
ar
X

iv
:c

s/
99

09
00

7v
1

 [
cs

.C
G

]
 3

 S
ep

 1
99

9

Circular Separability of Polygons∗

Jean-Daniel Boissonnat† Jurek Czyzowicz‡ Olivier Devillers†

Mariette Yvinec†

July 27, 2021

Abstract

Two planar sets are circularly separable if there exists a circle en-
closing one of the sets and whose open interior disk does not intersect
the other set. This paper studies two problems related to circular sep-
arability. A linear-time algorithm is proposed to decide if two polygons
are circularly separable. The algorithm outputs the smallest separating
circle. The second problem asks for the largest circle included in a pre-
processed, convex polygon, under some point and/or line constraints.
The resulting circle must contain the query points and it must lie in
the halfplanes delimited by the query lines.

∗ This work has been supported in part by the ESPRIT Basic Research Actions Nr.
7141 (ALCOM II) and Nr. 6546 (PROMotion), NSERC, FCAR and F ODAR. A first

version of this paper was published in SODA 1995
† INRIA, 2004 Route des Lucioles, B.P.109, 06561 Valbonne cedex, France

Phone : +33 93 65 77 38, E-mails : firstname.name@sophia.inria. fr
‡Département d’informatique, Université du Québec à Hull

http://arxiv.org/abs/cs/9909007v1

1 Introduction

Let C denote a family of orientable surfaces in the Euclidean space Ed.
We say that P ⊂ Ed and Q ⊂ Ed are C-separable, if there exists Σ ∈ C,
such that every point of P lies on one side of Σ and every point of Q lies
on the other side. In the last decade, diverse aspects of the separability
problem attracted research interest, with C most often being considered as
the families of hyperplanes, spheres and polyhedra. For P and Q being two
finite sets of points, the hyperplane separability may be solved by linear
programming [Meg84]. In the case of P and Q being two convex polyhedra,
this problem is efficiently solved in [DK85].

The problem of finding a polygon with minimum number of vertices,
separating two finite sets of points was studied in [EP88]. In [ABO+89] the
same problem of minimal polygonal separation was solved for the case of
two nested, convex polygons. Das and Joseph [DJ90] proves that finding
a separating polyhedron, having minimum number of faces for two nested
convex polyhedra is NP-complete.

In [MS95] and [BG95] the problem of finding a separating polyhedron
with approximatively minimum number of faces is tackled. In [Mou92],
Mount proposes a O(n log n) algorithm computing an enveloping triangula-
tion of simple polygons. After such preprocessing, given arbitrary location
of two polygons, the minimum link polygonal curve separating them may
be computed efficiently.

The interest in circular separability was fueled by applications in pat-
tern recognition and image processing, [KA84] [Fis86]. Notice that for two
finite sets of points, following the idea of Lay [Lay71], an instance of a
spherical separability problem in Ed may be transformed into a linear sepa-
rability problem in Ed+1, using a stereographic projection. Kim and Ander-
son [KA84] presented a quadratic algorithm solving the circular separability
problem for two finite sets of points. Bhattacharya [Bha88] improves this
bound to O(n log n), computing the entire region at which may be cen-
tered all the circles separating the two point sets. O’Rourke, Kosaraju and
Megiddo [OKM86] proposed optimal algorithms, finding in O(n) time the
smallest separating circle, and in O(n log n) time all largest separating cir-
cles for two sets of points. They use the paraboloid transformation to get an
instance of a convex, quadratic minimization problem in three dimensions.

1

In this paper we study two types of problems related to circular separa-
bility. In section 3, we propose a linear time algorithm determining whether
two given simple polygons are separable by a circle. The algorithm simul-
taneously scans two structures: (1) the list of edges of one polygon, and (2)
a path in the furthest point Voronoi diagram of the vertices of the other
polygon. The resulting separating circle, which is the smallest possible, is
always centered on this path. In section 4, we address a dynamic version
of another circular separability problem. We preprocess a convex polygon
P , so that the largest circle inscribed in P , subject to some query points
and/or line constraints may be found efficiently. The resulting circle must
contain the query points, and/or it must lie in the halfplanes delimited by
the query lines. Our interest in the problem was motivated by an applica-
tion in motion planning, where convex paths of bounded curvature inside a
convex polygon were to be computed [BCD+94].

2 Preliminaries

Suppose that we are given a set S of obstacles in the plane, and we are
looking for circles that do not intersect the interior of any of the obstacles.
The largest such circle, centered at a query point p, may be found quickly,
if the Voronoi diagram of S has been precomputed. When a query point p
is localized in a Voronoi cell, the obstacle closest to p is determined, and the
largest circle centered at p may be easily found.

