
HKUST SPD - INSTITUTIONAL REPOSITORY

Title Restricted Max-Min Allocation: Integrality Gap and Approximation Algorithm

Authors Cheng, Siu Wing; Mao, Yuchen

Source Algorithmica, v. 84, (7), July 2022, p. 1835-1874

Version Accepted Version

DOI 10.1007/s00453-022-00942-y

Publisher Springer

Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part
of Springer Nature 2022

This version is available at HKUST SPD - Institutional Repository (https://repository.hkust.edu.hk)

If it is the author's pre-published version, changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a definitive version of this work,
please refer to the published version.

https://doi.org/10.1007/s00453-022-00942-y
https://repository.hkust.edu.hk

Restricted Max-Min Allocation:

Integrality Gap and Approximation Algorithm∗

Siu-Wing Cheng† Yuchen Mao‡

October 23, 2021

Abstract

Given a set of players P , a set of indivisible resources R, and a set of non-negative values
{vpr}p∈P,r∈R, an allocation is a partition of R into disjoint subsets {Cp}p∈P so that each
player p is assigned the resources in Cp. The max-min fair allocation problem is to determine
the allocation that maximizes minp

∑
r∈Cp

vpr. In the restricted case of this problem, each
resource r has an intrinsic value vr, and vpr = vr for every player p who desires r and
vpr = 0 for every player p who does not. We study the restricted max-min fair allocation
problem in this paper. For this problem, the configuration LP has played an important role
in estimating and approximating the optimal solution. Our first result is an upper bound of
3 21

26
on the integrality gap, which is currently the best. It is obtained by a tighter analysis

of the local search of Asadpour et al. [TALG’12]. It remains unknown whether this local
search runs in polynomial time or not. Our second result is a polynomial-time algorithm
that achieves an approximation ratio of 4+ δ for any constant δ ∈ (0, 1). Our algorithm can
be seen as a generalization of the aforementioned local search.

1 Introduction

Allocating resources among players is among the most common optimization problems in our
daily life. Depending on the context, resources and players can be interpreted as jobs and
machines, workers and tasks, classes and time slots, etc. Objectives and constraints vary. Max-
min fairness is a popular objective in the area of networks, distributed systems, and economics.
It aims to maximizing the welfare of the least lucky player.

Let P be a set of n players. Let R be a set of m indivisible resources. Let {vpr}p∈P,r∈R be
a set of non-negative values. For every resource r ∈ R and every player p ∈ P , the value of r to
p is vpr. An allocation is a partition of R into disjoint subsets {Cp}p∈P so that each player p is
assigned the resources in Cp. The max-min fair allocation problem seeks an allocation {Cp}p∈P
that maximizes minp∈P

∑
r∈Cp

vpr [3, 4, 5, 6, 7, 21]. A natural restricted case, the restricted max-
min fair allocation problem, is that each resource r has an intrinsic value vr, and vpr = vr for
every player p who desires r and vpr = 0 for every player p who does not [1, 2, 4, 9, 13, 14, 15, 17].
Both the general and the restricted max-min allocation problem are NP-hard, and in fact, it is
NP-hard to compute a solution better than a 2-approximation [6].

The max-min allocation problem is reminiscent of the classical min-max scheduling problem
of computing an assignment of jobs to machines that minimizes the workload of the busiest

∗Supported by Research Grants Council, Hong Kong, China (project no. 16207419). An extended abstract
appears in Proceedings of the 46th International Colloquium on Automata, Languages, and Programming, 2019,
38:1–38:13.

†Department of Computer Science and Engineering, HKUST, Hong Kong, China. Email : scheng@cse.ust.hk
‡College of Computer Science and Technology, Zhejiang University, China. Email: maoyc@zju.edu.cn

1

machine. This min-max scheduling problem has a 2-approximation algorithm proposed by
Lenstra et al. [19], which is based on rounding the assignment LP. Bezáková and Dani [6] tried
the following assignment LP on the max-min allocation problem.

max T∑
r∈R vprxpr > T ∀ p ∈ P∑

p∈P xpr 6 1 ∀ r ∈ R

xpr > 0 ∀ p ∈ P, ∀ r ∈ R

They showed that, by rounding the optimal solution of the assignment LP, one can get an
allocation whose objective value is at least max{0, T ∗ − vmax} where T ∗ is the optimal value
of the assignment LP and vmax = max{vpr : p ∈ P, r ∈ R}. When vmax approaches T ∗, there
is no guarantee on the quality of their solution. Indeed, the assignment LP has an unbounded
integrality gap, even for the restricted max-min allocation problem [4].

Realizing the weakness of the assignment LP, Bansal and Sviridenko [4] proposed a stronger
LP relaxation, called the configuration LP, for the max-min allocation problem. Suppose that
our goal is an allocation with objective value of T . A configuration for a player p is a subset
C of the resources such that vpr > 0 for all r ∈ C and

∑
r∈C vpr > T . That is, all resources

in C are desired by p and their total value for p is at least T . Let Cp(T) denote the set of
all configurations for p. Figure 1 shows the configuration LP, which is denoted by CLP(T).
A variable xp,C is associated with each player p and each configuration C in Cp(T). The first
constraint ensures that each player receives at least one unit of configurations. The second
constraint guarantees that every resource r is used in at most one unit of configurations. The
optimal value of the configuration LP is the largest T for which CLP(T) is feasible. Although
the configuration LP may have an exponential number of variables, it can be solved within any
constant relative error in polynomial time [4].

∑

C∈Cp(T)

xp,C > 1, ∀ p ∈ P

∑

p∈P

∑

C∈Cp(T)
s.t. r∈C

xp,C 6 1, ∀ r ∈ R

xp,C > 0, ∀ p ∈ P ∀C ∈ Cp(T)

Figure 1: Configuration LP CLP(T).

1.1 Previous Work

For the general max-min allocation problem, Asadpour and Saberi [3] developed a polynomial-
time rounding scheme for the configuration LP, and the scheme achieves an approximation
ratio of O(

√
n log3 n). Later, Saha and Srinivasan [21] improved it to O(

√
n log n). These

approximation ratios almost match the lower bound of Ω(
√
n) on the integrality gap of the

configuration LP [4]. Bateni et al. [5] and Chakrabarty et al. [7] established a trade-off between
the approximation ratio and the running time. For any δ > 0, they achieved an approximation
ratio of O(nδ) with a running time of O(n1/δ).

As to the restricted max-min allocation problem, Bansal and Sviridenko [4] proposed an
O
(log logn
log log logn

)
-approximation algorithm by rounding the configuration LP. Feige [13] showed

the existence of a constant upper bound, albeit large and unspecified, on the integrality gap
of the configuration LP. Feige’s proof was made constructive later by Haeupler et al. [14].

2

Asadpour et al. [2] viewed the restricted max-min allocation problem as a bipartite hyper-graph
matching problem. By adapting Haxell’s [15] alternating tree technique for bipartite hyper-
graph matchings, Asadpour et al. proposed a local search algorithm that returns an allocation
whose objective value is within a factor of 4 from the optimal value of the configuration LP.
Therefore, the integrality gap of the configuration LP is at most 4. Unfortunately, it remains
unknown whether their local search runs in polynomial time. Since then, a lot of effort has
been devoted to obtaining a polynomial-time local search algorithm. Polacek and Svensson [20]
showed that the local search can be done in quasi-polynomial time by building the alternating
tree in a more careful way. Annamalai et al. [1] introduced the greedy and lazy update strategies
to the local search so that a (6+2

√
10+ δ)-approximate allocation can be found in poly(m,n) ·

npoly(1/δ) time. In an earlier paper, we improved this approximation ratio to 6+δ by employing
an adaptive greedy strategy [9]. The same result was also reported by Davies et al. using a
different method [11]. Improving the integrality gap of the configuration LP is also of interest.
In two independent works, we [8] and Jansen and Rohwedder [17] improved the upper bound
for the integrality gap to 35

6 . The current best lower bound for the integrality gap is 2.

1.2 Our Results

Our first result is that the integrality gap of the configuration LP is at most 321
26 , an improvement

to the previous bound of 35
6 [8, 17]. By a tighter analysis of the local search algorithm of

Asadpour et al. [2], we show that it constructs an allocation whose objective value is within
a factor of 99

26 from the optimal value of the configuration LP. However, it is unknown whther
this algorithm runs in polynomial time.

Theorem 1. The integrality gap of the configuration LP for the restricted max-min fair allo-
cation problem is at most 99

29 ≈ 3.808.

Our second result addresses the issue of running time. We introduce a new technique of
limited blocking. With this technique as well as techniques used by previous papers [1, 11], we
develop a framework that unifies the approaches in [1, 2]. We use three parameters to control
the running time and the approximation ratio. At one extreme setting of these parameters, we
obtain the local search algorithm of Asadpour et al. [2], which achieves an approximation ratio
better than 4 but a possibly non-polynomial running time. At the other extreme, we obtain
a method that resembles the algorithm of Annamalai et al. [1], which achieves a polynomial
running time but a worse approximation ratio. By tuning the parameters appropriately, we
show that a slight deviation from 4 is sufficient to guarantee a polynomial running time: for
any δ > 0, a (4 + δ)-approximate allocation can be obtained in poly(m,n) · npoly(1/δ) time.

Theorem 2. For any constant δ > 0, there is a (4 + δ)-approximation algorithm for the
restricted max-min fair allocation problem that runs in poly(m,n) · npoly(1/δ) time.

The conference version [10] of this paper appeared in ICALP 2019. Davies et al. [12] reported
a different algorithm that also gives an approximation ratio 4 + δ in polynomial time in their
paper in SODA 2020.

In Section 2, we give the necessary notations and preliminaries. In Section 3, we describe
the algorithm of Asadpour et al. [2] and give a better analysis. In Section 4, we describe our
approximation algorithm. Since our algorithm generalizes the local search in Section 3, reading
the algorithm in Section 3 will facilitate the understanding of Section 4.

3

2 Preliminaries

2.1 Allocations and Hypergraph Matchings

Suppose that we aim for an allocation whose max-min value is at least λ. We call a resource
r fat if vr > λ, and thin otherwise. It suffices to assign each player either a single fat resource
or some thin resources whose total value for the player is at least λ. In the following, we show
that this can be reduced to a matching problem.

Let G be an undirected bipartite graph with the players and fat resources as vertices. For
each player p and each fat resource r desired by p, the pair (p, r) form an edge of G. Let H be
a bipartite hypergraph with the players and thin resources as vertices. For each player p and
each subset S of thin resources that are desired by p and satisfy

∑
r∈S vr > λ, the tuple (p, S)

forms a hyper-edge of H. For a hyper-edge e, we use p(e) to denote the player incident to e,
and R(e) to denote the set of resources incident to e. For a set E of hyper-edges, we define
R(E) = ⋃e∈E R(e). For a set R of resources, we sometimes write

∑
r∈R vr as v[R].

Finding the target allocation with max-min value at least λ is equivalent to finding a match-
ing M of G and a matching M of H such that every player is matched by either M or M. A
matching of a graph (resp. hypergraph) is a subset of edges (resp. hyper-edges) such that no
two edges (resp. hyper-edges) share any common vertex. In both the local search algorithm of
Asadpour et al. and our algorithm in Section 4, M is initialized to be an arbitrary maximum
matching of G and M is initialized to be empty. Then we iteratively update M and M so
that one more player is matched in each iteration. When updating M and M , we maintain an
invariant that M is always a maximum matching of G and M is always a matching of H. The
restricted max-min allocation problem is then reduced to the following problem.

Given a maximum matching M of G, a matching M of H, and an unmatched player
p0, find a maximum matching M ′ of G and a matching of M′ of H that match p0
as well as all players matched by M and M.

Hence, all the players will be matched after at most n iterations, provided that the target
max-min value of λ is achievable.

A player does not need to receive more resources than necessary, so we have two additional
requirements for M and M: (i) if a player is matched, it is matched by either M or M, but
not both; (ii) every hyper-edge in M is λ-minimal. The definition of λ-minimal is given in
Definition 3 below. Intuitively, it means that the thin resources in a hyper-edge form a minimal
set that has a total value λ or more.

Definition 3. Let w > 0 be a real number. A hyper-edge (p, S) is w-minimal if v[S] > w and
for every proper subset S′ ⊂ S, v[S′] < w.

2.2 Alternating Paths and Symmetric Difference

Given a matching M of G, a path in G is an alternating path with respect to M if it alternates
between edges that are unmatched and matched by M . We allow an alternating path to consist
of a single vertex, that is, the path contains no edge at all. For any maximum matching M
of G, define a directed graph GM as follows. GM has the same vertex set as G. Edges of GM

are obtained by orienting edges of G from p to r if (p, r) /∈ M and from r to p if (p, r) ∈ M .
Figure 2 gives an example of GM . Every path in GM is an alternating path with respect to M
in G, and vice versa. In the rest of this paper, we do not distinguish between paths in GM and
alternating paths with respect to M .

