
ar
X

iv
:2

10
8.

05
91

4v
1

 [
cs

.D
S]

 1
2

A
ug

 2
02

1

CNF Satisfiability in a Subspace and Related Problems

V. Arvind* Venkatesan Guruswami†

Abstract

We introduce the problem of finding a satisfying assignment to a CNF formula that must
further belong to a prescribed input subspace. Equivalent formulations of the problem in-
clude finding a point outside a union of subspaces (the Union-of-Subspace Avoidance (USA)
problem), and finding a common zero of a system of polynomials over F2 each of which is a
product of affine forms.

We focus on the case of k-CNF formulas (the k-SUB-SAT problem). Clearly, k-SUB-SAT

is no easier than k-SAT, and might be harder. Indeed, via simple reductions we show that
2-SUB-SAT is NP-hard, and W[1]-hard when parameterized by the co-dimension of the sub-
space. We also prove that the optimization version Max-2-SUB-SAT is NP-hard to approxi-
mate better than the trivial 3/4 ratio even on satisfiable instances.

On the algorithmic front, we investigate fast exponential algorithms which give non-trivial
savings over brute-force algorithms. We give a simple branching algorithm with runtime
(1.5)r for 2-SUB-SAT, where r is the subspace dimension, as well as an O∗(1.4312)n time algo-
rithm where n is the number of variables.

Turning to k-SUB-SAT for k > 3, while known algorithms for solving a system of degree k
polynomial equations already imply a solution with runtime ≈ 2r(1−1/2k), we explore a more
combinatorial approach. Based on an analysis of critical variables (a key notion underly-
ing the randomized k-SAT algorithm of Paturi, Pudlak, and Zane), we give an algorithm with
runtime ≈

(

n
6t

)

2n−n/k where n is the number of variables and t is the co-dimension of the

subspace. This improves upon the runtime of the polynomial equations approach for small
co-dimension. Our combinatorial approach also achieves polynomial space in contrast to
the algebraic approach that uses exponential space. We also give a PPZ-style algorithm for
k-SUB-SAT with runtime ≈ 2n−n/2k. This algorithm is in fact oblivious to the structure of
the subspace, and extends when the subspace-membership constraint is replaced by any
constraint for which partial satisfying assignments can be efficiently completed to a full sat-
isfying assignment. Finally, for systems of O(n) polynomial equations in n variables over F2,
we give a fast exponential algorithm when each polynomial has bounded degree irreducible
factors (but can otherwise have large degree) using a degree reduction trick.

*Institute of Mathematical Sciences (HBNI), Chennai, x1India. Email: arvind@imsc.res.in
†Computer Science Department, Carnegie Mellon University, Pittsburgh, USA. Email: venkatg@cs.cmu.edu. Por-

tions of this work were done during visits to the Institute of Mathematical Sciences, Chennai. Research supported in
part by the US National Science Foundation grant CCF-1908125 and a Simons Investigator Award.

http://arxiv.org/abs/2108.05914v1

1 Introduction

Given an n-variate Boolean formula Φ along with an affine subspace A ⊆ F
n
2 (given by a system

of F2-linear equations) as input, we explore the complexity of testing if Φ has a satisfying assign-

ment in A. This is a natural twist on Boolean constraint satisfaction problems that studies the

effects of linear algebra on Boolean logic. Our focus shall be on the case when Φ is presented

in Conjunctive Normal Formal (CNF). We refer to this problem as satisfiability in a subspace

and denote it by SUB-SAT. This framework can capture non-Boolean problems such as Graph

K-Colorability indicating the richness of combining the problem of Boolean CNF-satisfiability
with a linear-algebraic constraint. We also note that in the area of practical SAT solvers there is

interest in CNF satisfiability conjuncted with XOR constraints [27, 26].

Further, SUB-SAT has two other equivalent interesting formulations. The first of these is

union of subspace avoidance, USA for short: Given affine subspaces A1, A2, . . . , Am ⊆ F
n
2 is there

an x ∈ F
n
2 that is not in the union

⋃m
i=1Ai? A different formulation is a special case of finding

a solution to a bunch of polynomial equations pi = 0 over Fn
2 , namely when each pi is a prod-

uct of affine forms. We refer to this reformulation as PAF-SAT. We will describe these (easy)

equivalences in Section 1.3.

For most of the paper, we restrict attention to the case when Φ is a k-CNF formula (a CNF
formula with clauses of width at most k) for a fixed k, referred to as the k-SUB-SAT problem.

Clearly, k-SUB-SAT is a generalization of the well-studied k-SAT (k-CNF satisfiability). In terms

of the two reformulations above, k-SUB-SAT corresponds to the USA problem when the spaces

Ai have co-dimension at most k, and for the PAF-SAT problem, each polynomial pi is the product

of up to k affine forms.

We present both hardness results and algorithms for k-SUB-SAT, described in Sections 1.1

and 1.2 below respectively. Owing to the NP-hardness of the problems, the algorithmic focus is

on exponential time algorithms that give non-trivial improvements over brute-force.

There are two possible angles from which to view the study of k-SUB-SAT. The first is as a
problem intermediate between satisfiability of k-CNF formula and a system of degree k poly-

nomial equations. The second is as a specific instance of a constraint satisfaction problem

(CSP) obtained by combining two fundamental types of constraints. There have been a few

works [21, 6] giving algorithms beating brute-force for some natural problems with mixed con-

straints, but we are still far from a general picture of how to obtain fast exponential algorithms

for a combined template of constraints when each constraint type does admit such non-trivial

algorithms. In this context, tackling the combination of k-CNF formulas and linear equations is

a good starting point, and one that could hopefully spur a more systematic study in the future.

There have been a few investigations [15, 18, 7, 16] into the fine-grained complexity of CSPs via

the algebraic approach based on (partial) polymorphisms. This theory has developed the tools

to compare the optimal exponents of different constraint types, identifying for instance the “eas-
iest” NP-hard CSP within some classes. However, with the exception of [3], polymorphisms have

not been leveraged to design fast exponential algorithms with competitive exponents.

2

1.1 Hardness results

Since k-SUB-SAT is a generalization of k-SAT, k-SUB-SAT inherits all the intractability results of

k-SAT for k > 3. This leaves the interesting case of 2-SUB-SAT. This turns out to be much harder

than the polynomial time solvable 2-SAT. We establish the following, showing not just hardness

(even for FPT algorithms) of the exact version, but also a tight inapproximability for the approxi-

mation version (even on satisfiable instances). The proofs are based on short, simple reductions,

once an appropriate problem to reduce from is chosen.1 The W[1]-hardness answers a question

posed in [2] on the fixed-parameter complexity of 2-SAT with a global modular constraint, pa-

rameterized by the modulus.

Theorem 1. 1. 2-SUB-SAT is NP-hard. It is further W[1]-hard when parameterized by the co-

dimension of the affine space A in which we seek a satisfying assignment.

2. Given a satisfiable instance of 2-SUB-SAT, it is NP-hard to find an assignment in the input

space A that satisfies more than 3/4 + ǫ of the 2SAT clauses, for any ǫ > 0.

1.2 Algorithmic results

Analogous to seeking k-SAT algorithms faster than brute-force, we investigate fast exponential

time algorithms for k-SUB-SAT that beat the naive brute-force 2dim(A) time algorithm, where

A ⊆ F
n
2 is the subspace in which we seek a solution. Algorithms for k-SAT have received much

attention and are central to the burgeoning field of fast exponential-time algorithms. The algo-

rithmic theory is closely connected to fixed parameter tractability and parameterized complex-

ity [11, 9]. The accompanying hardness theory [13, 14], based on the exponential-time hypoth-

esis (ETH) and the strong exponential-time hypothesis (SETH), is a sanity check to the quest for

faster algorithms for k-SAT and other NP-complete problems.

There are several interesting k-SAT algorithms with running time O∗(2n(1−Θ(1/k))).2 We only

mention two significant algorithms from among these: one by Paturi, Pudlak, Zane [22] and

another due to Schöning [24]. Both algorithms are simple to describe with delightfully clever

and elegant analyses. The PPZ algorithm considers variables in a random order, and gives each

a random value unless its value is forced by a clause and previously set values. It achieves a

runtime of O∗(2n(1−1/k)). Schöning’s algorithm starts with a random assignment and in each

step fixes an unsatisfied clause by flipping the value of a random one of its variables. It achieves
a runtime of O∗((2 − 2/k)n).

