
Parameterized Complexity of Maximum Edge
Colorable Subgraph

Akanksha Agrawal1, Madhumita Kundu2, Abhishek Sahu3, Saket Saurabh3,4,
and Prafullkumar Tale5

1 Ben Gurion University of the Negev, Israel. agrawal@post.bgu.ac.il
2 Indian Statistical Institute, Kolkata, India. kundumadhumita.134@gmail.com

3 The Institute of Mathematical Sciences, HBNI, Chennai, India.
{asahu, saket}@imsc.res.in

4 University of Bergen, Bergen, Norway.
5 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken,

Germany. prafullkumar.tale@mpi-inf.mpg.de

Abstract. A graph H is p-edge colorable if there is a coloring ψ :
E(H) → {1, 2, . . . , p}, such that for distinct uv, vw ∈ E(H), we have
ψ(uv) 6= ψ(vw). The Maximum Edge-Colorable Subgraph problem
takes as input a graph G and integers l and p, and the objective is to find
a subgraph H of G and a p-edge-coloring of H, such that |E(H)| ≥ l. We
study the above problem from the viewpoint of Parameterized Complex-
ity. We obtain FPT algorithms when parameterized by: (1) the vertex
cover number of G, by using Integer Linear Programming, and (2)
l, a randomized algorithm via a reduction to Rainbow Matching, and
a deterministic algorithm by using color coding, and divide and color.
With respect to the parameters p+k, where k is one of the following: (1)
the solution size, l, (2) the vertex cover number of G, and (3) l− mm(G),
where mm(G) is the size of a maximum matching in G; we show that the
(decision version of the) problem admits a kernel with O(k · p) vertices.
Furthermore, we show that there is no kernel of size O(k1−ε · f(p)), for
any ε > 0 and computable function f , unless NP ⊆ coNP/poly.

Keywords: Edge Coloring · Kernelization · FPT Algorithms · Kernel
Lower Bound.

Akanksha Agrawal: Funded by the PBC Fellowship Program for Outstanding Post-
Doctoral Researchers from China and India.
Saket Saurabh: Funded by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 819416), and Swarnajayanti Fellowship (No DST/SJF/MSA01/2017-18).

Prafullkumar Tale: Funded by the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research and innovation programme under grant agree-
ment SYSTEMATICGRAPH (No. 725978). Most parts of this work was completed
when the author was a Senior Research Fellow at The Institute of Mathematical
Sciences, HBNI, Chennai, India.

ar
X

iv
:2

00
8.

07
95

3v
1

 [
cs

.D
M

]
 1

8
A

ug
 2

02
0

2 Agrawal et al.

1 Introduction

For a graph G, two (distinct) edges in E(G) are adjacent if they share an end-
point. A p-edge coloring of G is a function ψ : E(G) → {1, 2, . . . , p} such that
adjacent edges receive different colors. One of the basic combinatorial optimiza-
tion problems Edge Coloring, where for the given graph G and an integer
p, the objective is to find a p-edge coloring of G. Edge Coloring is a very
well studied problem in Graph Theory and Algorithm Design and we refer the
readers to the survey by Cao et al. [4], the recent article by Grüttemeier et al.
[12], and references with-in for various known results, conjectures, and practical
importance of this problem.

The smallest integer p for which G is p-edge colorable is called its chromatic
index and is denoted by χ′(G). The classical theorem of Vizing [22] states that
χ′(G) ≤ ∆(G)+1, where ∆(G) is the maximum degree of a vertex in G. (Notice
that by the definition of p-edge coloring, it follows that we require at least ∆(G)
many colors to edge color G.) Holyer showed that deciding whether chromatic
index of G is ∆(G) or ∆(G)+1 is NP-Hard even for cubic graphs [14]. Laven and
Galil generalized this result to prove that the similar result holds for d-regular
graphs, for d ≥ 3 [18].

Edge Coloring naturally leads to the question of finding the maximum
number of edges in a given graph that can be colored with a given number of
colors. This problem is called Maximum Edge Colorable Subgraph which
is formally defined below.

Maximum Edge Colorable Subgraph
Input: A graph G and integers l, p
Output: A subgraph of G with at least l edges and its p-edge coloring or
correctly conclude that no such subgraph exits.

Note that the classical polynomial time solvable problem, Maximum Match-
ing, is a special case of Maximum Edge Colorable Subgraph (when p = 1).
Feige et al. [9] showed that Maximum Edge Colorable Subgraph is NP-hard
even for p = 2. In the same paper, the authors presented a constant factor ap-
proximation algorithm for the problem and proved that for every fixed p ≥ 2,
there is ε > 0, for which it is NP-hard to obtain a (1 − ε)-approximation algo-
rithm. Sinnamon presented a randomized algorithm for the problem [21]. To the
best of knowledge, Aloisioa and Mkrtchyan were the first to study this problem
from the viewpoint of Parameterized Complexity [2] (see Section 2 for defini-
tions related to Parameterized Complexity). Aloisioa and Mkrtchyana proved
that when p = 2, the problem is fixed-parameter tractable, with respect to
various structural graph parameters like path-width, curving-width, and the di-
mension of cycle space. Grüttemeier et al. [12], very recently, obtained kernels,
when the parameter is p + k, where k is one of the following: i) the number of
edges that needs to be deleted from G, to obtain a graph with maximum degree
at most p− 1,6, and ii) the deletion set size to a graph whose connected compo-

6 Recall that any graph with maximum degree at most p− 1, is p-edge colorable [22],
and thus, this number is a measure of “distance-from-triviality”.

Parameterized Complexity of Maximum Edge Colorable Subgraph 3

nents have at most p vertices. Galby et al. [11] proved that Edge Coloring is
fixed-parameter tractable when parameterized by the number of colors and the
number of vertices having the maximum degree.

Our Contributions: Firstly, we consider Maximum Edge Colorable Sub-
graph, parameterized by the vertex cover number, and we prove the following
theorem.

Theorem 1. Maximum Edge Colorable Subgraph, parameterized by the
vertex cover number of G, is FPT.

We prove the above theorem, by designing an algorithm that, for the given
instance, creates instances of ILP, and the resolves the ILP instance using the
known algorithm ([16], [17]). Intuitively, for the instance (G, l, p), suppose (H,φ)
is the solution that we are seeking for, and let X be a vertex cover of G. (We
can compute X by the algorithm of Chen et al. [6].) We “guess” H ′ = H[X] and
φ′ = φ|E(H′). Once we have the above guess, we try to find the remaining edges
(and their coloring), using ILP.

Next, we present two (different) FPT algorithms for Maximum Edge Col-
orable Subgraph, when parameterized by the number of edges in the desired
subgraph, l. More precisely, we prove following theorem.

Theorem 2. There exists a deterministic algorithm A and a randomized algo-
rithm B with constant probability of success that solves Maximum Edge Col-
orable Subgraph. For a given instance (G, l, p), Algorithms A and B termi-
nate in time O∗(4l+o(l)) and O∗(2l), respectively.

We remark that in the above theorem, the Algorithms A and B use different
sets of ideas. Algorithm A, uses a combination of the technique [7] of color-
coding [3] and divide and color. Algorithm B uses the algorithm to solve Rain-
bow Matching as a black-box. We note that the improvement in the running
time of Algorithm B comes at the cost of de-randomization, as we do not know
how to de-randomize Algorithm B.

Next we discuss our kernelization results. We show that (the decision version
of) the problem admits a polynomial kernel, when parameteized by p+k, where
k is one of the following: (a) the solution size, l, (b) the vertex cover number of G,
and (c) l−mm(G), where mm(G) is the size of a maximum matching in G; admits a
kernel with O(kp) vertices. We briefly discuss the choice of our third parameter.
By the definition of edge coloring, each color class is a set of matching edges.
Hence, we can find one such color class, in polynomial time [19], by computing
a maximum matching in a given graph. In above guarantee parameterization
theme, instead of parameterizing, say, by the solution size (l in this case), we
look for some lower bound (which is the size of a maximum matching in G, for
our case) for the solution size, and use a more refined parameter (l−mm(G)). We
prove the following theorem.

Theorem 3. Maximum Edge Colorable Subgraph admits a kernel with
O(kp) vertices, for every k ∈ {`, vc(G), l − mm(G)}.

4 Agrawal et al.

We complement this kernelization result by proving that the dependency of
k on the size of the kernel is optimal up-to a constant factor.

Theorem 4. For any k ∈ {`, vc(G), l− mm(G)}, Maximum Edge Colorable
Subgraph does not admit a compression of size O(k1−ε · f(p)), for any ε > 0
and computable function f , unless NP ⊆ coNP/poly.

2 Preliminaries

For a positive integer n, we denote set {1, 2, . . . , n} by [n]. We work with simple
undirected graphs. The vertex set and edge set of a graph G are denoted as V (G)
and E(G), respectively. An edge between two vertices u, v ∈ V (G) is denoted
by uv. For an edge uv, u and v are called its endpoints. If there is an edge uv,
vertices u, v are said to be adjacent to one another. Two edges are said to be
adjacent if they share an endpoint. The neighborhood of a vertex v is a collection
of vertices which are adjacent to v and it is represented as NG(v). The degree of
vertex v, denoted by degG(v), is the size of its neighbhorhood. For a graph G,
∆(G) denotes the maximum degree of vertices in G. The closed neighborhood of
a vertex v, denoted by NG[v], is the subset NG(v) ∪ {v}. When the context of
the graph is clear we drop the subscript. For set U , we define N(U) as union of
N(v) for all vertices v in U . For two disjoint subsets V1, V2 ⊆ V (G), E(V1, V2) is
set of edges where one endpoint is in V1 and another is in V2. An edge in the set
E(V1, V2) is said to be going across V1, V2. For an edge set E′, V (E′) denotes the
collection of endpoints of edges in E′. A graph H is said to be a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). In other words, any graph obtained from G
by deleting vertices and/or edges is called a subgraph of G. For a vertex (resp.
edge) subset X ⊂ V (G) (resp. ⊂ V (G)), G −X (G − Y) denotes the graph
obtained from G by deleting all vertices in X (resp. edges in Y). Moreover, by
G[X], we denote graph G− (V (G)−X).