Let π be such a path in GM that starts from a player not matched by M and ends at some
player. We call the starting player of π the source of π, denoted by src(π), and the ending

4

p1

p2

p3

p4

r1

r2

r3

(a) M

p1

p2

p3

p4

r1

r2

r3

(b) GM

p2

p3

p4

r2

r3

(c) An alternating path π

p1

p2

p3

p4

r1

r2

r3

(d) M ⊕ π

Figure 2: GM , alternating paths, and ⊕ operation

player of π the sink of π, denoted by sink(π). If we view π as a set of edges, we can update M
by taking the symmetric difference

M ⊕ π = (M ∪ π) \ (M ∩ π),

which results in a maximum matching M ⊕ π of G. See Figure 2 for an example. If π has at
least one edge, the edge in π incident to sink(π) must be a matching edge in M . Therefore, the
player sink(π) is matched by M before the ⊕ operation. After the ⊕ operation, src(π) becomes
matched and sink(π) becomes unmatched. If π has no edge, then sink(π) = src(π) and the ⊕
operation does not change the matching.

3 Integrality Gap of the Configuration LP

In this section, we describe the local search of Asadpour et al. [2] and give a tighter analysis.
Without loss of generality, we assume that the optimal value of the configuration LP is 1. We
show that, for λ = 28

99 , the local search is able to find an allocation with max-min value at least
λ. Although our description of the algorithm is not the same as that in [2], there is no essential
difference. It serves as a prelude to the approximation algorithm in Section 4.

3.1 A High Level Idea

Recall that it suffices to update M and M to match one more unmatched player p0. Let q0 be
any player such that there is an alternating path π in GM from p0 to q0.

If there is a λ-minimal hyper-edge e that is incident to q0 and does not share any resource
with the hyper-edges in M, then we can match p0 by flipping the alternating path π (i.e.,
M := M ⊕ π) and adding the hyper-edge e to M. See Figure 3 for an illustration. Note that
players that are matched beforehand remain matched afterwards.

We are not always that lucky though. It is possible that every hyper-edge incident to q0
shares a resource with some hyper-edge in M. In this case, we either try another q0 or release
some hyper-edge fromM. Suppose that we want to release fromM a hyper-edge e′ that matches
some player p1. As mentioned before, we do not want to lose any matched player; therefore,
we must match p1 by another (hyper-)edge before e′ is released. Then, p1 has a similar role as
p0, and we proceed to match p1 using the same strategy that is used for matching p0.

5

player

fat resource

thin resource
unmatched
(hyper-)edge

matched
(hyper-)edge

p0

q0

p0

q0

Figure 3: How p0 is matched in the ideal case.

3.2 The Local Search

The algorithm maintains a stack of tuples Σ = [(a0,B0), (a1,B1), · · ·], where ai is an addable
edge, and Bi is the set of blocking edges of ai. Intuitively, ai is the hyper-edge we want to add
to M and Bi is the set of hyper-edges in M that prevent us from doing so. Precise definitions
will be given shortly. We use ℓ to denote the index of the last tuple in Σ. The state of the
algorithm is characterized by (M,M,Σ, ℓ). We use R(Σ) to denote the set of thin resources
that appear in Σ, that is,

R(Σ) =

(
ℓ⋃

i=0

R(ai)

)
∪
(

ℓ⋃

i=0

R(Bi)

)
.

Let Bi be the set of players incident to the hyper-edges in Bi, i.e., Bi = {p(e) : e ∈ Bi}.
The stack Σ is built inductively. Initially, a0 := null, B0 := {(p0, ∅)}, Σ := [(a0,B0)], and

ℓ := 0. Given Σ = [(a0,B0), . . . , (aℓ,Bℓ)], the algorithm calls a routine Build to construct and
push a new tuple (aℓ+1,Bℓ+1) onto Σ. We use B6k to denote

⋃k
i=1Bi. We need some definitions

before describing Build.

Definition 4. Given a state (M,M,Σ, ℓ) of the algorithm, where Σ = [(a0,B0), . . . , (aℓ,Bℓ)], a
player p is addable if there is a path from some player in B6ℓ to p in GM . A hyper-edge (p, S)
is an addable edge if p is addable, S ∩R(Σ) = ∅, and (p, S) is λ-minimal.

Definition 5. Given an addable edge a, an edge b in M is a blocking edge of a if b shares some
resource with a, i.e., R(a)∩R(b) 6= ∅. If an addable edge has no blocking edge, it is unblocked ;
otherwise, it is blocked.

The pseudocode of Build is shown below.

Build(M,M,Σ, ℓ)

1. Arbitrarily pick an addable edge aℓ+1.

2. Bℓ+1 := {e ∈ M : e is a blocking edge of aℓ+1}.

3. Push (aℓ+1,Bℓ+1) onto Σ. Set ℓ := ℓ+ 1.

Whenever some Bi in Σ becomes empty, i.e., some addable edge ai in Σ becomes unblocked,
we invoke the routine Contract below to update Σ, M , and M.

6

Contract(M,M,Σ, ℓ)

1. Let j be the smallest index such that the addable edge aj in Σ is unblocked.
For clarity, we denote aj by a∗.

2. Let k be the smallest index such that there exist a blocking edge b∗ ∈ Bk

and a path π∗ from p(b∗) to p(a∗) in GM . (Lemma 8 guarantees the
existence of k and that k < j.)

3. Delete all tuples (ai,Bi)’s with i > k from Σ. Set ℓ := k.

4. M := M ⊕ π∗ and M := M∪ {a∗}.

5. If k = 0, then p(b∗) = p0 and the algorithm terminates because step 4
already matches p(b∗) = p0.

6. If k > 0, we can release b∗ from M because step 4 matches p(b∗) using
a new edge (or hyper-edge), and so we set M := M \ {b∗} and Bk :=
Bk \ {b∗}.

The algorithm keeps calling Contract until all addable edges in Σ are blocked. If p0 is
not matched yet, the algorithm calls Build to grow the stack Σ again. It alternates between
calling Build and Contract until p0 is matched.

The following observation is clear from the description of Build and Contract.

Observation 6. By Definition 4, no two addable edges in Σ share any resource, that is, R(ai)∩
R(aj) = ∅ for all i, j ∈ [1, ℓ] such that i 6= j. By Definitions 4 and 5, for i ∈ [1, ℓ], the addable
edge ai in Σ is not blocked by any edge in B6i−1, but ai is blocked by every edge in Bi. This
implies that (i) all Bi’s are mutually disjoint, i.e., Bi∩Bj = ∅ for all i, j ∈ [1, ℓ] such that i 6= j,
and that (ii) for i ∈ [1, ℓ], all blocking edges of ai belong to Bi, even after Contract modifies
M. In other words, ai is not blocked by any edge in M\Bi.

3.3 Running Time

At this stage, let’s assume that the algorithm never gets stuck. We show that the algorithm
terminates in finite number of steps.

Lemma 7. Assume that the algorithm never gets stuck. Then, the algorithm terminates after
a finite number of calls of Build and Contract.

Proof. Define a signature vector (|B0|, |B1|, . . . , |Bℓ|,∞) with respect to the sequence of tu-
ples in Σ. By Observation 6, B1, . . . ,Bℓ are mutually disjoint subsets of M. Recall that
B0 = {(p0, ∅)}. We have |B0| + · · · + |Bℓ| 6 n. Therefore, the number of distinct signature
vectors is at most nn. The signature vector evolves as Σ is updated by the algorithm. After each
invocation of Build, the signature vector decreases lexicographically because it gains a new
second to last entry. After each invocation of Contract, the signature vector also decreases
lexicographically because it becomes shorter, and the second to last entry decreases by at least
1. Therefore, no signature vector is repeated. As a result, the algorithm terminates after at
most nn invocations of Build and Contract.

7

maximize
∑

p∈P
yp −

∑

r∈R
zr

subject to yp 6
∑

r∈C
zr, ∀ p ∈ P, ∀C ∈ Cp(T)

yp > 0, ∀ p ∈ P
zr > 0, ∀ r ∈ R

Figure 4: Dual of the configuration LP.

3.4 Never Getting Stuck

Given Lemma 7, all we need to show is that the algorithm never gets stuck. We first prove that
the index k in step 2 of Contract always exists by establishing the following lemma.

Lemma 8. Let (M,M,Σ, ℓ) be a state of the algorithm. For every i ∈ [1, ℓ], there is a path in
GM from some player in B6i−1 to p(ai).

Proof. We prove the lemma by induction. Initially, ℓ = 0, a0 = null, and Σ = {(a0,B0)}. The
lemma trivially holds for ℓ = 0.

We show that Build preserves the lemma. Let (aℓ+1,Bℓ+1) be the tuple constructed by
Build. By Definition 4, p(aℓ+1) is an addable player, so there is a path from some player in
B6ℓ to p(aℓ+1). For any ai with i ∈ [1, ℓ], since Build does not change the old tuples in Σ nor
matching M , the path from some players in B6i−1 to p(ai) exists by the inductive hypothesis.

We show that Contract also preserves the lemma. Let a∗, k, b∗, and π∗ be defined as in
the description of Contract. Since all the tuples in Σ with indices greater than k are deleted
in step 3, we only need to verify the lemma for the remaining k + 1 tuples. We claim that for
every path π in GM such that src(π) ∈ B6k−1, π is node-disjoint from π∗. Otherwise, we would
be able to find a path from some player in B6k−1 to p(a∗) by first following π, switching at a
common node of π and π∗, and then following π∗. This is a contradiction to our choice of k.
By our claim, none of the paths with sources in B6k−1 is affected by the operation M ⊕ π∗,
including those from some player in B6i−1 to p(ai) for i ∈ [1, k].

Next we prove that before p0 is matched, the algorithm is always able to invoke either Build

or Contract. This is proved by contradiction. We show that if neither of the two routines
can be invoked, then the dual of CLP(1) would be unbounded, contradicting the assumption
that 1 is the optimal value of the configuration LP. The dual of the configuration LP is given
in Figure 4.

When arguing that the dual is unbounded, we will essentially show that a lower bound on
the total “dual value” of the resources in R(Σ) is larger than its upper bound. Asadpour et
al. [2] implicitly set the dual value of a thin resource r to be vr, and they used a worst-case
upper bound and a worst-case lower bound on the total value of the resources in R(Σ). Their
proof works only for λ 6

1
4 . We observe that the worst-case upper bound and the worst-case

lower bound used in [2] cannot occur simultaneously. Specifically, the worst-case upper bound
occurs only when the values of all thin resources are close to λ, whereas the worst-case lower
bound occurs only when the values of all thin resources are close to zero. Our approach is to
magnify the dual value of the thin resources with small values. It helps us to derive a better
lower bound without deteriorating the upper bound.

Definition 9. Let (M,M,Σ, ℓ) be a state of the algorithm. Let P+ be the set of players that
are reachable in GM from some player in B6ℓ. Let R+

f be the set of fat resources that are
reachable in GM from some player in B6ℓ. We define the associated dual solution of the state
to be the following solution ({y∗p}p∈P , {z∗r}r∈R) of the dual of CLP(1).

8

z∗r

vr0

3
5λ

1
2λ

λ

3
4λ

(a) z∗r versus vr

z∗r
vr

vr0

3
2

6
5

1
2λ

4
3

3
4λ

1

λ

(b) z∗r/vr versus vr

Figure 5: Dual values for resources in R(Σ)

y∗p =

1− 21
26λ, if p ∈ P+,

0, otherwise.
z∗r =

1− 21
26λ, if r ∈ R+

f ,

3λ
2λ+vr

vr, if r ∈ R(Σ) and vr ∈ (0, λ2),

3λ
3λ−vr

vr, if r ∈ R(Σ) and vr ∈ [λ2 ,
3λ
4),

λ, if r ∈ R(Σ) and vr ∈ [3λ4 , λ),

0, otherwise.

Figure 5 plots z∗r and z∗r/vr against vr for a thin resource r in R(Σ).

Lemma 10. Let (M,M,Σ, ℓ) be a state of the algorithm. For λ = 26
99 , if no more addable edge

can be added to Σ, then the associated dual solution ({y∗p}p∈P , {z∗r}r∈R) of the state is feasible,
i.e., y∗p 6

∑
r∈C z∗r for every p ∈ P and every C ∈ Cp(1).