Given that k-SUB-SAT generalizes k-SAT, it is natural to seek exponential algorithms with

similar runtimes for k-SUB-SAT. For SUB-SAT with input spaceA ⊆ F
n
2 , the brute-force algorithm

in fact runs in time O∗(2dim(A)). A natural question is whether we can get similar improvements

in the exponent of the O∗(2dim(A)) runtime.

An algorithm [19] with running time about O∗(2r(1−1/5k)) is known for checking satisfiability

of a collection of arbitrary degree k polynomial equations in r variables: LetPi ∈ F2[x1, x2, . . . , xr],
1 6 i 6 m, be polynomials over the field F2. Following [19], the POLY-EQS problem is solving the

1The NP-hardness would also follow from Schaefer’s dichotomy theorem for Boolean CSP [23], though that is an
overkill hammer for this result.

2The notation O∗(f(n)) for runtime bounds suppresses polynomial factors.

3

system of polynomial equations Pi = 0, 1 6 i 6 m over F2: to check if there exists a solution in F
r
2

and compute one if it exists. When Pi are all of degree bounded by k we denote this special case

by k-POLY-EQS. The k-POLY-EQS problem generalizes k-SUB-SAT by the following easy transfor-

mation: Suppose the subspace A where we seek a satisfying assignment is r dimensional. Then

we can express the ith clause in the k-SUB-SAT instance as a disjunction of k affine linear forms in

r variables: Ci = (ℓi,1∨ℓi,2∨· · ·∨ℓi,k). We define the corresponding polynomial Pi =
∏k

j=1(ℓi,j+1).
Now, the k-SUB-SAT instance is satisfiable iff the k-POLY-EQS instance Pi = 0, 1 6 i 6 m has a

solution in F
r
2.

The algorithm [19] is a novel application of the Razborov-Smolensky “polynomial method,”

originally developed as a lower bound technique, used to define low-degree probabilistic poly-

nomials for approximating the OR gate. The same idea allows for replacing a system of poly-

nomial equations by a single probabilistic polynomial (without significant increase in degree),

followed by a partial table lookup search. The article [19] presents more general results applica-

ble to all finite fields Fq. Recently, in [8], the running time for the case of F2 has been improved
to O∗(2r(1−1/2k)) by a refinement of the search method in [19].

Since k-SUB-SAT is a special case of solving a system of polynomial equations overF2, it raises

the natural question of improving the running time further to match the O∗(2r(1−1/k)) runtime

of the PPZ randomized algorithm for k-SAT. We are only able to achieve this speed-up in some

special cases. However, on the positive side, our algorithms turn out to be polynomial space

bounded, unlike the polynomial equations based method which requires exponential space [19,

8].

1.2.1 Algorithms for 2-SUB-SAT

For 2-SUB-SAT a simple deterministic branch-and-bound algorithm achieves a runtime ofO∗(3r/2)
where r is the dimension of the subspace A. We can improve on this with a randomized branch-

ing strategy to a runtime of O∗(1.5r). This improves over the randomized O∗(1.6181r) algorithm

given by the polynomial method [8] for solving a system of quadratic equations over F2. There is

also a simple deterministic branching algorithm with O∗(((1 +
√
5)/2)r) runtime for 2-SUB-SAT.

This is based on the same branching strategy for k-SAT [20, Theorem, pp. 295] with its runtime

governed by the generalized Fibinacci numbers.

When dim(A) = n − t, we can adapt the algorithm from [2, Algorithm 4.1] (for solving 2-SAT

with a single abelian group constraint) to obtain an O∗(
(n
6t

)

) time algorithm. 3

The result of Theorem 1 shows that this problem is not in FPT parameterized by the co-
dimension t, answering a question posed in [2] on whether 2-SAT with a global abelian group

constraint might be fixed-parameter tractable, parameterized by the group size. More generally,

the work [2] systematically studied the effect of a global modular constraint on the complexity of

Boolean constraint satisfaction problems, exposing many interesting phenomena and connec-

tions.

Balancing the two runtimes of O∗(1.5r) and O∗(
(n
n−r

)

) algorithm when r > n/2 (the expo-

nents of the two bounds become equal at r = (1−η)n for η ≈ 0.115816) yields a O∗(1.4312n) time

randomized algorithm for 2-SUB-SAT on n variables. The following records these results.

3For nonnegative integers n, t, the notation
(

n

6t

)

stands for
∑t

i=0

(

n

i

)

.

4

Theorem 2. There is a randomized O∗(1.5r) algorithm for 2-SUB-SAT where r is the dimension

of the input space, as well a deterministic O∗(
(n
6t

)

) time algorithm where t is the co-dimension.

Together, these imply a randomized O∗(1.4312n) time algorithm as a function of the number n of

variables.

1.2.2 Algorithms for k-SUB-SAT

We explore combinatorial algorithms for k-SUB-SAT based on the notion of critical variables

(which was introduced in [22] and plays an important role in their satisfiability algorithm). Let

Φ be a satisfiable CNF formula in n variables xi, i ∈ [n], and let ā ∈ F
n
2 be a satisfying assignment.

Definition 3. [22] We say xi is a critical variable for ā with respect to Φ if the assignment ā + ei
falsifies Φ, where ei is the ith elementary vector with 1 in the ith coordinate and zero elsewhere

(so ā+ ei is just ā with xi flipped). If the formula Φ is clear from context, we simply say that xi is
a critical variable for assignment ā.

The key idea in our combinatorial algorithms is plucking of non-critical variables based on

the following simple observation: if Φ is an n-variate CNF formula and ā is a satisfying assign-

ment such that variable xi is non-critical for it, then the formula Φ′ obtained by plucking xi (i.e.,

dropping all occurrences of xi and its complement from Φ) remains satisfiable with ā′ ∈ F
n−1
2 as

a satisfying assignment, where ā′ is obtained from ā by dropping the ith coordinate.

The important property of Φ′ is that given any satisfying assignment for Φ′ we can set xi to

either 0 or 1 to recover a satisfying assignment for Φ. This facilitates searching for a satisfying

assignment in an affine space A: if the plucked variable xi occurs in a linear constraint defining

A then we can drop that linear constraint while seeking a satisfying assignment for Φ′, because

that linear constraint can always be satisfied by choosing the right value of xi which still remains

overall a satisfying assignment for Φ. Based on this idea we obtain the following algorithms for

k-SUB-SAT:

• The first result here is a randomized O∗(
(

n
t

)

2n−n/k) time algorithm for k-SUB-SAT where

t = codim(A). This algorithm is essentially governed by the running time of the PPZ satisfi-

ability algorithm [22] combined with an iterative “search and pluck” operation to remove t
non-critical variables from the t linear equations defining A. This running time is superior

to the O∗(2r−r/2k) time randomized algorithm based on solving polynomial equations for
small values of t = o(n).

• The second result is a general randomized O∗(2n−n/2k+n/2k2) time algorithm for k-SUB-SAT,

nearly matching the ≈ 2r−r/2k run time of the polynomial equations algorithm [8, 19] for

r close to n. It again uses the PPZ satisfiability algorithm as a subroutine combined with

simple applications of the plucking step: if the number of critical variables is fewer than

n/2, it randomly guesses and plucks non-critical variables. This algorithm does not need

to look at the linear equations defining A. In fact, it works for any Boolean constraint

C(x1, x2, . . . , xn) (replacing membership in the affine space A) with a polynomial-time al-
gorithm that takes a partial assignment and extends it to an assignment that satisfies C.

For example, C can be a HORN or dual HORN formula.

5

• It is pleasing to note that we can apply the idea of plucking non-critical variables to 2-SUB-SAT

and obtain an O∗(
(n
6t

)

)deterministic algorithm (cf. [2]), where t = codim(A). Exploiting the

structure of 2-CNF formulas, we can find the non-critical variables efficiently.

Theorem 4. The k-SUB-SAT problem admits two randomized algorithms, one running in time

O∗(2n−n/2k+n/2k2), and another running inO∗(
(

n
t

)

2n−n/k)when the input subspace has co-dimension

t 6 n/2.4 Both algorithms use space bounded by a polynomial in n.

Remark 5. Satisfiability algorithms based on the switching lemma (which converts k-CNF to

decision trees of moderate term size and number of terms) are known in the literature (e.g., see
[12]). We can easily adapt this algorithm to solve k-SUB-SAT, because once we have a decision

tree for the underlying k-CNF formula, for the k-SUB-SAT instance each path of the decision

tree will give rise to a system of linear equations over F2. For each path, therefore, we can even

count the number of satisfying assignments. Counting over all the paths of the decision tree

gives the total number of satisfying assignments for the k-SUB-SAT instance in randomized time

O∗(2n(1−1/c·k)) for some suitable large constant c > 0. Furthermore, the algorithm is also poly-

nomial space-bounded. In terms of running time, however, it is a much weaker bound in com-

parison to [19] or even the algorithms of Theorem 4. In this context, we note that for #k-SAT

there is a deterministic O∗(2n(1−1/c·k)) time algorithm based on the polynomial method (albeit

using exponential space) [5]. We do not know of any such deterministic algorithm for counting

satisfying assignments to k-SUB-SAT.