For a positive integer p, a p-edge coloring of a graph G is a function φ :
E(G) → {1, 2, . . . , p} such that for every distinct uv, wx ∈ E(G) s.t. {u, v} ∩
{w, x} 6= ∅, we have φ(uv) 6= φ(wx). The least positive integer p for which there
exists a p-edge coloring of a graph G is called edge chromatic number of G and
it is denoted by χ′(G).

Proposition 1 ([22] Vizing). For any simple graph G, ∆(G) ≤ χ′(G) ≤
∆(G) + 1.

For a coloring function φ and for any i in {1, 2, . . . , p}, the edge subset φ−1(i)
is called the ith color class of φ. Notice that by the definition of p-edge coloring,
every color class is a matching in G. We define a balanced p-edge coloring of a
graph as a p-edge coloring in which the cardinality of any two color classes differ
by at most one.

Lemma 1 ([9] Lemma 1.4). For a graph G, let φ be a p-edge coloring of G.
Then, there exists a balanced p-edge coloring of G that can be derived from φ in
polynomial time.

Parameterized Complexity of Maximum Edge Colorable Subgraph 5

Observation 21 There exists a subgraph H of G such that H is p-edge col-
orable and |E(H)| ≥ l if and only if there exists p many edge disjoint matchings
M1,M2, . . . ,Mp in G such that |M1 ∪M2 ∪ · · · ∪Mp| ≥ l.

For a graph G, a set of vertices W is called an independent set if no two
vertices of W are adjacent with each other. A set X ⊆ V (G) is a vertex cover of
G if G− S is an independent set. The size of a minimum vertex cover of graph
is called its vertex cover number and it is denoted by vc(G). A matching of a
graph G is a set of edges of G such that every edge shares no vertex with any
other edge of matching. The size of maximum matching of a graph G is denoted
by mm(G). It is easy to see that mm(G) ≤ vc(G) ≤ 2 · mm(G).

Definition 1 (deg-1-modulator). For a graph G, a set X ⊆ V (G) is a deg-
1-modulator of G, if the degree of each vertex in G−X is at most 1.

Expansion Lemma. Let t be a positive integer and G be a bipartite graph with
vertex bipartition (P,Q). A set of edges M ⊆ E(G) is called a t-expansion of
P into Q if (i) every vertex of P is incident with exactly t edges of M , and (ii)
the number of vertices in Q which are incident with at least one edge in M is
exactly t|P |. We say that M saturates the end-points of its edges. Note that the
set Q may contain vertices which are not saturated by M . We need the following
generalization of Hall’s Matching Theorem known as expansion lemmas:

Lemma 2 (See, for example, Lemma 2.18 in [8]). Let t be a positive integer
and G be a bipartite graph with vertex bipartition (P,Q) such that |Q| ≥ t|P |
and there are no isolated vertices in Q. Then there exist nonempty vertex sets
P ′ ⊆ P and Q′ ⊆ Q such that (i) P ′ has a t-expansion into Q′, and (ii) no
vertex in Q′ has a neighbour outside P ′. Furthermore two such sets P ′ and Q′

can be found in time polynomial in the size of G.

Integer Linear Programming. The technical tool we use to prove that Max-
imum Edge Colorable Subgraph is fixed-parameter tractable (defined in
next sub-section) by the size of vertex cover is the fact that Integer Linear
Programming is fixed-parameter tractable when parameterized by the num-
ber of variables. An instance of Integer Linear Programming consists of a
matrix A ∈ Zm×q, a vector b̄ ∈ Zm and a vector c̄ ∈ Zq. The goal is to find a
vector x̄ ∈ Zq which satisfies Ax̄ ≤ b̄ and minimizes the value of c̄ · x̄ (scalar
product of c̄ and x̄). We assume that an input is given in binary and thus the
size of the input instance or simply instance is the number of bits in its binary
representation.

Proposition 2 ([16], [17]). An Integer Linear Programming instance of
size L with q variables can be solved using O(q2.5q+o(q)·(L+logMx)·log(Mx·Mc))
arithmetic operations and space polynomial in L+logMx, where Mx is an upper
bound on the absolute value that a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c̄.

6 Agrawal et al.

Parameterized Complexity. The goal of parameterized complexity is to find ways
of solving NP-hard problems more efficiently than brute force by associating a
small parameter to each instance. Formally, a parameterization of a problem
is assigning a positive integer parameter k to each input instance and we say
that a parameterized problem is fixed-parameter tractable (FPT) if there is an
algorithm, that given an instance (I, k), resolves in time bounded by f(k)·|I|O(1),
where |I| is the size of the input I and f is an arbitrary computable function
depending only on the parameter k.

Such an algorithm is called an FPT algorithm and such a running time is
called FPT running time. Another central notion in the field of Parameterized
Complexity is kernelization. A parameterized problem is said to admit a h(k)-
kernel if there is a polynomial-time algorithm (the degree of the polynomial
is independent of k), called a kernelization algorithm, that, given an instance
(I, k) of the problem, outputs an instance (I ′, k′) of the problem such that:
(i) |I ′| ∈ k′ ≤ h(k), and (ii) (I, k) and (I ′, k′) are equivalent instances of the
problem i.e. (I, k) is a Yes instance if and only if (I ′, k′) is a Yes instance of
the problem. It is known that a decidable problem admits an FPT algorithm if
and only if there is a kernel. If the function h(k) is polynomial in k, then we
say that the problem admits a polynomial kernel. For more on parameterized
complexity, see the recent books [8,10].

We say a parameter k2 is larger than a parameter k1 if there exists a com-
putable function g(·) such that k1 ≤ g(k2). In such case, we denote k1 � k2
and say k1 is smaller than k2. If a problem if FPT parameterized by k1 then
it is also FPT parameterized by k2. Moreover, if a problem admits a kernel of
size h(k1) then it admits a kernel of size h(g(k2)). For a graph G, let X be
its minimum sized deg-1-modulator. By the definition of vertex cover, we have
|X| ≤ vc(G). This implies |X| � vc(G). In the following observation, we argue
that for “non-trivial” instances, vc(G) � l and |X| � l − mm(G).

Observation 22 For a given instance (G, l, p) of Maximum Edge Colorable
Subgraph, in polynomial time, we can conclude that either (G, l, p) is a Yes
instance or vc(G) � l and |X| � (l − mm(G)), where X is a minimum sized
deg-1-modulator of G.

Proof. Let M1 be a maximum sized matching in graph G. Such matching can be
found in polynomial time using the algorithm by Micali and Vazirani [19]. If l ≤
|M1| = mm(G) then we can conclude that (G, l, p) is a Yes instance. Otherwise,
we are working with an instance for which l > mm(G). As 2mm(G) ≥ vc(G), we
have l > vc(G)/2 which implies vc(G) � l.

Consider the graph G′ = G−M1. Let M2 be a maximum sized matching in
G′. If |M1|+ |M2| ≥ l then (G, l, p) is a Yes instance. Otherwise, we are working
with an instance for which |M2| < l−|M1|. This implies |V (M2)| < 2(l−mm(G)).
Consider the graph G − V (M2). The only edges present in this graph are the
ones in M1. Hence, every connected component in G−V (M2) has degree at most
one. This implies |X| ≤ |V (M2)| ≤ 2(l − mm(G)) where X is a minimum sized
deg-1-modulator of G. ut

Parameterized Complexity of Maximum Edge Colorable Subgraph 7

3 FPT Algorithm Parameterized by the Vertex Cover
Number of the Input

In this section, we consider the problem Maximum Edge Colorable Sub-
graph, when parameterized the vertex cover number of the input graph. Let
(G, l, p) be an instance of the problem, where the graph G has n vertices. We
assume that G has no isolated vertices as any such vertex is irrelevant for an
edge coloring. We begin by computing a minimum sized vertex cover, X of G,
in time O(2|X|n|X|), using the algorithm of Chen et al. [5].

We begin by intuitively explaining the working of our algorithm. We assume
an arbitrary (but fixed) ordering over vertices in G, and let W = V (G) \ X.
Suppose that we are seeking for the subgraph H, of G, with at least ` edges
and the coloring φ : E(H) → {1, 2, . . . , p}. We first “guess” the intersection
of H with G[X], i.e., the subgraph H ′ of G[X], such that V (H) ∩ X = H ′

and V (H) ∩ E(G[X]) = H ′. (Actually, rather than guessing, we will go over
all possible such H ′s, and do the steps, that we intuitively describe next.) Let
φ′ = φE(H′). Based on (H ′, φ′), we construct an instance of ILP, which will help
us “extend” the partial solution (H ′, φ′), to the solution (if such an extended
solution exists), for the instance (G, `, p). Roughly speaking, the construction of
the ILP relies on the following properties. Note that W is an independent set
in G, and thus edges of the solution that do not belong to H ′, must have one
endpoint in X and the other endpoint in W . Recall that H has the partition
(given by φ) into (at most) p matchings, say, M1,M2, . . . ,Mp′ . The number of
different neighborhoods in X, of vertices in W , is bounded by 2k. This allows
us to define a “type” for Mi −E(H ′), based on the neighborhoods, in X, of the
vertices appearing in Mi − E(H ′). Once we have defined these types, we can
create a variable YT,α, for each type T and color class α (in {0, 1, . . . , p′}). The
special color 0 will be used for assigning all the edges that should be colored
using the colors outside {1, 2, . . . , p′} (and we will later see that it is enough to
keep only one such color). We would like the variable YT,α to store the number
of matchings of type T that must be colored α. The above will heavily rely on
the fact that each edge in H that does not belong to H ′, must be adjacent to a
vertex in X, this in turn will facilitate in counting the number of edges in the
matching (via the type, where the type will also encode the subset of vertices in
X participating in the matching). Furthermore, only for α = 0, the variable YT,α
can store a value which is more than 1. Once we have the above variable set,
by adding appropriate constraints, we will create an equivalent instance of ILP,
corresponding to the pair (H ′, φ′). We will now move to the formal description
of the algorithm.

