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Abstract

We study the problem of estimating the parameters of a Boolean product distribution
in d dimensions, when the samples are truncated by a set S ⊂ {0, 1}d accessible through a
membership oracle. This is the first time that the computational and statistical complexity
of learning from truncated samples is considered in a discrete setting.

We introduce a natural notion of fatness of the truncation set S, under which truncated
samples reveal enough information about the true distribution. We show that if the
truncation set is sufficiently fat, samples from the true distribution can be generated
from truncated samples. A stunning consequence is that virtually any statistical task
(e.g., learning in total variation distance, parameter estimation, uniformity or identity
testing) that can be performed efficiently for Boolean product distributions, can also be
performed from truncated samples, with a small increase in sample complexity. We
generalize our approach to ranking distributions over d alternatives, where we show
how fatness implies efficient parameter estimation of Mallows models from truncated
samples.

Exploring the limits of learning discrete models from truncated samples, we identify
three natural conditions that are necessary for efficient identifiability: (i) the truncation
set S should be rich enough; (ii) S should be accessible through membership queries; and
(iii) the truncation by S should leave enough randomness in all directions. By carefully
adapting the Stochastic Gradient Descent approach of (Daskalakis et al., FOCS 2018), we
show that these conditions are also sufficient for efficient learning of truncated Boolean
product distributions.
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1 Introduction

Parameter estimation and learning from truncated samples is an important and challenging
problem in Statistics. The goal is to estimate the parameters of the true distribution based
only on samples that fall within a (possibly small) subset S of the distribution’s support.

Sample truncation occurs naturally in a variety of settings in science, engineering, eco-
nomics, business and social sciences. Typical examples include selection bias in epidemi-
ology and medical studies, and anecdotal “paradoxes” in damage and injury analysis ex-
plained by survivor bias. Statistical estimation from truncated samples goes back to at least
[Gal97], who analyzed truncated samples corresponding to speeds of American trotting
horses, and includes classical results on the use of the moments method [PL08, Lee14] and
the maximum likelihood method [Fis31] for estimating a univariate Gaussian distribution
from truncated samples (see also [DGTZ18] for a detailed discussion on the history and the
significance of statistical estimation from truncated samples).

In the last few years, there has been an increasing interest in computationally and statis-
tically efficient algorithms for learning multivariate Gaussian distributions from truncated
samples (when the truncation set is known [DGTZ18] or unknown [KTZ19]) and for training
linear regression on models based on truncated (or censored) data [DGTZ19]. In addition to
the elegant and powerful application of Stochastic Gradient Descent to optimizing a seem-
ingly unknown maximum likelihood function from truncated samples, a significant contri-
bution of [DGTZ18, KTZ19, DGTZ19] concerns necessary conditions for efficient statistical
estimation of multivariate Gaussian or regression models from truncated samples. More
recently, [NP19] showed how to use Expectation-Maximization for learning mixtures of two
Gaussian distributions from truncated samples.

Despite the strong results above on efficient learning from truncated samples for con-
tinuous settings, we are not aware of any previous work on learning discrete models from
truncated samples. We note that certain elements of the prior approaches in inference from
truncated data are inherently continuous and it is not clear to which extent (and under which
conditions) can be adapted to a discrete setting. E.g., statistical estimation from truncated
samples in a discrete setting should deal with a situation where the truncation removes virtu-
ally all randomness from certain directions, something that cannot be the result of nontrivial
truncations in a continuous setting.

Our Setting. Motivated by this gap in relevant literature, we investigate efficient parameter
estimation of discrete models from truncated samples. We start with the fundamental setting
of a Boolean product distribution D on the d-dimensional hypercube truncated by a set S,
which is accessible through membership queries. The marginal of D in each direction i is
an independent Bernoulli distribution with parameter pi ∈ (0, 1). Our goal is to compute an
estimation p̂ of the parameter vector p of D such that ‖p− p̂‖2 ≤ ε, with probability of at
least 1− δ, with time and sample complexity polynomial in d, 1/ε and log(1/δ). We note that
such an estimation p̂ (or an estimation ẑ of the logit parameters z = (log

p1

1−p1
, . . . , log

pd

1−pd
)

of similar accuracy) implies an estimation of the true distribution within total variation
distance ε.

Our Contributions. Significantly departing from the maximum likelihood estimation ap-
proach of [DGTZ18, KTZ19, DGTZ19], we introduce a natural notion of fatness of the trun-
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cation set S, under which samples from the truncated distribution DS reveal enough in-
formation about the true distribution D. Roughly speaking, a truncated Boolean product
distribution DS is α-fat in some direction i of the Boolean hypercube, if for an α probability
mass of the truncated samples, the neighboring sample with its i-th coordinate flipped is
also in S. Therefore, with probability α, conditional on the remaining coordinates, the i-th
coordinate of a sample is distributed as the marginal of the true distribution D in direction
i. So, if the truncated distribution DS is α-fat in all directions (e.g., the halfspace of all vec-
tors with L1 norm at most k is a fat subset of the Boolean hypercube), a sample from DS is
quite likely to reveal significant information about the true distribution D. Building on this
intuition, we show how samples from the true distribution D can be generated from few
truncated samples (see also Algorithm 1):

Informal Theorem 1. With an expected number of O(log(d)/α) samples from the α-fat truncation
of a Boolean product distribution D, we can generate a sample x ∈ {0, 1}d distributed as in D.

We show (Lemma 1) that fatness is also a necessary condition for Informal Theorem 1.
A stunning consequence of Informal Theorem 1 is that virtually any statistical task (e.g.,
learning in total variation distance, parameter estimation, sparse recovery, uniformity or
identity testing) that can be performed efficiently for a Boolean product distribution D, can
also be performed using truncated samples from D, at the expense of a factor O(log(d)/α)
increase in time and sample complexity. In Section 3, we obtain, as simple corollaries
of Informal Theorem 1, that the statistical tasks described in [ADK15, DKS17, CDKS17,
CKM+19] for Boolean product distributions can be performed using only truncated sam-
ples!

To further demonstrate the power and the wide applicability of our approach, we extend
the notion of fatness to the richer and more complex setting of ranking distributions on
d alternatives. In Section 3.5, we show how to implement efficient statistical inference of
Mallows models using samples from a fat truncated Mallows distribution (see Theorem 3).

Natural and powerful though, fatness is far from being necessary for efficient parameter
estimation from truncated samples. Seeking a deeper understanding of the challenges of
learning discrete models from truncated samples, we identify, in Section 4, three natural
conditions that we show to be necessary for efficient parameter estimation in our setting:

Assumption 1: The support of the distribution D on S should be rich enough, in the sense
that its truncation DS should assign positive probability to a x⋆ ∈ S and d other vectors
that remain linearly independent after we subtract x⋆ from them.

Assumption 2: S is accessible through a membership oracle that reveals whether x ∈ S, for
any x in the d-dimensional hypercube.

Assumption 3: The truncation of D by S leaves enough randomness in all directions. More
precisely, we require that in any direction w ∈ R

d, any two samples from the trun-
cated distribution DS have sufficiently different projections on w, with non-negligible
probability.

Assumption 2 ensures that the learning algorithm has enough information about S and is
also required in the continuous setting. Without oracle access to S, for any Boolean product
distribution D, we can construct a (possibly exponentially large) truncation set S such that
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sampling from the truncated distribution DS appears identical to sampling from the uniform
distribution, until the first duplicate sample appears (our construction is similar to [DGTZ18,
Lemma 12]).

Similarly to [DGTZ18], Assumption 2 is complemented by the additional natural re-
quirement that the true distribution D should assign non-negligible probability mass to the
truncation set S (Assumption 4). The reason is that the parameter estimation algorithm eval-
uates the quality of its current estimation by generating samples in S and comparing them
with samples from DS. Assumptions 2 and 4 ensure that this can be performed efficiently.

Assumptions 1 and 3 are specific to the discrete setting of the Boolean hypercube.
Assumption 1 requires that we should be able to normalize the truncation set S, by sub-
tracting a vector x⋆, so that its dimension remains d. If this is true, we can recover the
parameters of a Boolean product distribution D from truncated samples by solving a linear
system with d equations and d unknowns, which we obtain after normalization. We prove,
in Lemma 2, that Assumption 1 is both sufficient and necessary for parameter recovery from
truncated samples in our setting.

Assumption 3 is a stronger version of Assumption 1 and is necessary for efficient param-
eter estimation from truncated samples in the Boolean hypercube. It essentially requires that
with sufficiently high probability, any set X of polynomially many samples from DS can be
normalized, subtracting a vector x⋆, so that X includes a well-conditioned d× d matrix, after
normalization.

Beyond showing that these assumptions are necessary for efficient identifiability, we
show that they are also sufficient and provide a computationally efficient algorithm for
learning Boolean product distributions. Our algorithm is based on a careful adaptation
of the approach of [DGTZ18] which uses Stochastic Gradient Descent on the negative log-
likelihood. While the analysis consists of the same conceptual steps as that of [DGTZ18],
it requires dealing with a number of technical details that arise due to discreteness. One
technical contribution of our work is using the necessary assumptions for identifiability to
establish strong-convexity of the negative log-likelihood in a small ball around the true pa-
rameters (see Lemma 13 and Lemma 12). Our main result is that:

Informal Theorem 2. Under Assumptions 1 - 4, Algorithm 4 computes an estimation ẑ of the logit
vector z of the true distribution D such that ‖z− ẑ‖2 ≤ ε with probability at least 1− δ, and achieves
time and sample complexity polynomial in d, 1/ε and log(1/δ).

Related Work. Our work develops novel techniques for truncated statistics for discrete
distributions. As aforementioned, there has been a large number of recent works dealing
inference with truncated data from a Gaussian distribution [DGTZ18, KTZ19, DGTZ19] or
mixtures of Gaussians [NP19] but to the best of our knowledge there is no work dealing
with discrete distributions. An additional feature of our work compared to those results is
that our methods are not limited to parameter estimation but enable any statistical task to be
performed on truncated datasets by providing a sampler to the true underlying distribution.
While this requires a mildly stronger than necessary but natural assumption on the trunca-
tion set, we show that the more complex SGD based methods developed in prior work can
also be applied in the discrete settings we consider.

The field of robust statistics is also very related to our work as it also deals with biased
data-sets and aims to identify the distribution that generated the data. Truncation can be

4



seen as an adversary erasing samples outside a certain set. Recently, there has been a lot of
theoretical work for computationally-efficient robust estimation of high-dimensional distri-
butions in the presence of arbitrary corruptions to a small ε fraction of the samples, allowing
for both deletions of samples and additions of samples [DKK+16, CSV17, LRV16, DKK+17,
DKK+18, HL19]. In particular, the work of [DKK+16] deals with the problem of learning
binary-product distributions.

Another line of related work concerns learning from positive examples. The work of
[DDS14] considers a setting where samples are obtained from the uniform distribution over
the hypercube truncated on a set S. However, their goal is somewhat orthogonal to ours.
It aims to accurately learn the set S while the distribution is already known. In contrast,
in our setting the truncation set is known and the goal is to learn the distribution. More
recently, [CDS20] extend these results to learning the truncation set with truncated samples
from continuous distributions.

Another related literature within learning theory aims to learn discrete distributions
through conditional samples. In the conditional sampling model that was recently intro-
duced concurrently by [CFGM13] and [CRS14, CRS15], the goal is again to learn an un-
derlying discrete distribution through conditional/truncated samples but the learner can
change the truncation set on demand. This is known to be a more powerful model for
distribution learning and testing than standard sampling [Can15, FJO+15, ACK15b, BC18,
ACK15a, GTZ17, KT19, CCK+19].