Proof. Consider any player p ∈ P and any configuration C ∈ Cp(1). If p /∈ P+, then y∗p = 0,
and the inequality y∗p 6

∑
r∈C z∗r holds because z∗r is non-negative. Assume that p ∈ P+. So

y∗p = 1− 21
26λ. We prove that

∑
r∈C z∗r > 1− 21

26λ by a case analysis.
Case 1: C contains a fat resource. Let rf be a fat resource in C. Since player p desires rf ,

GM contains a (directed) edge either from p to rf or from rf to p. Since p ∈ P+, p is reachable
in GM from some player in B6ℓ. If GM contains an edge from p to rf , then rf is obviously
also reachable in GM from some player in B6ℓ, i.e., rf ∈ R+. If GM contains an edge from rf
to p, then p must be a player matched to rf by M . Note that p /∈ B6ℓ as no player in B6ℓ is
matched by M . Moreover, (rf , p) is the only edge entering p in GM . As a consequence, if some
player in B6ℓ can reach p in GM , it must reach rf first, implying that rf ∈ R+. We conclude
that rf ∈ R+ irrespective of whether (p, rf) is a matching edge in M . By the construction of
the dual solution, we have ∑

r∈C
z∗r > z∗rf = 1− 21

26
λ.

Case 2: C contains thin resources only. Since p ∈ P+, p is reachable in GM from some player
in B6ℓ. By Definition 4, p is an addable player. Since no more addable edge can be added to
Σ, the total value of thin resources in C \ R(Σ) must be less than λ; otherwise, there would
exist some subset S ⊆ C \ R(Σ) that forms an addable edge (p, S). Recall that

∑
r∈C vr > 1

because C ∈ Cp(1). Given λ = 26
99 ,

∑

r∈C∩R(Σ)

vr =
∑

r∈C
vr −

∑

r∈C\R(Σ)

vr > 1− λ =
73

26
λ. (1)

9

We prove that
∑

r∈C∩R(Σ)

z∗r > 3λ = 1− 21

26
λ

(
∵ λ =

26

99

)

by examining subcases 2.1 – 2.4 below. Some conclusions are drawn directly from Figure 5,
and they can be verified easily.

Case 2.1: At least three resources in C ∩ R(Σ) have values in [3λ4 , λ). Denote these three
resources as r1, r2, and r3. By definition, z∗ri = λ for i ∈ {1, 2, 3}. Then

∑

r∈C∩R(Σ)

z∗r > z∗r1 + z∗r2 + z∗r3 = 3λ.

Case 2.2: Exactly one resource in C ∩R(Σ) has a value in [3λ4 , λ). Denote this resource as
r1. By definition, z∗r1 = λ. Let R′ = (C ∩R(Σ)) \ {r1}. Then

∑

r∈R′

vr =
∑

r∈C∩R(Σ)

vr − vr1
(1)
>

73

26
λ− λ =

47

26
λ. (2)

Every resource in R′ has a value in the range (0, 34λ). As illustrated in Figure 5(b), z∗r
vr

>
6
5 for

every r ∈ R′. Therefore,
∑

r∈R′

z∗r >
6

5

∑

r∈R′

vr
(2)
>

141

65
λ.

Then, ∑

r∈C∩R(Σ)

z∗r =
∑

r∈R′

z∗r + z∗r1 >
141

65
λ+ λ > 3λ.

Case 2.3: No resource in C ∩ R(Σ) has a value in [3λ4 , λ). As illustrated in Figure 5(b),
z∗r
vr

>
6
5 for every r with vr ∈ (0, 3λ4). Then,

∑

r∈C∩R(Σ)

z∗r >
6

5

∑

r∈C∩R(Σ)

vr
(1)
>

6

5
· 73
26

λ > 3λ.

Case 2.4: There are exactly two resources in C ∩ R(Σ) with values in [3λ4 , λ). This is the
last case to be analyzed. Denote these two resources as r1 and r2. By definition, z∗r1 and z∗r2
are equal to λ. Let R′ = (C ∩R(Σ)) \ {r1, r2}. Then, to prove that

∑

r∈C∩R(Σ)

z∗r =
∑

r∈R′

z∗r + z∗r1 + z∗r2 > 3λ,

it suffices to show that ∑

r∈R′

z∗r > λ.

Let V0 denote the multi-set of values of thin resources in R′. Note that v ∈ (0, 34λ) for all v ∈ V0.
Moreover,

∑

v∈V0

v =
∑

r∈R′

vr =

 ∑

r∈C∩R(Σ)

vr

− vr1 − vr2

(1)
>

73

26
λ− 2λ =

21

26
λ.

10

Let g(v) = 3λ
2λ+vv. Let h(v) =

3λ
3λ−vv. We have

∑

r∈R′

z∗r =
∑

v∈V0∩(0,λ2)

g(v) +
∑

v∈V0∩[λ2 ,
3λ
4
)

h(v).

To derive a lower bound for
∑

r∈R′ z∗r , we will transform V0 step by step to another multi-set
V1 of values such that

(1)
∑

v∈V1∩(0,λ2)
g(v) +

∑
v∈V1∩[λ2 ,

3λ
4
) h(v) 6

∑
v∈V0∩(0,λ2)

g(v) +
∑

v∈V0∩[λ2 ,
3λ
4
) h(v),

(2)
∑

v∈V1
v = 21λ

26 , and

(3) V1 contains exactly two values, one in (0, λ2) and the other one in [λ2 ,
3λ
4).

Then we give a lower bound for
∑

v∈V1∩(0,λ2)
g(v) +

∑
v∈V1∩[λ2 ,

3λ
4
) h(v).

As illustrated in Figure 5(a), both g(v) and h(v) are increasing functions of v. Hence, if we
decrease the values in V0 to some smaller non-negative values,

∑
v∈V0∩(0,λ2)

g(v)+
∑

v∈V0∩[λ2 ,
3λ
4
) h(v)

does not increase. We keep decreasing the values in V0 in an arbitrary fashion until
∑

v∈V0
v =

21λ
26 . Let V1 be the resulting multi-set. Note that all values in V1 are in the range (0, 3λ4).

If
∣∣V1 ∩ (0, λ2)

∣∣ > 2, the following operation is repeated until
∣∣V1 ∩ (0, λ2)

∣∣ = 1. Let a and

b be two values in V1 ∩ (0, λ2). If a + b 6
λ
2 , then we replace a and b by a + b. If a + b > λ

2 ,

we replace a and b with λ
2 and a + b − λ

2 . One can easily verify that the above operation

decreases the cardinality of V1 ∩ (0, λ2), preserves
∑

v∈V1
v, and does not increase the value of∑

v∈V1∩(0,λ2)
g(v) +

∑
v∈V1∩[λ2 ,

3λ
4
) h(v).

Now we have
∣∣V1 ∩ (0, λ2)

∣∣ = 1. Then
∣∣V1 ∩ [λ2 ,

3λ
4)
∣∣ must be equal to 1 because

∑
v∈V1

v =
21λ
26 . Hence, V1 meets condition (3), and it is the multi-set we desire.

Now we are ready to derive a lower bound for
∑

v∈V1∩(0,λ2)
g(v) +

∑
v∈V1∩[λ2 ,

3λ
4
) h(v). Let

a ∈ [λ2 ,
3
4λ) be the larger value in V1. The smaller value in V1 is c− a where c = 21

26λ. We have

∑

v∈V1∩(0,λ2)

g(v) +
∑

v∈V1∩[λ2 ,
3λ
4
)

h(v) = g(c− a) + h(a)

=
3λ(c− a)

2λ+ (c− a)
+

3λa

3λ− a

= 3λ

(
1− 2λ

2λ+ c− a
+

3λ

3λ− a
− 1

)

= 3λ

(
− 2λ

2λ+ c− a
+

3λ

3λ− a

)
.

One can verify that when a ∈ [λ2 ,
3λ
4),

d

da
(g(c− a) + h(a)) = 3λ

(
− 2λ

(2λ+ c− a)2
+

3λ

(3λ− a)2

)
> 0.

So the minimum of g(c− a) + h(a) is attained at a = λ
2 . As a result,

∑

r∈R′

z∗r > g(c− a) + h(a) > g

(
21

26
λ− 1

2
λ

)
+ h

(
1

2
λ

)
= λ.

If follows that
∑

r∈C∩R(Σ) z
∗
r =

∑
r∈R′ z∗r + 2λ > 3λ. This completes the proof.

11

The following lemma is tool for proving Lemma 12. It gives an upper bound for the total
dual value of the resources in a hyper-edge, and this upper bound is determined solely by the
resource with the least value in that hyper-edge.

Lemma 11. Let e be an edge that appears in Σ. Let r0 be the resource with the least value in
R(e). Then,

∑

r∈R(e)

z∗r 6
3λ

2
+

z∗r0
2
.

Proof. Suppose that vr0 >
λ
2 . Then, all resources in Re have values at least λ

2 . Since e is
λ-minimal, R(e) contains exactly two thin resources, including r0. Let r1 denote the other
resource in R(e). From Figure 5(a), z∗r0 and z∗r1 are at most λ. Thus,

∑

r∈R(e)

z∗r = z∗r0 + z∗r1 6
z∗r0
2

+
3λ

2
.

Suppose that vr0 < λ
2 . Let r1 be the resource with the largest value in R(e). If vr0 > λ−vr1 ,

r0 and r1 have a total value of at least λ. Thus, R(e) does not contain any other resource because

e is λ-minimal. We get
∑

r∈R(e) z
∗
r = z∗r0 + z∗r1 6

z∗r0
2 + 3λ

2 as before. Suppose that vr0 < λ− vr1 .
Consider an arbitrary resource r ∈ R(e). Note that vr0 6 vr 6 vr1 by assumption. Therefore,
vr0 < λ− vr1 6 λ− vr. If vr ∈ (0, λ2), then

z∗r
vr

=
3λ

2λ+ vr
6

3λ

2λ+ vr0
.

If vr ∈ [λ2 ,
3
4λ), then

z∗r
vr

=
3λ

3λ− vr
=

3λ

2λ+ (λ− vr)
<

3λ

2λ+ vr0
.

If vr ∈ [34λ, λ), then z∗r = λ. As vr >
3λ
4 , one can verify that λ

vr
6

3λ
3λ−vr

. Thus,

z∗r
vr

=
λ

vr
6

3λ

3λ− vr
=

3λ

2λ+ (λ− vr)
6

3λ

2λ+ vr0
.

In summary, for every r ∈ R(e),
z∗r
vr

6
3λ

2λ+ vr0
.

Since e is λ-minimal, ∑

r∈R(e)

vr < λ+ vr0 .

Combining these two fact, we obtain

∑

r∈Re

z∗r =
∑

r∈Re

z∗r
vr

vr

6
3λ

2λ+ vr0

∑

r∈R(e)

vr

<
3λ

2λ+ vr0
(λ+ vr0)

=
3λ

2λ+ vr0

(
λ+

1

2
vr0

)
+

3λ

2λ+ vr0
· 1
2
vr0

6
3λ

2
+

z∗r0
2
.

12

Lemma 12. Let (M,M,Σ, ℓ) be a state of the algorithm. Suppose that Σ is not empty. For
λ = 26

99 , if every addable edge in Σ is blocked, then the objective function value for the associated
dual solution ({y∗p}p∈P , {z∗r}r∈R) is positive, i.e.,

∑
p∈P y∗p −

∑
r∈R z∗r > 0.

Proof. By definition, y∗p = 0 for every p 6∈ P+ and z∗r = 0 for every r 6∈ R+
f ∪R(Σ). Therefore,

∑

p∈P
y∗p −

∑

r∈R
z∗r =

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r

−

∑

r∈R(Σ)

z∗r .

Consider
∑

p∈P+ y∗p −
∑

r∈R+

f
z∗r . For every player p ∈ P+ and every fat resource rf ∈ R+

f ,

both y∗p and z∗rf are equal to 1− 21
26λ. Therefore,

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r =

(
1− 21

26
λ

)(
|P+| − |R+

f |
)
.

We derive a lower bound for |P+| − |R+
f | as follows. By construction, B0 = {(p0, ∅)} and

B0 = {p0}, where p0 is the unmatched player that we want to match by updating M and M .
Players in the other Bi’s are matched by M, so none of them is matched by M . Therefore,
no player in B6ℓ is matched by M . Every fat resource that is reachable by a path from some
player B6ℓ in GM must be matched by M ; otherwise, such a path would be an augmenting
path with respect to M , contradicting the fact that M is a maximum matching of G. Hence, for
every fat resource rf ∈ R+

f , rf must have an outgoing edge to some player p in GM . Since rf is

reachable from B6ℓ in GM , p is also reachable from B6ℓ in GM , i.e., p ∈ P+. We charge rf to
p. Every player in P has in-degree at most 1 in GM , so it is charged at most once. Every player
in B6ℓ is trivially reachable from itself, so B6ℓ ⊆ P+. Since no player in B6ℓ is matched by M ,
there is no edge entering B6ℓ in GM , implying that the players in B6ℓ cannot be charged. In
conclusion,

|P+| − |R+
f | > |B6ℓ|.