For S ⊆ X, let Γ (S) be the set of vertices in W whose neighborhood in G
is exactly S, i.e., Γ (S) := {w ∈ W | NG(w) = S}. We begin by defining a tuple,
which will be a “type”, and later we will relate a matching (between W and X),
to a particular type.

8 Agrawal et al.

Fig. 1. The tuple T = 〈{x2, x3, x4};N(w1), N(w2), N(w3), ∅, ∅〉 is a type. The matching
{x2w1, x3w2, x4w3} is of T.

Definition 2 (Type). A type T = 〈X ′ = {x1, x2, . . . , x|X′|};S1, S2, . . . , S|X|〉
is a (|X| + 1) sized tuple where each entry is a subset of X and which satisfy
following properties.

1. The first entry, X ′, is followed by |X ′| many entries which are non-empty
subsets of X and the remaining (|X|+ 1− |X ′|) entries are empty sets.

2. Any non-empty set S of X appears at most |Γ (S)| many times from the
second entry onward in the tuple.

3. For every i ∈ {1, 2, . . . , |X ′|}, we have xi ∈ Si.

See Figure 1 for an example. We note that the number of different types is at
most 2|X| ·2|X|2 ∈ 2O(|X|2) and it can be enumerated in time 2O(|X|2) ·nO(1). We
need following an auxiliary function corresponding to a matching, which will be
useful in defining the type for a matching. Let M be a matching across X,W (M
has edges whose one endpoint is in X and the other endpoint is in W). Define
τM : X ∩ V (M) → W ∩ V (M), as τM (x) := w if xw is an edge in M . We drop
when the context is clear.

Definition 3 (Matching of type T). A matching M = {xτ(x)| x ∈ X and
τ(x) ∈ W}, is of type T = 〈X ′;S1, S2, . . . , S|X|〉 if V (M) ∩ X = X ′ (:=
{x1, x2, . . . , x|X|′}), and Sj = N(τ(xj)) for every j in {1, 2, . . . , |X ′|}.

We define some terms used in the sub-routine to construct an ILP in-
stance. For a type T = 〈X ′;S1, S2, . . . , S|X|〉, we define |T| := |X ′|. Note that
|T| is the number of edges in a matching of type T. For a vertex x ∈ X
and a type T = 〈X ′;S1, S2, . . . , S|X|〉, value of is present(x,T) is 1 if x ∈
X ′, and otherwise it is 0. For w ∈ W , define false twins(w) as the num-
ber of vertices in W which have the same neighborhood as that of w. That is,

Parameterized Complexity of Maximum Edge Colorable Subgraph 9

false twins(w) = |{ŵ ∈ W | N(w) = N(ŵ)}|. For a vertex w ∈ W and a
type T = 〈X ′;S1, S2, . . . , S|X|〉, the value of nr nbr present(w,T) denotes the
number of different js in {1, 2, . . . , |X ′|} for which Sj = N(w). We remark that
the values of all the functions defined above can be computed in (total) time

bounded by 2O(|X|2) · nO(1).

Constructing ILP instances. Recall that G is the input graph and X is a
(minimum sized) vertex cover for G. Let T be the set of all types. For every
subgraph H ′ of G[X], a (non-negative) integer p0 ≤ p, and a p0-edge coloring
φ′ : E(H ′) → {0, 1, 2, . . . , p0}, we create an instance I(H′,φ′), of ILP as follows.
Let [p0]′ = {0, 1, 2, . . . , p0}. Define a variable YT,α for every type T and integer
α ∈ [p0]′. (These variables will be allowed to take values from {0, 1, . . . , p}).
Intuitively speaking, for α in [p0]′, the value assigned to YT,α will indicates that
there is a matching of type T which is assigned the color α. Moreover, for α = 0,
the value of YT,0 will indicate that there are YT,0 many matchings of type T,
each of which must be assigned a unique color which is strictly greater than p0.
Recall that for a type T ∈ T, |T| is the number of edges in a matching of T. We
next define our objective function, which (intuitively speaking) will maximize
the number of edges in the solution.

maximize
∑

T∈T;α∈[p0]′
YT,α · |T|

We next discuss the set of constraints.
For every vertex x in X, we add the following constraint, which will ensure

that x will be present in at most p matchings:∑
T∈T;α∈[p0]′

YT,α · is present(x,T) ≤ p− degH′(x). (ConstSetI)

For each x ∈ X, an edge xx̂ incident on x in H ′, and T ∈ T, we add the
following constraint, which will ensure that no other edge incident on x and some
vertex in W is assigned the color φ′(xx̂):

YT,φ′(xx̂) · is present(x,T) = 0. (ConstSetII)

We will next add the following constraint for each w ∈ W , which will help
us in ensuring that w is present in at most p matchings:

∑
T∈T;α∈[p0]′

YT,α · nr nbr present(w,T) ≤ p · false twins(w). (ConstSetIII)

Notice that for two vertices w1, w2 ∈ W , such that N(w1) = N(w2), the
above constraints corresponding to w1 and w2 is exactly the same (and we skip
adding the same constraint twice).

10 Agrawal et al.

When α 6= 0, we want to ensure that at most one matching that is colored
α. Thus, for α ∈ [p0], add the constraint:∑

T∈T
YT,α ≤ 1. (ConstSetIV)

Note that we want at most p color classes, which will be ensured by our final
constraint as follows. ∑

T∈T;α∈[p0]′
YT,α ≤ p. (ConstSetV)

This completes the construction of the ILP instance of I(H′,φ′).

Algorithm for Maximum Edge Colorable Subgraph: Consider the given
instance (G, l, p) of Maximum Edge Colorable Subgraph. The algorithm
will either return a solution (H,φ) for the instance, or conclude that no such
solution exists. We compute a minimum sized vertex cover, X of G, in time
O(2|X|n|X|), using the algorithm of Chen et al. [5]. For every subgraph H ′

of G[X], a (non-negative) integer p0 ≤ p, and a p0-edge coloring φ′ : E(H ′) →
{0, 1, 2, . . . , p0}, we create the instance I(H′,φ′), and resolve it using Proposition 2.
(In the above we only consider those φ′ : E(H ′) → {0, 1, 2, . . . , p0}, where each
of the color classes are non-empty.) If there exists a tuple (H ′, φ′) for which the
optimum value of the corresponding ILP instance is at least (l − |E(H ′)|) then
algorithm constructs a solution (H,φ) as specified in the proof of Lemma 4 and
returns it as a solution. If there is no such tuple then the algorithm concludes
that no solution exists for a given instance.

For a solution (H,φ : E(H) → [p]) for the instance (G, l, p), we say that
(H,φ) is a good solution, if for some p0 ∈ [p], for each e ∈ E(H) ∩ E(G[X]),
we have φ(e) ∈ [p0]. Note that if (G, l, p) has a solution, then it also has a good
solution. We argue the correctness of the algorithm in the following two lemmas.

Lemma 3. If (G, l, p) has a good solution (H,φ) then the optimum value of the
ILP instance I(H′,φ′) is at least (l−|E(H ′)|), where H ′ = H[X] and φ′ : E(H ′)→
{1, 2, . . . , p0}, such that φ′ = φ|E(H′) and p0 = max{φ(e) | e ∈ E(H)∩E(G[X])}.

Proof. Let M1,M2, . . . ,Mp be the partition of edges in E(H) \E(H ′) according
to the colors assigned to them by φ, and M = {Mi | i ∈ [p]} \ {∅}. Notice that
each Mi is a matching, where the edges have one endpoint in X and the other
endpoint in W . We create an assignment asg : Var(H′,φ′) → [p0]′, where Var(H′,φ′)

is the set of variables in the instance I(H′,φ′) as follows. Initialize asg(z) = 0, for
each z ∈ Var(I(H′,φ′)). For i ∈ [p], let Ti be the type of Mi and pi = φ(e), where
e ∈Mi. For each i ∈ [p], we do the following. If pi > p0, then increment asg(YTi,0)
by one, and otherwise increment value of asg(YTi,pi) by one. This completes the
assignment of variables. Next we argue that asg satisfies all constraints in I(H′,φ′)

and the objective function evaluates to a value that is at least (l − |E(H ′)|).

Parameterized Complexity of Maximum Edge Colorable Subgraph 11

As there are at most p matchings, we have
∑

T∈T;α∈[p0]′ YT,α ≤ p, and thus,
the constraint in ConstSetV is satisfied.

We will now argue that each constraint in ConstSetI is satisfied. To this end,
consider a variable x ∈ X, and let ax =

∑
T∈T;α∈[p0]′ asg(YT,α)·is present(x,T).

Since H is p-edge colorable, degH(x) ≤ ∆(H) ≤ p. Hence, there are at most p
edges incident on x in H (Proposition 1). For any T ∈ T and α ∈ [p0]′, if
asg(YT,α) · is present(x,T) 6= 0, then there are asg(YT,α) many matchings of
type T in M, each of which contains an edge incident on x. Moreover, each
such matching contains a different edge incident on x. Since φ is a p-edge
coloring of H, we have ax + degH′(x) = degH(x) ≤ p. This implies that
ax =

∑
T∈T;α∈[p0]′ asg(YT,α) · is present(x,T) ≤ p − degH′(x). Thus we con-

clude that all contraints in ConstSetI are satisfied.
Now we argue that all constraints in ConstSetII are satisfied. Consider x ∈ X,

an edge xx̂ incident on x in H ′, and T ∈ T such that is present(x,T) = 1.
Since xx̂ ∈ E(H ′), there is no matching Mi ∈ M, such that pi = φ′(xx̂) and
M contains an edge incident on x. Thus we can obtain that asg(YT,φ′(xx̂)) =
0 (recall that is present(x,T) = 1). From the above we can conclude that
asg(YT,φ′(xx̂)) · is present(x,T) = 0.

