Skip to main content
Log in

Approximation Algorithms for Cost-robust Discrete Minimization Problems Based on their LP-Relaxations

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider robust discrete minimization problems where uncertainty is defined by a convex set in the objective. Assuming the existence of an integrality gap verifier with a bounded approximation guarantee for the LP relaxation of the non-robust version of the problem, we derive approximation algorithms for the robust version under different types of uncertainty, including polyhedral and ellipsoidal uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Yet, there is a third (intermediate) approach, namely, distributionally robust optimization (see, e.g., [17]), in which one optimizes the expectation over the worst-case choice from a set of distributions on the uncertain parameters.

  2. Specifically, we make \(O(\log _{1+\epsilon }n)\) independent runs of the algorithm and return the output with minimum objective.

  3. Using probability amplification techniques, the “o(1)” bound can be made arbitrarily small. Indeed, we can pick \(\ell \) independent samples \({\widehat{x}}^{1},\ldots , {\widehat{x}}^{\ell }\sim {\mathcal {B}}\), return \({\widehat{x}}^i\), where \(i\in {\text {argmin}}\max _{c\in {\mathcal {C}}}c^T{\widehat{x}}^i\), and note that \(\Pr [c^T{\widehat{x}}^{i}\le \alpha \cdot {\textsc {Opt}}_R,\quad \forall c\in {\mathcal {C}}]=1-o(1)^{\ell }\).

  4. Indeed, if \(\Pr _{{\widehat{x}}\sim {\mathcal {B}}}[c^T{\widehat{x}}\le \alpha \cdot {\textsc {Opt}}_R,\quad \forall c\in {\mathcal {C}}]=1-o(1)\), then for any \(c\in {\mathcal {C}}\), \({\mathbb {E}}_{{\widehat{x}}\sim {\mathcal {B}}}[c^T{\widehat{x}}]\le \alpha \cdot {\textsc {Opt}}_R+o(1)\cdot \max _{c\in {\mathcal {C}},x\in {\mathcal {S}}}c^Tx\). Using probability amplification techniques, the error term can be made arbitrarily small.

  5. It would have worked if the function was concave (this is the so-called Jensen’s inequality).

  6. In fact, the notion used in [31] is slightly stronger than the robust-in-expectation notion we use here as the objective there is to find an \(x:={\bar{x}}\) maximizing \(\min _{c\in {\mathcal {C}}}{\mathbb {E}}[c^Tx]\). However since in our analysis (Lemma 1), we compare the obtained solution to \(z^*_R\ge \min _{c\in {\mathcal {C}}}{\mathbb {E}}[c^T{\bar{x}}]\ge {\textsc {Opt}}_R\), we also achieve the same guarantee as in [31].

  7. If \(\beta _j=0\), then it is feasible to set \(u_j=+\infty \), which enforces \(x_j=0\), unless the problem has an unbounded optimum.

  8. Here we use the fact that the constraints in (59) are defined over all \(v\in {\mathbf {E}}(0,D^{-1})\cap {\mathbb {R}}^n_+\), which in turn requires the assumption \(D^{-1}\ge 0\).

  9. Note that \(|T|\le n\).

References

  1. Agra, A., Santos, M., Nace, D., Poss, M.: A dynamic programming approach for a class of robust optimization problems. SIAM J. Optim. 26(3), 1799–1823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Álvarez-Miranda, E., Ljubić, I., Toth, P.: A note on the Bertsimas & Sim algorithm for robust combinatorial optimization problems. 4OR 11(4), 349–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: Solving packing integer programs via randomized rounding with alterations. Theory Comput. 8(1), 533–565 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazzi, A., Fiorini, S., Huang, S., Svensson, O.: Small extended formulation for knapsack cover inequalities from monotone circuits. Theory Comput. 14(1), 1–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.S.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press (2009)

  6. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

  7. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications. Math. Program. 92(3), 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1), 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsimas, D., Sim, M.: Robust discrete optimization under ellipsoidal uncertainty sets. Technical report, Technical report, MIT (2004)

  11. Bertsimas, D., Sim, M.: Tractable approximations to robust conic optimization problems. Math. Program. 107(1–2), 5–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bienstock, D.: Approximate formulations for 0–1 knapsack sets. Oper. Res. Lett. 36(3), 317–320 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn. Springer Publishing Company, Incorporated (2011)