Putting things together, we get

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r >

(
1− 21

26
λ

)
|B6ℓ|. (3)

Consider
∑

r∈R(Σ) z
∗
r . As shown in Figure 5(a), z∗r does not decrease as vr increases. Hence,

Lemma 11 implies that for every edge e in Σ and every resource r′ ∈ R(e),

∑

r∈R(e)

z∗r 6
3λ

2
+

z∗r′
2
. (4)

Now consider (ai,Bi) for any i. Since every addable edge is blocked, |Bi| > 1. For simplicity,
denote R({ai} ∪ Bi) as Ri. Consider a resource r ∈ Ri. If r is incident to only one edge in
{ai} ∪ Bi, then charge z∗r to that edge. If r is incident to at least two edges, then charge half
of z∗r to one edge and the other half to another edge. Take any edge e ∈ {ai} ∪ Bi. Because
Bi consists of blocking edges of ai, e must share some resource, say r′, with another edge in
{ai} ∪ Bi. We conclude from (4) that the total charge on e is at most

∑

r∈R(e)

z∗r −
z∗r′
2

(4)

6
3λ

2
.

13

Summing over all edges in {ai} ∪ Bi gives

∑

r∈Ri

z∗r 6 |{ai} ∪ Bi| ·
3λ

2
=

3λ

2
(|Bi|+ 1) 6 3λ|Bi|.

The last inequality follows from the fact that |Bi| > 1. Recall that (a0,B0) = (null, (p0, ∅)) is
incident to no resource. Then, summing over i ∈ [1, ℓ] gives

∑

r∈R(Σ)

z∗r =

ℓ∑

i=1

∑

r∈Ri

z∗r 6 3λ (|B6ℓ| − 1) . (5)

Combining (3) and (5), we obtain

∑

p∈P
y∗p −

∑

r∈R
z∗r =

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r −
∑

r∈R(Σ)

z∗r

>

(
1− 21

26
λ

)
|B6ℓ| − 3λ (|B6ℓ| − 1)

= 3λ+

(
1− 99

26
λ

)
|B6ℓ|.

Given λ = 26
99 , ∑

p∈P
y∗p −

∑

r∈R
z∗r > 3λ > 0.

This completes the proof.

Lemma 13. Let (M,M,Σ, ℓ) be a state of the algorithm. Suppose that Σ is not empty. For
λ = 26

99 , either some addable edge in Σ is unblocked or there is an addable edge to be added to
Σ.

Proof. Assume, for the sake of contradiction, that all addable edges in Σ are blocked,
and that no more addable edge can be added to Σ. Consider the associated dual solution
({y∗p}p∈P , {z∗r}r∈R) of the state. By Lemmas 10 and 12, for any α > 0, ({αy∗p}p∈P , {αz∗r}r∈R) is
a feasible dual solution with positive objective function value. As α goes to infinity, the objec-
tive function value goes to infinity; the dual is unbounded. But this implies the contradiction
that the primal LP, CLP(1), is infeasible.

Theorem 1. The integrality gap of the configuration LP for the restricted max-min fair allo-
cation problem is at most 99

29 ≈ 3.808.

Proof. By Lemmas 8, 7, and 13, for λ = 26
99 , the local search can match the unmatched player

p0 in a finite number of steps. By repeating the local search at most n times, we obtain an
allocation whose max-min value is at least λ = 26

99 . Therefore, the integrality gap of the config-
uration LP is at most 99

26 .

14

4 A Generalized Local Search

We present an algorithmic framework that generalizes the local search in Section 3. Again, we
assume that the optimal value of the configuration LP is 1. We prove that for λ = 1

4+δ where
δ is an arbitrary positive constant in (0, 1), our algorithm can take an arbitrary unmatched
player p0 and match p0 by updating M and M in poly(m,n) · npoly(1/δ) time.

4.1 Ideas for Acceleration

We first briefly overview the ideas we use to accelerate the local search in Section 3.2. Some of
the ideas are used in previous papers [1, 11]. We introduce a new technique of limited blocking
which is essential to obtaining the approximation ratio of 4 + δ.

• Layers. Addable edges and blocking edges are organized in layers. Each layer consists
of a set Ai of addable edges and a set Bi of Ai’s blocking edges. A key to achieving
polynomial running time is to guarantee a geometric growth of |Bi| with respect to i.

• Lazy update. In the local search in Section 3.2, when there is an unblocked addable edge,
we immediately use it to update M and M and release some blocking edge. In order
to accelerate the searching procedure, as in [1], we use a set I to accumulate unblocked
addable edges, and take actions only when I is large enough to release a fraction µ of
blocking edges in some layer. Laziness is adjusted using the constant µ.

• Node-disjoint alternating paths. We require the alternating paths in GM that end at
players in Ai = {p(e) : e ∈ Ai} to be node-disjoint. The consequence is that, when a lot
of addable edges in Ai become unblocked, they can be used to release multiple blocking
edges simultaneously, and hence a update will be triggered. This idea was used in [11],
and was inspired by a similar idea in [1].

• Greedy and limited blocking. When proving a geometric growth of |Bi| with respect to i, it
is important to show that, for each layer, the number of its blocking edges is close to that
of its addable edges. The closer they are, the better the approximation ratio becomes.
In the local search in Section 3.2, each blocking edge blocks exactly one addable edge.
Taking this approach, one may get a layer that has one addable edge blocked by many
blocking edges, which is bad for our purpose. In the other extreme, if a blocking edge is
allowed to block as many addable edges as possible (we call this unlimited blocking for
short), one may get a layer that has many addable edges blocked by one blocking edge,
which is also bad.

To resolve this issue, Annamalai et al. [1] introduce a greedy strategy. The addable edges
they use are no longer λ-minimal, but contain more resources than needed. Combined
with the unlimited blocking strategy, the greedy strategy gives a lower bound for |Bi| in
terms of |Ai|. When addable edges are 1

2 -minimal, it achieves the best approximation ratio

6 + 2
√
10+ δ. However, this greedy strategy is not flexible enough for the approximation

ratio to be improved significantly further.

We introduce a new technique of limited blocking. We allow a blocking edge b to block
more than one addable edge, but once b shares more than βλ worth of resources with the
addable edges blocked by it, we stop b from blocking more edges in the future. We use a
greedy strategy too — addable edges are (1+ γ)λ-minimal. The parameter β reflects the
degree of blocking, and γ controls the greediness.

The performance of our algorithm is determined by the three aforementioned parameters
µ, β, and γ. If µ, β, and γ are set to 0, the resulting algorithm is essentially the same as the

15

local search in Section 3.2. It achieves an approximation ratio less than 4, but its running time
is not known to be polynomial. If β is a fixed constant greater than or equal to 2, we can set µ
and γ accordingly to achieve a polynomial running time. The resulting algorithm resembles the
one in [1], and the approximation ratio is a constant larger than and bounded away from 4. We
show that by setting µ, β, and γ to be some values that satisfy some simple relations depending
on δ, one can guarantee a polynomial running time, while keeping the approximation ratio at
4 + δ for any δ ∈ (0, 1).

4.2 Node-disjoint Alternating Paths

Because our algorithm intends to update M and M in a way that multiple blocking edges can
be released simultaneously, it heavily relies on the concept of node-disjoint alternating paths.

Let Π be a set of paths in GM . Recall that these paths are alternating paths in G with
respect to M . We denote the sources of Π as src(Π) = {src(π) : π ∈ Π} and the sinks of Π as
sink(Π) = {sink(π) : π ∈ Π}. We say Π is a set of node-disjoint paths if no two paths in Π
share a vertex.

Let Π be a set of node-disjoint paths such that src(Π) and sink(Π) consist of players only,
and no player in src(Π) is matched by M . In this case, for every path π ∈ Π, if π is not a
singleton vertex, the edge in π incident to sink(π) must be a matching edge in M . We extend
the ⊕ operation to Π. Viewing Π as a set of edges, we have

M ⊕Π = (M ∪Π) \ (M ∩Π),

and M ⊕Π is also a maximum matching of G. The ability to update M using Π motivates the
following problem definition.

Definition 14. Let S be a set of players not matched by M . Let T be some set of players.
Define GM [S, T] to be the problem of finding a maximum set of node-disjoint paths from S to
T in GM . Every set Π of node-disjoint paths from S to T is a feasible solution for GM [S, T],
and Π is an optimal solution if it achieves the maximum cardinality. Define fM [S, T] to be the
number of paths in an optimal solution for GM [S, T].

The problem GM [S, T] can be reduced to maximum flow and can thus be solved in poly-
nomial time by the Ford-Fulkerson algorithm [18, Chapter 7]. Given a feasible solution Π of
GM [S, T], GM⊕Π is well-defined as M ⊕ Π is a maximum matching of G. In flow terminology,
Π can be regarded as a flow in GM , GM⊕Π is the residual graph of GM with respect to Π, and
every path in GM⊕Π from S \ src(Π) to T \ sink(Π) is an augmenting path for Π. The following
observation is a restatement of a well-known result for max flow problem.

Observation 15. Let S be a set of players that are not matched by M . Let T be some set of
players. A feasible solution Π for GM [S, T] is optimal if and only if there is no path in GM⊕Π

from S \ src(Π) to T \ sink(Π). Moreover, if there is such a path π, then Π can be augmented
in polynomial time to another feasible solution Π′ such that

• |Π′| = |Π|+ 1,

• src(Π′) = src(Π) ∪ {src(π)},

• sink(Π′) = sink(Π) ∪ {sink(π)}, and

• the set of vertices in Π′ is a subset of those in Π ∪ {π}.

16

4.3 Description of the Algorithm

The algorithm maintains a stack Σ = [L0, L1, . . .] of layers, where each layer Li is a quadruple
(Ai,Bi, di, zi). The set Ai consists of blocked addable edges, and Bi is the set of Ai’s blocking
edges. The definitions of addable and blocking edges will be given later. The values di and zi
are kept only for the sake of analysis. The algorithm also maintains a set I as a global variable
to accumulate unblocked addable edges. We use ℓ to denote the index of the topmost layer in
the stack Σ. The state of the algorithm is fully characterized by (M,M,Σ, ℓ, I).

Initially, I = ∅, ℓ = 0, and Σ = [(A0,B0, 0, 0)] where A0 = ∅, B0 = {(p0, ∅)}, and p0 is the
unmatched player that we want to match next. The algorithm alternates between the build
phase and the collapse phase until p0 is matched. In the build phase, the algorithm grows Σ
by adding a new layer. When some layer becomes collapsible (definition to be given later), it
switches to the collapse phase. In the collapse phase, the algorithm removes collapsible layers,
and updates M and M. When no collapsible layer is left, it switches back to the build phase.

Define Ai = {p(e) : e ∈ Ai}, Bi = {p(e) : e ∈ Bi}, and I = {p(e) : e ∈ I}. We use A6k to
denote

⋃k
i=1Ai. B6k, and B6k are similarly defined.

4.3.1 Build Phase

Suppose that the current state of the algorithm is (M,M,Σ, ℓ, I) and that the algorithm is
about to construct a new layer Lℓ+1. The sets Aℓ+1 and Bℓ+1 are initialized to be empty, and
they will grow as the build phase progresses. We first define active and inactive thin resources,
addability of players and edges, and blocking edges.

Definition 16. Let β > 0 be a constant to be specified later. A thin resource r is either active
or inactive, and r is inactive if and only if one of the following conditions is satisfied:

(i) r ∈ R(A6ℓ ∪ B6ℓ), or

(ii) r ∈ R(Aℓ+1 ∪ I), or

(iii) r ∈ R(e) for some e ∈ Bℓ+1 such that v[R(e) ∩R(Aℓ+1)] > βλ.

Definition 17. A player p is addable if fM [B6ℓ, Aℓ+1 ∪ I ∪ {p}] = fM [B6ℓ, Aℓ+1 ∪ I] + 1. A
hyper-edge (p, S) is addable if p is addable, all the thin resources in S are active, and v[S] > λ.

Definition 18. Given an addable edge a, if an edge b in M shares some resource with a, i.e.,
R(a) ∩R(b) 6= ∅, then b is a blocking edge of a. We also say that a is blocked by b. An addable
edge a is unblocked if v[R(a) \R(M)] > λ, and blocked otherwise.

Condition (iii) in Definition 16 is the key to the limited blocking strategy. When a blocking
edge in Bℓ+1 shares more than βλ worth of resources with addable edges in Aℓ+1, all of its
resources become inactive, and hence, cannot be included in future addable edges. As a result,
no future addable edge can be blocked by this blocking edge.