Next we argue that all constraints in ConstSetIII are satisfied. To this end,
consider a (maximal) subset W ′ = {w1, w2, . . . , wr} ⊆ W , such that any two
vertices in W ′ are false twins of each other. Notice that for each j, j′ ∈ [r],∑

T∈T;α∈[p0]′ YT,α · nr nbr present(wj ,T) ≤ p · false twins(wj) is exactly the

same as
∑

T∈T;α∈[p0]′ YT,α · nr nbr present(wj ,T) ≤ p · false twins(wj′).

Consider any w ∈ W ′, T ∈ T, and α ∈ [p0]′, such that we have asg(YT,α) ·
nr nbr present(w,T) 6= 0. There are asg(YT,α) many matchings in M each
of which contains nr nbr present(w,T) many edges incident vertices in W ′.
Hence

∑
T∈T;α∈[p0]′ asg(YT,α) ·nr nbr present(wj ,T) is the number of edges in-

cident on W ′ in H. Note that p · false twins(w) is the maximum number of
edges in H which can be incident on vertices in W ′. Thus we can conclude that∑

T∈T;α∈[p0]′ asg(YT,α) · nr nbr present(wj ,T) ≤ p · false twins(w).

For any α ∈ [p0], there is at most one matching in M whose edges are
assigned the color α. This implies that

∑
T∈T asg(YT,α) ≤ 1. Hence all constraints

in ConstSetIV are satisfied.
There are at least (l − |E(H ′)|) many edges in E(H) \ E(H ′) and each

such edge has one endpoint in X and another in W . Every edge in match-
ing contributes exactly one to the objective function. Thus we can obtain that∑

T∈T;α∈[p0]′ asg(YT,α) · |T| ≥ (l − |E(H ′)|). This concludes the proof. ut

Lemma 4. If there is (H ′, φ′) for which the optimum value of the ILP instance
I(H′,φ′), is at least (l − |E(H ′)|), then the Maximum Edge Colorable Sub-
graph instance (G, l, p) admits a solution. Moreover, given asg : Var(H′,φ′) →
[p0]′, where Var(H′,φ′), we can be compute (H,φ) in polynomial time.

Proof. We first describe an algorithm, which given an assignment asg : Var(H′,φ′) →
[p0]′ for I(H′,φ′), such that the optimum value of objective functions is at least
(l− |E(H ′)|), constructs a solution (H,φ) for (G, l, p). We will construct (H,φ),

12 Agrawal et al.

such that (1) E(H ′) ⊆ E(H), (2) φ is a p-edge coloring of H which has at
least l edges, and (3) φ|E(H′) is identical to that of φ′. For every variable
YT,α ∈ Var(H′,φ′), such that asg(YT,α) 6= 0, the algorithm will constructs a match-
ing Mα with |T| edges. At each step, the edges in Mα are added to H, and φ
assigns the color α to all the edges in Mα. We will argue that by the end of
this process, the number of edges in H is at least l. Recall that there is a fixed
ordering on vertices in X and W . and for a subset Si of X, Γ (Si) denotes the
collection of vertices in W whose neighborhood in G is exactly Si. We say that
Γ (Si) is H-degree balanced set if for any two vertices w1, w2 in the set, degH(w1)
and degH(w2) differs by at most one.

Algorithm to construct (H,φ) : Initialize V (H) = V (G), E(H) = E(H ′), and
φ|E(H′) = φ′. Consider α > 0 and a type T = 〈X ′;S1, S2, . . . , S|X|〉 for which
asg(YT,α) 6= 0. For the sake of clarity, assume X ′ = {x1, x2, . . . , x|X′|}. The
algorithm constructs a matching MT,α, of type T in the following way. Initialize
MT,α = ∅. For i in {1, 2, . . . , |X ′|}, let wi be a vertex in Γ (Si) such that (a) no
edge incident on wi has already been added to MT,α, (b) degree of wi in H is
at most p− 1, and (c) Γ (Si) remains H-degree-balanced after increasing degree
of wi by one. If there are more than one vertices that satisfy these properties,
select the lowest indexed vertex as wi. Add edge the edge xiw

i to MT,α before
moving to next value of i. This completes the construction of MT,α. Add all the
edges in MT,α to H and assign φ(e) = α, for every edge e in M .

Now we will consider variables YT,0, such that asg(YT,0) 6= 0, for T ∈ T. Set
α0 := p0. Consider T ∈ T, and let asg(YT,0) = aT. For each (increasing) β ∈ [aT],
do the following. We construct a matching M ′T,β of type T similar to the one
that we diiscussed earlier. That is, initialize M ′T,β = ∅. For i in {1, 2, . . . , |X ′|},
let wi be a vertex in Γ (Si) such that (a) no edge incident on wi has already been
added to MT,β , (b) degree of wi in H is at most p − 1, and (c) Γ (Si) remains
H-degree-balanced after increasing degree of wi by one. If there are more than
one vertices that satisfy these properties, select the lowest indexed vertex as wi.
Add all the edges in M ′T,β to H, set φ(e) = α0 + β, and move to the next choice
of β (if it exists). This completes the description of the algorithm.

It is clear from the description of the algorithm that it can be executed
in polynomial time. We next argue that: i) for each α ∈ [p], the algorithm
constructs MT,α with |T| edges, for whenever asg(YT,α) = 1, and ii) for each
β ∈ [aT] the algorithm constructs MT,β with |T| edges, whenever asg(YT,0) 6= 0.
We argue only the first statement, the proof of the second statement can be
obtained by following similar arguments. For the sake of contradiction, assume
that there is α ∈ [p] and T = 〈X ′;S1, S2, . . . , S|X|〉, for which the algorithm could
not construct MT,α of size T, or in other words, by construction, the algorithm
could not construct MT,α of type T. In the above, we consider the lowest iteration
under which (α,T) was under consideration and MT,α of type T could not be
constructed. Thus, for some xi ∈ X ′, for every vertex w ∈ Γ (Si) at least one
of the following holds: (a) w has an edge incident on it which has already been
added to MT,α, (b) w has degree exactly p in H, or (c) Γ (Si) does not remains
an H-degree-balanced after increasing the degree of w in H by one. We consider

Parameterized Complexity of Maximum Edge Colorable Subgraph 13

following two exhaustive cases: Case (1) There exists a vertex in Γ (Si) whose
degree in H is p. Case (2) Every vertex in Γ (Si) has degree at most (p − 1) in
H. We argue that Case (1) leads to the contradiction that the constraints in
ConstSetIII is satisfied. We argue that in Case (2), T is not a type, again leading
to a contradiction.

Consider Case (1). Since the algorithm failed for the first time, Γ (Si) is
an H-degree balanced set and each vertex in it has a degree at most p, be-
fore the algorithm started processing for the iteration for α and T. As Γ (Si)
at the current processing contains a vertex of degree p in H, every vertex
in it has degree either (p − 1) or p in H. Suppose there are n0 vertices in
Γ (S) which have degree (p − 1). Let w be a vertex in Γ (S). By definition,
we have false twins(w) = |Γ (S)|. Let L denote the summation on the left
hand side of the constraint of type (ConstSetIII) corresponding to w. Let L′ be
the summation of asg(YT′,α) which have already been processed by the algo-
rithm. Note that L ≥ L′ + asg(YT,α) · nr nbr present(w,T). Recall that for
T′ ∈ T and integer α′ if both asg(YT′,α′) and nr nbr present(w,T′) are non-
zeros, the algorithm adds asg(YT′,α′) · nr nbr present(w,T′) many edges inci-
dent on vertices in Γ (Si). Since there are n0 vertices with degree (p − 1) and
Γ (Si) many vertices of degree p in H, there are p · (|Γ (Si)| − n0) + (p− 1) · n0
many edges incident on vertices in Γ (Si). As Γ (Si) is a subset of W , which
is an independent set in G and hence in H, all these edges are across X,W .
Hence, algorithm has added L′ = p · |Γ (Si)| + n0 · (p − 1) many edges to H
before it starts processing at α, T. Since n0 many edges, each of which incident
on vertices in Γ (Si) which has degree (p − 1), is not sufficient to construct a
matching of T, we have asg(YT,α) · nr nbr present(w,T) ≥ n0 + 1. This implies
L ≥ L′+asg(YT,α)·nr nbr present(w,T) ≥ p·(|Γ (Si)|−n0)+(p−1)·n0+n0+1 ≥
p · |Γ (Si)|+ 1. As |Γ (Si)| = false twins(w), this contradicts the fact that con-
straint in ConstSetIII are satisfied.

Consider Case (2). Before the algorithm starts processing α, T, every vertex
has degree at most (p−1) and Γ (Si) is an H-degree balanced set. The algorithm
can select one edge incident on every vertex in Γ (Si) to add it to the matching.
Note that the algorithm selects an edge incident on vertices in Γ (Si) if and only
if the entry in the tuple is Si. Since the algorithm failed in this case, we can
conclude that Si appears at least |Γ (Si)| + 1 many times from second place
onward in T. This contradicts the second property mentioned in Definition 2.

As discussed in the previous two paragraphs, both Case (1) and Case (2)
lead to contradictions. Hence our assumption that the algorithm is not able to
construct a matching at certain steps is wrong. This implies the algorithm will
always return (H,φ).

We now argue that φ is an edge coloring of H. Consider an arbitrary vertex
x in X. Consider an edge xx̂ in H ′ which is incident on x. By the construction of
ConstSetII, for any T if is present(x,T) = 1, then asg(YT,φ′(xx̂)) = 0. Hence, at
no step the algorithm modifies φ in a way that it assign color φ(xx̂) to a newly
added edge which is incident on x. Moreover, by the constraints in ConstSetIV,
for α > 0 and T if asg(YT,α) 6= 0, then for any other T′ ∈ T, asg(YT′,α) = 0.

14 Agrawal et al.

Hence, the algorithm does not add more that one edge of color α on any vertex
in x. Consider an arbitrary vertex w in W . At the start of the process, there is
no edge incident on w. At any stage, the algorithm adds at most one edge to H
and assigns it a color that has not been used previously and will not be used
later. Hence, every edge incident on w has been assigned to a different color. As
x,w are arbitrary vertices in X,W , respectively, we can conclude that φ is an
edge coloring of H.