2 Preliminaries

We use lowercase bold letters x to denote d-dimensional vectors. We let ‖x‖p = (∑d
i=1 |xi|p)1/p

denote the Lp norm and ‖x‖∞ = maxi∈[d]{|xi|} denote the L∞ norm of a vector x. We let

[d]
def
= {1, . . . , d} and Πd = {0, 1}d denotes the d-dimensional Boolean hypercube.
For any vector x, x−i is the vector obtained from x by removing the i-th coordinate and

(x−i, y) is the vector obtained from x by replacing xi by y. Similarly, given a set S ⊆ Πd, we
let S−i = {x−i : (x−i, 0) ∈ S ∨ (x−i, 1) ∈ S} be the projection of S to Π[d]\{i}. For any x ∈ Πd

and any coordinate i ∈ [d], we let flip(x, i) = (x−i, 1− xi) denote x with its i-th coordinated
flipped.

Bernoulli Distribution. For any p ∈ [0, 1], we let Be(p) denote the Bernoulli distribution
with parameter p. For any x ∈ {0, 1}, Be(p; x) = px(1 − p)1−x denotes the probability
of value x under Be(p). The Bernoulli distribution is an exponential family1, where the
natural parameter, denoted z, is the logit z = log

p
1−p of the parameter p 2. The inverse

parameter mapping is p = 1
1+exp(−z) . Also, the base measure is h(x) = 1, the sufficient

statistic is the identity mapping T(x) = x and the log-partition function with respect to p is
Λ(p) = − log(1− p).

1The exponential family E(T, h) with sufficient statistics T, carrier measure h and natural parameters η is
the family of distributions E(T, h) = {Pη : η ∈ HT,h}, where the probability distribution Pη has density

pη(x) = h(x) exp(ηTT(x)−Λ(η)), where Λ is the log-partition function.
2The base of the logarithm function log used throughout the paper is insignificant.
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Boolean Product Distribution. We mostly focus on the fundamental family of Boolean prod-
uct distributions on the d-dimensional hypercube Πd. A Boolean product distribution with
parameter vector p = (p1, . . . , pd), usually denoted by D(p), is the product of d independent
Bernoulli distributions, i.e., D(p) = Be(p1)⊗ · · · ⊗Be(pd). The Boolean product distribution
can be expressed in the form of an exponential family as follows:

D(z; x) =
exp(xTz)

∏i∈[d](1 + exp(zi))
, (2.1)

where z = (z1, . . . , zd) is the natural parameter vector with zi = log
pi

1−pi
for each i ∈ [d].

In the following, we always let D (or D(p) or D(z), when we want to emphasize the
parameter vector p or the natural parameter vector z) denote a Boolean product distribu-
tion. We denote z(p) (or simply z, when p is clear from the context) the vector of natural
parameters of D. We let D(p; x) and D(z; x) (or simply D(x), when p or z are clear from the
context) denote the probability of x ∈ Πd under D. Given a subset S ⊆ Πd of the Boolean hy-
percube, the probability mass assigned to S by a distribution D(p), usually denoted D(p; S)
(or simply D(S), when p is clear from the context), D(p; S) = ∑x∈SD(p; x).

Truncated Boolean Product Distribution. Given a Boolean product distribution D, we de-
fine the truncated Boolean product distribution DS, for any fixed S ⊆ Πd. DS has DS(x) =
D(x)/D(S), for all x ∈ S, and DS(x) = 0, otherwise. We often refer to DS as the truncation
of D (by S) and to S as the truncation set.

It is sometimes convenient (especially when we discuss assumptions 1 and 3, in Section 4),
to refer to some fixed element of S. We observe that by swapping 1 with 0 (and pi with 1− pi)
in certain directions, we can normalize S so that 0 ∈ S and DS(0) > 0. In the following, we
always assume, without loss of generality, that S is normalized so that 0 ∈ S and DS(0) > 0.

Notions of Distance between Distributions. Let P ,Q be two probability measures in the
discrete probability space (Ω,F). The total variation distance between P and Q, denoted
DTV(P ,Q), is defined as DTV(P ,Q) = 1

2 ∑x∈Ω |P(x) − Q(x)| = maxA∈F |P(A) − Q(A)|.
The Kullback–Leibler divergence (or simply, KL divergence), denoted DKL(P ‖ Q), is defined as

DKL(P ‖ Q) = Ex∼P
[
log

P(x)
Q(x)

]
= ∑x∈Ω P(x) log

P(x)
Q(x) . We first recall that the KL divergence

is additive for product distributions.

Proposition 1. Let P(p) and Q(q) be two Boolean product distributions. Then,

DKL(P ‖ Q) =
d

∑
i=1

(
pi log

pi

qi
+ (1− pi) log

1− pi

1− qi

)
. (2.2)

Next, we observe that for two Bernoulli distributions, with parameters p and q, the KL
divergence can be upper bounded by the squared distance of their natural parameters. We
provide the proof of Proposition 2 in the Appendix A.

Proposition 2. For all p, q ∈ (0, 1), the following holds:

DKL

(
Be(p) ‖ Be(q)

)
= p log

p

q
+ (1− p) log

1− p

1− q
≤
(

log
p

1− p
− log

q

1− q

)2

.
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The following summarizes some standard upper bounds on the total variation distance
and the KL divergence of two Boolean product distributions.

Proposition 3. Let P(p) and Q(q) be two Boolean product distributions with p, q ∈ (0, 1)d, and
let z(p) and z(q) be the vectors of their natural parameters. Then, the following hold:

(i) DKL(P ‖ Q) ≤ ‖z(p)− z(q)‖2
2 .

(ii) DTV(P ,Q) ≤
√

2
2 ‖z(p)− z(q)‖2 .

(iii) DTV(P ,Q) ≤
√

2 ·∑d
i=1

(pi−qi)2

(pi+qi)(2−pi−qi)
.

Now Proposition 3 is an immediate consequence of Proposition 1, Proposition 2 and
Pinsker’s inequality (for (i) and (ii)), and [DKK+16, Lemma 2.17] (for (iii)).

Identifiability and Learnability. A Boolean product distribution D(p) is identifiable from
its truncation DS(p), if given DS(p; x), for all x ∈ S, we can recover the parameter vector p.

A Boolean product distribution D(p) is efficiently learnable from its truncation DS(p), if
for any ε, δ > 0, we can compute an estimation p̂ of the parameter vector p (or an estimation
ẑ of the natural parameter vector z) of D such that ‖p− p̂‖2 ≤ ε (or ‖z− ẑ‖2 ≤ ε), with prob-
ability at least 1− δ, with time and sample complexity polynomial in d, 1/ε and log(1/δ)
using truncated samples from DS(p). By Proposition 3, an upper bound on the L2 distance
between ẑ and z (or between p̂ and p) translates into an upper bound on the total varia-
tion distance between the true distribution and D(ẑ) (or D(p̂)). In this work, we identify
sufficient and necessary conditions for efficient learnability of Boolean product distributions
from truncated samples.

3 Boolean Product Distributions Truncated by Fat Sets

In this section, we discuss fatness of the truncation set, a strong sufficient (and in a certain
sense, necessary) condition, under which we can generate samples from a Boolean product
distribution D using samples from its truncation DS (and access to S through a membership
oracle).

Definition 1. A truncated Boolean product distribution DS is α-fat in coordinate i ∈ [d], for some
α > 0, if Prx∼DS

[flip(x, i) ∈ S] ≥ α. A truncated Boolean product distribution DS is α-fat, for some
α > 0, if DS is α-fat in every coordinate i ∈ [d].

If DS is fat, it happens often that a sample x ∼ DS has both (x−i, 0), (x−i, 1) ∈ S. Then,
conditional on the remaining coordinates x−i, the i-th coordinate xi of x is distributed as
Be(pi). We next focus on truncated Boolean product distributions DS that are α-fat.

There are several natural classes of truncation subsets that give rise to fat truncated
product distributions. E.g., for each k ∈ [d], the halfspace S≤k = {x ∈ Πd : x1 + . . . + xd ≤ k}
results in an α-fat truncated distribution, if Prx∼DS≤k

[xi = 1] ≥ α, for all i ∈ [d]. The same

holds if S is any downward closed3 subset of Πd and Prx∼DS
[xi = 1] ≥ α, for all i ∈ [d].

3A set S ⊆ Πd is downward closed if for any x ∈ S and any y with yi ≤ xi, in all directions i ∈ [d], y ∈ S.
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Fatness in coordinate i ∈ [d] is necessary, if we want to distinguish between two truncated
Boolean distributions based on their i-th parameter only, if the remaining coordinates are
correlated. Specifically, we can show that if DS is 0-fat in some coordinate i, there exists a
Boolean distribution with qi 6= pi (and |qi − pi| large enough) whose truncation by S appears
identical to DS. Therefore, if the other coordinates are arbitrarily correlated, it is impossible
to distinguish between the two distributions based on their i-th parameter alone. However,
as we discuss in Section 4, if S is rich enough, but not necessarily fat, we can recover the
entire parameter vector4 of D.

Lemma 1. Let i ∈ [d], let S be any subset of Πd with flip(x, i) 6∈ S, for all x ∈ S, and consider
any 0 < p < q < 1. Then, for any Boolean distribution D−i with D−i(S−i) ∈ (0, 1), there exists a
distribution D′−i such that (Be(p)⊗D−i)S ≡ (Be(q)⊗D′−i)S .

Proof. We recall that S−i = {x−i : (x−i, 0) ∈ S ∨ (x−i, 1) ∈ S} denotes the projection of S on
Π[d]\{i}. By hypothesis, |S| = |S−i| and for each x−i ∈ S−i, either (x−i, 0) ∈ S or (x−i, 1) ∈ S,
but never both. For each x−i ∈ S−i, we let:

D′−i(x−i) =

{
D−i(x−i)

p
q if (x−i, 1) ∈ S ,

D−i(x−i)
1−p
1−q if (x−i, 0) ∈ S .

For each y ∈ Πd−1 \ S−i, we let D′−i(y) ∝ D−i(y), so that D′−i is a probability distribution on
Πd−1 . E.g., if for all x−i ∈ S−i, (x−i, 1) ∈ S, we let

D′−i(y) = D−i(y)
1−D−i(S−i)

p
q

1−D−i(S−i)
.

By definition, Be(q) ⊗ D′−i is a probability distribution on Πd. Moreover, for all x ∈ S,
(Be(p)⊗D−i)(x) = (Be(q)⊗D′−i)(x), which implies the lemma.

3.1 Sampling from a Boolean Product Distribution using Samples from its Fat
Truncation

An interesting consequence of fatness is that we can efficiently generate samples from a
Boolean product distribution D using samples from any α-fat truncation of D. The idea
is described in Algorithm 1. Theorem 1 shows that for any sample x drawn from DS and
any i ∈ [d] such that flip(x, i) ∈ S, conditional on x−i, xi is distributed as Be(pi). So, we
can generate a random sample y ∼ D by putting together d such values. α-fatness of the
truncated distribution DS implies that the expected number of samples x ∼ DS required to
generate a y ∼ D is O(log(d)/α).

Theorem 1. Let D be a Boolean product distribution over Πd and let DS be any α-fat truncation of
D. Then, (i) the distribution of the samples generated by Algorithm 1 is identical to D; and (ii) the
expected number of samples from DS before a sample is returned by Algorithm 1 is O(log(d)/α).

4For a concrete example, where we can recover the entire parameter vector of a truncated Boolean product
distribution DS, we consider S = {000, 110, 011, 101} ⊆ Π3, which is not fat in any coordinate, and let px =
DS(x), for each x ∈ S. Then, setting zi = log

pi

1−pi
, for each i, we can recover (p1, p2, p3), by solving the following

linear system: z1 + z2 = log
p110

p000
, z2 + z3 = log

p011

p000
, z1 + z3 = log

p101

p000
. This is a special case of the more general

identifiability condition discussed in Lemma 2.
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Algorithm 1 Sampling from D using samples from DS

1: procedure Sampler(DS) ⊲ DS is α-fat.
2: y← (−1, . . .− 1)
3: while ∃yi = −1 do

4: Draw sample x ∼ DS

5: for i ← 1, . . . , d do

6: if flip(x, i) ∈ S then ⊲ We assume oracle access to S.
7: yi ← xi

8: return y

Proof. Let D̃ be the distribution of the samples generated by Algorithm 1. To prove that D
and D̃ are identical, we show that D̃ is a product distribution and that each yi ∼ Be(pi),
where pi is the parameter of D in direction i ∈ [d].