Finally, motivated by the (unbounded CNF) SUB-SAT problem, we revisit the general problem

solving a system of polynomial equations pi = 0, 1 6 i 6 m over F2, where m = O(n), where each

pi is given by an arithmetic circuit of poly(n) degree. In the case when each pi has small degree
irreducible factors, we get a 2r(1−α) time randomized algorithm, where αdepends on the number

of equations m and the degree bound on the irreducible factors (Theorem 28).

1.3 Equivalent and related problems to SUB-SAT

Recall the USA problem: Given a collection of affine subspaces A1, A2, . . . , Am ⊆ F
n
2 (where each

Ai is given by a bunch of affine linear equations over F2) the problem is to determine if there is a

point x ∈ F
n
2 \⋃m

i=1 Ai.

Clearly, the complement Fn
2 \ ⋃m

i=1 Ai is expressible as an AND of ORs of affine linear forms

⊕i∈Sxi + b, b ∈ {0, 1}. Thus, USA is clearly reducible to SUB-SAT. The converse reduction is also

easy: given a CNF formula Φ and an affine subspace A ⊆ F
n
2 we first convert it to an AND of ORs

of affine linear forms. An assignment x ∈ A satisfies Φ if and only if it satisfies C1 ∧C2 ∧ · · · ∧Cm,

where each clause Ci is an OR of affine linear forms. The set Ai of satisfying assignments of

the complement Ci is an affine subspace of Fn
2 , and Φ is satisfiable by x ∈ A if and only if x ∈

F
n
2 \⋃m

i=1 Ai.

For the equivalence to PAF-SAT, suppose Φ = C1 ∧ C2 ∧ · · · ∧ Cm, where each clause Ci is

an OR of affine linear forms Ci = ∨t
j=1Lij . As already discussed in Section 1.2, the assignment

x ∈ F
n
2 satisfies Ci if and only if it satisfies the polynomial equation

∏m
j=1(Lij + 1) = 0. Thus, the

satisfiability of Φ is reducible to a system of m polynomial equations pi = 0, where each pi is a

product of affine linear forms. The converse reduction is also easy which we omit.

4Of course, there is also a trivial O∗(2n−t) time brute force algorithm.

6

Organization of the paper. We present the results in a different order than in the introduction.

In Section 2 we first present the algorithms for k-SUB-SAT and then for 2-SUB-SAT. In Section 3

we present our hardness results for 2-SUB-SAT. Finally, in Section 4 we present the algorithm for

POLY-EQS for O(n) equations pi = 0, where each pi has unrestricted degree but constant-degree

irrreducible factors.

2 Algorithmic results for k-SUB-SAT

As mentioned in the introduction, the k-SUB-SAT problem seems intermediate in difficulty, be-

tween k-SAT and the problem k-POLY-EQS of solving a system of degree-k polynomial equa-

tions over F2. The latter problem has an O∗(2r(1−1/2k)) time algorithm [19, 1, 8], which yields an

O∗(2r(1−1/2k)) time algorithm for k-SUB-SAT, where r = dim(A).

Ideally, we would like an algorithm for k-SUB-SAT with run time O∗(2r(1−1/k)), with savings
in the exponent similar to that of the PPZ algorithm [22] for k-SAT.

We present some algorithms in this direction: For 2-SUB-SAT there is a simple O∗(1.5r) time

randomized algorithm which improves on the O∗(2r(1−1/2k)) bound for k = 2. For a special case

of k-SUB-SAT, when r = dim(A) is close to the number of variables n, we are able to adapt the
PPZ algorithm to essentially get an O∗(2r(1−1/2k)) time algorithm. Writing t = n− r = codim(A),
we can even obtain an O∗(

(n
6t

)

· 2n(1−1/k) time algorithm for the problem, also based on the PPZ

satisfiability algorithm, which yields the desired 1/k savings in the exponent for small t.

2.1 An O∗(
(

n
t

)

· 2n(1−1/k)) time randomized algorithm: co-dimension t case

As outlined in Section 1.2, the algorithm will use the PPZ satisfiability algorithm [22] as a sub-

routine, combined with variable plucking steps to solve k-SUB-SAT in randomized time O∗(
(n
t

)

·
2n(1−1/k)), when codim(A) = t. In particular, for codim(A) = o(n) the algorithm has run time

O∗(2n(1−1/k+o(1))).

The variable plucking is based on analyzing the critical variables for a solution ā ∈ F
n
2 of a

given k-SUB-SAT instance (Φ, A), depending on whether or not they occur in the linear equa-

tions defining A.

For an instance (Φ, A) we partition the variables into two sets

{xi | i ∈ [n]} = Vin ⊔ Vout,

where Vin is the subset of variables that have nonzero coefficient in at least one of the t linear

equations defining A, and Vout is the remaining set of variables. By abuse of notation, we will

also treat Vin ⊔ Vout as a partition of the index set [n]. We consider the following two cases.

Case 1. Suppose (Φ, A) has the property that for every solution ā ∈ F
n
2 each variable in Vin is

critical for ā w.r.t Φ. There is no variable plucking required in this case. It only involves the

application of the PPZ satisfiability algorithm on Φ and checking that the assignment found

belongs to A. We need the following lemma which is analogous to [22, Lemma 4]. The proof

of the lemma is by an induction argument like in [22].

7

Lemma 6. Let S be a nonempty subset of Fn
2 . For each ā ∈ S, let Iout(ā) = {i ∈ Vout | ā + ei /∈ S},

where ei is the ith elementary vector. Then we have

∑

ā∈S

2|Iout(ā)|−|Vout| > 1. (1)

Proof. If |Vout| = 0, then Iout(ā) = ∅ for every ā ∈ S, and the left hand side of (1) equals |S| which

is at least 1.

So assume |Vout| > 1 and without loss of generality that 1 ∈ Vout. Let S0 = {ā ∈ S | a1 = 0}
and S1 = {ā ∈ S | a1 = 1}, and also denote V ′

out = Vout \ {1}.

First consider the case when both S0 and S1 are nonempty. For ā ∈ S0, define I
(0)
out(ā) = {i ∈

V ′
out | ā+ ej /∈ S0} and likewise for ā ∈ S1, define I

(1)
out(ā) = {i ∈ V ′

out | ā+ ej /∈ S1}. By induction

hypothesis, applied w.r.t V ′
out, and pairs S0 and I

(0)
out(ā), as well as S1 and I

(1)
out(ā), we know that

∑

ā∈S0

2|I
(0)
out (ā)|−|V ′

out| > 1 and
∑

ā∈S1

2|I
(1)
out (ā)|−|V ′

out| > 1 . (2)

Now if index j ∈ I
(0)
out(ā) for some ā ∈ S0 ⊂ S, then ā + ej /∈ S0 and as the first coordinate

of ā + ej is also 0, we have ā + ej /∈ S, and thus j ∈ Iout(ā). Thus |Iout(ā)| > |I(0)out(ā)| for all

ā ∈ S0. Likewise, |Iout(ā)| > |I(1)out(ā)| for all ā ∈ S1. Since |V ′
out| = |Vout| − 1, using these in (2), we

conclude (1) in this case, as desired.

Next, suppose S = S0 and S1 = ∅ (the case when S0 = ∅ is handled the same way). In this
case, for every ā ∈ S, 1 ∈ Iout(ā), as S1 = ∅ and thus flipping the first bit will always lead to a

vector outside S. Thus |Iout(ā)| = |I(0)out(ā)| + 1. Using this together with |V ′
out| = |Vout| − 1 in the

first inequality of (2), we conclude (1) in this case as well.

Now, let ā ∈ F
n
2 be some solution of the k-SUB-SAT instance (Φ, A). Then, by the assumption

of Case 1 and the preceding discussion ā has |Vin|+ |Iout(ā)| critical variables w.r.t Φ.

Following the analysis in [22], if we now run one iteration of the PPZ algorithm on the in-

stance Φ, the probability that ā is output is at least

1

n2
· 2−n+(|Vin|+|Iout(ā)|)/k.