We argue that φ uses at most p colors. Consider a vertex x in X. Because
of the constraints in ConstSetI, the algorithm adds at most p − degH′(x) many
edges incident on x. Hence there are at most p edges incident on any vertices in
X. Consider a vertex w in W . As mentioned before, there are no edges incident
on w at the start of the process. By the constraint in ConstSetV, the process
creates at most p matchings. Hence there are at most p many edges incident on
w. As x,w are arbitrary vertices in X,W , respectively, we can conclude that φ
is a p-edge coloring of H.

The algorithm adds YT,α · |T| many edges for every variable which has non-
zero value. Since the objective function is at least (l−|E(H ′)|), we can conclude
that H has at least l edges. This concludes the proof of the lemma. ut

We are now in a position to state the main result of this section.

Proof (Proof of Theorem 1). We prove that there exists an algorithm which
given a graph G on n vertices and integers l, p as input either outputs a subgraph
H of G such that H is p-edge colorable and has at least l edges, or correctly
concludes that no such subgraph exists. Moreover, the algorithm terminates
in time f(vc(G)) · nO(1), where f(vc(G)) is some computable function which
depends only on vc(G).

We argue that the algorithm described in this section satisfy desired prop-
erties. The correctness of the algorithm is implied by Lemma 3 and Lemma 4.
We now argue that the algorithm runs in FPT time. The algorithm computes an
optimum vertex cover X in time 2vc(G) · |V (G)|O(1). It then enumerates all tuples
of type (H ′, φ′) where H ′ is a subgraph of G[X] and φ′ is a p0-edge coloring of

H ′ for some p0 ≤ p. There are 2O(|X|2) many possible choices for H ′. Recall that
the algorithm only considers φ′ in which for every j in {1, 2, . . . , p0} there is an
edge xx̂ in E(H ′) such that φ′(xx̂) = j. Hence p0 ≤ |X|2. This implies that the

total number of choices for φ is at most |X|O(|X|2). Hence the algorithm creates

at most 2O(|X|2 log |X|) many instances of ILP.

The algorithm uses Proposition 2 to solve each instance of ILP. To bound
the time taken for this step, we bound the number of variables in each instance of
ILP. As mentioned earlier, the number of different types is at most 2|X| ·2|X|2 ∈
2O(|X|2) and all of them can be enumerated in time 2O(|X|2) · nO(1). Since, α
can have at most p0 + 1 ≤ O(|X|2) different values, every instance has 2O(|X|2)

many variables. By construction, upper bounds on the absolute value a variable
can take in a solution and the largest absolute value of a coefficient used is
linearly bounded by n. By Proposition 2, this instance can be solved in time

Parameterized Complexity of Maximum Edge Colorable Subgraph 15

22
O(|X|2) · nO(1). Hence the algorithm terminates in time FPT in vc(G) which

concludes the proof. ut

4 An FPT Algorithm Parameterized by the Number of
Edges in a Desired Subgraph

In this section, we prove Theorem 2. We say a randomized algorithm B solves
Maximum Edge Colorable Subgraph problem with constant probability of
success if given an instance (G, l, p) such that G contains a subgraph H which is
p-edge colorable and |E(H)| ≥ l, the algorithm returns a solution with constant
probability. Our first algorithm uses the technique of color-coding combined
with divide and color introduced in [7]. We present a randomized version of this
algorithm which can be de-randomized using standard techniques (see for ex-
ample [8]). For the second algorithm, we reduce a given instance of Maximum
Edge Colorable Subgraph to an equivalent instance of Rainbow Match-
ing. This reduction along with the known algorithm for the later problem results
in a different randomized FPT algorithm for Maximum Edge Colorable Sub-
graph, with improved running time.

4.1 A Deterministic FPT Algorithm

Given an instance (G, l, p) of Maximum Edge Colorable Subgraph prob-
lem, we can assume l ≡ 0 (mod p). If it is not the case, then let l ≡ r (mod p)
for some r ∈ [p−1]. We create another instance (G′, l′ = l+(p−r), p) where G′ is
the graph obtained obtained by adding (p−r) isolated edges. Formally, V (G′) =
V (G)∪{x1, x2, . . . , x2(p−r)} and E(G′) = E(G)∪{x2i−1x2i| i ∈ {1, 2, . . . , p−r}}.
It is easy to see that (G′, l + (p− r), p) is a Yes instance if and only if (G, l, p)
is a Yes instance. By Lemma 1, if (G′, l′, p) is a Yes instance of Maximum
Edge Colorable Subgraph problem, then there is a p-edge-coloring of G′

where exactly q = l′/p edges are colored by every color. Hence, in the remaining
section, we assume that for a given instance (G, l, p), we have l ≡ 0 (mod p).

We present a randomized recursive algorithm (Algorithm 4.1) to solve the
problem and later specify how to de-randomize it. The central idea is to partition
the edge set into two parts such that one part contains all the solution edges
colored by the first ba/2c colors and the other part contains all the solution edges
colored by the remaining da/2e colors. We determine the answer to these sub-
problems recursively and use them to return the answer to the original problem.
To formalize these ideas, we define the term D(a,q)[X] for a ∈ N, X ⊆ E(G′),
where D(a,q)[X] is true if and only if there are a edge-disjoint matchings, each of
size q, in X. Instead of computing D(a,q)[X], the algorithm computes D?

(a,q)[X].

The relationship between these terms is as follows: if D?
(a,q)[X] is true then

D(a,q)[X] is always true, but if D(a,q)[X] is true then D?
(a,q)[X] is true only

with sufficiently high probability. Thus, we get a one-sided error Monte Carlo
algorithm. We boost the success probability of correct partitions by repeating
the partitioning process many times, to achieve constant success probability. We

16 Agrawal et al.

Input : A subset X ⊆ E(G), integers 1 ≤ a ≤ p and q.
Output: Da,q[X] (Da,q[X] is true if and only if there are a edge disjoint

matchings, each of size q, in G[X])
if a == 1 then

return true if there is a matching of size q in G[X], and otherwise false.
end
D?

(a,q)[X] = false;
for 2aq log (4l) many times do

Partition X into L]R uniformly at random;
D?

(ba/2c,q)[L] = Faster-Randomized-Algorithm(L, ba/2c, q);
D?

(da/2e,q)[R] = Faster-Randomized-Algorithm(R, da/2e, q);
if D?

(a,q)[X] == false then
D?

(a,q)[X] = D?
(ba/2c,q)[L] ∧D?

(da/2e,q)[R];
end

end
return D?

(a,q)[X]

Algorithm 4.1: Faster-Randomized-Algorithm(X, a, q)

note that the fact that each color class contains exactly q many edges ensures
that at each partitioning step, two parts contain an almost equal number of
edges. This fact plays a crucial role while calculating the probability of success
and the run time of the algorithm.

Lemma 5. There exists a randomized algorithm that given (G, l, p) either finds
a subgraph H of G and its p-edge coloring such that |E(H)| ≥ l, or correctly
concludes that no such subgraph exists in time O∗(4l+o(l+p)). Moreover, if such
a subgraph exists in G, then the algorithm returns it with constant probability.

Proof. Given an instance (G, l, p), the algorithm does the necessary modifications
(as mentioned in the starting of this sub-section) to ensure that l ≡ 0 (mod p).
It then runs Algorithm 4.1 with X = E(G), a = p, and q = l/p as input. If
Algorithm 4.1 return true then the algorithm returns Yes otherwise it returns
No. It is easy to modify Algorithm 4.1, and hence the algorithm, to ensure that
the algorithm returns a set of edges (and its coloring) instead of returning true.

We argue the correctness of the algorithm using induction on a. The base
case occurs when a = 1. It is easy to see that in this case the algorithm cor-
rectly concludes the value of D(a,q)[E(G)]. Assume that the algorithm is correct
for all values of a that are strictly less than p′, for some 2 ≤ p′ < p. The
algorithm returns Yes for input (G, l, p) only if Algorithm 4.1 has concluded
D(p,q)[E(G)] = true. In this case, there exists a partition L] R of E(G) such
that D?

(bp/2c,q)[L] and D?
(dp/2e,q)[R] are set to true. By induction hypothesis,

there exists bp/2c, dp/2e many edge-disjoint matchings, each containing q edges,
in G[L] and G[R], respectively. This implies there are p edge-disjoint matchings
each containing q edges. By Observation 21, (G, l, p) is a Yes instance.

It remains to argue that given a Yes instance (G, l, p), the algorithm returns
Yes with constant probability. Let E(a) denote the event that D(a,q)[X] = true

Parameterized Complexity of Maximum Edge Colorable Subgraph 17

implies D?
(a,q)[X] = true. Notice that E(p) is exactly the event where our algo-

rithm succeeds i.e. correctly determines D(p,q)[E(G)]. We present a lower bound
on Pr(E(a)) using following a recurrence equation. We say the algorithm cor-
rectly partitions the solution edges if L and R contain the solution edges colored
with first ba/2c colors and remaining [da/2e] colors, respectively. The probabil-
ity of success for the event depends on the following two independent events –
(i) the algorithm correctly partitions in at least one of the 2aq log (4l) rounds,
and (ii) the values D?

(ba/2c,q)[L] and D?
(da/2e,q[R] are computed correctly. The

probability of a partition (L,R) failing to divide the solution edges (aq many)
correctly in any of the rounds can be upper bounded following expression:(

1− 1

2aq

)2aq·log (4l)

≤ 1

2(l − 1)

Hence, we have the following recurrence equation:

Pr(E(a)) ≥
(

1− 1

2(l − 1)

)
· Pr(E(ba/2c)) · Pr(E(da/2e))

with Pr(E(a)) = 1, when a = 1. The base case of the recurrence equation follows
directly from the algorithm. The above recurrence implies Pr(E(p)) ≥ 1/2 i.e.
given a Yes instance, the algorithm returns Yes with probability at least 1/2.