We fix a direction i ∈ [d]. Let D−i denote the projection of D on Π[d]\{i}. In Algorithm 1,
yi takes the value of the i-coordinate of a sample x ∼ DS such that both (x−i, 0), (x−i, 1) ∈ S.
For each such sample x, we have that:

DS((x−i, 1)) =
D−i(x−i) pi

D(S) and DS(x−i, 0) =
D−i(x−i) (1− pi)

D(S) . (3.1)

Therefore, DS((x−i,1))
DS((x−i,0))

= pi

1−pi
, which implies that DS((x−i, 1)) = pi. Since this holds for all x−i

such that both (x−i, 0), (x−i, 1) ∈ S, yi is independent of the remaining coordinates y−i and
is distributed as Be(pi). This concludes the proof of (i).

As for the sample complexity of Algorithm 1, we observe that since DS is α-fat in each
coordinate i, each new sample x covers any fixed coordinate yi (i.e., x causes yi to become
xi) of y with probability at least α. Therefore, the probability that any fixed coordinate
yi remains −1 after Algorithm 1 draws k samples from DS is at most (1 − α)k ≤ e−αk.
Setting k = 2 log(d)/α and applying the union bound, we get that the probability that
there is a coordinate of y with value −1 after 2 log(d)/α samples from DS is at most
de−αk = de−2 log(d) = 1/d. Therefore, the expected number of samples from DS before a
random sample y ∼ D is returned by Algorithm 1 is at most

2 log(d)

α
+

∞

∑
ℓ=0

e−ℓα

d
≤ 2 log(d)

α
+

2

dα
= O

(
2 log(d)

α

)
,

where the inequality follows from 1/(1− e−α) ≤ 2/α for α ∈ (0, 1).

3.2 Parameter Estimation and Learning in Total Variation Distance

Based on Algorithm 1, we can recover the parameters of any Boolean product distribution
D using samples from any fat truncation of D.

Theorem 2. Let D(p) be a Boolean product distribution and let DS(p) be a truncation of D. If
DS is α-fat in any fixed coordinate i, then, for any ε, δ > 0, we can compute an estimation p̂i of the
parameter pi of D such that |pi − p̂i| ≤ ε, with probability at least 1− δ, using an expected number
of O(log(1/δ)/(ε2α)) samples from DS.
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Proof. We modify Algorithm 1 to Algorithm 2, so that it generates random samples y ∈ {0, 1}
in coordinate i only. As in Theorem 1.(i), each y of Algorithm 2 is an independent sample

Algorithm 2 Sampling coordinate i ∈ [d] from D using samples from DS

1: procedure Sampler(DS, i) ⊲ DS is fat in coordinate i.
2: y← −1
3: while y = −1 do

4: Draw sample x ∼ DS

5: if flip(x, i) ∈ S then ⊲ We have oracle access to S.
6: y← xi

7: return y

from Be(pi). Since the truncated distribution DS is α-fat, the expected number of sam-
ples from DS, before y is generated, is 1/α. We estimate pi from n samples y(1), . . . , y(n)

of Algorithm 2 using the empirical mean p̂i = ∑
n
ℓ=1 y(ℓ)/n. A standard application of

the Hoeffding bound5 shows that if n = log(2/δ)/ε2, then |pi − p̂i| ≤ ε, with probabil-
ity at least 1 − δ. Hence, estimating pi with accuracy ε requires an expected number of
O(log(1/δ)/(ε2α)) samples from DS.

Using n = log(2d/δ)/ε2 samples y(1), . . . , y(n) generated by Algorithm 1, we can estimate

all the parameters p of D, by taking p̂i = ∑
n
ℓ=1 y

(ℓ)
i /n, for each i ∈ [d]. The following is an

immediate consequence of Theorems 1 and 2.

Corollary 1. Let D(p) be a Boolean product distribution and DS(p) be any α-fat truncation of D.
Then, for any ε, δ > 0, we can compute an estimation p̂ such that ‖p− p̂‖∞ ≤ ε, with probability at
least 1− δ, using an expected number of O(log(d) log(d/δ)/(ε2α)) samples from DS.

3.3 Identity and Closeness Testing with Access to Truncated Samples

Theorem 1 implies that if we have sample access to an α-fat truncation DS of a Boolean prod-
uct distribution D, we can pretend that we have sample access to the original distribution D,
at the expense of an increase in the sample complexity (from DS) by a factor of O(log(d)/α).
Therefore, we can extend virtually all known hypothesis testing and learning algorithms for
Boolean product distributions to fat truncated Boolean product distributions.

For identity testing of Boolean product distributions, based on samples from fat trun-
cated ones, we combine Algorithm 1 with the algorithm of [CDKS17, Sec. 4.1]. Combining
Theorem 1 with [CDKS17, Theorem 6], we obtain the following:

Corollary 2 (Identity Testing). Let Q(q) be a Boolean product distribution described by its pa-
rameters q, and let D be a Boolean product distribution for which we have sample access to its α-fat
truncation DS. For any ε > 0, we can distinguish between DTV(Q,D) = 0 and DTV(Q,D) > ε,

with probability 2/3, using an expected number of O(log(d)
√

d/(αε2)) samples from DS.

5We use the following Hoeffding bound: Let X1, . . . , Xn be n independent Bernoulli random variables, let

X = 1
n (∑

n
i=1 Xi) and E[X] = 1

n (∑
n
i=1 E[Xi]). Then, for any t ≥ 0, Pr[|X−E[X]| ≥ t] ≤ 2e−2nt2

.
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We can extend Corollary 2 to closeness testing of two Boolean product distributions, for
which we only have sample access to their fat truncations. We combine Algorithm 1 with the
algorithm of [CDKS17, Sec. 5.1]. The following is an immediate consequence of Theorem 1
and [CDKS17, Theorem 9].

Corollary 3 (Closeness Testing). Let Q, D be two Boolean product distributions for which we have
sample access to their α1-fat truncation QS1

and α2-fat truncation DS2
. For any ε > 0, we can

distinguish between DTV(Q,D) = 0 and DTV(Q,D) > ε, with probability at least 2/3, using an

expected number of O
(
( log(d)

α1
+ log(d)

α2
)max{

√
d/ε2, d3/4/ε}

)
samples from QS1

and DS2
.

3.4 Learning in Total Variation Distance

Using Algorithm 1, we can learn a Boolean product distribution D(p), within ε in total vari-
ation distance, using samples from its fat truncation. The following uses a standard analysis
of the sample complexity of learning a Boolean product distribution (see e.g., [KLSU18]).

Corollary 4. Let D(p) be a Boolean product distribution and let DS be any α-fat truncation of D.
Then, for any ε, δ > 0, we can compute a Boolean product distribution D̂(p̂) such that DTV(D, D̂) ≤
ε, with probability at least 1− δ, using O(d log(d) log(d/δ)/(ε2α)) samples from DS.

Proof. We assume that pi ≤ 1/2 and that for all i ∈ [d], pi ≥ ε/(8d). Both are without loss
of generality. The former can be enforced by flipping 0 and 1. For the latter, we observe that
there exists a distribution D′ with DTV(D,D′) ≤ ε/2 that satisfies the assumption (D′ can
be obtained from D by adding uniform noise in each coordinate with probability 1− ε

4d , see
also [CDKS17, Sec. 4.1]).

By Proposition 3, for any two Boolean product distributions D(p) and D̂(p̂) with pa-
rameter vectors p, p̂ ∈ (0, 1)d, it holds that

DTV(D, D̂) ≤

√√√√2 ·
d

∑
i=1

(pi − p̂i)2

(pi + p̂i)(2− pi − p̂i)
. (3.2)

Similarly to the proof of Corollary 1, we take n samples y(1), . . . , y(n) from Algorithm 1

and estimate each parameter pi of D as p̂i = ∑
n
ℓ=1 y

(ℓ)
i /n. Using the Chernoff bound in

[KLSU18, Claim 5.16], we show that for all directions i ∈ [d], (pi− p̂i)
2

(pi+ p̂i)(2−pi− p̂i)
≤ O(log(d/δ)/n).

Drawing n = O(d log(d/δ)/ε2) samples from Algorithm 1 and using Equation (3.2), we get

that DTV(D, D̂) ≤ O(ε). The sample complexity follows from the fact that each sample of
Algorithm 1 requires an expected number of O(log(d)/α) samples from the α-fat truncation
DS of D.

We can improve the sample complexity in Corollary 4, if the original distribution D is
sparse. We say that a Boolean product distribution D(p) is (k, c)-sparse, for some k ∈ [d] and
c ∈ [0, 1], if there is an index set I ⊆ [d], with |I| = d − k, such that for all i ∈ I, pi = c.
Namely, we know that d − k of D’s parameters are equal to c (but we do not know which
of them). Then, we first apply Corollary 1 and estimate all parameters of D within distance

ε/
√

k. We set each pi with |pi− c| ≤ ε/
√

k to pi = c. Thus, we recover the index set I. For the
remaining k parameters, we apply Corollary 4. The result is summarized by the following:
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Corollary 5. Let D(p) be a (k, c)-sparse Boolean product distribution and let DS be any α-fat
truncation of D. Then, for any ε, δ > 0, we can compute a Boolean product distribution D̂(p̂) such

that DTV(D, D̂) ≤ ε, with probability at least 1 − δ, using O
(

k log(d) log(d/δ)
ε2α

)
samples from the

truncated distribution DS.

3.5 Learning Ranking Distributions from Truncated Samples

An interesting application of Theorem 1 is parameter estimation of ranking distributions
from truncated samples. For clarity, we next focus on Mallows distributions. Our techniques
imply similar results for other well known models of ranking distributions, such as Gener-
alized Mallows distributions [FV86] and the models of [Pla75, Luc59], [BT52] and [Bab50].

Definition and Notation. We start with some notation specific to this section. Let Sd be the
symmetric group over the finite set of items [d]. Given a ranking π ∈ Sd, we let π(i) denote
the position of item i in π. We say that i precedes j in π, denoted by i ≻π j, if π(i) < π(j).
The Kendall tau distance of two rankings π and σ, denoted by Dτ(π, σ), is the number of
discordant item pairs in π and σ. Formally,

Dτ(π, σ) = ∑
1≤i<j≤d

1{(π(i) − π(j))(σ(i) − σ(j)) < 0} . (3.3)

The Mallows model [Mal57] is a family of ranking distributions parameterized by the
central ranking π0 ∈ Sd and the spread parameter φ ∈ [0, 1]. Assuming the Kendall tau distance
between rankings, the probability mass function isM(π0, φ; π) = φDτ(π0,π)/Z(φ), where the

normalization factor is Z(φ) = ∏
d
i=1

1−φi

1−φ . For a given Mallows distribution M(π0, φ), we

denote pij = Prπ∼M[i ≻π j] the probability that item i precedes item j in a random sample
fromM.

Truncated Mallows Distributions. We consider parameter estimation for a Mallows dis-
tribution M(π0, φ) with sample access to its truncation MS by a subset S ⊆ Sd. Then,
MS(π) = M(π)/M(S), for each π ∈ S, and MS(π) = 0, otherwise. Next, we gener-
alize the notion of fatness to truncated ranking distributions and prove the equivalent of
Theorem 2 and Corollary 1.