Let S ⊂ F
n
2 denote the subset of solutions to the instance (Φ, A). Summing up over all ā ∈ S,

the probability that some solution ā is output is given by

∑

ā∈S

1

n2
· 2−n+(|Vin|/k+|Iout(ā)|/k) =

1

n2
2−n+n/k ·

∑

ā∈S

2(−|Vout|/k+|Iout(ā)|)/k

>
1

n2
2−n+n/k ·

∑

ā∈S

2(−|Vout|+|Iout(ā)|) >
1

n2
2−n+n/k ,

where the last step uses Lemma 6. This finishes the analysis of Case 1.

8

Remark 7. Notice in the probability analysis that S is the set of solutions to (Φ, A) and not all

solutions to Φ. The crucial property that for every ā ∈ S, each variable in Vin is critical w.r.t Φ
yields that there are |Vin| + |Iout(ā)| critical variables for ā w.r.t Φ. Intuitively, as the variables

in Vout do not occur in the linear equations, the PPZ algorithm when run on Φ will be able to

deterministically set, on average, |Iout(ā)|/k many of the critical variables in Vout without any

interaction with the linear equations defining A.

Case 2. We now consider the case when not all variables in Vin are critical to all solutions to

(Φ, A). We will show that there is a subset of at most t variables in Vin that can be plucked from

Φ and reduce the transformed instance to Case 1. We will argue that the algorithm can do an
exhaustive search for this subset of Vin of size at most t.

Lemma 8. In the k-SUB-SAT instance (Φ, A), letBx = b be the system of t linear equations defining

A. Suppose variable x1 occurs in the first equation
∑n

j=1B1jxj = b1 (i.e., B11 6= 0). Further,

suppose x1 is not critical for some solution to (Φ, A). Let Φ′ be the formula obtained by plucking

x1 from Φ. Let A′ be the affine space of co-dimension t − 1 defined by dropping the first linear

equation
∑n

j=1B1jxj = b1 after eliminating x1 from the other linear equations by row operations.

Then (Φ′, A′) is satisfiable and any solution ā′ to (Φ′, A′) can be extended to a solution ā of (Φ, A).

Proof. By assumption, there is a solution â to (Φ, A) for which x1 is non-critical. Let â′ ∈ F
n−1
2

be the assignment to x2, x3, . . . , xn obtained from â by dropping the x1-coordinate. Clearly, â′ is

a solution to (Φ′, A′). Hence, (Φ′, A′) is satisfiable. Furthermore, suppose ā′ is some solution to

(Φ′, A′). Then the assignment ā′ to the n− 1 variables x2, x3, . . . , xn can be extended by choosing

x1 such that the constraint
∑n

j=1B1jxj = b1 is satisfied. The resulting assignment ā satisfies Φ
and all t constraints defining A.

Lemma 8 describes a pluck/eliminate step applied to the non-critical variable x1: namely,

pluck x1 from Φ and eliminate it from the equations describing A.

Clearly, for some sequence of s 6 t pluck/eliminate steps applied successively transforms

(Φ, A) to (Φs, As) for which Case 1 holds. Since we do not have an efficient test for checking

non-criticality, the algorithm has to do an exhaustive search for the sequence of s variables to

pluck/eliminate. The number of variable sequences to consider is bounded by nt. However, as
we argue in the next claim, it suffices to consider each unordered subset U of size s 6 t variables

and apply pluck/eliminate steps to its variables in the natural order x1, . . . , xn. Thus, we can

bound the exhaustive search to
(n
6t

)

subsets of variables. Let (ΦU , AU) be the resulting instance

after pluck/eliminate applied to variables in U in the natural order.

Lemma 9. Let (Φ, A) be a satisfiable instance of k-SUB-SAT with codim(A) = t. There is a subset

U of variables of size at most t, such that (ΦU , AU) is a satisfiable Case 1 instance of k-SUB-SAT.

Proof. Suppose xi1 , xi2 , . . . , xis is a sequence of s 6 t variables to which the pluck/eliminate

steps applied results in a satisfiable Case 1 instance (Φs, As). Let the t equations Bx = b define

the affine space A. The row operations applied with the pluck/eliminate steps transforms this

system into the following equations (also defining A):

ℓj = xij , 1 6 j 6 s and ℓj = 0, s + 1 6 j 6 t, (3)

9

for affine linear forms ℓj, j ∈ [t] in which none of the variables xi1 , xi2 , . . . , xis occur. Moreover,

the t− s equations ℓj, j > s define As, and for every solution ā to (Φs, As) all variables occurring

in these t− s equations are critical for ā w.r.t Φs.

Now, suppose we apply the pluck/eliminate steps in the natural order to the variable sub-

set U = {xi1 , xi2 , . . . , xis} resulting in (ΦU , AU). Formulas ΦU and Φs are identical (as both

are obtained by plucking variables from U). The accompanying row operations for the elim-

inate steps could result in a different set of equations (defining A): ℓ′j = xij , 1 6 j 6 s and

ℓ′j = 0, s + 1 6 j 6 t. The variables in U do not occur in ℓ′j , j ∈ [t], and the affine space AU is

defined by the t − s equations ℓ′j = 0, j > s. Since any solution to these equations uniquely de-

termines the values to the variables in U , and all equations together define A, we can conclude

that AU = As.

The O∗(
(n
6t

)

· 2n−n/k) time Algorithm.

On input (Φ, A), the algorithm proceeds as follows:

For each subset U ⊂ Vin of size at most t do the following:

1. Pluck the variables in U from Φ to obtain ΦU .

2. For each variable xi ∈ U (in any order): pick some equation in which xi occurs; remove xi
from other equations by adding the picked equation to it; drop the picked equation from

the system.

3. Run the PPZ algorithm on the resulting instance (ΦU , AU) as if Case 1 were applicable.

More precisely, run PPZ on ΦU for O∗(2n−n/k) steps; for each solution obtained, if it satisfies

AU then output an extension of it to a solution to (Φ, A) and exit,5 else continue the for-
loop for the next choice of subset U .

To see the correctness, suppose (Φ, A) is satisfiable. By Lemma 9, for some choice of U with

|U | 6 t, (ΦU , AU) is a Case 1 instance. Hence, the PPZ satisfiability algorithm will output a so-

lution to (ΦU , AU) in time O∗(2n−n/k) with high probability. This solution can be uniquely ex-

tended to a solution to (Φ, A) using the linear equations.

We have thus shown the following.

Theorem 10. There is a randomized O∗(
(n
t

)

· 2n−n/k) time algorithm for k-SUB-SAT for subspaces

of co-dimension t. In particular, for t = o(n) we have a randomized O∗(2n(1−1/k+o(1))) time algo-

rithm.

2.2 An O∗(2n−n/2k+n/2k2) time PPZ-based algorithm for k-SUB-SAT

Let (Φ, A) be a k-SUB-SAT instance. Our objective is a randomized algorithm with run time
2n−(1−ν)n/k for as small an ν as possible (ideally, tending to zero).

To this end, we can first apply Valiant-Vazirani Lemma [28] to increase the number of con-

straints (thereby reducing the rank of A) and getting an instance (Φ, A′) such that Φ has a unique

5From a solution to (ΦU , AU) we can reconstruct the solution to (Φ, A) as the values to variables in U are uniquely
determined via the linear equations from the values to the other variables.

10

solution inA′ with high probability (i.e., inverse polynomial probability as guaranteed by Valiant-

Vazirani).

If dim(A′) 6 n − (1 − ν)n/k we can brute force search in A′ in deterministic time 2dim(A′) 6

2n−(1−ν)n/k . Thus, we can assume that dim(A′) = n − t and A′ is the solution space of t < (1 −
ν)n/k independent affine linear equations.

Let now ā ∈ F
n
2 be the unique solution to the k-SUB-SAT instance (Φ, A′). We partition the

variable set into Vin ⊔ Vout as before.

Claim 11. Every variable in Vout is critical for the satisfying assignment ā of Φ.

Proof of Claim. Suppose xi ∈ Vout is not critical for ā. Then ā + ei is also a satisfying assignment

for Φ. Moreover, since xi does not occur in Vin, ā + ei satisfies the linear equations defining A′.

Hence ā+ ei is a solution to (Φ, A′) contradicting the uniqueness of ā.

The variable plucking algorithm. If ā has more than (1 − ν)n many critical variables (ν to be

fixed in the analysis) then by running the PPZ satisfiability algorithm [22] for O∗(2n−(1−ν)n/k)
iterations we will find it with high probability.