The runtime of the algorithm is given by the following set of recurrence
equations: T (a) = 2aq log(4l) · (T (ba/2c) + T (da/2e)), where T (1) = |V (G)|O(1).
This recurrence equation solve to T (p) ≤ 4l+o(l+p)|V (G)|O(1) which gives us the
running time of our algorithm. ut

We note that the algorithm mentioned in Lemma 5 can be de-randomized
using (E(G), l)-perfect hash families [20].

4.2 A Randomized FPT Algorithm

In this subsection, we present a randomized FPT algorithm running in time
2l · |V (G)|O(1) by reducing a given instance of Maximum Edge Colorable
Subgraph to an instance of Rainbow Matching. In Rainbow Matching
problem, the input is an edge-labeled graph G′ and a positive integer k and the
objective is to determine whether there exists a matching of size at least k such
that all the edges in the matching have distinct labels. Such matching is called
as rainbow matching. We use the following known result.

Proposition 3 (Theorem 2 in [13]). There exists a randomized algorithm
that, given a Rainbow Matching instance (G′, k), in time 2k · |V (G′)|O(1)

either reports a failure or finds a rainbow matching. Moreover, if the algorithm
is given a Yes instance, it returns a rainbow matching with constant probability.

We use ‘colors’ for instances of Maximum Edge Colorable Subgraph and
‘labels’ for instances of Rainbow Matching.

18 Agrawal et al.

Reduction : Given an instance (G, l, p) of Maximum Edge Colorable Sub-
graph, the reduction algorithm returns an instance (G′, k) of Rainbow Match-
ing. To construct graph G′, the algorithm creates p identical copies of G. For-
mally, for every vertex u in V (G), it adds p vertices ui for i ∈ [p] in V (G′). For
every edge uv, it adds all the edges uivi for i ∈ [p] in E(G′). The algorithm ar-
bitrary construct a one-to-one function ψ′ : E(G)→ {1, 2, . . . , |E(G)|} on edges
in G. It constructs an edge-labelling function ψ for edges in G′ in the following
way : for i ∈ [p], assign ψ(uivi) = ψ′(uv). Algorithm assigns k = l and returns
(G′, k).

Lemma 6. Let (G′, k) be the instance returned by the reduction algorithm when
input is (G, l, p). Then, (G, l, p) is a Yes instance of Maximum Edge Col-
orable Subgraph if and only if (G′, k) is a Yes instance of Rainbow Match-
ing.

Proof. (⇒) By Observation 21, there are pmany edge disjoint matchingsM1,M2,
. . . ,Mp in G such that |M1∪M2∪· · ·∪Mp| ≥ l. We construct a rainbow match-
ing M ′ in G′ in the following way: For i ∈ [p], if edge uv ∈ E(G) is in Mi then
add uivi to M ′. By construction, M ′ has at least k = l edges. Since Mi is a
matching, there is at most one edge in Mi which is incident on any vertex in
V (G). Hence, an edge uivi is added to M ′ then no other edge incident on ui
or vi is added to M ′. This implies M ′ is matching in G′. We now argue that
all edges in M ′ have distinct labels. Note that the only edges in G′ which has
same labels are uivi and ujvj for some uv ∈ E(G) and i, j ∈ [p]. Since matchings
M1,M2, . . . ,Mp are edge disjoint, if an edge uv is present in Mi then it is not
present in Mj for any j ∈ [p] \ {i}. Hence, all edges in M ′ have distinct labels.
This implies (G′, k) is a Yes instance.

(⇐) Let M ′ be a matching in G′ such that |M ′| ≥ k and every edge in M ′

has distinct label. By construction, every edge in E(G′), and hence in M ′, is
of the form uivi for some i ∈ [p] and uv ∈ E(G). We construct p matchings
M1,M2, . . . ,Mp in G in the following way: For i ∈ [p], if edge uivi is in M ′ then
add uv to Mi. Since M ′ is a matching, if edges uivi are in M ′ then no other edge
incident on ui or vi is in M ′. Hence, for every i ∈ [p], set Mi is a matching in
G. We now argue that these constructed matchings are edge disjoints. Assume,
for the sake of a contradiction, that for some i, j ∈ [p], matchings Mi and Mj

intersect. Let uv be the edge in Mi ∩Mj . The only reason edge uv is added to
Mi and to Mj is because edges uivi, ujvj are present in M ′. By construction,
edges uivi, ujvj have same label. This contradicts the fact that edges in M ′

have distinct edges. Hence our assumption is wrong and the matchings in G are
pairwise disjoint. This fact, along with the construction, implies that |M1∪M2∪
· · · ∪Mp| ≥ l = k. By Observation 21, (G, l, p) is a Yes instance. ut

Proposition 3 and Lemma 6 implies that there exists a randomized algorithm
that given (G, l, p) either finds a subgraph H of G and its p-edge coloring such
that |E(H)| ≥ l or correctly concludes that no such subgraph exists in time
O∗(2l). Moreover, if such a subgraph exists in G, then the algorithm returns it
with constant probability.

Parameterized Complexity of Maximum Edge Colorable Subgraph 19

5 Kernelization Algorithm

In this section, we prove that Maximum Edge Colorable Subgraph admits
a polynomial kernel when parameterized by the number of colors and |X| where
X is a minimum sized deg-1-modulator. As discussed in Section 2, such result
implies that the problem admits a polynomial kernel when parameterized by the
number of colors together with one of the following parameters: (1) the number of
edges, l, in the desired subgraph, (2) the vertex cover number of the input graph
vc(G), and (3) the above guarantee parameter (l − mm(G)). Our kernelization
algorithm is based on the expansion lemma.

Consider an instance (G, p, l) of Maximum Edge Colorable Subgraph.
We assume that we are given a deg-1-modulator X of G (see Definition 1).
We justify this assumption later and argue that one can find a deg-1-modulator
which is close to a minimum sized deg-1-modulator in polynomial time. We start
with the following simple reduction rule.

Reduction Rule 51 If there exists a connected component C of G − X such
that no vertex of C is adjacent to a vertex in X, then delete all the vertices in
C and reduce l by |E(C)|, i.e. return the instance (G− V (C), l − |E(C)|, p).

Lemma 7. Reduction Rule 51 is safe and given set X, it can be applied in
polynomial time.

Let (G, l, p) be the instance obtained by exhaustively applying Reduction Rule 51.
This implies that every connected component of G − X is adjacent to X. Let
C be the set of connected components of G −X. We construct an auxiliary bi-
partite graph B, with vertex bipartition X and C (each C ∈ C corresponds to
a vertex, say bC of B). There exists edge xbC in B for x ∈ X and bC ∈ C if
and only x is adjacent to at least one vertex in C in G. For C′ ⊆ C of connected
components, V (C′) ⊆ V (G) denotes the vertices in connected components in C′
and E(C′) ⊆ E(G) denotes the edges that have both endpoints in V (C′). Since
every connected component in C is adjacent to X, there are no isolated vertices
in B. We can thus apply the following rule which is based on the Expansion
Lemma.

Reduction Rule 52 If |C| ≥ p|X| then apply Lemma 2 to find X ′ ⊆ X and
C′ ⊆ C such that (1) there exits a p-expansion from X ′ to C′; and (2) no vertex in
C′ has a neighbour outside X ′. Delete all the vertices in X ′ ∪ V (C′) from G and
reduce l by p|X ′|+ |E(C′)|, i.e. return (G− (X ′ ∪ V (C′)), l− p|X ′| − |E(C′)|, p).

Lemma 8. Reduction Rule 52 is safe and given set X, it can be applied in
polynomial time.

Proof. Let M ′ be the edges in p-expansion lemma from X ′ to C′ for the bipartite
graph B. We construct a set M ⊆ E(G), corresponding to edges in as follows
M ′. If there is an edge xbC in M ′ then pick an edge whose one endpoint is x and
another endpoint is in C. If there are multiple such edges then arbitrarily pick

20 Agrawal et al.

one of them. Consider a subgraph H1 of G such that V (H1) = X ′ ∪ V (C′) and
E(H1) = M ∪ E(C′). A p-star graph is a tree on p + 1 vertices such that there
exists a vertex that is adjacent to all other vertices. Notice that each connected
component of H1 is a tree. Since every connected component in C′ has at most
one edge, each tree in H1 can be obtained from a p-star by adding (at most one)
new vertex and making it adjacent with one of its leaves. It is easy to see that
H1 is a p-edge colorable graph and every vertex in X ′ is of degree p in H1.

Suppose there exists exists a subgraph H ′ of G − (X ′ ∪ V (C′) such that H ′

is p-edge colorable and has at least l− p|X| − |E(C′)| edges. Then, H ′ ∪H1 is a
subgraph of G which is p-edge colorable and has at least l edges. Here, H ′ ∪H1

denote the graph with vertex set (V (H) ∪ V (H1) and edges E(H) ∪ E(H1)).
Suppose there exists a subgraph H of G which is p-edge colorable and has at

least l edges. By Proposition 1, the maximum degree of a vertex in H is p. Let
H◦ be the graph obtained from H by deleting all vertices in X ′ ∪ V (C′). Since
H◦ is a subgraph of H, it is p-edge colorable. Note that H◦ is also a subgraph of
G− (X ′ ∪ V (C′)). To complete the proof, we need to argue that H◦ has at least
|E(H)| − p|X ′| + |E(C′)| edges. Since every vertex in H has degree at most p,
there are at most p|X ′| many edges across X,V (C′) i.e. edges with one vertex in
X and another in V (C′). Moreover, there are at most |E(C′)| edges in H whose
both endpoints are in V (C′). Since V (C′) are adjacent with vertices only in X ′,
there are no other edges incident on V (C′). This implies number of edges in H◦

is at least |E(H)| − p|X ′|+ |E(C′)| which concludes the proof. ut

In the following lemma, we argue that Maximum Edge Colorable Sub-
graph admits a polynomial kernel when parameterized by size of the given
deg-1-modulator.