For a ranking π, we let flip(π, i, j) denote the ranking π′ obtained from π with the items
i and j swapped. Formally, π′(ℓ) = π(ℓ), for all items ℓ ∈ [d] \ {i, j}, π′(j) = π(i) and
π′(i) = π(j). We say that a truncated Mallows distribution MS is α-fat for the pair (i, j), if
Prπ∼MS

[flip(π, i, j) ∈ S] ≥ α, for some α > 0. A truncated Mallows distributionMS(π0, φ)
is α-fat, if MS is α-fat for all pairs (i, j), and neighboring α-fat, if MS is α-fat for all pairs
(i, j) that occupy neighboring positions in the central ranking π0, i.e., for all pairs (i, j) with
|π0(i)− π0(j)| = 1.

Parameter Estimation and Learning of Mallows Distributions from Truncated Samples.

We present Algorithm 3 that draws a sample from the truncated Mallows distribution MS

and updates a vector q with estimations p̂ij = qij/(qij + qji) of the probability pij that item i
precedes item j in a sample from the true Mallows distributionM.

12



Algorithm 3 Update the estimate qij using one sample fromMS

1: procedure Sample(MS, q) ⊲MS is (neighboring) α-fat.
2: Draw sample π ∼ MS

3: for all (i, j) such that flip(π, i, j) ∈ S do ⊲ We assume oracle access toMS.
4: if i ≻π j then
5: qij ← qij + 1
6: else

7: qji ← qji + 1

8: return q

The vector q is initialized to 0 for all item pairs (i, j) and is updated through successive
calls to Algorithm 3. For each sample π ∼ MS, Algorithm 3 updates either qij or qji for all
item pairs (i, j) such that flip(π, i, j) ∈ S. Thus, we can show the following:

Theorem 3. Let M(π0, φ) be a Mallows distribution with π0 ∈ Sd and φ ∈ [0, 1− γ], for some
constant γ > 0, and letMS be any neighboring α-fat truncation ofM. Then,

(i) For any δ > 0, we can learn the central ranking π0, with probability at least 1− δ, using an
expected number of O(log(d) log(d/δ)/(γ2α)) samples fromMS.

(ii) Assuming that the central ranking π0 is known, for any ε, δ > 0, we can compute an estimation
φ̂ of the spread parameter such that |φ− φ̂| ≤ O(ε), with probability at least 1− δ, using an
expected number of O(log(1/δ)/(ε2α)) samples fromMS.

(iii) For any ε, δ > 0, we can compute a Mallows distribution M̂(π0, φ̂) so that

DTV(M,M̂) ≤ O(ε) ,

with probability at least 1− δ, using an expected number of

O(log(d) log(d/δ)/(γ2α) + d log(1/δ)/(ε2α))

samples fromMS.

The following is similar in spirit to Theorem 2. To estimate pij, we call Algorithm 3 as
long as qij + qji < log(2/δ)/ε2. For the proof, we apply the argument used in the proof of
Theorem 1.(i) and the Hoeffding bound used in the proof of Theorem 2.

Corollary 6. Let M be a Mallows distribution and let MS be any truncation of M. If MS is
α-fat for pair (i, j), for any ε, δ > 0, we can compute an estimation p̂ij of the probability pij =
Prπ∼M[i ≻π j] such that |pij − p̂ij| ≤ ε, with probability at least 1− δ, using an expected number
of O(log(1/δ)/(ε2α)) samples fromMS.

We next give a detailed proof of Theorem 3, which shows how Algorithm 3 can efficiently
estimate the parameters of (and learn in total variation distance) a Mallows distributionM
using samples from any neighboring α-fat truncationMS ofM.
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Proof of Theorem 3. To prove (i), we use the fact that there is a bijective mapping from rank-
ings in Sd to transitive tournaments on d nodes. So, we think of q as a directed graph G
on d nodes, where there is an edge between i and j if qij + qji ≥ n, for some n sufficiently
large, which, for simplicity, will be determined at the end of the proof. The edge is from i to
j, if qij > qji, and from j to i, otherwise. We keep calling Algorithm 3 until a directed path
including all nodes (i.e., a total order) is formed in G. If a cycle is formed in G, before a total
order appears, we discard q and start the algorithm from scratch.

Since MS is neighboring α-fat, for any such pair (i, j) of neighboring items in π0, the
probability that a fresh sample π ∼ MS in Algorithm 3 increases qij + qji is at least α (by
the definition of neighboring α-fatness). Using exactly the same reasoning as in the proof of
Theorem 1.(ii), we show that the expected number of samples before d edges appear in G is
O(n log(d)/α).

Let us fix any pair of items i and j such that i ≻π0 j and there is an edge between i
and j in G. For simplicity, we assume that qij + qji = n. For sake of intuition, one may
think of i and j as neighboring in π0, but our analysis does not require so. We note that

E[qij] = npij and E[qji] = npji, and let mij = pij − pji. Working as in [CPS13, (1)], we can

show that mij ≥ 1+φ
1−φ = Ω(γ) (see also [BFFSZ19, Theorem 12]). Therefore, E[qij] = n · 1+mij

2

and E[qji] = n · 1−mij

2 . A standard application of the Hoeffding bound shows that if n =
O(log(d/δ)/m2

ij), Pr[qij ≤ n/2] ≤ δ/d2. Therefore, assuming that an edge between i and j is

present in G, the edge is directed from i to j (i.e., as in π0) with probability at least 1− δ/d2.
Applying the union bound, we get that when we stop calling Algorithm 3, all edges present
in G are as in π0 with probability at least 1− δ.

We are ready to finish the proof of Item (i). Putting everything together, we get that
after an expected number of O(log(d) log(d/δ)/(αγ2)) samples from the truncated Mallows
distribution MS, a total order consistent with π0 is formed in G, with probability at least
1 − δ. Increasing n by a constant factor makes the probability that a cycle appears in G
polynomially small in d, which allows us to bound the expected number of samples from
MS before we find a total order in G by O(log(d) log(d/δ)/(αγ2)).

For (ii), we assume that we know the central ranking π0. For simplicity, we assume that
π0 = (1, . . . , d). Then, as in Corollary 6, we can estimate the probability p12 = Prπ∼M[1 ≻π

2] such that |p12 − p̂12| ≤ ε, with probability at least 1− δ, using an expected number of
O(log(1/δ)/(ε2α)) samples fromMS. Using p̂12, we compute an estimation m̂12 = 2p̂12 − 1
of m12 = 2p12− 1. It is straightforward to verify that |p12− p̂12| ≤ ε implies that |m12− m̂12| ≤
ε. Working as in [CPS13, (1)], we show that for each pair of neighboring items i and i + 1 in

the central ranking π0, mi(i+1) =
1−φ
1+φ . The reason is that for any ranking π and any pair of

items i and i + 1, with i ≻π i + 1, that are neighboring in π0, swapping i and i + 1 results

in a ranking π′ with Dτ(π′, π0) = Dτ(π, π0) + 1. Our estimation of φ is φ̂ = 1−m̂12
1+m̂12

, where

|m12 − m̂12| ≤ ε implies that |φ− φ̂| ≤ O(ε).
Part (iii) follows from (i), (ii) and [BFFSZ19, Theorem 15]. We can learn π0 using the

algorithm of (i) and an estimation φ̂ of φ such that |φ̂− φ| ≤ ε/
√

d using the estimator of (ii),
with an expected number of O(d log(1/δ)/(ε2α)) samples fromMS. [BFFSZ19, Theorem 15]

shows that if |φ̂− φ| ≤ ε/
√

d, then DTV(M(π0, φ),M̂(π0, φ̂) ≤ O(ε).

In this section, we focused on various implications of a truncation set being fat. We close
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this section with some comments about efficiently learning truncated Mallows models and
performing e.g., identity testing when the α-fatness property does not hold true.

Let us recall the problem of learning truncated Mallows models. We will focus on esti-
mating the central ranking assuming that the dispersion parameter is known. In this setting,
there exists a central ranking π0 and the learner observes i.i.d. samples from MS(π0, φ).
The goal is to efficiently estimate π0. In the non-truncated setting, Θ(log(d)) samples are
required. Under the fatness condition, we provided an O(log2(d)) sample algorithm. How-
ever, the fatness condition can be dropped but it may be still possible to retrieve the central
ranking. Using the techniques of the upcoming sections, one could execute the Projected
SGD approach (Section 5) and, under some structural conditions on the Boolean product
distribution of dimension O(d2) and the truncation set (e.g., anti-concentration), recover the
central ranking using poly(d) samples. However, it is not clear whether this reduction is
optimal. It is an interesting question for future work to give the right characterization of
learnability for truncated Mallows distributions.

In the task of identity testing of truncated Boolean product distributions, there exists a
target distribution D⋆ specified to the tester via its d success probabilities and the algorithm
observes i.i.d. samples from the unknown truncated Boolean product distribution DS. The
goal is to accept if D = D⋆ with probability 2/3 and to reject if DTV(D,D⋆) > ε with proba-
bility 2/3. We assume that the tester has membership oracle access to the set S (note that the
truncated target D⋆

S cannot even be parsed efficiently by the tester since its size may be expo-
nential in d). If the fatness condition fails but the conditions of Section 4 hold true, then one
could still perform the SGD approach (Section 5), learn the distribution and hence perform
identity testing using a polynomial number of samples. It is an interesting question whether
one could efficiently perform identity testing from truncated samples without learning the
distribution.

4 Efficient Learnability from Truncated Samples: Necessary Con-

ditions

We next discuss necessary conditions for identifiability and efficient learnability of a Boolean
product distribution from truncated samples. For Assumption 1 and Lemma 2, we recall that
we can assume without loss of generality that S is normalized so that DS(0) > 0.

Assumption 1. For the truncated Boolean product distribution DS, DS(0) > 0 (after possible
normalization) and there are d linearly independent x(1), . . . , x(d) ∈ S with DS(x(j)) > 0, j ∈ [d].

The proof of Lemma 2 demonstrates that recovering p requires the solution to a linear
system, similar to that in Footnote 4, which is solvable if and only if Assumption 1 holds.

Lemma 2. A Boolean product distribution D(p) on Πd is identifiable from its truncation DS if and
only if Assumption 1 holds.

Proof. Let us assume that 0 ∈ S and there are d linearly independent vectors x(1), . . . , x(d) ∈ S.
We have that D(0) = ∏

d
i=1(1− pi), and for each j ∈ [d],

∏
i:x

(j)
i =1

pi ∏
i:x

(j)
i =0

(1− pi) = D(x(j)) . (4.1)
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However, the right-hand side of Equation (4.1) cannot be directly obtained from the trun-
cated distribution DS. Hence, we normalize Equation (4.1), by dividing both sides by DS(0),
and get that

∏
i:x

(j)
i =1

pi

1− pi
=
D(x(j))

D(0) . (4.2)

We observe that
D(x(j))
D(0) = DS(x(j))

DS(0)
, because for all x ∈ S, DS(x) = D(x)/D(S). So, after

normalization, the right-hand side of Equation (4.2) becomes a constant qj
def
= DS(x(j))

DS(0)
> 0, for

all j ∈ [d].
Taking logarithms in Equation (4.2), we obtain that ∑

i:x
(j)
i =1

zi = log qj, where zi =

log
pi

1−pi
, or equivalently zTx(j) = log qj. Since x(1), . . . , x(d) are linearly independent, the

corresponding linear system with d equations and d unknowns has a unique solution. Solv-

ing the linear system
{

zT x(j) = log qj

}
j∈[d]

, we recover z and eventually p.

