 2
Ω (𝑛)/𝜆 generations to optimize NeedHighMut1.

The proof of this theorem uses more advanced techniques, more

precisely Theorem 2.2 to analyze the distribution of strength in

the offspring over time. This technique allows us that only a small

constant fraction of steps uses strength that are more beneficial for

the suffix than the prefix.

5 EXPERIMENTS

Our theoretical results are asymptotic. In this section, we show the

results of the experiments
1
we did in order to see how the different

algorithms perform in practice for small 𝑛. All figures are available

in [26].

In the first experiment, we ran an implementation of Algo-

rithms 2 (SD-(1+1) EA) and 3 (SASD-(1+𝜆) EA) on the Jump fitness

function with jump size𝑚 = 4 and 𝑛 varying from 40 to 160. We

compared our algorithms against (1+1) EA with standard mutation

rate 1/n, (1+1) EA with mutation probability𝑚/𝑛, and Algorithm

(1+1) FEA𝛽 from [10] with three different 𝛽 = {1.5, 2, 4}.
In Figure 1, we observe that stagnation detection technique

makes the algorithm faster than the algorithms with heavy-tailed

mutation operator (1+1) FEA𝛽 . Also, Algorithm SD-(1+1) EA is not

much slower than the (1+1) EA with mutation probability
𝑚
𝑛 even

though it does not need the gap size.

In a second experiment, we ran our algorithms and the classic

(1+1) EA with different mutation probabilities on NeedHighMut𝜉

with 𝑛 = {200, 400, 600, 800, 1000} and 𝜉 = 3.

The outcomes support that the theory from Section 4 already

holds for small 𝑛. In additional experimental data, one can see that

for 𝜉 = 3, the (1+1) EA with 𝑝 = 6/𝑛 and 8/𝑛 is much more success-

ful to find global optimum points than the rest of the algorithms.

CONCLUSIONS

We have designed and analyzed self-adjusting EAs for multimodal

optimization. In particular, we have proposed a module called stag-

nation detection that can be added to existing EAs without essen-

tially changing their behavior on unimodal (sub)problems. Our stag-

nation detection keeps track of the number of unsuccessful steps

and increases the mutation rate based on statistically significant

1
https://github.com/DTUComputeTONIA/StagnationDetection.

Figure 1: Average number of fitness calls (over 1000 runs) the

mentioned algorithms take to optimize Jump
4
.

waiting times without improvement. Hence, there is high evidence

for being at a local optimum when the strength is increased.

Theoretical analyses reveal that the (1+1) EA equipped with

stagnation detection optimizes the Jump function in asymptotically

optimal time corresponding to the best static choice of the muta-

tion rate. Moreover, we have proved a general upper bound for

multimodal functions that can recover asymptotically runtimes

on well-known example functions, and we have shown that on

unimodal functions, the (1+1) EA with stagnation detection with

high probability never deviates from the classical (1+1) EA; also a

related statement was proved for the self-adjusting (1+𝜆) EA from

[13]. Finally, to show the limitations of the approach we have pre-

sented a function on which all of our investigated self-adjusting

EAs provably fail to be efficient.

In the future, we would like to investigate our module for stagna-

tion detection in other EAs and study its benefits on combinatorial

optimization problems.
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