Lemma 9. Consider an instance (G, l, p) and let X be a deg-1-modulator of G.
Then, Maximum Edge Colorable Subgraph admits a kernel with O(|X|p)
vertices.

Proof. The algorithm then applies Reduction Rule 51 and 52 exhaustively. It
returns the reduced instance as a kernel. We now argue the correctness and
the size bound on the reduced instance. Let (G′, l′, p) be the reduced instance
obtained by the algorithm after exhaustive application of reduction rules on
input instance (G, l, p). By Lemma 7 and 8, (G, l, p) is a Yes instance if and
only if (G′, l′, p′) is a Yes instance. Moreover, since reduction rules are not
applicable, the number of vertices in G′ is at most (p+ 1)|X|. ut

Proof. (of Theorem 3) For an instance (G, l, p) of Maximum Edge Colorable
Subgraph the kernelization algorithm first uses Observation 22 to conclude that
either (G, l, p) is a Yes instance or vc(G) � l and |Xopt| � (l − mm(G)), where
Xopt is a minimum sized deg-1-modulator of G. In the first case, it returns
a vacuously true instance of constant size. If it can not conclude that given
instance is a Yes instance then algorithm computes a deg-1-modulator, say X,
of G using the simple 3-approximation algorithm: there exists a vertex u which
is adjacent with two different vertices, say v1, v2 then algorithm adds u, v1, v2 to

Parameterized Complexity of Maximum Edge Colorable Subgraph 21

the solution. It keeps repeating this step until every vertex is of degree at most
one. The algorithm uses the kernelization algorithm mentioned in Lemma 9 to
compute a kernel of size O(p|X|).

The correctness of the algorithm follows from the correctness of Lemma 9.
As X is obtained by using a 3-factor approximation algorithm, |X| ≤ 3|Xopt|
and hence |X| � |Xopt|. Since the algorithm was not able to conclude that
(G, l, p) is a Yes instance, by Observation 22, we have |Xopt| � vc(G) � l and
|Xopt| � l − mm(G). This implies the number of vertices in the reduced instance
is at most O(kp) where k is one of the parameters in the statement of the
theorem. By Observation 22, Lemma 7 and Lemma 8, and the fact that every
application of reduction rules reduces the number of vertices in the input graph,
the algorithm terminates in polynomial time. ut

6 Lower Bounds on the Size of Kernels

The objective of this section is to prove Theorem 4. Due to Observation 22, it is
sufficient to prove such result for the number of edges in the desired graph. In
other words, we prove that for any ε > 0 and computable function f , Maximum
Edge Colorable Subgraph does not admit a polynomial compression of size
O(l1−ε · f(p)) unless NP ⊆ coNP/poly. We obtain the above result by giving an
appropriate reduction from Red Blue Dominating Set to Maximum Edge
Colorable Subgraph.

Red Blue Dominating Set (RBDS, for short) takes as input a bipartite
graph G, with vertex bi-partitions as R,B and an integer k, and the objective
is to decide if there is R′ ⊆ R of size at most k such that for each b ∈ B,
R′ ∩ N(b) 6= ∅.7 Without loss of generality, we can assume that there are no
isolated vertices in the input graph. The problem Dominating Set takes as an
input a graph G and an integer k, and the goal is to decide whether there exists
X ⊆ V (G) of size at most k, such that for each v ∈ V (G), X ∩N [v] 6= ∅. Jansen
and Pieterse proved that Dominating Set does not admit a compression of bit
size O(n2−ε), for any ε > 0 unless NP ⊆ coNP/poly, where n is the number of
vertices in the input graph [15]. This result directly implies the following (see,
for instance [1], for a formal statement).

Proposition 4. Red Blue Dominating Set does not admit a compression of
bit size O(n2−ε), for any ε > 0, unless NP ⊆ coNP/poly. Here, n is the number
of vertices in the input graph.

Holyer showed that it is NP-hard to distinguish whether the given cubic graph
admits a 3-edge coloring, or any edge coloring of it requires 4 colors) [14] (also see
Proposition 1). Laven and Galil generalized this result to prove that for any fixed
p, the problem of deciding whether the edge chromatic number of a regular graph
of degree p is p or p+ 1 [18]. We start with an inverting component presented in
[14] (see Figure 2). We call this graph as a module. Note that a, b, c, d, and e are

7 The sets R and B are referred as red and blue sets, respectively.

22 Agrawal et al.

Fig. 2. Inverting components and its symbolic representation used in the reduction
from Red Blue Dominating Set to Maximum Edge Colorable Subgraph.

labelings of the corresponding edges, and the other endpoints of these edges are
not shown in the figure. We state following two useful properties of modules.

Claim 61 ([18, Lemma 1]) For any 3-edge coloring φ of a module, either
φ(a) = φ(b) or φ(c) = φ(d). Moreover, if φ(a) = φ(b) then φ(c), φ(d), φ(e)
are all different; else φ(c) = φ(d), and then φ(a), φ(b), φ(e) are all different.

Claim 62 ([18, Lemma 1]) Consider a partial 3-coloring φ of edges in a mod-
ule which satisfy either of two conditions: (1) φ(a) = φ(b) and φ(c), φ(d), φ(e)
are all different; (2) φ(c) = φ(d) and φ(a), φ(b), φ(e) are all different. Then, φ
can be extended to a 3-edge coloring of the module.

We next present a polynomial time reduction from RBDS to Maximum Edge
Colorable Subgraph. Consider an instance (G,R,B, k) of RBDS. We con-
struct an instance (G′, l, p) of Maximum Edge Colorable Subgraph, as
follows.

Reduction : Initialize V (G′) = V (G) = R ∪ B and E(G′) = ∅. For every
vertex r ∈ R, we construct a gadget using 2 · (degG(r) + 1) modules as shown
in Figure 3. This gadget has (degG(r) + 1) many pairs of edges which acts as
outputs. Arbitrarily fix a pair edges in outputs and make r an endpoint of both
these edges. We call this gadget a red gadget corresponding to r. For every blue
vertex b ∈ B, construct a cycle of length (2 · degG(r) + 1). Arbitrarily fix a
vertex on this cycle and make it adjacent with b. Add degG(b) many modules
to this cycle such that edges on the cycles are endpoints of pairs of edges which
are outputs of these modules (see Figure 3). Add these modules in such that
after addition, the degree of every vertex on cycle is three. We call this gadget
a blue-gadget corresponding to b. For each edge rb in G, identify a pair of edges
in outputs of red-gadget corresponding to r with a pair of edges in inputs of
blue-gadget corresponding to b. In other words, the other endpoints of edges in
red-gadget corresponding to r is in blue-gadget corresponding to b and vice-versa
(see the edges e1, e2 in Figure 3). This completes the construction of graph G′.

Parameterized Complexity of Maximum Edge Colorable Subgraph 23

Fig. 3. (Left Figure) A red-gadget made for a vertex of degree four. The gadget is made
from ten modules and have four output pairs of edges. More generally, it can be made
from 2(d + 1) modules and has d output pairs of edges. In the modified red-gadget,
vertex r is replaced by two vertices r1, r2 as shown in left-top corner. (Right Figure)
A blue-gadget made for a vertex of degree three. More generally, it can be made from
d modules and has d input pairs of edges.

Assign p = 3, l = |E(G′)| − k and return (G′, l, p) as an instance of Maximum
Edge Colorable Subgraph.

Next we argue that thenumber of edges in G′ is at most constant times the
number of edges in G.

Lemma 10. We have |E(G′)| ≤ c · |E(G)|, where c is a (fixed) constant.

Proof. Every module contains seven vertices each of which has degree three.
Hence there are at most 21 edges which are incident on vertices in a module. Since
red-gadget corresponding to r uses 2 · (degG(r) + 1) many gadgets, the number
of edges incident on this red-gadget is at most 42 ·(degG(r)+1). Hence, the total
number of edges incident on red-gadgets is at most

∑
r∈R 42 · (degG(r) + 1) ≤

42 · |E(G)|+ |R|. Similarly, blue-gadget corresponding to b uses degG(b) modules,
a cycle with edges 2 · degG(r) + 1, and an extra edge. Hence the total number
of edges incident on vertices in blue-gadgets is at most

∑
b∈B(21 · degG(b) + 2 ·

degG(b) + 2) ≤ 23|E(G)|+ 2|B|. Since there are no isolated vertices in G(R,B),
we can conclude that total number of edges in G′ is at most 67|E(G)|. This
concludes the proof of the lemma. ut

To simplify our arguments in the proof of correctness of the reduction, we
construct an auxiliary graph. We define the following process which takes the
graph G′ and a subset R′ of R and returns another graph G′′ such that |V (G′′)| =
|V (G′)|+ |R′| and |E(G′′)| = |E(G′)|.

24 Agrawal et al.

Modification of G′ at R′: For every vertex r in R′ do the following process.
Add two vertices r1, r2 to G′ and delete r from G. Let x1, x2 be the two vertices
in red-gadget which were adjacent with r in G′. Add edges r1x1 and r2x2 (see
Figure 3). Let R′i = {ri| r ∈ R′} for i ∈ {1, 2}. In other words, G′′ is obtained
from G by deleting all vertices in R′ and adding vertices in R′1∪R′2, and making
them adjacent with the corresponding neighbors of vertices in R. If red-gadget
is modified at r in R′ then we call it the modified red-gadget at r.

In any 3-edge-coloring of a red-gadget, edges incident on vertices in R are
of different colors. With this observation, [18, Lemma 2] implies following two
properties of red-gadgets.

Claim 63 In any 3-edge coloring of a red-gadget, every pair of output edges are
colored with different colors.

We modify the red-gadgets to ensure that every pair of output edges can be
colored with the same color. Following claim is also implied by [18, Lemma 2].

Claim 64 There exists a 3-edge coloring of modified red-gadget such that every
pair of output edges are colored with same colors.

We mention following property of blue-gadget before mentioning a relation be-
tween G and G′′.