The converse follows from the observation that solving a linear system as the one above
is the only way to recover p from DS (a linear system is the input to any potential solver
from an information-theoretic viewpoint). Specifically, the only way to recover p from DS

is to solve the system consisting of Equation (4.1), for j = 1, . . . , d, or some other equivalent
system with d equations and p1, . . . , pd as unknowns. The only way to recover D(x) is
to normalize Equation (4.1) by dividing by D(x′), for some x′ ∈ S with DS(x′) > 0. We
can assume without loss of generality that x′ = 0, since we can normalize S so that x′

becomes 0. After normalizing by DS(0) and taking logarithms in Equation (4.2), recovering
z and p requires a collection of d linearly independent equations, which correspond to d
linearly independent x(1), . . . , x(d) ∈ S with DS(x(j)) > 0, for each j ∈ [d]. Technically, if
Assumption 1 does not hold, the input contains a matrix with rank < d and hence the true
p is not uniquely identifiable.

We proceed to show two necessary conditions for efficient learnability. Our first condition
is that we have oracle access to the truncation set S. More formally, we assume that:

Assumption 2. S is accessible through a membership oracle, which reveals whether x ∈ S, for any
x ∈ Πd.

Based on the proof of [DGTZ18, Lemma 12], we show that if Assumption 2 does not
hold, we can construct a (possibly exponentially large) truncation set S so that DS appears
identical to the uniform distribution U on Πd as long as all the samples are distinct.

Lemma 3. For any Boolean product distribution D(p), there is a truncation set S so that without
additional information about S, we cannot distinguish between sampling from DS and sampling from
the uniform distribution U on Πd, before an expected number of Ω(

√
|S|) samples are drawn.

Proof. The truncation set S = S1× · · · × Sd is the product of d truncation sets Si, one in each

direction i ∈ [d]. If pi ≥ 1/2, Si = {0, 1} with probability
1−pi

pi
, and Si = {0}, otherwise. If

pi < 1/2, Si = {0, 1}with probability
pi

1−pi
, and Si = {1}, otherwise. There is a constant c > 0

such that if |pi − 1/2| ≤ c, for all i ∈ [d], |S| is exponential in d with constant probability.
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By the principle of deferred decisions, we can think of the sampling process from DS as
follows: we draw a sample x ∼ D. If this is the first time that x is drawn from D, for each
i ∈ [d], independently, xi survives with probability min{Be(pi; 1− xi)/Be(pi ; xi), 1}. If every
xi survives, x is added to S and becomes a sample from DS. If x has been drawn before, x

becomes a sample from DS if and only if x ∈ S, so that new samples are treated consistently
with past ones.

We note that as long as a duplicate sample does not appear, the probability that xi = 0
and xi survives is equal to the probability that xi = 1 and xi survives, for all i ∈ [d]. In fact,
the following process samples from the uniform distribution Ud on Πd: we draw a sample
x ∼ D. Then, for each i ∈ [d], independently, xi survives with probability min{Be(pi ; 1−
xi)/Be(pi; xi), 1}. If every xi survives, x is returned as a sample from Ud. The difference is
that there is no truncation set. So, we do not need to treat new samples consistently with
past ones.

Before the first duplicate sample is drawn from DS, there is no way to distinguish be-
tween sampling from DS and sampling from Ud. By the birthday problem, the appearance of
the first duplicate sample from DS requires an expected number of Ω(

√
|S|) samples from

DS.
We highlight that we can easily distinguish between sampling from DS and sampling

from U , if we have oracle access to the truncation set S.

Our second necessary condition for efficient learnability is that the truncated distribution
is not extremely well concentrated in any direction. Intuitively, we need the Boolean product
distribution D, and its truncation DS, to behave well, so that we can get enough information
about D based on few samples from DS. More formally, we quantify DS’s anti-concentration
using λ⋆, which is the maximum positive number so that for all unit vectors w ∈ R

d, ‖w‖2 =
1, and all c ∈ R, Prx∼DS

[wTx 6∈ (c − λ⋆, c + λ⋆)] ≥ λ⋆. Assumption 3 requires that λ⋆ is
polynomially large in 1/d.

Assumption 3. There exists a λ ≥ 1/poly(d) such that for all unit vectors w ∈ R
d, ‖w‖2 = 1,

and all c ∈ R, Prx∼DS
[wTx 6∈ (c− λ, c + λ)] ≥ λ.

We note that Assumption 3 is a stronger version of Assumption 1. It also implies that
all parameters pi ∈ (0, 1) are bounded away from 0 and 1 by a safe margin (we will focus
on parameters whose margin from 0 and 1 is dimension-independent). We next show that
if DS is well concentrated in some direction, estimating the parameter vector p requires a
large number of samples from DS. More specifically, we show that either estimating DS(0),
which is needed for normalizing the linear system in Lemma 2, or sampling d vectors that
result in a well-conditioned linear system, require Ω(1/λ⋆) samples from DS. Therefore, if
Assumption 3 does not hold, estimating p with truncated samples from DS has superpoly-
nomial sample complexity.

Lemma 4. Assume that Assumption 3 does not hold true, i.e., the optimal anti-concentration pa-
rameter λ⋆ satisfies 1/λ⋆ = ω(poly(d)). Let D(p) be a Boolean product distribution and let DS

be a truncation of D. Then, computing an estimation p̂ of the parameter vector p of D such that
‖p− p̂‖2 ≤ o(1) requires an expected number of Ω(1/λ⋆) samples from DS.

Let us first provide some intuition. For a unit vector w ∈ R
d, we think of the space Hw =

{x ∈ S : wTx ∈ (c− λ, c + λ)}. If λ⋆ is very small, there is a direction w such that virtually
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all samples x ∼ DS lie in Hw. Intuitively, recovering (z and) p boils down to the solution of a
linear system as that in Footnote 4 and in Lemma 2. For that, we need d linearly independent
vectors x(1), . . . , x(d) ∈ S and an additional fixed element x⋆ ∈ S for the normalization of the
probabilities in the right-hand side. With high probability, all x(1), . . . , x(d) ∈ Hw. If x⋆

is also in Hw, normalizing the system by x⋆ results in an ill-conditioned system. In fact,
we can show that the condition number of the system is Ω(1/λ⋆). Therefore, solving the
linear system efficiently requires sampling a vector x⋆ 6∈ Hw for normalization. However,
the probability that we sample (and thus, can use for normalization) a vector x⋆ 6∈ Hw is at
most λ⋆.

We now proceed with the proof of Lemma 4.

Proof. Next, we formalize the intuition behind the sketch of the proof. We recall that for a
fixed unit vector w ∈ R

d, we let Hw = {x ∈ S : wTx ∈ (c− λ, c + λ)}. By the definition of
λ∗, for any λ > λ∗, there is a unit vector w ∈ R

d and a c ∈ R such that Prx∼DS
[x 6∈ Hw] < λ,

or equivalently, Prx∼DS
[x ∈ Hw] ≥ 1− λ.

We recall that we assume without loss of generality that S is normalized so that 0 ∈ S
and DS(0) > 0. In fact, 0 plays the role of the fixed element x⋆, discussed in the sketch,
which we use for normalization. Next, we distinguish between two cases based on whether
0 ∈ Hw or not.

Let us first fix λ > λ⋆ that lies in a small neighborhood of λ⋆ of radius ε, where ε is
sufficiently small. We will show that for any such λ (that satisfies that 1/λ is (almost) super-
polynomial in d), we get a sample complexity of order 1/λ. Since this property will hold
arbitrarily close to λ⋆, the sample complexity will be super-polynomial in the dimension d.

Having chosen λ as above, there is a direction w and a translation c ∈ R, that define the
space Hw, such that Prx∼DS

[x 6∈ Hw] < λ. There are two cases for the translation c.
Case A: We may first assume that c is small enough, that is |c| < λ and, hence, 0 ∈ (c−

λ, c + λ). Let X be any set of O(1/λ) samples from DS. Then, with constant probability, all
X ⊆ Hw. Let Xd = [x(1), . . . , x(d)]T be the matrix obtained by any d elements x(1), . . . , x(d) ∈
X different from 0. By Lemma 2, recovering p requires the solution of the linear system

Xdz = log(q), where log(q) = (log(qj))j∈[d] and qj =
DS(x(j))
DS(0)

, for each j ∈ [d].

We next show that since c ∈ (−λ, λ), with constant probability, the matrix Xd is ill-
conditioned and has condition number 6 κ(Xd) = Ω(1/λ).

Specifically, since all x(1), . . . , x(d) are different from 0, there is a unit vector w′ ∈ R
d

so that ‖Xdw′‖2 ≥ 1. On the other hand, by the hypothesis that with constant probability,

X ⊆ Hw, ‖Xdw‖2 ≤ (|c|+ λ) ·
√

d ≤ 2λ ·
√

d. Therefore, the condition number of the matrix
Xd is κ(Xd) = Ω(1/(λ ·

√
d)) for the fixed λ > λ∗ in the neighborhood of λ⋆. This implies

that the condition matrix is of order Ω(1/λ). Hence, with constant probability, we cannot
recover (z and) p within accuracy o(1), unless we estimate the right-hand side q of the linear
system Xdz = log(q) with accuracy o(λ), which requires ω(1/λ) samples.

Case B: Otherwise, if |c| > λ, then 0 6∈ (c− λ, c + λ). Since wT0 = 0, the probability that
0 is sampled from DS is at most λ. Hence, unless we take ω(1/λ) samples, we cannot find
a good estimation of DS(0), which is required for the linear system Xdz = log(q), whose
solution recovers (z and) p.

6Let A be a d× d square matrix with singular values s1 ≥ · · · ≥ sd ≥ 0. We will denote with smax(A) = s1

and with smin(A) = sd. The condition number of the A is κ(A) = smax(A)/smin(A). The condition number
κ(A) ∈ [1, ∞] quantifies the sensitivity of the solution to a linear system Az = b to the small perturbations of b.
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Finally, since either Case A or B will hold for any λ > λ∗ in the ǫ-neighborhood of λ⋆,
we let λ ↓ λ∗ and hence we get that an expected number of Ω(1/λ∗) samples is required,
which is super-polynomial in d.

The above condition highlights a gap between the continuous problem of learning trun-
cated Gaussian distributions [DGTZ18] and the discrete case, where truncation can be quite
restrictive.

For the efficient estimation of z, we also need to assume that the truncation set S is large
enough. Namely, we assume that:

Assumption 4. For the truncation set S, there is a constant α > 0 so that the Boolean product
distribution D has D(S) ≥ α.

Assumption 4 is not necessary for efficient learning, in the sense that e.g., there may
be α-fat product distributions which do not satisfy this condition, but are still efficiently
learnable using Corollary 4.

We conclude this section with a remark. Note that complex models, such as Bayes net-
works and Ising models, can be cast as truncated product distributions in a Boolean hy-
percube of appropriately high dimension (the translation is conceptually similar to that for
Mallows models in Section 3.5). For instance, the Ising model over {−1,+1}d with interac-
tion matrix J (with Jii = 0) and external field h is defined by the function π(x) = xT Jx + hT x
and is a probability measure µ(x) ∝ exp(π(x)). We have a dimension for each edge and a di-

mension for each spin (so the Boolean Product distribution is a measure over {−1,+1}(d
2)+d)

and the truncation set SIsing consists of all 2d binary vectors with valid edge labels (i.e., vec-
tors with edge labels consistent with some allocation of {+,−} to the vertices). Hence, we

can consider the product probability measure over the points x ∈ {−1,+1}(d
2)+d with density

D(x) = D((xuv)u,v∈E, (xu)u∈V) = ∏
(u,v)∈E

exp(Juvxuv)

2 cosh(Juv)
∏
u∈V

exp(huxu)

2 cosh(hu)
.

Casting an Ising model µ to our setting results in a truncated Boolean product distribution
µ(x) = D(x)1{x ∈ SIsing}/D(SIsing) that satisfies Assumption 1, Assumption 2 and pon-
tentially Assumption 3, assuming that the parameters of the Ising model are “sufficiently

nice” so that the (d
2) + d parameters of D are bounded away from 0 and 1. In general, it is

not guaranteed to satisfy Assumption 4, which is in accordance with the fact that sampling
from an Ising model is computationally hard in general (see e.g., [Hub99, SS12])).