Otherwise, there are more than νn many variables in Vin that are not critical for Φ at ā.

1. Repeat the following two steps at most t times.

2. (The plucking step) Randomly pluck a variable xi from Vin and drop it from the formula

Φ to obtain its shrinking Φ1. Take a linear equation ℓ = b in which xi occurs. By row

operations eliminate xi from all other linear equations in which xi occurs and then drop

the equation ℓ = b. Let the affine space described by the new set of at most t − 1 linear

equations be A1. We claim that (Φ1, A1) also has a unique solution ā1 (obtained from ā by

dropping the ith coordinate).

3. Let n1 = n − 1. Run the PPZ algorithm for 2n1−(1−ν)n1/k time on Φ1. If we do not find the

unique solution ā1 then repeat the plucking step.

At the end of t successful plucking steps we are left with a k-SAT instance Φt with a unique

solution (the subspace At is Fn
2) and PPZ will find that solution from which we can compute ā by

recovering the unique values of the plucked variables using the linear equations.

Analysis. At the jth iteration of the plucking step, the probability that all j steps pluck off non-

critical variables is at least νj . Thus, the running time of the search for unique solutions for the

(Φj , Aj) over all t steps is bounded by
∑t

j=0O
∗(1

νj
· 2nj−(1−ν)nj/k).

Letting α = 21−(1−ν)/k and noting that nj = n− j we can rewrite and bound the above sum as

O∗(2n−(1−ν)n/k) ·
t

∑

j=0

1

νj · αj
6 O∗(2n−(1−ν)n/k) · t · 1

νt · αt

6 O∗(2n−(1−ν)n/k) · t ·
(

1

2ν

)(1−ν)n/k

· 2(1−ν)n/k2 ,

as the sum
∑t

j=0
1

νj ·αj is bounded by t 1
νt·αt for να < 1 and t 6 (1− ν)n/k.

11

The overall running time of the algorithm is, therefore, O∗(2n−n/k) · 2νn/k ·
(

1
2ν

)(1−ν)n/k ·
2(1−ν)n/k2 , which is minimized at ν = 1/2 as we argue below, and is given by O∗(2n−n/2k+n/2k2).

Ignoring the last factor, we need to minimize 2νn/k ·
(

1
2ν

)(1−ν)n/k
. In other words, we need to

minimize

2ν ·
(

1

2ν

)1−ν

,

Or, equivalently, minimize

ν log(4ν)− log(2ν) over ν ∈ [0, 0.5].

This is minimized at ν = 0.5 and the minimum value is also 0.5.

Remark 12 (Extension beyond linear-algebraic constraints). We note some aspects about the

algorithm and explain its adaptation to the more general setting of k-CNF satisfiability in the

presence of a global boolean constraint C(x1, x2, . . . , xn) with the property that given a partial

assignment to the variables xi we can extend the assignment to the remaining variables that sat-

isfies the constraint C, if such an extension exists. We set ν = 1/2 and t = n/2k. Note that the

algorithm need not partition the variables into Vin and Vout. If there are over n/2 non-critical

variables, the algorithm can ”obliviously” pluck one with probability 1/2. Oblivious in the sense

that it does not need to see the constraint C. After t = n/2k plucking steps, there are at most

n− n/2k remaining variables. We add a final step to the algorithm which is a brute-force search

over all 2n−n/2k assignments to the remaining variables. For each assignment to these that sat-

isfies Φt we can check, in polynomial time, if there is an extension to it that satisfies C. This
search will succeed for the unique solution ā. An interesting example for constraint C would be

HORN formulas. As clause size is unrestricted in HORN formulas, notice that neither a direct

application of the PPZ satisfiability algorithm, nor an application of the polynomial equations

algorithms would give constant savings in the exponent for the runtime bound.

More generally, call a Boolean constraint C(x1, x2, . . . , xn) T (n)-easy if there is a T (n) time-

bounded algorithm that searches for a satisfying extension of a given partial assignment to the

variables xi.

Theorem 13. There is a randomized O∗(2n−n/2k+n/2k2 ·T (n)) time algorithm that takes any k-CNF

formula and a T (n)-easy boolean constraint C(x1, x2, . . . , xn) as input and computes a satisfying

assignment for the formula and C.

Corollary 14. There is a randomized O∗(2n−n/2k+n/2k2) time algorithm for k-SUB-SAT.

2.3 An O∗(1.5r) time algorithm for 2-SUB-SAT

Theorem 15. Given a 2-SUB-SAT instance (Φ, A), where Φ is a 2-CNF formula and A ⊂ F
n
2 is

an r-dimensional affine subspace given by linear equations, there is a randomized O∗(1.5r) time

algorithm to check if Φ has a satisfying assignment in A and if so to compute it.

Proof. Let X = {x1, x2, . . . , xr, . . . , xn} be the variable set. Without loss of generality, we can

assume that x1, x2, . . . , xr are independent variables and for j > r we have xj = ℓj , where ℓj is a

linear form in x1, x2, . . . , xr. The literal x̄j is the affine linear form ℓj + 1.

12

Thus, we can treat the instance (Φ, A) as a conjunction Ψ of disjunctions (ℓ∨ ℓ′), where ℓ and

ℓ′ are affine linear forms in x1, x2, . . . , xr. We can think of this satisfiability problem as picking

one affine form from each such 2-disjunction (ℓ∨ ℓ′) and setting it to true such that the resulting

equations are all consistent (i.e. the equations have a solution in F
r
2).

We describe below a randomized algorithm that builds a system of independent linear equa-

tions over x1, x2, . . . , xr such that any satisfying assignment ā is a solution to this system of linear

equations with probability at least (2/3)r , and, moreover, any solution to this system satisfies Ψ.

Clearly repeating this algorithm O∗(1.5r) times will find a satisfying assignment to the 2-SUB-SAT

instance Ψ if one exists.

Here is a description of the algorithm to convert Ψ to a system of linear equations:

1. The algorithm runs in stages i = 0, 1, . . . where in the ith Stage, it has a system of linear
equations ℓ′j = 1, 1 6 j 6 i for a collection of linearly independent affine forms ℓ′j . We start

off with the empty system at stage 0.

2. (Stage i + 1): Take a clause (ℓ ∨ ℓ′). If either ℓ = 1 or ℓ′ = 1 is implied by the equations

from stage i (which can be checked by solving linear equations) then we can discard that

clause as satisfied and examine the next clause. If both ℓ = 0 and ℓ′ = 0 are implied by the

equations then this is a rejecting computation and algorithm outputs “fail”.

If ℓ = 0 is implied by the equations and ℓ′ is independent of the ℓ′j then we include the

equation ℓ′ = 1 and go to Stage i + 2 (if there are any clauses left). Finally, if both ℓ and ℓ′

are independent of the ℓ′j then we randomly pick one of three linear forms ℓ, ℓ′ and ℓ + ℓ′,
include the equation setting it to 1 and go to Stage i+ 2 (if there are any clauses left).

3. Let the final stage be r′. Note that r′ 6 r since the equations ℓ′j = 1 are all independent. At
this stage we have no clauses left and any solution to the linear equations ℓ′j = 1, 1 6 j 6 r′

satisfies Ψ. Output an arbitrary such solution.

We now analyze the success probability of the algorithm. Suppose ā ∈ F
r
2 is a satisfying as-

signment for Ψ. We claim that the probability that ā satisfies the final system of equations

ℓ′j = 1, 1 6 j 6 r′ is at least (2/3)r . We will prove this by an induction on the stage number

i: the induction hypothesis is that ā satisfies the set of equations at stage i with probability at

least (2/3)i. Clearly, it holds at i = 0.

For the induction step, suppose after Stage i, the assignment ā satisfies ℓ′j = 1, 1 6 j 6 i.
Then notice that in Stage i+ 1 we either deterministically add the equation ℓ′ = 1 which ā must

satisfy since it does not satisfy ℓ = 1 (indeed ℓ must evaluate to 0 at ā), or we randomly pick one

of ℓ, ℓ′ and ℓ+ ℓ′. Clearly, ā must satisfy exactly two of these three linear forms. Hence at the end

of Stage i+ 1 the assignment ā satisfies the system ℓ′j = 1, 1 6 j 6 i+ 1 with probability at least

(2/3)i+1. It follows that at the end of stage r′ 6 r, ā satisfies the equations with probability at

least (2/3)r .