Claim 65 ([18, Lemma 3]) In any 3-coloring of a blue-gadget at least one pair
of input must be colored with the some color. Moreover, any 3-coloring of the
input edges which satisfied the previous condition can be completed to a 3-coloring
of the gadget.

Lemma 11. Let (G′, l, p) be the instance returned by the reduction algorithm
when input is (G,R,B, k). For a subset R′ ⊆ R, let G′′ be the graph obtained by
modifying G′ at R′. Then, R′ is adjacent with all vertices in B if and only if G′′

is 3-edge colorable.

Proof. (⇒) We construct a 3-edge coloring of graph G′′. We first color all edges
incident on red-gadgets and modified red-gadgets followed by edges in blue-
gadgets. Note that the sets of edges incident on red-gadgets and modified red-
gadgets do not intersect with each other. By Claim 61 and 62, there exists a
coloring of red-gadgets and modified red-gadgets. Moreover, by Claim 64, it is
safe to consider a 3-edge coloring of modified red-gadget in which every pair of
output edges are colored with the same colors. Since R′ is adjacent with every
vertex in B, every blue-gadget has at least one pair of input edges which are
colored with some color. By Claim 65, this coloring can be extended to other
edges incident on blue-gadgets. This completes a 3-edge coloring of G′′.

(⇐) Consider a 3-edge coloring of graph G′′. By Claim 65, for any blue-
gadget, at least one pair of input must be colored with some color. By Claim 63,
for a red-gadget, any pair of output edges are colored with different colors.
Hence, for any blue-gadget, there is at least one input pair of edges that are

Parameterized Complexity of Maximum Edge Colorable Subgraph 25

connected to an output pair of edges of a modified red-gadget. By construction,
this implies that for any vertex in B, there exists an edge with some vertex in
R′. This implies that vertices in R′ are adjacent with every vertex in B. ut

In the following lemma, we argue that the reduction is safe.

Lemma 12. Let (G′, l, p) be the instance returned by the reduction algorithm
when (G,R,B, k) is given as input. Then, (G,R,B, k) is a Yes instance of
RBDS if and only if (G′, l, p) is a Yes instance of Maximum Edge Col-
orable Subgraph.

Proof. The problem of determining whether (G′, l, p) is a Yes instance of Max-
imum Edge Colorable Subgraph is equivalent to determining whether one
can delete at most (|E(G′)|−l) many edges in G′ such that the resultant graph is
p-edge colorable. We work with this formulation of the problem. Since (G′, l, p)
is an instance returned by the reduction algorithm, |E(G′)| − l ≤ k and p = 3.

Let R′ be a subset of R. Define ER′ as the set of edges in E(G′) formed by
selecting exactly one edge incident every vertex in R′. By construction, |ER′ | =
|R′|. Let G′′ be the graph obtained from modification of G′ at R′ as specified
above. Note that the graph obtained from G′ by deleting all edges in ER′ is
isomorphic to the graph obtained from G′′ by deleting all vertices in R′1. Here,
R′1 is a set defined in modification process.

In graph G′′, every vertex in R′1 is pendant vertex and is adjacent with a
vertex of degree two. Hence, any 3-edge coloring of G′′ − R′1 can be trivially
extended to a 3-edge coloring of G′′. Also, as G′′ −R′1 is a subgraph of G′′, any
3-edge coloring of G′′ is also a 3-edge coloring of G′′ − R′1. Hence, G′′ − R′1 is
3-edge colorable if and only if G′′ is 3-edge colorable. Lemma 11 implies that
G′ − ER′ is 3-edge colorable if and only if R′ is adjacent with all vertices in
B. Since graphs G′′ − R′1 and G′ − ER′ are isomorphic to each others, we get
G′ − ER′ is 3-edge colorable if and only if R′ is adjacent with all vertices in B.
Since |ER′ | = |R′|, this concludes the proof of the lemma. ut

We are now in a position to present a proof for Theorem 4.

Proof. (for Theorem 4) For the sake of contradiction, assume that there exists
an ε > 0 and some computable function f such that Maximum Edge Col-
orable Subgraph admits a compression of size O(l1−ε · f(p)). This implies
there is an algorithm A which takes an instance (G′, l, p) of Maximum Edge
Colorable Subgraph and in polynomial time returns an equivalent instance
for some problem which needs O(l1−ε · f(p)) bits to encode.

Let (G,R,B, k) be an instance of RBDS, where G is a graph on n ver-
tices. Using the reduction described, we create an instance (G′, l, p) of Max-
imum Edge Colorable Subgraph. It is easy to see from the description
of the reduction that this instance can be created in time polynomial in the
size of the given instance of RBDS. By Lemma 12, instances (G,R,B, k) and
(G′, l, p) are equivalent. On instance (G′, l, p), we run the algorithm A mentioned
in previous paragraph to obtain an equivalent instance of size O(l1−ε · p). Note

26 Agrawal et al.

that this instance is equivalent to the given instance of RBDS. Since p = 3
and l ≤ |E(G′)| ∈ O(|E(G)|) ∈ O(n2) (by Lemma 10), this instance is of
size O(n2−2ε). This implies there exists an algorithm which in polynomial time
returns an equivalent instance of RBDS of size O(n2−2ε). This is a contradic-
tion to Proposition 4. Hence our assumption was wrong and Maximum Edge-
Colorable Subgraph does not admit a compression of size O(l1−ε ·f(p)). The
proof of the theorem follows from Observation 22. ut

7 Conclusion

In this article, we studied the Maximum Edge Colorable Subgraph prob-
lem from the lense of Parameterized Complexity. We showed that the problem
admits a kernel with O(k · p) vertices where p is the number of colors and k is
one of the following: (a) the number of edges, l, in a desired subgraph, (b) the
vertex cover number of input graph, and (c) the difference between l and the
size of a maximum matching in the graph. Furthermore, we complimented the
above result by establishing that Maximum Edge Colorable Subgraph does
not admit a polynomial compress of size O(k1−ε · f(p)) for any ε > 0 and any
computable function f , unless NP ⊆ coNP/poly. It will be interesting to close
the gap between the kernel lower bound and the size of the kernel. As a conse-
quence of the above kernelization results, we can obtain that the problem has
a polynomial kernel when parameterized by `. It will interesting to investigate
whether the problem has a polynomial kernel when parameterized by the vertex
cover number, or the difference between l and the size of a maximum matching
in the input graph.

We also designed FPT algorithms for the parameters, ` and the vertex cover
number. We leave it as an open question to determine whether the problem
admits an FPT algorithm when parameterized by the difference between l and
the size of a maximum matching in the input graph.

References

1. Agrawal, A., Kanesh, L., Saurabh, S., Tale, P.: Paths to trees and cacti. In: Inter-
national Conference on Algorithms and Complexity. pp. 31–42. Springer (2017)

2. Aloisio, A., Mkrtchyan, V.: On the fixed-parameter tractability of the maximum
2-edge-colorable subgraph problem. arXiv preprint arXiv:1904.09246 (2019)

3. Alon, N., Yuster, R., Zwick, U.: Color coding. In: Kao, M. (ed.) Encyclopedia of
Algorithms - 2008 Edition (2008)

4. Cao, Y., Chen, G., Jing, G., Stiebitz, M., Toft, B.: Graph edge coloring: A survey.
Graphs and Combinatorics 35(1), 33–66 (2019)

5. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for vertex
cover. In: Mathematical Foundations of Computer Science 2006, 31st International
Symposium (MFCS). vol. 4162, pp. 238–249 (2006)

6. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40-42), 3736–3756 (2010)

Parameterized Complexity of Maximum Edge Colorable Subgraph 27

7. Chen, J., Kneis, J., Lu, S., Mölle, D., Richter, S., Rossmanith, P., Sze, S.H., Zhang,
F.: Randomized divide-and-conquer: Improved path, matching, and packing algo-
rithms. SIAM Journal on Computing 38(6), 2526–2547 (2009)

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

9. Feige, U., Ofek, E., Wieder, U.: Approximating maximum edge coloring in multi-
graphs. In: International Workshop on Approximation Algorithms for Combinato-
rial Optimization. pp. 108–121. Springer (2002)

10. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: theory of
parameterized preprocessing. Cambridge University Press (2019)

11. Galby, E., Lima, P.T., Paulusma, D., Ries, B.: On the parameterized complexity
of k-edge colouring. arXiv preprint arXiv:1901.01861 (2019)

12. Grüttemeier, N., Komusiewicz, C., Morawietz, N.: Maximum edge-colorable sub-
graph and strong triadic closure parameterized by distance to low-degree graphs.
To appear, Scandinavian Symposium and Workshops on Algorithm Theory (2020)

13. Gupta, S., Roy, S., Saurabh, S., Zehavi, M.: Parameterized algorithms and kernels
for rainbow matching. Algorithmica 81(4), 1684–1698 (2019)

14. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing
10(4), 718–720 (1981)

15. Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graphs
problems and not-all-equal SAT. In: 10th International Symposium on Parameter-
ized and Exact Computation, IPEC. pp. 163–174 (2015)

16. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of operations research 12(3), 415–440 (1987)

17. Lenstra Jr, H.W.: Integer programming with a fixed number of variables. Mathe-
matics of operations research 8(4), 538–548 (1983)

18. Leven, D., Galil, Z.: NP completeness of finding the chromatic index of regular
graphs. Journal of Algorithms 4(1), 35–44 (1983)

19. Micali, S., Vazirani, V.V.: An O(
√
|V |·|E|) algorithm for finding maximum match-

ing in general graphs. In: 21st Annual Symposium on Foundations of Computer
Science (sfcs 1980). pp. 17–27. IEEE (1980)

20. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proceedings of IEEE 36th Annual Foundations of Computer Science. pp.
182–191. IEEE (1995)

21. Sinnamon, C.: A randomized algorithm for edge-colouring graphs in O(m
√
n) time.

arXiv preprint arXiv:1907.03201 (2019)
22. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Discret Analiz

3, 25–30 (1964)

	Parameterized Complexity of Maximum Edge Colorable Subgraph