  14. Bougeret, M., Pessoa, A.A., Poss, M.: Robust scheduling with budgeted uncertainty. Discret. Appl. Math. 261, 93–107 (2019)

  15. Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: Algorithms to approximate column-sparse packing problems. ACM Trans. Algorithms 16(1), 10:1-10:32 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carr, R.D., Vempala, S.: Randomized metarounding. Random Struct. Algorithms 20(3), 343–352 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: Approximation algorithms for demand-robust covering problems. In FOCS

  19. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 624–633. ACM (2014)

  20. El Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9(1), 33–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elbassioni, K., Makino, K., Najy, W.: A multiplicative weight updates algorithm for packing and covering semi-infinite linear programs. Algorithmica (2019)

  22. Elbassioni, K., Mehlhorn, K., Ramezani, F.: Towards more practical linear programming-based techniques for algorithmic mechanism design. Theory Comput. Syst. 59(4), 641–663 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Escoffier, B., Hammer, P.L.: Approximation of the quadratic set covering problem. Discret. Optim. 4(3), 378–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feige, U., Feldman, M., Talgam-Cohen, I.: Oblivious Rounding and the Integrality Gap. In: APPROX/RANDOM 2016, volume 60, pages 8:1–8:23 (2016)

  25. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust combinatorial optimization with exponential scenarios. In: IPCO, pages 439–453 (2007)

  26. Goetzmann, K.-S., Stiller, S., Telha, C.: Optimization over integers with robustness in cost and few constraints. In: WAOA, pages 89–101 (2012)

  27. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, second corrected edition (1993)

  28. Hellerstein, L., Lidbetter, T., Pirutinsky, D.: Solving zero-sum games using best-response oracles with applications to search games. Oper. Res. 67(3), 731–743 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ilyina, A.: Combinatorial optimization under ellipsoidal uncertainty. Technischen Universität Dortmund. Ph.D. Thesis (2017)

  30. Jansen, K.: Approximate strong separation with application in fractional graph coloring and preemptive scheduling. Theor. Comput. Sci. 302(1–3), 239–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kawase, Y., Sumita, H.: Randomized strategies for robust combinatorial optimization. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 7876–7883. AAAI Press (2019)

  32. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kraft, D., Fadaei, S., Bichler, M.: Fast convex decomposition for truthful social welfare approximation. In: Liu, Tie-Yan, Qi, Qi, Ye, Yinyu (eds.) Web and Internet Economics - 10th International Conference, WINE 2014, Beijing, China, December 14-17, 2014. Proceedings, volume 8877 of Lecture Notes in Computer Science, pages 120–132. Springer (2014)

  34. Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the chernoff-hoeffding bounds. SIAM J. Comput. 26(2), 350–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pessoa, A.A., Pugliese, L.D.P., Guerriero, F., Poss, M.: Robust constrained shortest path problems under budgeted uncertainty. Networks 66(2), 98–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Poss, M.: Contributions to robust combinatorial optimization with budgeted uncertainty. Université de Montpellier. Oper- ations Research [cs.RO], 2016. tel-01421260

  37. Pritchard, D.: An LP with integrality gap 1+epsilon for multidimensional knapsack. CoRR, arXiv:1005.3324 (2010)

  38. Rostami, B., Chassein, A.B., Hopf, M., Frey, D., Buchheim, C., Malucelli, F., Goerigk, M.: The quadratic shortest path problem: complexity, approximability, and solution methods. Eur. J. Oper. Res. 268(2), 473–485 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM J. Comput. 29(2), 648–670 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag, Berlin, Heidelberg (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for the careful reading and useful remarks which helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Elbassioni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. Elbassioni: Partially supported by Abu Dhabi Education & Knowledge-Abu Dhabi Award for Research Excellence (AARE18-152)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbassioni, K. Approximation Algorithms for Cost-robust Discrete Minimization Problems Based on their LP-Relaxations. Algorithmica 84, 3622–3654 (2022). https://doi.org/10.1007/s00453-022-00987-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00987-z

Keywords

Navigation