In the following section, we present the Projected Stochastic Gradient Descent algorithm
and show that assumptions 2, 3 and 4 are sufficient for the efficient estimation of the natural
parameter vector z of the Boolean product distribution D by sampling from its truncation
DS.

5 PSGD for Learning Truncated Boolean Product Distributions

We next show how to estimate efficiently the natural parameter vector z⋆ of a Boolean prod-
uct distribution D(z⋆) using samples from its truncation DS(z

⋆), assuming that the true
distribution satisfies the conditions 2, 3 and 4.
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Algorithm 4 Projected Stochastic Gradient Descent with Samples from DS(p⋆).

1: procedure SGD(M, η) ⊲ M : number of steps, η : parameter
2: z(0) ← ẑ ⊲ ẑ is the empirical estimate of Lemma 7.
3: for t = 1..M do

4: Sample x(t) from DS

5: repeat

6: Sample y from D(z(t−1))
7: until y ∈ S ⊲ We assume oracle access to S.
8: v(t) ← −x(t) + y

9: z(t) ← ΠB(z(t−1) − 1
t·η v(t)) ⊲ ηt = 1/(t · η): step size

10: return z← 1
M ∑

M
t=1 z(t)

Similarly to [DGTZ18], we use Projected Stochastic Gradient Descent (SGD) on the nega-
tive log-likelihood of the truncated samples. Our SGD algorithm is described in Algorithm 4.
We should highlight that Algorithm 4 runs in the space of the natural parameters z of the
Boolean product distribution. Changing the parameters from p to z results in a linear sys-
tem, similar to that in Footnote 4 and in the proof of Lemma 2 and simplifies the analysis
of the log-likelihood function. Furthermore, by Proposition 3, estimating z⋆ within error at
most ε in L2 norm results in a distribution within total variation distance at most ε to D(z⋆).

Throughout the analysis of Algorithm 4, we make use of Assumptions 2 - 4. The technical
details of the analysis are deferred to Section 5.1. The analysis goes as follows: we first
derive the negative log-likelihood function that Algorithm 4 optimizes. Since the truncation
set S is only accessed through membership queries, we do not have a closed form of the
log-likelihood.

However, we can show that it is convex for any truncation set S. We prove that the
natural parameter vector ẑ corresponding to the empirical estimate p̂S is a good initialization
for Algorithm 4. Specifically, we show that p̂S is close to the true parameter vector p⋆ in L2

distance, and that this proximity holds for the corresponding natural parameter vectors as
well.

For the correctness of Algorithm 4, it is essential that it runs in a convex region. We
can show that there exists a ball B, centered at the initialization point ẑ, which contains z⋆.
The radius of the ball depends only on the lower bound α of D(S) (Assumption 4). We can
prove that Assumptions 3 and 4 always hold inside B. That is, for any vector z ∈ B (and the
corresponding parameter vector p), the anti-concentration assumption holds for DS(p) and
the mass assigned to the truncation set S by DS(p) can be lower bounded by a polynomial
function of α.

Under these two assumptions, we can prove that the negative log-likelihood is strongly-
convex inside the ball B. Hence, while Algorithm 4 iterates inside B, the truncation set
has always constant mass and the negative log-likelihood remains strongly-convex. Conse-
quently, Algorithm 4 converges to the true vector of natural parameters z⋆. The following
theorem is the main result of the steps described above. For the next result, recall that we
consider a target Boolean product distribution D(p⋆) whose parameters’ margin from 0 and
1 is dimension-independent.

Theorem 4. Given oracle access to a measurable set S ⊆ Πd (Assumption 2), whose measure under
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some unknown Boolean product distribution D(z⋆) is at least some constant α > 0 (Assumption 4)
and where the truncated distribution DS(z

⋆) satisfies Assumption 3 with parameter λ, and given
samples from the truncation DS(z

⋆), there exists a polynomial-time algorithm that recovers an es-
timation z of z⋆. For any ε > 0, the algorithm uses poly(1/α, 1/λ) · Õ(d/ε2) truncated samples
from DS(z

⋆) and membership queries to S and guarantees that ‖z⋆ − z‖2 ≤ ε, with probability 99%.
Under these conditions, it also holds that DTV(D(z⋆),D(z)) ≤ O(ε).

5.1 Projected SGD: Algorithm’s Description

In this section, we present and explain the Projected SGD algorithm that learns the true
natural parameter vector z⋆ and, consequently, as we showed in Proposition 3, learns the
true Boolean product distribution D(p⋆) in total variation distance.

We are now ready to present the main steps of our SGD Algorithm 4. The input of
the algorithm is the number of the steps M and a parameter η, that modifies the step size.
The initialization point z(0) of the algorithm will be the point ẑ, that equals to the natural
parameter vector of the empirical estimate p̂S, defined by Equation (6.3). For t ∈ [M], our
guess for the true natural parameter vector z⋆ will be denoted by z(t). In each round t, we
produce a guess z(t) as follows: Firstly, we draw a sample x(t) from the unknown truncated
Boolean product distribution DS(p⋆). Also, we draw a second sample y from the distribution
induced by our previous guess z(t−1). Note that it is possible that the generated sample y

does not lie in the truncation set S. Hence, we have to iterate until we draw a sample that
lies in S, that is MS(y) = 1y∈S is equal to 1. As we have already mentioned, the function
that we are minimizing is the negative log-likelihood for the population model. As we will
see in Lemma 5 and Equation (6.2), the true gradient of this function is equal to

− E
x∼DS(z⋆)

[x] + E
y∼DS(z)

[y] .

In Algorithm 4, this quantity corresponds to a random direction denoted by v(t) at step
t and is equal to −x(t) + y. Note that its expected value is equal to the true gradient. Hence,
as in the classical gradient descent setting, we update our guess using the following update
rule

z(t) ← z(t−1) − ηtv
(t) .

As we have explained, we perform the SGD algorithm in a ball B of radius. Hence,
it may be the case that our new guess z(t) lies outside B. Hence, we have to project that
point back to the ball. For that reason, we use the projection function ΠB , that equals to the
mapping

ΠB(x) = argmin
z∈B

‖x− z‖2 for x ∈ R
d .

Finally, after M steps, the SGD algorithm returns an estimate z that is close to the mini-
mizer of the negative log-likelihood function. As we will show, this minimizer corresponds
to the true natural parameters vector z⋆. In the next section, we perform the theoretical anal-
ysis of the projected stochastic gradient descent algorithm for truncated Boolean product
distributions.
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6 Projected SGD: Theoretical Analysis

Our goal is to prove Theorem 4. The roadmap of the proof is presented as follows:

• Convexity of the objective. In Section 6.1, we show that the population version of the
negative log-likelihood objective is convex with respect to the natural parameter vector
(see Lemma 5 and Section 6.1.2).

• Initial feasible point. In Section 6.2, we efficiently compute a good initialization point
for the SGD algorithm. The statement is presented in Lemma 7.

• Feasible region. In Section 6.3, we show that there exists a ball (and hence an easy-to-
project set) that contains the true vector z⋆ (see Lemma 10) and each point in the ball
satisfies Assumptions 3 (see Lemma 12) and 4 (see Lemma 11).

• Unbiased estimation of the gradient. In Section 6.4, we show how to obtain an unbi-
ased estimation of the gradient of the objective efficiently.

• Strong convexity inside the feasible region. In Section 6.5, we establish that the neg-
ative log-likelihood objective is strongly-convex inside the ball of Section 6.3.

• Analysis of the SGD algorithm. In Section 6.6, we show that the bounded variance
step property holds (see Lemma 14). Hence, combining this result with the strong-
convexity inside the ball, we can apply Fact 1 and get Theorem 4.

6.1 Convexity of the negative log-likelihood

Let S be a subset of the hypercube Πd and D(p) be an arbitrary Boolean product distribution.
We remind the reader that, for x ∈ Πd:

D(p; x) = Be(p1; x1)⊗ · · · ⊗ Be(pd; xd) = ∏
i∈[d]

(pxi
i (1− pi)

1−xi) .

Let z be the natural parameters vector with zi = log
pi

1−pi
for i ∈ [d]. Rewriting the

distribution as an exponential family, we get that:

D(p; x) = ∏
i∈[d]

exp
(

xi log
pi

1− pi
+ log(1− pi)

)
,

or equivalently:

D(z; x) =
exp(xTz)

∏i∈[d](1 + exp(zi))
.

The truncation set S induces a distribution DS(z), that is equal to:

DS(z; x) = 1x∈S
exp(xTz)

∑y∈S exp(yTz)
.

Afterwards, we compute the negative log-likelihood ℓ(z) of the truncated samples drawn
from the truncated distribution DS(z) and study its behavior in terms of convexity.
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6.1.1 Log-likelihood for a Single Sample

Notice that the structure of the truncated Boolean product distribution DS(z), expressed
as an exponential family, is quite useful when computing the negative log-likelihood for a
single sample x drawn from a distribution DS(z), that is:

ℓ(z; x) = − logDS(z; x) = −xTz + log
(

∑
y∈S

eyTz
)

. (6.1)

The convexity of the negative log-likelihood ℓ(z) of the truncated Boolean product distri-
bution DS(z) follows immediately if one computes the gradient and the Hessian of ℓ(z) with
respect to the natural parameter vector z. This result is presented in the following Lemma.

Lemma 5. The negative log-likelihood objective ℓ(z; x), as defined in Equation (6.1), is convex with
respect to z for all x ∈ Πd.

Proof. Observe that the negative log-likelihood of a single sample x ∼ DS(z) will be

ℓ(z; x) = −xTz + log
(

∑
y∈S

eyTz
)

.

We now compute the gradient of ℓ(z; x) with respect to the parameter z.

∇zℓ(z; x) = −x +
∑y∈S yeyTz

∑y∈S eyTz
= −x + E

y∼DS(z)
[y] .

Finally, we compute the Hessian of the negative log-likelihood:

Hℓ(z) =
∑y∈S yyTeyTz

∑y∈S eyTz
− ∑y∈S yeyTz

∑y∈S eyTz

∑y∈S yeyTz

∑y∈S eyTz
= Covy∼DS(z)[y, y] .

The Hessian of the negative log-likelihood Hℓ is semi-positive definite since it equals to a
covariance matrix (in particular, it equals to the covariance matrix of the sufficient statistics
of the exponential family). The result follows.

6.1.2 Log-likelihood for the Population Model

Our Projected SGD algorithm will optimize the negative log-likelihood for the population
model, that will be denoted with ℓ. This function is defined as the expected value of the neg-
ative log-likelihood function with respect to the true truncated Boolean product distribution
DS(z

⋆), that is
ℓ(z) = E

x∼DS(z⋆)
[ℓ(z; x)] .

Using the formula of Equation (6.1), we get that

ℓ(z) = E
x∼DS(z⋆)

[
− xTz + log

(
∑
y∈S

eyTz
)]

.
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But, since the second term is just a normalization constant, and hence independent of the
random variable x, we get that:

ℓ(z) = E
x∼DS(z⋆)

[−xTz] + log
(

∑
y∈S

eyTz
)

.

Similarly, as in the proof of Lemma 5, one can compute the gradient with respect to z and
get that:

∇zℓ(z) = − E
x∼DS(z⋆)

[x] + E
y∼DS(z)

[y] . (6.2)

Hence, computing in the exact same way the Hessian of ℓ(z), we get the convexity of the
negative log-likelihood for the population model with respect to the natural parameter vector
z.

Also, notice that the gradient ∇zℓ(z) vanishes when z = z⋆. So, the true parameter
vector z⋆ minimizes the negative log-likelihood function of the truncated samples for the
population model. This fact combined with the convexity of the population version of the
negative log-likelihood yield the following.