Remark 19. Definitions 16 and 17 involve Aℓ+1, Bℓ+1, and I. As we add edges to Aℓ+1, Bℓ+1,
and I, the activeness and the addability of resources and edges may be altered.

Our algorithm considers unblocked addable edges that are λ-minimal and blocked addable
edges that are (1 + γ)λ-minimal, where γ is a value to be specified later. Edges of the former
kind are stored in I. Edges of the latter kind are added to Aℓ+1.

The build phase constructs a new layer Lℓ+1 in Σ by calling the routine Build in Figure 6.

17

Build(M,M, I,Σ, ℓ)

1. Initialize Aℓ+1 and Bℓ+1 to be empty sets.

2. While there is an unblocked addable edge that is λ-minimal, add it to I.

3. While there is an addable edge (p, S) that is (1 + γ)λ-minimal:

3.1 add (p, S) to Aℓ+1;

3.2 add the blocking edges of (p, S) to Bℓ+1.

4. Set dℓ+1 := fM [B6ℓ, Aℓ+1 ∪ I], and zℓ+1 := |Aℓ+1|.

5. Push Lℓ+1 = (Aℓ+1,Bℓ+1, dℓ+1, zℓ+1) onto Σ. Update ℓ := ℓ+ 1.

Figure 6: Routine Build.

4.3.2 Collapse Phase

A layer is collapsible if more than a fraction µ of its blocking edges can be released. The formal
definition is given below.

Definition 20. Let µ be a constant to be specified later. Given a state (M,M,Σ, ℓ, I) of the
algorithm, the layer L0 is collapsible if fM [B0, I] > µ|B0| = µ, and for i ∈ [1, ℓ], the layer Li is
collapsible if fM [B6i, I]− fM [B6i−1, I] > µ|Bi|.

In order to release the blocking edges using the ⊕ operation, we need to identify fM [B6i, I]−
fM [B6i−1, I] node-disjoint paths in GM . This brings about the concept of a canonical solution.

Definition 21. Given a state (M,M,Σ, ℓ, I) of the algorithm, an optimal solution Πc for
GM [B6ℓ, I] is a canonical solution if, for every i ∈ [0, ℓ], Πc contains fM [B6i, I] node-disjoint
paths from B6i to I.

We will show later in Lemma 23 that a canonical solution always exists and it can be
computed in polynomial time. Suppose a layer Li is collapsible. By Definitions 20 and 21, a
canonical solution Πc of GM [B6ℓ, I] contains fM [B6i, I] − fM [B6i−1, I] > µ|Bi| node-disjoint
paths from Bi to I. Each of these paths can be used to release a blocking edge in Bi via an ⊕
operation with the current maximum matching M . In total, more than µ|Bi| blocking edges in
Bi can be released. There are ℓ+ 1 groups of paths in Πc from Bi to I for i ∈ [0, ℓ]. Let Ii be
the set of the sinks of the group from Bi to I. Let I6j =

⋃j
i=0 Ii. Let Ii and I6j denote the

subsets of edges in I that are incident to players in Ii and I6j , respectively.
Our algorithm enters the collapse phase whenever a layer becomes collapsible. Then, the

routine Collapse in Figure 7 is invoked repeatedly until no collapsible layer is left.
The following observation is clear from the description of Build and Collapse.

Observation 22. Let (M,M, I,Σ, ℓ) be a state of the algorithm before the invocation of Build.

• No two edges in A6ℓ ∪ I share a resource.

• For every i ∈ [1, ℓ], no two edges in Ai ∪ I are incident to the same player.

• No edge in I shares a resource with any edge in M.

• B1,B2, . . . ,Bℓ are disjoint subsets of M. Recall that B0 is defined to be {(p0, ∅)}.

18

Collapse(M,M, I,Σ, ℓ)

1. Let Lk be the collapsible layer with the smallest index.

2. Compute a canonical solution Πc for GM [B6ℓ, I]. For i ∈ [0, ℓ], let Πc
i =

{π ∈ Πc : src(π) ∈ Bi}, let Ii = sink(Πc
i), and let Ii be the set of edges in I

that are incident to players in Ii.

3. Remove all layers above Lk from the stack. Set I := I6k−1.

4. Let B∗ = {e ∈ Bk : p(e) ∈ src(Πc
k)}. We use Ik and Πc

k to release the
blocking edges in B∗ as follows.

4.1 M := M ⊕Πc
k and M := M∪ Ik.

4.2 If k = 0, then p0 is already matched and the algorithm terminates.

4.3 If k > 1, each player that is incident to a hyper-edge in B∗ has been
matched by a new edge, so we release B∗ fromM by settingM := M\B∗

and Bk := Bk \ B∗.

5. If k > 1, we need to update Ak because the removal of the blocking edges
in B∗ from Bk may make some addable edges in Ak unblocked. For each
addable edge (p, S) ∈ Ak that becomes unblocked, perform the following
operations:

5.1 Remove (p, S) from Ak.

5.2 If fM [B6k−1, I ∪ {p}] = fM [B6k−1, I] + 1, then extract a λ-minimal
unblocked addable edges (p, S′) from (p, S) and add (p, S′) to I.

6. Update ℓ := k.

Figure 7: Routine Collapse.

19

Table 1: Invariants with respect to the state (M,M, I,Σ, ℓ).

Invariant 1 fM [B6ℓ−1, I] = |I|.
Invariant 2 For every i ∈ [0, ℓ− 1], fM [B6i, Ai+1 ∪ I] > di+1.

Invariant 3 For every i ∈ [0, ℓ], |Ai| 6 zi and di > zi.

Lemma 23 below shows that a canonical solution for GM [B6ℓ, I] can be computed in poly-
nomial time.

Lemma 23. Given a state (M,M,Σ, ℓ, I) of the algorithm, a canonical solution Πc for GM [B6ℓ, I]
always exists and can be computed in poly(m,n, ℓ) time.

Proof. We start with an optimal solution Π0 for GM [B0, I] which can be computed in
poly(m,n) time by the Ford-Fulkerson algorithm. For j = 1, 2, . . . , ℓ, we obtain an optimal
solution Πj for GM [B6j , I] from Πj−1 by repeated augmentation. By Observation 15, for any
j ∈ [0, ℓ], src(Πj) ⊆ src(Πℓ). Note that |src(Πj)| = fM [B6j , I] as Πj is an optimal solution for
GM [B6j , I]. Therefore, for j ∈ [0, ℓ], Πℓ contains exactly fM [B6j , I] node-disjoint paths from
B6j to I, and hence is a canonical solution.

4.4 Invariants

We prove that our algorithm maintains some invariants as listed in Table 1. At the beginning,
our algorithm initializes ℓ = 0, I = A0 = ∅, B0 = {(p0, ∅)}, d0 = 0, and z0 = 0. So invari-
ants 1 to 3 are satisfied trivially. Before analyzing the effects of Build and Collapse on the
invariants, we start with a property of node-disjoint paths.

Lemma 24. Let M be a maximum matching of G. Let S be a set of players not matched by
M . Let T be some set of players. For every player p, if fM [S, T ∪{p}] = fM [S, T] + 1, then for
every subset T ′ ⊆ T , fM [S, T ′ ∪ {p}] = fM [S, T ′] + 1.

Proof. Suppose that fM [S, T ∪ {p}] = fM [S, T] + 1. Clearly, p /∈ T . Let T ′ be an arbitrary
subset of T . Then, fM [S, T ′] + 1 is a trivial upper bound on fM [S, T ′ ∪ {p}]. We show that it
is also a lower bound.

Let Π1 be an optimal solution for GM [S, T ′]. Since p 6∈ T ⊇ T ′, we have p /∈ sink(Π1). Note
that Π1 is a feasible solution for GM [S, T∪{p}]. Let Π2 be an optimal solution for GM [S, T∪{p}]
obtained from Π1 by repeated augmentation. By Observation 15, sink(Π1) ⊆ sink(Π2).

If p ∈ sink(Π2), then Π2 contains |src(Π1) ∪ {p}| = fM [S, T ′] + 1 node-disjoint paths from
S to T ′ ∪ {p}. Therefore, fM [S, T ′ ∪ {p}] > fM [S, T ′] + 1.

If p 6∈ sink(Π2), then Π2 is a feasible solution for GM [S, T]. But then fM [S, T ∪ {p}] =
|Π2| 6 fM [S, T], contradicting the assumption that fM [S, T ∪ {p}] = fM [S, T] + 1.

We prove that Build preserves the invariants in Table 1.

Lemma 25. Build maintains the invariants in Table 1.

Proof. Let (M,M, I,Σ, ℓ) be the state of the algorithm before Build. Suppose that Build

is about to construct a new layer Lℓ+1 and that all the invariants hold. We show that these
invariants hold after the construction.

Consider Invariant 1. It holds before the construction of layer Lℓ+1, so fM [B6ℓ−1, I] = |I|.
Clearly, |I| = fM [B6ℓ−1, I] 6 fM [B6ℓ, I] 6 |I|. It follows that fM [B6ℓ, I] = |I| until step 2

20

of Build changes I by adding unblocked addable edges to it. Consider the moment that an
unblocked addable edge (p, S) is about to be inserted to I. By Definition 17, p must be an
addable player, that is,

fM [B6ℓ, Aℓ+1 ∪ I ∪ {p}] = fM [B6ℓ, Aℓ+1 ∪ I] + 1.

Then, Lemma 24 implies that

fM [B6ℓ, I ∪ {p}] = fM [B6ℓ, I] + 1.

Therefore, when we add an unblocked addable edge to I, both the left and right hand sides of
invariant 1 increase by 1. Hence, invariant 1 is preserved.

Consider Invariant 2. Since old layers are not changed and I is only enlarged by Build, for
i ∈ [0, ℓ−1], the value of fM [B6i, Ai+1∪ I] does not decrease, which implies that the inequality
fM [B6i, Ai+1 ∪ I] > di+1 continues to hold. For i = ℓ, the inequality holds because dℓ+1 is set
to be fM [B6ℓ, Aℓ+1 ∪ I] for the new layer Lℓ+1.

Consider Invariant 3. Since Build does not change any old layer, the inequalities in Invari-
ant 3 for i ∈ [0, ℓ] are preserved. For i = ℓ+ 1, the inequality |Aℓ+1| 6 zℓ+1 holds because zℓ+1

is set to be |Aℓ+1| after the construction of Lℓ+1. The set Aℓ+1 was initialized to be empty at
the beginning of the construction of Lℓ+1. Whenever an addable edge (p, S) is added to Aℓ+1,
Definition 17 implies that the value of fM [B6ℓ, Aℓ+1 ∪ I] increases by 1. Therefore, after the
construction of Lℓ+1, we have

dℓ+1 = fM [B6ℓ, Aℓ+1 ∪ I] > |Aℓ+1| = zℓ+1.

We move on to discuss how Collapse maintains the invariants in Table 1. We need some
notations to facilitate the discussion.

Definition 26. Let (M,M, I,Σ, ℓ) be a state of the algorithm. Given a canonical solution Πc

of GM [B6ℓ, I], let Π
c
i = {π ∈ Πc : src(π) ∈ Bi} and let Ii = sink(Πc

i) for i ∈ [0, ℓ]. We say that

(Πc
i , Ii)i∈[0,ℓ] is the partition induced by Πc. Define Πc

6i =
⋃i

j=0Π
c
j and Πc

>i+1 =
⋃ℓ

j=i+1Π
c
j for

i ∈ [0, ℓ]. Also, let I>i+1 =
⋃ℓ

j=i+1 Ij for i ∈ [0, ℓ− 1]; Ii and I6i were defined previously.

We first prove a technical lemma.

Lemma 27. Let (M,M, I,Σ, ℓ) be a state of the algorithm. Let Πc be a canonical solution
for GM [B6ℓ, I]. Let (Πc

i , Ii)i∈[0,ℓ] be the partition induced by Πc. For every i ∈ [0, ℓ − 1],
GM [B6i, Ai+1 ∪ I6i] and GM [B6i, Ai+1 ∪ I] share a common optimal solution that is node-
disjoint from Πc

>i+1.

Proof. Fix some i ∈ [0, ℓ − 1]. By the definitions of a canonical solution and the partition
induced by Πc, Πc

6i is an optimal solution for GM [B6i, I] and hence a feasible solution for
GM [B6i, Ai+1 ∪ I]. Let Π∗ be an optimal solution for GM [B6i, Ai+1 ∪ I] obtained from Πc

6i by
repeated augmentation. By Observation 15, I6i ⊆ sink(Π∗).