Remark 16. The run time of O∗(1.5r) that we obtain improves on the polynomial equations

based algorithms, where for k = 2 the best run time so far is O∗(1.618r) [8]. For k = 3 a similar

randomized branching strategy gives an algorithm with run time O∗((7/4)r). For larger k the run

time degrades to O∗((2− 1/2k−1)r). This runtime bound is obtained similarly as for Theorem 15:

fix a satisfying assignment ā of the k-SUB-SAT instance. For a clause (ℓ1∨ℓ2∨· · ·∨ℓk) of k linearly

13

independent linear forms a random (nonzero) linear combination
∑k

i=1 αiℓi evaluates to 1 at ā

with probability exactly 2k−1

2k−1
.

2.4 2-SUB-SAT in a co-dimension t subspace

In this section we consider 2-SUB-SAT where we are seeking a solution in an affine space A such

that codim(A) = t.

Given a formula Φ we will identify a canonical satisfying assignment ā for Φ based on which

we will define critical variables. Since 2-SAT is in polynomial-time, we can detect non-critical

variables in Φ w.r.t. ā in polynomial time. Now the plucking step will try all the possible
(n
t

)

choices of plucking non-critical variables, recalling that a non-critical variable plucked from a

linear constraint defining A allows us to drop that constraint.

Theorem 17. There is an O∗(
(n
t

)

) time deterministic algorithm for checking if a 2-SUB-SAT in-

stance (Φ, A) is satisfiable where the affine space A has co-dimension t.

Proof. Let Φ be a 2-CNF formula in variables xi, i ∈ [n].

We first do a standard preprocessing of Φ by considering its implication graph on the 2n
literals xi, xi, i ∈ [n], where for each clause u ∨ u′, for literals u and u′, we have two directed

edges (u, u′) and u′, u). The literals that form strongly connected components must all take the

same value in any satisfying assignment and, therefore, can be replaced by a single variable. This

shrinks the implication graph to a DAG and also reduces the number of variables. Thus, without
loss of generality, we can assume the implication graph of Φ is a DAG, and we refer to Φ as a

reduced 2-SAT formula.

Computing a canonical satisfying assignment. A standard linear-time 2-SAT algorithm computes

a canonical satisfying assignment ā for Φ (if satisfiable) by the following algorithm:

(a) All literals of outdegree 0 in the implication DAG are assigned true.

(b) The formula Φ is simplified after this substitution and the new implication DAG computed.

If the DAG is non-empty we repeat Step(a).

The following claim uses the above algorithm to identify non-critical variables for some sat-

isfying assignment for Φ.

Claim 18. Let Φ be a 2-SAT formula with implication DAG G. Let u ∈ {xi, xi} be an outdegree 0
literal in G. If Φ is not satisfiable with u = 0 then xi is critical for every satisfying assignment of Φ,

and if Φ is satisfiable with u = 0 then xi is non-critical for every satisfying assignment for Φ that

sets u = 0.

Proof of Claim. If there is no satisfying assignment for Φ with u = 0 then clearly xi is critical for

every satisfying assignment. Conversely, suppose ā is a satisfying assignment with u = 0. Then

we note that xi is not critical for ā because ā + ei is also a satisfying assignment for Φ. More
precisely, because u has outdegree 0 in the implication graph we can set u = 1, while retaining

the other values in ā, and it remains a satisfying assignment.

14

More generally, given Φ we can partition the literals occurring in its implication DAG G as

S0⊔S1⊔· · ·⊔Sw, where S0 is the set of outdegree 0 literals in G, S1 is the set of outdegree 0 literals

in DAG G1 = G \ S0, and in general Si is the set of outdegree 0 literals in the DAG Gi+1 = Gi \ Si.

For a variable xi let depth(xi) be the least index j such that xi or its complement is in Sj .

We observe the following claim which is an easy consequence of the previous one.

Claim 19. Let Φ′ be the 2-SAT formula obtained by setting all literals in S0 ⊔ Si · · · ⊔ Si−1 to true.

For u ∈ Si, if Φ′ has no satisfying assignment with u = 0 then u is critical for every satisfying

assignment for Φ that sets all literals in S0 ⊔ Si · · · ⊔ Si−1 to true. If Φ′ has a satisfying assignment

with u = 0 then u is non-critical for every satisfying assignment of Φ that sets all literals in S0 ⊔
Si · · · ⊔ Si−1 to true.

We can immediately conclude the following.

Claim 20. If there is a satisfying assignment for Φ in which all variables are critical that has to be

the canonical satisfying assignment.

We describe the basic search procedure used by the algorithm.

1. Let Φ0 = Φ and A0 = A.

2. Repeat the following for steps s = 0 to t− 1.

3. Find the canonical satisfying assignment for Φs.

4. If it satisfies the linear equations ℓi = 0, i ∈ [t−s] defining As then output and stop (we can

extend it uniquely to the s plucked non-critical variables using the linear equations).

5. Else a variable occurring in some ℓi is non-critical for Φs in the solution assignment.

6. Pick a non-critical variable xj with minimum depth(xj) and pluck it from Φs to get Φs+1.

We take a linear equation ℓi = 0 where xj occurs in ℓi, eliminate xj from all other equations
by row operations using ℓi, and finally drop the constraint ℓi = 0 to obtain a new affine

space As+1 . Continue with the repeat step.

Clearly, as long as the canonical satisfying assignment for Φs does not satisfy the system of

equations ℓi = 0 we can remove a non-critical variable occurring in one of the ℓi from Φs.

Correctness of the algorithm follows from noting that (Φs, As) is satisfiable if and only if

(Φs+1, As+1) is satisfiable, and if t non-critical variables are plucked then the problem reduces to
a 2-SAT instances (without any linear constraints).

To complete the overall algorithm, in the basic iteration procedure we need to cycle through

all possible choices of non-critical xj at minimum depth depth(xj). Since we are going to pluck

at most t non-critical variables, this can be done by a brute-force search over all
(n
t

)

subsets of
the variables. The running time bound also follows.

3 Hardness results

In this section we prove our hardness results for subspace satisfiability. Since k-SAT itself is NP-

hard for k > 3, so is k-SUB-SAT for k > 3. So we focus on the case k = 2.

15

3.1 NP-hardness of 2-SUB-SAT

While 2-SAT is polynomial time solvable, the following theorem shows that 2-SUB-SAT is NP-

hard. Note that this follows from Schaefer’s dichotomy theorem for Boolean CSP as the com-

bination of 2-SAT constraints and linear equations (even with 3 variables per equation) is not

one of the six tractable cases, and thus NP-hard. Below we give a direct proof based on a simple

reduction.

Theorem 21. 2-SUB-SAT is NP-hard.

Proof. We show that we can express the NP-hard problem Graph 4-Colorability as an instance

of 2-SUB-SAT, or equivalently 2 − PAF-SAT. Indeed, given a graph G = (V,E), the instance of

2 − PAF-SAT consists of two Boolean variables xu,1, xu,2 for each u ∈ V , which will encode the
2-bit representation of the 4 possible colors we can assign to u. For each edge e = (u, v) ∈ E, we

include the polynomial equation

(xu,1 + xv,1 + 1) · (xu,2 + xv,2 + 1) = 0 . (4)

Note that this equation is satisfied iff xu,1 6= xv,1 or xu,2 6= xv,2, i.e., when (xu,1, xu,2) 6= (xv,1, xv,2),
which captures the fact the vertices u and v get different colors. The simultaneous satisfiability

of the equations (4) for all e ∈ E is thus equivalent to G being 4-colorable.

3.2 W[1]-hardness of 2-SUB-SAT parameterized by co-dimension

We now strengthen the hardness result of Theorem 21 and show that 2-SUB-SAT is unlikely to

even be fixed-parameter tractable when parameterized by the co-dimension t of the subspace

in which we seek a satisfying assignment to the 2CNF formula. On the other hand, recall that (as

shown in [2] and also Section 2.4), for fixed co-dimension t, 2-SUB-SAT can be solved in polyno-

mial time. Our W[1]-hardness answers (in the negative) a question posed in [2] on whether 2-SAT

with a single modular constraint modulo M is fixed-parameter tractable when parameterized by

M (they gave an algorithm with complexity nO(M)).

Theorem 22. Consider the 2-SUB-SAT where the input subspace within which one has to satisfy

the 2-SAT formula has co-dimension t. Parameterized by t, 2-SUB-SAT is W[1]-hard.

Proof. We give a reduction from the problem MULTICOLORED-CLIQUE. The input to MULTICOLORED-

CLIQUE consists of a graph G, an integer t, and a partition (V1, V2, . . . , Vt) of the vertices of G, and

the task is to decide if there is a t-clique in G containing exactly one vertex from each part Vi.