Lemma 6. For any z ∈ R
d, it holds that

ℓ(z⋆) ≤ ℓ(z) ,

where z⋆ ∈ R
d is the true parameter vector and ℓ is the population negative log-likelihood objective,

whose expectation is with respect to the truncated Boolean product distribution DS(z
⋆), for some

arbitrary truncation set S ⊆ Πd.

6.2 Initialization Lemma

Our next goal is to find a good initialization point for our SGD algorithm. Assume that
for the truncation set S, it holds that D(p⋆; S) = α. We claim that, if one draws n = Õ(d)
samples {x(t)}n

t=1 from the truncated Boolean product distribution DS(p⋆), the empirical
mean

p̂S =
1

n

n

∑
t=1

x(t) (6.3)

is close in L2 distance to the true mean parameter vector p⋆ with high probability.
In the following lemma, we provide the proximity result between the empirical mean p̂S

of the truncated Boolean product distribution DS(p⋆) and the true parameter vector p⋆. This
lemma will be useful in the upcoming section.

Lemma 7. Let D(p⋆) be the unknown Boolean product distribution and consider the truncation set

S ⊆ Πd such that D(p⋆; S) = α. The empirical mean p̂S, computed using O
(

d log( d
δ )
)

samples

from the truncated Boolean product distribution DS(p⋆), satisfies:

‖p̂S − p⋆‖2 ≤ O
(√

log(1/α)
)

,

with probability 1− δ.
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Proof. The proof of Lemma 7 can be decomposed in the following two lemmas. Combin-
ing the following two lemmas (we apply Lemma 8 with accuracy ǫ a small constant like√

log(1/α)/10, since α is also a constant) using the triangle inequality for the L2 norm,
Lemma 7 follows.

Lemma 8. Consider S ⊆ Πd and let pS be the parameter vector of the truncated Boolean product
distribution DS(p⋆). There exists an algorithm that uses O( d

ǫ2 log( d
δ )) samples from DS(p⋆) and

computes an estimate p̂S such that
‖p̂S − pS‖2 ≤ ǫ ,

with probability 1− δ.

Proof. Consider the truncated true Boolean product distribution DS(p⋆) with truncation set
S ⊆ Πd. Consider the algorithm that, given n samples {x(t)} from DS(p⋆), computes the
empirical mean vector:

p̂S =
1

n

n

∑
t=1

x(t) .

Note that E p̂S = pS. Fix a coordinate j ∈ [d]. By applying Hoeffding’s inequality at

p̂S,j =
1
n ∑

n
t=1 x

(t)
j (these random variables are bounded in [0, 1]), one gets

Pr
[
|p̂S,j − pS,j| > ǫ/

√
d
]
≤ 2e−2n ǫ2

d .

We can now use union bound and require the left hand side to be at most δ. Hence, we get
that

2de−2n ǫ2

d ≤ δ⇒ n = Ω

(
d

ǫ2
log

(
d

δ

))
.

Consequently, given Θ( d
ǫ2 log( d

δ )) samples, we get that the empirical mean estimate pS is
within error ǫ in L2 distance with probability 1− δ.

Lemma 9. Consider the unknown Boolean product distribution D(p⋆) and a truncation set S such
that D(p⋆; S) = α. Let pS be the parameter vector of the truncated Boolean product distribution
DS(p⋆). Then, it holds that

‖pS − p⋆‖2 ≤ O
(√

log(1/α)
)

.

Proof. Consider an arbitrary direction w with ‖w‖2 = 1. Consider the random variable wTx

where x ∼ D(p⋆). Note that Ex∼D(p⋆)[w
T x] = wT p⋆. By applying Hoeffding’s inequality:

Pr
x∼D(p⋆)

[wTx > wT p⋆ + C] ≤ e−2C2
.

Hoeffding’s inequality implies that the marginal of the true distribution in direction w has
exponential tail and that holds for any (unit) direction. But, the worst case set S would
assign mass α to the tail (in order to maximize the distance between the two means) and,
hence:

α ≤ e−2C2 ⇒ C = O

(√
log

1

α

)
.

The result follows.
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6.3 Ball in the z-space

We will perform Projected SGD to a convex subspace of R
d. The algorithm will optimize the

negative log-likelihood for the population model ℓ with respect to the natural parameters
z = (z1, . . . , zd)

T with zi = log
pi

1−pi
in order to learn the true parameters z⋆ = (z⋆1 , . . . , z⋆d)

T

with z⋆i = log
p⋆i

1−p⋆i
. Our initial guess is ẑ = (ẑ1, . . . , ẑd)

T with ẑi = log
p̂S,i

1− p̂S,i
. Afterwards,

SGD will iterate over estimations z of the true parameters z⋆.
In this section, we show that there exists a convex set that contains the true vector z⋆ and

each point in that set satisfies Assumptions 3 and 4.
In fact, we show that there exists a ball B of radius B centered at ẑ, that contains the true

natural parameters z⋆, with high probability. Additionally, every point z of that ball satisfies
Assumptions 3 and 4. That is, for any z ∈ B, let D(z) be the Boolean product distribution
and DS(z) be an arbitrary truncation of D(z). Then, DS(z) will be anti-concentrated too, in
the sense of Assumption 3, and we will have D(z; S) > cα for some constant ca, that depends
only on the initial mass of the set S. The existence of such a ball is presented in the following
lemma.

Lemma 10. There exists B > 0 such that the ball centered at the empirical estimate ẑ :

B = {z : ‖z− ẑ‖2 ≤ B}

contains the true natural parameters, i.e.,

‖z⋆ − ẑ‖2 ≤ B ,

with high probability, where the randomness is over the estimate ẑ.

Proof. We can assume that the real mean vector p⋆ lies in (0, 1)d. Firstly, note that ẑ ∈
(−∞, ∞)d, since (ẑ)i = log

p̂S,i

1− p̂S,i
and 0 < p̂S,i < 1 for any i ∈ [d]. From now on, fix a

coordinate i ∈ [d] and consider the mapping f (x) = log x
1−x for x ∈ (0, 1). Note that f

corresponds to the transformation of pi to the natural parameter zi and, hence:

|z⋆i − ẑi| = | f (p⋆i )− f ( p̂S,i)| .

Using the anti-concentration condition (see Assumption 3 and the discussion after this as-
sumption), we get that there exists a positive constant γ such that p⋆i , p̂S,i ∈ (γ, 1− γ) for
any i ∈ [d]. Then, observe that there exists a positive finite constant C such f is C-Lipschitz
in that interval. Hence,

|z⋆i − ẑi| = | f (p⋆i )− f ( p̂S,i)| ≤ C|p⋆i − p̂S,i| .

Squaring each side and summing over i ∈ [d], we get that

‖z⋆ − ẑ‖2 ≤ O

(√
log

1

α

)
,

with high probability, where we used the proximity Lemma 7. Hence, the ball centered at ẑ

with radius B = O

(√
log 1

α

)
, i.e., the set

B = {z : ‖z− ẑ‖2 ≤ B}
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contains the true natural parameters z⋆ and any point z ∈ B is finite in each coordinate,
since ∑

d
i=1(zi − ẑi)

2 ≤ B2.

The value of B is equal to O(
√

log(1/α)). From now on, we will denote by B the ball
of Lemma 10. In order to be able to perform the SGD algorithm, we have to prove that
Assumptions 3 and 4 hold for any guess of our algorithm. Since the algorithm runs inside
the ball B, we have to prove that the two assumptions are preserved inside the ball. We
remind the reader that any guess that lies outside the ball, is efficiently projected to its L2

closest point y ∈ B.
Firstly, in Lemma 11, we prove that, in each iteration, every natural parameter vector z

inside the ball B, that corresponds to a mean vector p and induces a distribution D(p), will
assign constant non-trivial mass to the set S.

Lemma 11 (Non-trivial mass inside the ball). Consider the true Boolean product distribution
D(p⋆) and D(p) be another Boolean product distribution such that the corresponding natural pa-
rameter vectors satisfy

‖z⋆ − z‖2 ≤ B = O

(√
log(1/α)

)
.

Suppose that for a truncation set S we have that:

E
x∼D(p⋆)

[1x∈S] ≥ α .

Then, it holds that

E
x∼D(p)

[1x∈S] ≥ poly(α) .

Proof. Let D(p⋆; S) = α and D(p; S) = α′. Firstly, notice that one can express the mass of the
set S assigned by D(p) as:

D(p; S) = E
x∼D(p⋆)

[
1x∈S

D(p; x)

D(p⋆; x)

]
.

This is equivalent to:

D(p; S) = E
x∼D(p⋆)

[
e
− log

D(p⋆;x)
D(p;x) 1x∈S

]
.

We remind the reader that:

D(z; x) = exp(xTz)
1

∏i∈[d](1 + exp(zi))
.

Writing the log ratio in terms of the natural parameters z, we get that:

log
D(z⋆; x)

D(z; x)
= xT(z⋆ − z) + C , (6.4)

where C = − log ∏i∈[d](1 + ez⋆i ) + log ∏i∈[d](1 + ezi) = log
∏i∈[d](1−p⋆i )

∏i∈[d](1−pi)
is independent of x ∼

D(p⋆). Since both z and z⋆ lie inside the ball B and are finite, C corresponds to a constant.

Now, set g(x) = log
D(p⋆;x)
D(p;x)

and observe that:

E
x∼D(p⋆)

[g(x)] = DKL(D(p⋆) ‖ D(p)) .
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Using Hoeffding’s inequality on Equation (6.4), we get that:

Pr
x∼D(p⋆)

[
g(x)−E g ≥ t

]
≤ exp(−2t2/‖z⋆ − z‖2

2) .

Setting t =
√

log(2/α)‖z⋆ − z‖2
2, it follows that:

Pr
x∼D(p⋆)

[
g(x)−E g ≥

√
log(2/α)‖z⋆ − z‖2

2

]
≤ α/2 .

So, with probability at least 1− α/2, we get that the ratio −g(x) = − log
D(p⋆;x)
D(p;x)

will be at

least

−E g−
√

log(2/α)‖z− z⋆‖2
2 ,

where we have that E g = DKL(D(p⋆) ‖ D(p)) ≤ B2, by Proposition 3.(i).

Hence, with probability at least 1− α/2, we get that the ratio − log
D(p⋆;x)
D(p;x)

will be at least

−B2− B
√

log(2/α) = c · log(1/α), for some constant c. Hence, α′ ≥ α
2 e−O(log(1/α)) = poly(α).

This concludes the proof.

Applying the above lemma for the initial guess p̂S, we get that:

Corollary 7. Consider a truncated Boolean product distribution DS(p⋆) with mass D(p⋆; S) ≥ α >

0. The empirical mean p̂S, obtained by Lemma 7, satisfies D(p̂S; S) ≥ cα, with high probability, for
some constant cα that depends only on the constant α > 0. The high probability result is over the
randomness of the initialization p̂S.

Hence, both at the initialization point ẑ and while moving inside the ball B of Lemma 10,
the mass assigned to the set S is always non-trivial.

We also need to show that the anti-concentration assumption is valid inside the ball B.
Assumption 3 states that the truncated distribution DS(p⋆) of the true parameters is anti-
concentrated. We will show that this holds for every truncated distribution DS(z), induced
by z that lies inside the ball B. This is proven by the following lemma.

Lemma 12 (Anti-concentration inside the ball). Consider the true Boolean product distribution
D(p⋆) and D(p) be another Boolean product distribution such that the corresponding natural pa-
rameter vectors satisfy:

‖z⋆ − z‖2 ≤ B = O

(√
log(1/α)

)
.

Consider an arbitrary truncation set S ⊆ Πd such that D(p⋆; S) ≥ α. Assume that Assumption 3
holds for the true truncated distribution DS(p⋆) with constant λ. Then, Assumption 3 still holds for
DS(p) with constant poly(α, λ).