We claim that for any player p ∈ I \ I6i, p /∈ sink(Π∗). Otherwise, Π∗ would contain
|I6i ∪ {p}| = fM [B6i, I] + 1 node-disjoint paths from B6i to I, contradicting the optimality of
fM [B6i, I].

By our claim, Π∗ is also an optimal solution for GM [B6i, Ai+1 ∪ I6i].
Next we show that Π∗ is node-disjoint from Πc

>i+1. If Πc
>i+1 = ∅, the node-disjointness is

trivial. Suppose that Πc
>i+1 6= ∅. Assume to the contrary that Π∗ is not node-disjoint from

21

Πc
>i+1. Recall that Π∗ is obtained from Πc

6i by repeated augmentation, and that Πc
6i is node-

disjoint from Πc
i+1. It must be that during the repeated augmentation, some augmenting path

used intersects with some path in Πc
>i+1. Let π be the first such augmenting path. Let Π

be the feasible solution for GM [B6i, Ai+1 ∪ I] immediately before the augmentation using π.
Since Π is node-disjoint from Πc

>i+1, the paths in Πc
>i+1 remain to be paths in GM⊕Π. Since

π intersects some path in Πc
>i+1, we can get an augmenting path π′ from src(π) to a player in

sink(Πc
>i+1) = I>i+1by following π and switching at the intersecting vertex to a path in Πc

>i+1.
Using π′, we can augment Π to another feasible solution Π′ for GM [B6i, Ai+1 ∪ I]. By Obser-
vation 15, I6i ⊆ sink(Π′) and there is a player p = sink(π′) ∈ I>i+1 that is also in sink(Π′).
Then Π′ contains |I6i ∪ {p}| = fM [B6i, I] + 1 node-disjoint paths from B6i to I, contradicting
the optimality of fM [B6i, I]. This completes the proof.

We show that Collapse preserves the invariants.

Lemma 28. Collapse maintains the invariants in Table 1.

Proof. Collapse removes all the layers above Lk, so it suffices to prove the invariants with
ℓ replaced by k. Steps 1, 2, and 6 of Collapse clearly have no effect on these invariants. We
show that the invariants are preserved by steps 3, 4, and 5 of Collapse.

Consider Invariant 1. Step 3 removes all the layers above Lk and sets I := Ik−1, so we
should show that fM [B6k−1, I6k−1] = |I6k−1|. Recall that Πc

6k−1 is a set of node-disjoint paths
in GM originating from B6k−1 and that I6k−1 = sink(Πc

6k−1). Hence, Πc
6k−1 certifies that

fM [B6k−1, I6k−1] = |I6k−1| immediately after step 3. In step 4, M is updated by taking the
symmetric difference with Πc

k. As Π
c
6k−1 is node-disjoint from Πc

k, after executingM := M⊕Πc
k,

Πc
6k−1 remains as a set of node-disjoint paths in GM and certifies that fM [B6k−1, I6k−1] =

|I6k−1| after step 4. Step 5 does not break the equation either because step 5 inserts a new
addable edge into I only if fM [B6k−1, I] will increase by 1. Therefore, invariant 1 is preserved.

Consider Invariant 2. Fix an i ∈ [0, k − 1]. Before Collapse starts, by Lemma 27,
GM [B6i, Ai+1 ∪ I6i] and GM [B6i, Ai+1 ∪ I] share a common optimal solution, say Π∗, that
is node-disjoint from Πc

>i+1. As the invariants hold before Collapse starts,

|Π∗| = fM [B6i, Ai+1 ∪ I6i] = fM [B6i, Ai+1 ∪ I] > di+1.

Obviously Π∗ is not affected by step 3. Step 4 has no effect on Π∗ because Π∗ is node-disjoint
from Πc

>i+1 which includes Πc
k. Hence, after step 4, Π∗ certifies that

fM [B6i, Ai+1 ∪ I6k−1] > |Π∗| > di+1.

In step 5.1, addable edges may be removed from Ak. If i < k − 1, this does not change
fM [B6i, Ai+1 ∪ I6k−1]. Suppose that i = k− 1 and that fM [B6k−1, Ak ∪ I6k−1] decreases after
an addable edge (p, S) is removed from Ak. That is,

fM [B6k−1, Ak ∪ I] = fM [B6k−1, (Ak \ {p}) ∪ I] + 1.

Then Lemma 24 implies that

fM [B6k−1, I ∪ {p}] = fM [B6k−1, I] + 1.

As a consequence, step 5.2 will extract an unblocked addable edge (p, S′) from (p, S) and add
(p, S′) to I. After step 5.2, fM [B6k−1, Ak ∪ I] returns to its value prior to the removal of (p, S)
from Ak. Therefore, invariant 2 is preserved.

Invariant 3 is preserved because, for all i ∈ [1, k], di and zi do not change once they are set
in Build, and Ai does not grow in Collapse.

22

Remark 29. By Invariant 1 in Table 1, whenever ℓ > 1, the top layer in Σ is not collapsible
because fM [B6ℓ, I] − fM [B6ℓ−1, I] 6 |I| − |I| = 0. It also follows that Iℓ = ∅ in the partition
induced by any canonical solution of GM [B6ℓ, I].

4.5 Relations among |Ai|, |Bi|, and |I|
We first show that when the size of I is large enough or a layer loses a lot of its blocked addable
edges, then some layer must be collapsible.

Lemma 30. Let (M,M, I,Σ, ℓ) be a state of the algorithm. If no layer in Σ is collapsible, the
following properties are satisfied.

(i) |I| 6 µ|B6ℓ−1|.

(ii) For every i ∈ [0, ℓ− 1], |Ai+1| > zi+1 − µ|B6i|.

Proof. We first prove property (i). Since no layer is collapsible, Definition 20 implies that
fM [B0, I] 6 µ|B0| and that for i ∈ [1, ℓ − 1], fM [B6i, I] − fM [B6i−1, I] 6 µ|Bi|. Summing up
these inequalities gives fM [B6ℓ−1, I] 6 µ|B0|+ · · ·+ µ|Bℓ−1| = µ|B6ℓ−1|. Then by Invariant 1
in Table 1, we have |I| = fM [B6ℓ−1, I] 6 µ|Bℓ−1|.

Consider property (ii). Fix an i ∈ [0, ℓ − 1]. From the analysis of property (i), we obtain
fM [B6i, I] = fM [B0, I]+· · ·+fM [Bi, I] 6 µ|B0|+· · ·+µ|Bi| 6 µ|B6i|. By Invariant 2 in Table 1,
we have fM [B6i, Ai+1 ∪ I] > di+1. The first inequality implies that there are at most µ|B6i|
node-disjoint paths in GM from B6i to I. The second inequality implies that there are at least
di+1 node-disjoint paths in GM from B6i to Ai+1∪I. Therefore, there are at least di+1−µ|B6i|
node-disjoint paths in GM from B6i to Ai+1, which implies that |Ai+1| > di+1 − µ|B6i|. Since
di+1 > zi+1 by Invariant 3 in Table 1, we have |Ai+1| > zi+1 − µ|B6i|.

The next two results show that the number of blocking edges in a layer is asymptotically
bounded from below by the number of addable edges in the same layer.

Lemma 31. Let (M,M, I,Σ, ℓ) be a state of the algorithm. For every i ∈ [0, ℓ] and every
blocking edge b ∈ Bi, there is an edge a ∈ Ai such that v[R(b) ∩R(Ai \ {a})] 6 βλ.

Proof. Sort the edges in Ai in chronological order of their additions to Ai. Take any blocking
edge b ∈ Bi. Let a be the last edge in Ai that is blocked by b. By our choice of a, hyper-edges
in Ai that were added after a cannot be blocked by b, so they do not share any resource with
b. Since a is blocked by b, at the time when a was added to Ai, some resource in b must be
active. By Definition 16, in order that some resource in b is active, the edges in Ai that were
added before a can share at most βλ worth of resources with b. This completes the proof.

Lemma 32. Let (M,M, I,Σ, ℓ) be a state of the algorithm. For every i ∈ [0, ℓ], |Ai| <(
1 + β

γ

)
|Bi|.

Proof. By Lemma 31, for each b ∈ Bi, we can identify an edge ab ∈ Ai so that

v[R(b) ∩R(Ai \ {ab})] 6 βλ.

Let A0
i = {ab : b ∈ Bi} be the set of edges identified. Clearly |A0

i | 6 |Bi|. Let A1
i = Ai \ A0

i .
For all b ∈ Bi,

v[R(b) ∩R(A1
i)] 6 v[R(b) ∩R(Ai \ {ab})] 6 βλ.

23

Summing the above inequality over all edges b in Bi, we get

v[R(Bi) ∩R(A1
i)] 6 βλ|Bi|. (6)

On the other hand, each edge a in A1
i is blocked, so it must have more than γλ worth of its

resources occupied by edges in Bi. So v[R(Bi)∩R(a)] > γλ. No two edges in Bi share a resource
as they are matching edges in M. Therefore, summing the inequality over all edges in A1

i gives

v[R(Bi) ∩R(A1
i)] > γλ|A1

i |. (7)

Combining (6) and (7) gives

βλ|Bi| > v[R(Bi) ∩R(A1
i)] > γλ|A1

i | ⇒ |A1
i | <

β

γ
|Bi|.

Finally, we have |Ai| = |A0
i |+ |A1

i | < |Bi|+ β
γ |Bi| = (1 + β

γ)|Bi|.

The last result in this section shows that not many blocking edges in Bi share more than
βλ worth of resources with addable edges in Ai.

Lemma 33. Let (M,M, I,Σ, ℓ) be a state of the algorithm. For every i ∈ [0, ℓ], the cardinality
of B′

i = {b ∈ Bi : v[R(b) ∩R(Ai)] > βλ} is less than 2+γ
β |Ai|.

Proof. No two edges in Bi share a resource as they are matching edges in M. Then, since
v[R(b) ∩R(Ai)] > βλ for every b ∈ B′

i, summing over all edges b in B′
i gives

v[R(B′
i) ∩R(Ai)] > βλ|B′

i|.

Every edge in Ai is (1 + γ)λ-minimal, so v[R(Ai)] < (2 + γ)λ|Ai|. Therefore,

v[R(B′
i) ∩R(Ai)] 6 v[R(Ai)] < (2 + γ)λ|Ai|.

Combining the above two inequalities, we obtain

βλ|B′
i| < (2 + γ)λ|Ai| ⇒ |B′

i| <
2 + γ

β
|Ai|.

4.6 Bounding the initial size of |Ai|
The key result in this section is Lemma 38: immediately after a layer Lℓ+1 is constructed, Lℓ+1

has a lot of addable edges, or some layer is collapsible. We first introduce some notations.

Definition 34. Let (M,M, I,Σ, ℓ+ 1) be the state of the algorithm immediately after the
construction of a new layer Lℓ+1. Let Π be an arbitrary optimal solution for GM [B6ℓ, Aℓ+1∪I].
The associated players and resources (P+, R+

f , R
+
t) with respect to Π consist of:

• P+ is the set of players that are reachable from B6ℓ\src(Π) in GM⊕Π,

• R+
f is the set of fat resources that are reachable from B6ℓ\src(Π) in GM⊕Π, and

• R+
t = R(A6ℓ+1 ∪B6ℓ ∪ I)∪R(B′

ℓ+1), where B′
ℓ+1 = {e ∈ Bℓ+1 : v[R(e)∩R(Aℓ+1)] > βλ}.

The associated dual solution with respect to Π for the dual of CLP(1) is defined as:

24

y∗p =

1− (1 + γ)λ, if p ∈ P+,

0, otherwise.
z∗r =

1− (1 + γ)λ, if r ∈ R+
f ,

vr, if r ∈ R+
t ,

0, otherwise.

Let’s first draw some conclusions about GM⊕Π.

Lemma 35. Let (M,M, I,Σ, ℓ + 1) be the state of the algorithm immediately after the con-
struction of the new layer Lℓ+1. Let (P+, R+

f , R
+
t) be the associated players and resources with

respect to an optimal solution Π of GM [B6ℓ, Aℓ+1 ∪ I]. In GM⊕Π, every player has in-degree at
most 1, every player in B6ℓ\src(Π) has in-degree 0, and every resource in R+

f has in-degree 1.

Proof. In GM⊕Π, a player has an incoming edge if it is matched by M ⊕ Π and no incoming
edge otherwise. Hence, in-degree of a player is at most 1.

Players in B6ℓ are not matched by M . If we update M using Π, only players in src(Π) may
become matched. Hence, players in B6ℓ\src(Π) are not matched by M ⊕Π; their in-degrees in
GM⊕Π are 0.