The parameter associated with the problem is t. The problem MULTICOLORED-CLIQUE parame-

terized by t is known to be W[1]-hard [10, Lemma 1].

The variables in the 2-SUB-SAT instance correspond to the vertices of the graph. Let us de-

note these variables by xv for v ∈ V := V1 ∪ V2 ∪ · · · ∪ Vk. The 2CNF clauses in the instance will

be the following:

• For all i ∈ {1, 2, . . . , t} and v 6= v′ ∈ Vi, the clause (¬xv ∨ ¬xv′). These clauses ensure that at

most one xv can be set to 1 in each part.

16

• If (u, v) is not an edge in the graph with G, the clause (¬xu ∨ ¬xv). These clauses ensure

that the set {u | xu = 1} must induce a clique in G.

Note that this instance of 2-SAT is trivial to satisfy by setting all variables to 0. The affine space A
we will use to make this an instance of 2-SUB-SAT is defined by the following equations:

∑

u∈Vi

xu = 1 for i = 1, 2, . . . , t . (5)

We stress that the above equations are over F2, and thus stipulate that there are an odd number

of variables set to 1 in each part. But together with the 2CNF clauses which ensure that at most

one variable in each part can be set to 1, it follows that satisfying assignments of this 2-SUB-SAT

instance are in one-one correspondence with t-cliques of G that include exactly one vertex from

eachVi. The proof is now complete by noting that the co-dimension of the affine spaceAdefined

by (5) equals t. Parameterizing MULTICOLORED-CLIQUE by the clique size is thus equivalent to

parameterizing the constructed 2-SUB-SAT instance by the co-dimension.

3.3 Approximability of Max-2-SUB-SAT

Given the hardness of deciding exact satisfiability of 2-SUB-SAT instance, we now turn to approx-

imate satisfiability. In the MAX-2-SUB-SAT problem, the goal is to satisfy the maximum number

of 2SAT clauses with an assignment that belongs to the input affine space A. Thus, the affine

constraints are treated as hard constraints. We allow clauses of width 1. If unary clauses are dis-

allowed in the 2CNF formula, and each clause involves exactly two distinct variables, we call the

problem MAX-E2-SUB-SAT .

3.3.1 Easy approximation algorithms

We can assume that no variable is forced to 0 or 1 by the affine space A, since if that happens

we can just set and remove that variable and work on the reduced instance. If we pick a random

assignment from A, it will satisfy at least 1/2 of the clauses of the 2CNF formula in expectation,

and in fact at least an expected fraction 3/4 of the clauses when each clause involves two distinct

variables. The algorithms are easily derandomized. For satisfiable instances of MAX-2-SUB-

SAT, one can find a 3/4 approximate solution, as one can eliminate all the unary clauses, and

add those conditions to the subspace inside which we want to find an assignment to the 2CNF
formula. So we get the following trivial algorithmic guarantees.

Observation 23. In polynomial time, one can get a factor 1/2 approximate solution to instances

of MAX-2-SUB-SAT, a factor 3/4 approximate solution to instances of MAX-E2-SUB-SAT, and a

factor 3/4 approximate solution to satisfiable instances of MAX-2-SUB-SAT.

We will now show that all the above guarantees are best possible, with matching NP-hardness

results.

17

3.3.2 Tight inapproximability via simple reductions

For the hardness results and rest of the section, it is convenient to work with the PAF-SAT for-

mulation of SUB-SAT. The Max-LIN2 problem, of maximizing the number of satisfied equations

in a system of affine equations mod 2, trivially reduces to MAX-2-PAF-SAT (with each equation

being degree 1 instead of degree 2). By Håstad’s seminal tight inapproximability for Max-LIN2,

we have the following.

Observation 24. For any ǫ > 0, MAX-2-PAF-SAT (and thus MAX-2-SUB-SAT) is NP-hard to ap-

proximate within a factor of (1/2 + ǫ), and this holds for almost satisfiable instances that admit

an assignment satisfying a fraction (1− ǫ) of equations.

We also get a tight hardness (matching Observation 23) for the MAX-E2-SUB-SAT or equiva-
lently when each polynomial equation is the product of exactly two (linearly independent) affine

forms.

Lemma 25. For any ǫ > 0, MAX-E2-PAF-SAT is NP-hard to approximate within a factor of (3/4+
ǫ), and this holds for almost satisfiable instances that admit an assignment satisfying a fraction

(1− ǫ) of equations.

Proof. This follows from a simple reduction from Max-LIN2. Suppose we are given a system

of affine equations A1 = 0, A2 = 0, · · · , Am = 0, where the Ai’s are distinct affine forms in

Boolean variables x1, x2, . . . , xn. We produce a system of
(m
2

)

quadratic equations Ai · Aj = 0 for

1 6 i < j 6 m in the same variables x1, x2, . . . , xn. If an assignment to the xi’s violates r affine

constraints Aj = 0, then the same assignment violates
(r
2

)

of the quadratic constraints. When
r = ǫm, the fraction of violated quadratic constraints is ≈ ǫ2, and when r = 1/2−ǫ, the fraction of

violated quadratic constraints is ≈ 3/4−O(ǫ). The claimed hardness now follows from Håstad’s

inapproximability result for Max-LIN2.

3.3.3 Inapproximability for satisfiable instances

The above inpproximability results do not apply to satisfiable instances of 2-SUB-SAT. They are

obtained by reductions from linear equations whose exact satisfiability can be easily checked.

We now prove that approximating MAX-2-SUB-SAT doesn’t get easier on satisfiable instances.

Theorem 26. For every ǫ > 0, it is NP-hard to approximately solve satisfiable instance of MAX-

E2-SUB-SAT within a factor of 3/4 + ǫ. That is, it is NP-hard to find, given as input a satisfiable

instance of 2-SUB-SAT, an assignment satisfying a fraction 3/4 + ǫ of the 2SAT constraints.

Proof. Consider the arity 3 Boolean CSP which is defined by the predicate OXR : {0, 1}3 → {0, 1},

defined by

OXR(x1, x2, x3) = x1 ∨ (x2 ⊕ x3)

applied to literals. En route his celebrated tight inapproximability for satisfiable Max-3SAT,

Håstad proved that the CSP defined by OXR (and with negations allowed on variables) is NP-

hard to approximate within a factor of (3/4 + ǫ) even on satisfiable instances, for arbitrary ǫ > 0.

(Note that independent random choices of the bits x1, x2, x3 makes OXR(x1, x2, x3) = 1 with

18

probability 3/4, so the hardness factor of 3/4 is tight.) Now the constraint OXR(x1, x2, x3) = 1 is

equivalent to the equation

(x1 + 1)(x2 + x3 + 1) = 0

stipulating that a product of two affine forms vanishes. Thus the CSP defined by OXR can be

equivalently expressed as a 2-SUB-SAT instance, and the claimed inapproximability of MAX-E2-SUB-SAT

on satisfiable instances follows.

4 System of polynomial equations over binary field: effect of reducibil-

ity

We now examine a special case of the problem of solving a system of polynomial equations over

F2 studied in [19, 1, 8]. For motivating background, we recall according to the strong exponen-

tial time hypothesis (SETH) that SAT, that is n-variable CNF satisfiability of unrestricted clause

width, cannot be essentially solved faster than 2n time. However, Schuler [25] and Calabro et

al [4] have shown the special case that sparse instances of SAT (with c · n clauses) can be solved

in O∗(2n(1−α)) time, where α is a constant depending on the clause density c. It is natural to ask

if there is an analogous result for SUB-SAT (satisfiability of conjunctions of unbounded disjunc-

tions of affine linear forms). In this section we show a more general algorithmic result in the

setting of systems of polynomial equations over F2.

Let Pi ∈ F2[x1, x2, . . . , xn], 1 6 i 6 m be polynomials over the field F2 as input instance to

the POLY-EQS problem. The problem is denoted k-POLY-EQS when the degrees are bounded by

k which generalizes k-SUB-SAT as already explained in the introduction.

The unrestricted degree case is significantly different, because we can easily combine the m
equations into a single equation as follows. Define

P = 1 +
m
∏

i=1

(1 + Pi).

Clearly, the system Pi = 0, 1 6 i 6 m has a solution iff P = 0 has a solution.

Thus, assuming SETH, there is no algorithm essentially faster than 2n for solving P = 0.

Remark 27. There is also the question of how the polynomials Pi are given as part of the input.