Proof. Consider the true Boolean product distribution D(p⋆). Let S be the truncation set,
where D(p⋆; S) = α. The true truncated Boolean product distribution DS(p⋆) satisfies
Assumption 3. Hence, there exists a λ, such that, for any arbitrary hyperplane defined
by w ∈ R

d with ‖w‖2 = 1 and c ∈ R, we have that DS(p⋆; H) = λ, where H = {x : wTx 6∈
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(c− λ, c + λ)} ⊆ Πd. Hence, the mass assigned by the true Boolean product distribution to
the space H ∩ S is equal to D(p⋆; H ∩ S) = λα.

Now, note that Lemma 11 holds for arbitrary set S. Hence, we can take the truncation set
to be equal to H ∩ S. Then, note that the hypotheses of Lemma 11 hold with D(p⋆; H ∩ S) ≥
λα. Applying the result of Lemma 11, we get that: D(p; H ∩ S) = poly(α, λ). Hence,
DS(p; H) = poly(α, λ).

Applying the above lemma for the initial guess p̂S, we get that:

Corollary 8. Consider a truncated Boolean product distribution DS(p⋆) for which Assumption 3
holds. The truncated Boolean product distribution DS(p̂S) induced by the empirical mean p̂S, ob-
tained by Lemma 7, satisfies Assumption 3, with high probability over the randomness of the initial-
ization p̂S.

Hence, any natural parameter vector z ∈ B, induces a distribution D(z) such that the
truncated distribution DS(z) satisfies the anti-concentration assumption.

6.4 Unbiased Estimation of the Gradient

In this section, we discuss the rejection sampling algorithm in order to obtain an unbiased
estimate for the gradient of the population version of the negative log-likelihood objective.
Recall that

∇zℓ(z) = − E
x∼DS(z⋆)

[x] + E
y∼DS(z)

[y] .

To compute an unbiased estimate for the first term, it suffices to draw a single sample from
the distribution DS(z

⋆) (we have oracle sample access to this distribution). For the second
term, we perform rejection sampling as follows: we draw a vector y ∼ D(z) and we check
whether y ∈ S, using the membership oracle access to the truncation set S. If y lies in S, we
use it to obtain the unbiased gradient estimate; otherwise, we reject this sample and repeat
the procedure. We remind the reader that in each iteration we project the guess vector
back to the feasible region B. Since the mass of the set S inside the ball B is non-trivial
and depends only on α (see Lemma 11), we get that the rejection sampling algorithm takes
poly(1/α) samples from the Boolean product distribution D(z) with high probability.

6.5 Strong-convexity of the negative log-likelihood

A crucial ingredient of our SGD algorithm is the strong convexity of ℓ(z), that is the negative
log-likelihood for the population model that corresponds to the truncated Boolean product
distribution DS(z). Specifically:

Definition 2. Let f : R
d → R with Hessian matrix H f . Then, f will be called λ-strongly convex if

it holds that H f � λI.

As a last step before the analysis of our SGD algorithm, we will use Lemma 13 to show
that ℓ(z) is strongly convex for any z ∈ B. Let H

ℓ
be the corresponding Hessian of ℓ with

the presence of arbitrary truncation S ⊆ Πd.
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Lemma 13 (Strong Convexity). Consider an arbitrary truncation set S ⊆ Πd whose mass with
respect to the true Boolean product distribution is D(p⋆; S) = α and the truncated Boolean product
distribution DS(p) with the respective natural parameter z with z ∈ B. Then H

ℓ
is λz-strongly

convex, where λz = poly(α, λ), where λ is introduced in Assumption 3.

Proof. We have that H
ℓ
= Covx∼DS(p)[x, x]. We will call this matrix Cp. Then, we have that

Cp = E
x∼DS(p)

[
(x− E

y∼DS(p)
[y])(x− E

y∼DS(p)
[y])T

]
.

For arbitrary vector v ∈ R
d with ‖v‖2 = 1, we have that to show that

vTCpv > 0 .

Let us set m = Ey∼DS(p)[y]. Note that

vTCpv = E
x∼DS(p)

[pv(x)] ,

where, after some algebraic manipulation, we can get:

pv(x) =
d

∑
j=1

vj(xj −mj)
d

∑
i=1

vi(xi −mi) = (vT(x−m))2 .

For the distribution DS(p), Assumption 3 holds (using Lemma 12, since the respective nat-
ural parameters z lie inside the ball B) with a positive constant λp = poly(α, λ). Specifically,
setting w = v and c = vTm, Assumption 3 implies that there exists a positive constant λp

such that:
Pr

x∼DS(p)

[
|vTx− c| > λp

]
≥ λp .

Hence, it follows that:
vTCpv > λ3

p > 0 ,

for any arbitrary unit vector v ∈ R
d.

6.6 Analysis of SGD

Up to that point, we have showed that, using Õ (d) samples, there exists an initial guess,

that is the empirical mean vector ẑ such that there exists a ball B of radius B = O

(√
log 1

α

)

centered at the ẑ, that contains the true natural parameters z⋆, with high probability. Ad-
ditionally, every point that falls inside that ball satisfies Assumptions 3 and 4 and that ℓ is
strongly convex inside B.

Apart from the previous analysis, in order to provide the theoretical guarantees of the
Projected SGD algorithm, we have to show that, at each iteration, the square of the norm of
the gradient vector of the ℓ is bounded. This is proved in the following lemma.

Let v(t) be the gradient of the negative log-likelihood that our SGD algorithm computes
at step t. We remind the reader that v(t) = −x(t) + y (see Algorithm 4).
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Lemma 14 (Bounded Variance Step). Let z⋆ ∈ R
d be the true natural parameter vector and let z

be the guess after step t− 1 according to which the gradient is computed. Assume that z and z⋆ lie
inside the ball B and that min{D(z; S),D(z⋆; S)} ≥ β. Then, we have that:

E

[
‖v(t)‖2

2

]
≤ 4d

β
.

Proof. Let p (resp. p⋆) be the corresponding mean parameter vector of the natural parameter
vector z (resp. z⋆). According to line 8 of the SGD Algorithm 4 and the Equation (6.2), we
have that

E

[
‖v(t)‖2

2

]
= E

x∼DS(p⋆)

[
E

y∼DS(p)
‖x− y‖2

2

]
,

and hence

E

[
‖v(t)‖2

2

]
≤ 2 E

x∼DS(p⋆)

[
‖x‖2

2

]
+ 2 E

y∼DS(p)

[
‖y‖2

2

]
. (6.5)

Now, since the measure of S is greater than β for both parameter vectors and since both
parameters lie inside the ball, we can appropriately bound the above quantity. Observe that:

E
y∼DS(p)

[
‖y‖2

2

]
≤ 1

β
E

y∼D(p)

[
‖y‖2

2

]
≤ d

β
.

Similarly, we have that:

E
x∼DS(p⋆)

[
‖x‖2

2

]
≤ d

β
.

The result follows by combining the two inequalities to Equation (6.5).

Let ℓ be the negative log-likelihood for the population model. We present a folklore SGD
theorem. The formulation we use is from [SSBD14].

Fact 1. Let f = ℓ. Assume that f is µ-strongly convex, that E[v(t)|z(t−1)] ∈ ∂ f (z(t−1)) and that

E

[
‖v(t)‖2

2

]
≤ ρ2. Let z⋆ ∈ argminz∈B f (z) be an optimal solution. Then,

E[ f (z)]− f (z⋆) ≤ ρ2

2µM
· (1 + log M) ,

where z is the output of the SGD Algorithm 4.

As an application of Fact 1 and Lemma 14, we obtain directly the following result.

Lemma 15. Let z⋆ be the true parameters of our model, f = ℓ, β = minz∈B D(z; S), µ ≥
minz∈B λz, then there exists a universal constant C > 0 such that

E[ f (z)]− f (z⋆) ≤ Cd

βµM
· (1 + log M) .

We are now ready to prove our main Theorem 4.
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Proof. Using Lemma 15 and applying Markov’s inequality, it follows that:

Pr
[

f (z)− f (z⋆) ≥ 3Cd

βµM
· (1 + log M)

]
≤ 1

3
.

We can amplify the probability of success to 1− δ by repeating N = log(1/δ) independently
from scratch the SGD procedure and keeping the estimation that achieves the maximum log-
likelihood value. The procedure is completely similar to the proof of Theorem 1 of [DGTZ18]
and we repeat it here for completeness. Let E be the set of our N estimates. The optimal
estimate would be z̃ = argminz∈E ℓ(z), but we cannot compute exactly f = ℓ. Using the
Markov’s inequality, we get that, with probability at least 1− δ, at least 2/3 of our estimates
satisfy

f (z)− f (z⋆) ≤ 3Cd

βµM
· (1 + log M) .

Let us set ζ := 3Cd
βµM (1 + log M). As we will see, using the strong convexity property, we get

that f (z)− f (z⋆), implies ‖z− z⋆‖2 ≤ cζ, for some c. Hence, with high probability 1− δ for
at least 2/3 of our estimations, the L2 norm is at most 2cζ. So, we can set appropriately the
value of z̃ to be a point that is at least 2cζ close to more that the half of our N estimations.
That value will satisfy f (z̃)− f (z⋆) ≤ ζ. Now, using Lemmata 12 and 11, there are quantities
cα = poly(α), cα,λ = poly(α, λ) such that β ≥ cα and µ ≥ cα,λ, where α is the constant of
Assumption 4 and λ is the parameter of Assumption 3. This leads to the following statement:

With probability at least 1− δ, we have that: f (z̃)− f (z⋆) ≤ c′ d
M (1 + log M), where c′ is

poly(1/α, 1/λ). Now, we can use the Lemma 13.5 of [SSBD14] about strong convexity:

Fact 2. If f is µ-strongly convex and z⋆ is a minimizer of f , then, for any z, it holds that:

f (z)− f (z⋆) ≥ µ

2
‖z− z⋆‖2

2 .

Using this result, we can get

‖z̃− z⋆‖2 ≤ c′′
√

d

M
· (1 + log M) ,

where c′′ is poly(1/α, 1/λ).
Hence, the number of samples is O(NM) and the running time is poly(N, M, d, 1/ǫ). For

N = log(1/δ) and M ≥ poly(1/α, 1/λ)Õ
(

d
ǫ2

)
, the result follows.
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A Appendix: Deferred Proofs

In this section, we provide the proof of Proposition 2.

Proof. We define the pair of functions on the space (p, q) ∈ (0, 1)2:

f (p, q) = p log
p

q
+ (1− p) log

1− p

1− q

and

g(p, q) =
(

log
p

1− p
− log

q

1− q

)2
.

Both functions have a root at p = q = 1/2. Notice that g is symmetric. Fix q. We will
denote with fq (resp. gq) the projection of f (resp. g) in the p-space, having fixed q. Then,
fq(q) = gq(q) = 0 is the unique root for p ∈ (0, 1). Let h(p) = fq(p)− gq(p). We claim that h
has a unique root at q for p ∈ (0, 1). The derivate of h with respect to p is equal to:

dh

dp
= log

(
p(1− q)

q(1− p)

)(
1− 2

p(1− p)

)
.
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Notice that: 1− 2
p(1−p)

< 0 ∀p ∈ (0, 1) and that:

log

(
p(1− q)

q(1− p)

)
=





< 0 for p < q ,

0 for p = q ,

> 0 for p > q .

Hence, h′(q) = 0 and, hence, h is strictly increasing for p < q and h is strictly decreasing
for p > q. Also, p = q is the unique solution of the equation h(p) = 0 for p ∈ (0, 1).

For p < q ⇒ h(p) < 0⇒ fq(p) < gq(p) and for p > q ⇒ h(p) < 0 ⇒ fq(p) < gq(p). So,
the desired inequality holds for the arbitrary fixed q ∈ (0, 1). Hence, the inequality follows
for every p, q ∈ (0, 1).
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