By definition, for every r ∈ R+
f , there is a path in GM⊕Π from a player not matched by

M ⊕ Π to r. If r is not matched by M ⊕ Π, we can augment with this path to increase the
size of M ⊕ Π, contradicting the fact that M ⊕ Π is a maximum matching of G. Hence, every
resource in R+

f is matched by M ⊕Π, and therefore, its out-degree in GM⊕Π is equal to 1.

Now we are ready to analyze the associated dual solution. First, we show that the associated
dual solution is feasible.

Lemma 36. Let (M,M, I,Σ, ℓ + 1) be the state of the algorithm immediately after the con-
struction of the new layer Lℓ+1. The associated dual solution ({y∗p}p∈P , {z∗r}r∈R) with respect
to any optimal solution of GM [B6ℓ, Aℓ+1∪I] is feasible. That is, y∗p 6

∑
r∈C z∗r for every p ∈ P

and every C ∈ Cp(1).
Proof. Let Π be an optimal solution of GM [B6ℓ, Aℓ+1∪ I]. Let (P+, R+

f , R
+
t) be the associated

players and resources with respect to Π. Let ({y∗p}p∈P , {z∗r}r∈R) be the associated dual solution
with respect to Π.

Fix some player p ∈ P . If p /∈ P+, then y∗p = 0 and the inequality y∗p 6
∑

r∈C z∗r holds
because z∗r is non-negative. Suppose that p ∈ P+. We have y∗p = 1 − (1 + γ)λ. Take any
configuration C ∈ Cp(1). We show that

∑
r∈C z∗r > 1− (1 + γ)λ.

Case 1: C contains a fat resource rf . By the definition of P+, there is a path π in GM⊕Π

from B6ℓ\src(Π) to p. Since p desires rf , the graph GM⊕Π contains either the edge (p, rf) or
the edge (rf , p). We show below that rf ∈ R+

f . Then, z∗rf = 1 − (1 + γ)λ by definition, which
implies that

∑
r∈C z∗r > z∗rf = 1− (1 + γ)λ.

• If GM⊕Π contains the edge (p, rf), we can reach rf from B6ℓ\src(Π) by following π and
then the edge (p, rf). So rf ∈ R+

f .

• If GM⊕Π contains the edge (rf , p), then p must be matched by M ⊕ Π. We have p /∈
B6ℓ\src(Π) because players in B6ℓ\src(Π) are not matched by M ⊕ Π. By Lemma 35,
the in-degree of p in GM⊕Π is at most one, so (rf , p) is the only edge entering p. In order
to reach p from B6ℓ\src(Π), we must go through rf . Hence, rf ∈ R+

f .

Case 2: C contains thin resources only. Consider the completion of the construction of Lℓ+1.
At that moment, we added the last addable edge to Aℓ+1 (and its blocking edges to Bℓ+1) and

25

found that no addable edge is left. By Definition 17 and Observation 15, every player p ∈ P+

was addable players at that moment. However, there was no addable edge for p. The reason
must be that, among the thin resources desired by p, the total value of active ones was less
than (1 + γ)λ. Note that v[C] > 1. It follows that at least 1− (1 + γ)λ worth of thin resources
in C were inactive. By Definition 16, R+

t were exactly the set of inactive thin resources at that
moment. Therefore, we have

∑

r∈C
z∗r >

∑

r∈C∩R+
t

z∗r =
∑

r∈C∩R+
t

v∗r > 1− (1 + γ)λ.

This completes the proof.

Second, we establish a lower bound on the objective function value of the associated dual
solution.

Lemma 37. Let (M,M, I,Σ, ℓ + 1) be the state of the algorithm immediately after the con-
struction of the new layer Lℓ+1. Let ({y∗p}p∈P , {z∗r}r∈R) be the associated dual solution with
respect to any optimal solution of GM [B6ℓ, Aℓ+1 ∪ I]. Then,

∑

p∈P
y∗p −

∑

r∈R
z∗r >

(
1−

(
4 + γ +

β

γ

)
λ

)
|B6ℓ|

−
(
1 +

(
1 +

4 + 2γ

β

)
λ

)
|Aℓ+1|

− (1 + (1− γ)λ) |I|.

Proof. Let Π be an optimal solution of GM [B6ℓ, Aℓ+1 ∪ I]. Let ({y∗p}p∈P , {z∗r}r∈R) be the
associated dual solution with respect to Π. By our setting of y∗p and z∗r ,

∑

p∈P
y∗p −

∑

r∈R
z∗r =

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r −
∑

r∈R+
t

z∗r .

We bound
∑

p∈P+ y∗p −
∑

r∈R+

f
z∗r and

∑
r∈R+

t
z∗r separately.

Consider
∑

p∈P+ y∗p −
∑

r∈R+

f
z∗r . Since y∗p = z∗r = 1− (1 + γ)λ for p ∈ P+ and r ∈ R+

f ,

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r > (1− (1 + γ)λ)
(
|P+| − |R+

f |
)
.

We derive a lower bound for |P+| − |R+
f |. By the definition of R+

f , rf is reachable from

B6ℓ\src(Π) in GM⊕Π. For each rf ∈ R+
f , by Lemma 35, rf has exactly one out-going edge to

some player p in GM⊕Π. Thus, p is also reachable from B6ℓ\src(Π); p ∈ P+. We charge rf
to p. By Lemma 35, each player in P+ has in-degree at most one in GM⊕Π, so each player in
P+ is charged at most once. Players in B6ℓ\src(Π) obviously belong to P+ because they are
reachable from themselves. By Lemma 35, players in B6ℓ\src(Π) have in-degrees of 0 in GM⊕Π

and hence are not charged. Consequently,

|P+| − |R+
f | > |B6ℓ\src(Π)| > |B6ℓ| − |Π|.

Since Π is an optimal solution for GM [B6ℓ, Aℓ+1∪ I], we have |Π| 6 |Aℓ+1|+ |I|. It follows that

|P+| − |R+
f | > |B6ℓ| − |Aℓ+1| − |I|.

26

In summary, ∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r > (1− (1 + γ)λ) (|B6ℓ| − |Aℓ+1| − |I|) . (8)

Consider
∑

r∈R+
t
z∗r . Recall that R+

t = R(A6ℓ+1 ∪ B6ℓ ∪ I) ∪ R(B′
ℓ+1) where B′

ℓ+1 =

{e ∈ Bℓ+1 : v[R(e) ∩R(Aℓ+1)] > βλ}. We handle R(A6ℓ ∪ B6ℓ), R(Aℓ+1 ∪ I), and R(B′
ℓ+1)

separately.
Every edge in A6ℓ is blocked, so by Definition 18, less than λ worth of its thin resources are

not included in B6ℓ. Every edge in B6ℓ is λ-minimal, so it includes less than 2λ worth of thin
resources. Thus,

∑

r∈R(A6ℓ∪B6ℓ)

vr < λ|A6ℓ|+ 2λ|B6ℓ|

6

(
3 +

β

γ

)
λ|B6ℓ| (∵ Lemma 32). (9)

Edges in Aℓ+1 are (1 + γ)λ-minimal, so each of them includes less than (2 + γ)λ worth
of resources. Edges in I are λ-minimal, so each of them include less than 2λ worth of thin
resources. Therefore, ∑

r∈R(Aℓ+1∪I)
vr < (2 + γ)λ|Aℓ+1|+ 2λ|I|. (10)

Edges in B′
ℓ+1 are λ-minimal, so

∑

r∈R(B′
ℓ+1

)

vr < 2λ|B′
ℓ+1|

<
4 + 2γ

β
λ|Aℓ+1| (∵ Lemma 33). (11)

Combining (9), (10), and (11) gives

∑

r∈R+
t

z∗r =
∑

r∈R+
t

vr

<

(
3 +

β

γ

)
λ|B6ℓ|+ 2λ|I|+

(
2 + γ +

4 + 2γ

β

)
λ|Aℓ+1|. (12)

Combining (8) and (12) shows that

∑

p∈P+

y∗p −
∑

r∈R+

f

z∗r −
∑

r∈R+
t

z∗r >

(
1−

(
4 + γ +

β

γ

)
λ

)
|B6ℓ|

−
(
1 +

(
1 +

4 + 2γ

β

)
λ

)
|Aℓ+1|

− (1 + (1− γ)λ) |I|.

We are ready to prove the key result in this section, Lemma 38, that a newly constructed
layer has a lot of addable edges, or some layer is collapsible. We prove it by contradiction. If
the lemma is not true, we use the analysis of the associated dual solution in this section to show
that the dual of CLP(1) is unbounded, which implies the contradiction that the value 1 is not
feasible for configuration LP.

27

Lemma 38. Let λ = 1
4+δ for any δ ∈ (0, 1). There exists a value c0 = Θ(δ) such that if γ 6 c0,

β = γ2, and µ = γ3, then immediately after the construction of a new layer Lℓ+1, some layer
in the stack is collapsible, or zℓ+1 = |Aℓ+1| > 2µ|B6l|.
Proof. Suppose, for the sake of contradiction, that |Aℓ+1| 6 2µ|B6ℓ| and that no layer is
collapsible. We show that the dual of CLP(1) is unbounded. Let (M,M, I,Σ, ℓ + 1) be the
state of the algorithm immediately after the construction of layer Lℓ+1. Let ({y∗p}p∈P , {z∗r}r∈R)
be the associated dual solution with respect to some optimal solution of GM [B6ℓ, Aℓ+1 ∪ I].

By Lemma 36, ({y∗p}p∈P , {z∗r}r∈R) is feasible for the dual of CLP(1). We claim that the
objective function value of the associated dual solution is positive given the setting of γ, β, and
µ in the lemma. Assuming that the claim is true, we can multiply the associated dual solution
with an arbitrarily large constant to obtain an arbitrarily large objective function value while
preserving feasibility. But then the dual of CLP(1) is unbounded and hence CLP(1) is infeasible,
a contradiction.

Now all we need to do is to show that there exists a value c0 = Θ(δ) such that we can make∑
p∈P y∗p−

∑
r∈R z∗r positive by setting γ = c for any c 6 c0, β = c2, and µ = c3. By Lemma 37,

∑

p∈P
y∗p −

∑

r∈R
z∗r >

(
1−

(
4 + γ +

β

γ

)
λ

)
|B6ℓ|

−
(
1 +

(
1 +

4 + 2γ

β

)
λ

)
|Aℓ+1|

− (1 + (1− γ)λ) |I|.
Since no layer is collapsible, by Lemma 30, |I| 6 µ|B6ℓ|. Also, by our assumption, |Aℓ+1| 6
2µ|B6ℓ|. Therefore,

∑

p∈P
y∗p −

∑

r∈R
z∗r >

(
1−

(
4 + γ +

β

γ

)
λ

)
|B6ℓ|

−
(
1 +

(
1 +

4 + 2γ

β

)
λ

)
· 2µ|B6ℓ|

− (1 + (1− γ)λ)µ|B6ℓ|

=

(
(1− 3µ)−

(
4 + γ +

β

γ
+ 3µ+

(8 + 4γ)µ

β
− γµ

)
λ

)
|B6ℓ|

=
((
1− 3c3

)
−
(
4 + 10c+ 4c2 + 3c3 − c4

)
λ
)
|B6ℓ|.

As c → 0,
1− 3c3

4 + 10c+ 4c2 + 3c3 − c4
→ 1

4
.

There is a sufficiently small c that makes 1−3c3

4+10c+4c2+3c3−c4
> 1

4+δ = λ, and makes
∑

p∈P
y∗p −

∑

r∈R
z∗r > 0.

One can verify that the largest value for c is Θ(δ) for the above conclusion to hold.

When a new layer Lℓ+1 is constructed, if |zℓ+1| 6 2µ|B6ℓ|, then by Lemma 38, some layer in
the stack must be collapsible. By Remark 29, the top layer Lℓ+1 cannot be collapsible, so the
collapsible layer must be below Lℓ+1. As a consequence, Lℓ+1 will be removed by Collapse

immediately after its construction.

Corollary 39. Let λ, γ, β, µ be set as in Lemma 38. At the completion of the construction of
a new layer Lℓ+1, if |zℓ+1| 6 2µ|B6ℓ|, then Lℓ+1 will be removed by Collapse immediately.

28

4.7 Exponential growth of layer size and polynomial running time

In this section, we show that our algorithm terminates in polynomial time. The completion
of our algorithm means that it returns an allocation with a max-min value at least λ, thereby
proving an approximation ratio of 1/λ = 4+ δ. The next result shows that the size of Bi grows
exponentially with respect to i, which is essential to establishing a logarithmic bound on the
depth of the stack Σ.