If degPi 6 k for all Pi then we can in polynomial-time compute their sparse representation as
a linear combination of the nk many monomials of degree at most k. However, in the above

reduction of combining the Pi into a single polynomial, P is a small arithmetic formula. In fact,

for the case of POLY-EQS we consider, where the instance is a system of equations Pi = 0, 1 6 i 6
m such that m = O(n) and each Pi has constant degree irreducible factors, we can assume that

the Pi are given as arithmetic circuits.

We now show that POLY-EQS instances Pi = 0, 1 6 i 6 m can be solved faster than 2n if

m is linear in n and the irreducible factors of each Pi are of constant degree. This can be seen

as a “polynomial equations” analogue of Schuler’s SAT algorithm for spare instances with unre-

stricted clause width [25, 4]. We note that a different degree reduction method, based on a rank

argument, is used in [19, Section 4] to solve systems of polynomial equations pi = 0, where each

pi is given by a sum of product of affine linear forms.

19

Theorem 28. Let Pi = 0, 1 6 i 6 c · n, for a constant c > 0, be an instance of POLY-EQS, such that

the degree of each irreducible factor of each Pi is bounded by a constant b. There is a randomized

algorithm for POLY-EQS that runs in time 2n(1−α) for such instances, where α > 0 is a constant

that depends on c and b.

Proof. We can factorize each polynomial Pi into its irreducible factors in randomized polyno-

mial time using Kaltofen’s algorithm [17]. Let

Pi =

ri
∏

j=1

Qij

be this factorization for each i. Define polynomials Rij = 1 +Qij for each i and j, and note that

degRij 6 b. For aijs ∈ F2 picked independently and uniformly at random define polynomials

R̃is =

ri
∑

j=1

aijsRij , 1 6 s 6 logm+ 2.

Finally, we define the polynomials

R̃i =

(β+1) log c
∏

s=1

(1 + R̃is), 1 6 i 6 m,

where β > 0 is a constant to be fixed later in the analysis.

Notice that deg R̃i 6 b · (β + 1) log c for each i.

Claim 29. If Pi = 0, 1 6 i 6 m is unsatisfiable then R̃i = 0, 1 6 i 6 m is also unsatisfiable.

To see this, suppose Pi(ā) = 1 at assignment ā ∈ F
r
2. Then Qij(ā) = 1 for each j which implies

each Rij(ā) = 0 for each j. It follows that R̃is = 0 for all s and hence R̃i = 1.

On the other hand, we have:

Claim 30. If ā ∈ F
n
2 is a solution to the system of equations Pi = 0, 1 6 i 6 m then with probability

at least e−n/cβ ā is a solution to the sytem of equations R̃i = 0, 1 6 i 6 m.

The probability that ā is a solution to the single equation R̃i = 0 is given by 1− 1
cβ+1 . Since the

events are independent, the probability that ā is a solution to the system R̃i, 1 6 i 6 m is given

by

(1− 1

cβ+1
)m = (1− 1

cβ+1
)cn

≈ e−n/cβ .

Now the system of equations R̃i, 1 6 i 6 m is an instance of k-POLY-EQS, where k = b(β +
1) log c is a constant. Applying one of the algorithms [19, 1, 8] yields an O∗(2n(1−1/2k)) algorithm

with success probability e−n/cβ . We can boost the success probability to a constant with an over-

all run time of O∗(2n(1−1/2k) · en/cβ), which can be optimized by choosing β appropriately.

20

Acknowledgment

We thank anonymous reviewers for useful comments and pointers to the literature.

References

[1] Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of polynomial equa-

tions over GF(2) by a parity-counting self-reduction. In Christel Baier, Ioannis Chatzigian-

nakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on

Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, vol-

ume 132 of LIPIcs, pages 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2019.

[2] Joshua Brakensiek, Sivakanth Gopi, and Venkatesan Guruswami. CSPs with global modular

constraints: algorithms and hardness via polynomial representations. In Proceedings of the

51st Annual ACM Symposium on Theory of Computing (STOC), pages 590–601, 2019.

[3] Joshua Brakensiek and Venkatesan Guruswami. Bridging between 0/1 and linear program-

ming via random walks. In Proceedings of the 51st Annual ACM Symposium on Theory of

Computing, pages 568–577, 2019.

[4] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause

width and clause density for SAT. In 21st Annual IEEE Conference on Computational Com-

plexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 252–260. IEEE Computer

Society, 2006.

[5] Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more:

Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.

[6] Ruiwen Chen and Rahul Santhanam. Satisfiability on mixed instances. In Proceedings of

the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages 393–402,

2016.

[7] Miguel Couceiro, Lucien Haddad, and Victor Lagerkvist. Fine-grained complexity of con-

straint satisfaction problems through partial polymorphisms: A survey. In 2019 IEEE 49th

International Symposium on Multiple-Valued Logic (ISMVL), pages 170–175, 2019.

[8] Itai Dinur. Improved algorithms for solving polynomial systems over GF(2) by multiple

parity-counting. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on

Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2550–2564.

SIAM, 2021.

[9] Rodney G. Downey and M. R. Fellows. Parameterized Complexity. Springer Publishing

Company, Incorporated, 2012.

[10] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On

the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,

410(1):53–61, 2009.

21

[11] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer

Science. An EATCS Series). Springer-Verlag, 2006.

[12] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm

for AC0. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961–972.

SIAM, 2012.

[13] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.

Sci., 62(2):367–375, 2001.

[14] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[15] Peter Jonsson, Victor Lagerkvist, Gustav Nordh, and Bruno Zanuttini. Strong partial clones

and the time complexity of SAT problems. J. Comput. Syst. Sci., 84:52–78, 2017.

[16] Peter Jonsson, Victor Lagerkvist, and Biman Roy. Fine-grained time complexity of con-

straint satisfaction problems. ACM Trans. Comput. Theory, 13(1):2:1–2:32, 2021.

[17] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Adv. Comput.

Res., 5:375–412, 1989.

[18] Victor Lagerkvist and Magnus Wahlström. Which NP-hard SAT and CSP problems

admit exponentially improved algorithms? CoRR, abs/1801.09488, 2018. URL:

http://arxiv.org/abs/1801.09488, arXiv:1801.09488.

[19] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng

Yu. Beating brute force for systems of polynomial equations over finite fields. In Proceedings

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2190–
2202, 2017.

[20] Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps. Dis-

cret. Appl. Math., 10(3):287–295, 1985.

[21] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In Pro-

ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1065–1075, 2010.

[22] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In 38th

Annual Symposium on Foundations of Computer Science (FOCS), pages 566–574, 1997.

[23] Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J. Lipton, Wal-

ter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors, Proceedings

of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,

California, USA, pages 216–226. ACM, 1978.

[24] Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In

40th Annual Symposium on Foundations of Computer Science, pages 410–414, 1999.

22

http://arxiv.org/abs/1801.09488
http://arxiv.org/abs/1801.09488

[25] Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunctive nor-

mal form. J. Algorithms, 54(1):40–44, 2005.

[26] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached, and lazy CNF-XOR

solving and its applications to counting and sampling. In Shuvendu K. Lahiri and Chao

Wang, editors, Computer Aided Verification - 32nd International Conference, CAV 2020, Los

Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I, volume 12224 of Lecture Notes in

Computer Science, pages 463–484. Springer, 2020.

[27] Mate Soos and Kuldeep S. Meel. BIRD: engineering an efficient CNF-XOR SAT solver and

its applications to approximate model counting. In The Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial In-

telligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,

pages 1592–1599. AAAI Press, 2019.

[28] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.

Comput. Sci., 47(3):85–93, 1986.

23

	1 Introduction
	1.1 Hardness results
	1.2 Algorithmic results
	1.2.1 Algorithms for 2-Sub-Sat
	1.2.2 Algorithms for k-Sub-Sat

	1.3 Equivalent and related problems to Sub-Sat

	2 Algorithmic results for k-Sub-Sat
	2.1 An O*(n()t2n(1-1/k)) time randomized algorithm: co-dimension t case
	2.2 An O*(2n-n/2k+n/2k2) time PPZ-based algorithm for k-Sub-Sat
	2.3 An O*(1.5r) time algorithm for 2-Sub-Sat
	2.4 2-Sub-Sat in a co-dimension t subspace

	3 Hardness results
	3.1 NP-hardness of 2-Sub-Sat
	3.2 W[1]-hardness of 2-Sub-Sat parameterized by co-dimension
	3.3 Approximability of Max-2-Sub-Sat
	3.3.1 Easy approximation algorithms
	3.3.2 Tight inapproximability via simple reductions
	3.3.3 Inapproximability for satisfiable instances

	4 System of polynomial equations over binary field: effect of reducibility