Lemma 40. Let λ = 1
4+δ for any δ ∈ (0, 1). There exists a value c0 = Θ(δ) such that if γ 6 c0,

β = γ2, and µ = γ3, then for every state (M,M, I,Σ, ℓ) of the algorithm, some layer in Σ is

collapsible or |Bi+1| > γ3

1+γ |B6i| for every i ∈ [0, ℓ− 1].

Proof. Take a layer Li+1 in Σ. Since the construction of Li+1, no layer below Li+1 has ever
been collapsed; otherwise, Li+1 would have been removed by Collapse. As a result, the set
B6i has not changed since the construction of Li+1. Then, zi+1 > 2µ|B6i| by Corollary 39.

Suppose that no layer is collapsible. We show that |Bi+1| > γ3

1+γ |B6i|. By Lemma 30, we
have |Ai+1| > zi+1 − µ|B6i|. Therefore,

|Ai+1| > zi+1 − µ|B6i| > 2µ|B6i| − µ|B6i| = µ|B6i|.

By Lemma 32,

|Bi+1| >
γ

γ + β
|Ai+1| >

γµ

γ + β
|B6i|.

Substituting β = γ2 and µ = γ3 into the above inequality, we obtain

|Bi+1| >
γ3

1 + γ
|B6i|.

A direct consequence of Lemma 40 is that there are O(log n) layers in the stack.

Corollary 41. Suppose that λ, γ, β, and µ are set as in Lemma 40. For every state (M,M, I,Σ, ℓ)
of the algorithm, ℓ 6 ⌈log1+h n⌉, where h = γ3

1+γ .

Proof. Recall that n is the number of players. We show that whenever ℓ = ⌈log1+h n⌉, some
layer in the stack must be collapsible. Then Collapse will be invoked, so the depth of the
stack cannot go above ⌈log1+h n⌉. Suppose for the sake of contradiction that ℓ = ⌈log1+h n⌉
but no layer is collapsible. By Lemma 40, Bi+1 > h|B6i| for every i ∈ [0, ℓ− 1]. Equivalently,
B6i+1 > (1 + h)|B6i| for every i ∈ [0, ℓ − 1]. As |B0| = 1, we have |B6ℓ| > (1 + h)ℓ > n. But
this is impossible because B1, . . . ,Bℓ are disjoint subsets of M and B0 = {(p0, ∅)}, where p0 is
not matched by M.

We make use of Corollary 41 to show that our algorithm calls Build and Collapse a
polynomial number of times.

Lemma 42. There exists a value c0 = Θ(δ) such that if γ = c0, β = γ2, and µ = γ3, then the
unmatched player p0 will be matched after at most npoly(1/δ) calls of Build and Collapse.

Proof. The proof is essentially same as the one used in [1, 9]. We sketch it below.

Let h = γ3

1+γ . Let S be the set of all possible states of the algorithm in which no layer is
collapsible. For each state (M,M, I,Σ, ℓ) in S, we define its signature to be (s0, . . . , sℓ,∞),

where si = log1/(1−µ)
|Bi|
hi+1 . One can verify that the coordinates of the signature vector are

29

non-decreasing, and that as the algorithm goes from one state in S to another state in S,
the signature vector decreases lexicographically. It follows that the same state in S cannot be
reached twice by the algorithm. To prove the lemma, it suffices to bound the number of distinct
states in S because each call of Build or Collapse moves the algorithm from one state to
another.

By Corollary 41, ℓ 6 ⌈log1+h n⌉. By some calculations one can veirfy that the sum of the
coordinates in any signature vector is bounded by U2 where U = log n · O(1

µh log 1
h). Each

signature vector can be regarded as a partition of an integer less than or equal to U2. Summing
up the number of distinct partitions of an integer i over all i ∈ [1, U2], we get the upper bound

of n
O(1

µh
log 1

h
)
on the number of distinct signature vectors. Recall that h = γ3

1+γ , µ = γ3, and

γ = Θ(δ). As a consequence, |S| 6 npoly(1/δ).

Next, we argue that both Build and Collapse run in polynomial time.

Lemma 43. Build runs in poly(m,n) time.

Proof. It suffices to show that steps 2 and 3 of Build run in polynomial time. By Observa-
tion 15, we can tell whether a player is addable in polynomial time. Consider an addable player
p. Let Rp is the subset of thin resources that are desired by p.

Step 2 determines whether there is a λ-minimal unblocked addable edge incident to p. Let
R′

p be the subset of resources in Rp that are active and not used by M. R′
p can be identified

in polynomial time. If v[R′
p] > λ, we can form a λ-minimal unblocked addable edge (p, S) by

including thin resources in R′
p in decreasing order of values. If v[R′

p] < λ, then p is not incident
to any λ-minimal unblocked addable edge.

Step 3 determines whether there is a (1 + γ)λ-minimal blocked addable edge incident to p.
Let R′′

p be the subset of resources in Rp that are active. If v[R′′
p] > (1 + γ)λ, we can form a

(1 + γ)λ-minimal blocked addable edge (p, S) by including thin resources in R′′
p in decreasing

order of values. If v[R′′
p] < (1 + γ)λ, then p is not incident to any (1 + γ)λ-minimal blocked

addable edge.

Lemma 44. Collapse runs in poly(m,n) time.

Proof. By Lemma 23, step 2 of Collapse takes poly(m,n, ℓ) time. By Observation 15, step 5.2
takes poly(m,n) time. The rest of steps takes poly(m,n, ℓ). By Corollary 41, ℓ = O(log n).
Therefore, Collapse runs in poly(m,n) time.

We now have all the pieces in place. One can solve the configuration LP in polynomial time
as described in [4] to obtain its optimal value (with arbitrarily small additive error). Using this
optimal value, we can run our approximation algorithm.

Theorem 2. There is an algorithm for the restricted max-min allocation problem for n players
and m indivisible resources that guarantees an approximation ratio of 4 + δ for any δ ∈ (0, 1).
Its running time is poly(m,n) · npoly(1/δ).

Proof. By Lemma 42, 43, and 44, for λ = 1
4+δ with any δ ∈ (0, 1), the algorithm can match an

unmatched player by modifying M and M in poly(m,n) · npoly(1/δ) time. Repeating it for at
most n time gives an allocation with max-min value λ = 1

4+δ . Since the optimal value of the
configuration LP is 1, the approximation ratio of the algorithm is 4 + δ.

30

If we set δ = γ = β = µ = 0, Lemma 40 still holds, but it no longer guarantees a geometric
growth in the number of blocking edges. All we have is |Bi+1| > 0. As a consequence, we cannot
guarantee a polynomial running time for the algorithm. However, the algorithm still works.
The guarantee of |Bi+1| > 0 means that the algorithm can always build a non-empty layer, and
therefore, in finite number of steps, it can match the unmatched player p0 (for λ = 1

4). In fact,
it is the same as the local search in Section 3.2 except that the addable edges and blocking
edges are now organized in layers.

If we set β = 2, then it is like the algorithm in [1]: a blocking edge can block as many
addable edges as possible. Consider the term 1− (4 + γ + β/γ)λ in the proof of Lemma 38. In
order to make Lemma 38 valid, the best λ is roughly 1

4+2
√
2
and is achieved when γ =

√
2. The

approximation ratio is bounded away from 4.
As in [1], we can avoid solving the configuration LP by using binary search, and hence make

the algorithm fully combinatorial. Let T̂ be a guess of the optimal value T ∗ of the configuration
LP. If T̂ 6 T ∗, our algorithm is guaranteed to return an allocation with max-min value at least
T̂ /(4 + δ), and we increase our guess T̂ . When T̂ > T ∗, there are two cases. We may be lucky
enough that Lemma 38 still holds, so the algorithm returns in polynomial time an allocation
with objective value T̂ /(4 + δ). We increase our guess T̂ in this case. If we are not that lucky,
after some call of Build, we will encounter a violation of Lemma 38. That is, we detect that
zℓ+1 = |Aℓ+1| 6 2µ|B6ℓ| but no layer is collapsible. We abort the algorithm and decrease
our guess T̂ . Since Lemma 38 holds before the first violation, the algorithm runs for at most

poly(m,n) · npoly(1/δ) time before it is aborted. One can see that
∑

r∈R vr
n is a trivial upper

bound on T ∗. Therefore, we can get an allocation with max-min value at least T ∗/(4+ δ) after

log(
∑

r∈R vr
n) round of binary search, and each round takes at most poly(m,n) · npoly(1/δ) time.

5 Conclusion and Discussion

We show that the integrality gap of the configuration LP for the restricted max-min fair alloca-
tion problem is at most 99

26 ≈ 3.808. This is not likely to be the tight bound for the integrality
gap, not even for the local search of Asadpour et al. [2]. Given the current lower bound of 2, a
natural question is whether one can narrow the gap between the upper and lower bound further.
Another interesting challenge, which is proposed by the authors of [16], is to prove or disprove
that the running time of the local search of Asadpour et al. is polynomial.

We propose a polynomial time algorithm that guarantees an approximation ratio of 4 + δ
for any δ ∈ (0, 1). Another polynomial-time approximation method used in the literature is
based on rounding the optimal solution of the configuration LP, which gives an approximation
ratio of O

(log logn
log log logn

)
[4]. Is there a rounding scheme that gives an O(1) approximation ratio?

References

[1] C. Annamalai, C. Kalaitzis, and O. Svensson, Combinatorial algorithm for restricted
max-min fair allocation, ACM Transactions on Algorithms, 13 (2017), pp. 37:1–37:28.

[2] A. Asadpour, U. Feige, and A. Saberi, Santa Claus meets hypergraph matchings,
ACM Transactions on Algorithms, 8 (2012), pp. 24:1–24:9.

[3] A. Asadpour and A. Saberi, An approximation algorithm for max-min fair allocation
of indivisible goods, in Proceedings of the 39th ACM Symposium on Theory of Computing,
2007, pp. 114–121.

31

[4] N. Bansal and M. Sviridenko, The Santa Claus problem, in Proceedings of the 38th
ACM Symposium on Theory of Computing, 2006, pp. 31–40.

[5] M. Bateni, M. Charikar, and V. Guruswami, Max-min allocation via degree lower-
bounded arborescences, in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, 2009, pp. 543–552.

[6] I. Bezáková and V. Dani, Allocating indivisible goods, SIGecom Exchanges, 5 (2005),
pp. 11–18.

[7] D. Chakrabarty, J. Chuzhoy, and S. Khanna, On allocating goods to maximize
fairness, in Proceedings of the 50th IEEE Symposium on Foundations of Computer Science,
2009, pp. 107–116.

[8] S. Cheng and Y. Mao, Integrality gap of the configuration LP for the restricted max-min
fair allocation, CoRR, abs/1807.04152 (2018).

[9] , Restricted max-min fair allocation, in Proceedings of the 45th International Collo-
quium on Automata, Languages, and Programming, 2018, pp. 37:1–37:13.

[10] S. Cheng and Y. Mao, Restricted max-min allocation: Approximation and integrality
gap, in Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming, 2019, pp. 38:1–38:13.

[11] S. Davies, T. Rothvoss, and Y. Zhang, A tale of santa claus, hypergraphs and ma-
troids, CoRR, abs/1807.07189v1 (2018).

[12] S. Davies, T. Tothvoss, and Y. Zhang, A tale of Santa Claus, hypergraphs and ma-
troids, in Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms,
2020, pp. 2748–2757.

[13] U. Feige, On allocations that maximize fairness, in Proceedings of the 19th ACM-SIAM
Symposium on Discrete Algorithms, 2008, pp. 287–293.

[14] B. Haeupler, B. Saha, and A. Srinivasan, New constructive aspects of the Lovász
local lemma, Journal of the ACM, 58 (2011), pp. 28:1–28:28.

[15] P. Haxell, A condition for matchability in hypergraphs, Graphs and Combinatorics, 11
(1995), pp. 245–248.

[16] K. Jansen and L. Rohwedder, On the configuration-LP of the restricted assignment
problem, in Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms, 2017,
pp. 2670–2678.

[17] , A note on the integrality gap of the configuration LP for restricted santa claus,
CoRR, abs/1807.03626 (2018).

[18] J. Kleinberg and E. Tardos, Algorithms Design, Pearson/Addison-Wesley, 2006.

[19] J. Lenstra, D. Shmoys, and É. Tardos, Approximation algorithms for scheduling
unrelated parallel machines, in Proceedings of the 28th IEEE Symposium on Foundations
of Computer Science, 1987, pp. 217–224.

[20] L. Polacek and O. Svensson, Quasi-polynomial local search for restricted max-min fair
allocation, in 39th International Colloquium on Automata, Languages, and Programming,
2012, pp. 726–737.

32

[21] B. Saha and A. Srinivasan, A new approximation technique for resource-allocation
problems, in Proceedings of the 1st Symposium on Innovations in Computer Science, 2010,
pp. 342–357.

33