When the set of obstacles are edges of a convex polygon P , its Voronoi
diagram, also called its skeleton partitions of P into convex polygonal cells.
As each cell of this partition is adjacent to an edge of P , the skeleton is a
tree. This tree, rooted at the vertex which is the center of the largest circle
inscribed in P , will be called skeleton tree and denoted SkT (P). A useful way
to represent SkT (P) is by means of a convex polyhedral surface obtained
in the following way. For each edge e of P consider a plane containing e,
having 45 degrees angle with the plane of P , and such that P lies below this
plane. Take the lower envelope of the arrangement of all planes obtained this
way. It forms a convex polyhedral surface which will be denoted Skel(P).
Obviously, SkT (P) is the projection of the edges of Skel(P) onto the plane
of P .

2

In the following, a circle is said to be internal to a polygon P if it is
included in the closure of the region which is the interior of P . There exists a
standard mapping φ from circles lying in the xy-plane to points of the three-
dimensional space. A circle Σ of radius r, centered at (x0, y0) is mapped to
the point φ(Σ) = (x0, y0, r). The points on the vertical line, passing through
(x0, y0), are images of the circles centered at (x0, y0). As each such vertical
line intersects Skel(P) in a single point (x0, y0, z0), points below z0 represent
circles internal to P , and points above z0 represent circles intersecting or
enclosing P . In consequence, the question of finding the largest internal
circle centered at a query point (x0, y0) is equivalent to vertical ray-shooting
from (x0, y0, 0) to Skel(P).

Take a cone originating at (x0, y0, 0) with vertical axis and 45 degrees
apex angle. The points on the surface of such cone are images of the circles
passing through (x0, y0). The image of the largest circle internal to P and
passing through (x0, y0) is the point with the largest z-coordinate of the
intersection of this cone with Skel(P).

The furthest site Voronoi diagram for a set S of m given sites s1, s2, ..., sm
is a partition of the plane into convex regions FSV (s1), FSV (s2), ..., FSV (sm),
such that any point in FSV (si) is farther from si than from any other site.
The region FSV (si) is non empty if and only if site si is a vertex of the
convex hull of set S, all non empty regions FSV (si) are unbounded and
their boundaries form a tree. Each of the vertices of this tree is the center of
a circle enclosing S passing through vertices of S, which hereafter is called
a furthest site Voronoi circle or an FS-Voronoi circle for short. Except for
the smallest circle enclosing S which may pass through only two points of
S, each FS-Voronoi circle passes through at least three points of S.

In this paper, the furthest site Voronoi diagram will be represented by
a forest FSArcs(S) in the following way. The vertices of FSArcs(S) are in
one-to-one correspondence with the arcs of the FS-Voronoi circles extending
between two consecutive points of S and smaller than π. The roots of
FSArcs(S) are the arcs of the smallest circle enclosing S. Let us consider an
edge E of the furthest site Voronoi diagram which is the common boundary
of two cells FSV (si) and FSV (sj). Edge E is the locus of the centers of
circles enclosing S and passing through si and sj. The endpoints of E are
the center of two FS-Voronoi circles C− and C+ which are respectively the
smallest and the largest circles passing through si and sj and enclosing S

3

(with an exception when sisj is the diameter of the smallest circle enclosing
S). If segment sisj is a diameter of C−, we assume w.l.o.g. that the arc sisj
of C− joining counterclockwisely si and sj is smaller than π. If segment sisj
is not an edge of the convex hull of S, the arc sisj of C+ includes at least a
point sk of S and, in the forest FSArcs(S) the arcs sisk and sksj of C+ are
the children of the arc sisj of C−. If segment sisj is an edge of the convex
hull of S, C+ is the line through si and sj and a terminal node corresponding
to the segment sisj is the child of the arc sisj of C−. Observe that the arcs
of a descending path of FSArcs(S) have monotonically increasing radii.
Obviously, FSArcs(S) has O(m) complexity.

Figure 1: The furthest point Voronoi diagram of S and the associated forest
FSArcs(S)

We will use the hierarchical representation of convex polyhedra intro-
duced in [DK85]. A hierarchical representation of convex polyhedron D is
a nested sequence D0 ⊃ D1 ⊃ ... ⊃ Dk of convex polyhedra, such that (i)
D0 is a tetrahedron and Dk is the polyhedron D and (ii) the set of faces Fi

of Di is obtained from Fi+1 by removing a subset Ii+1 of pairwise non adja-
cent faces of Di+1. Polyhedron Di is then formed from Di+1 by extending
remaining faces Fi+1 \ Ii+1. It may be proved, that in any polygon Di+1 it
is always possible to find a set Ii+1 of O(|Fi+1|) faces of bounded degree.
Computing of a hierarchical representation of a convex polyhedron with n

vertices may be done within O(n log n) time and O(n) space. The hierar-
chical representation supports line intersection queries in O(log n) time.

4

3 Circles Separating Simple Polygons

Let P and Q be two simple polygons. We called the interior of P and Q

respectively the regions bounded by P and Q denoted Int(P) and Int(Q),
respectively. The regions Int(P) and Int(Q) are considered as open regions.
Let us assume that P and Q have disjoint interiors. We say that circle Σ
separates P from Q if the open disk which is the interior of Σ contains
Int(P) and no point of Int(Q) or vice versa. In this section, we propose an
efficient algorithm to find a circle that separates two given polygons. The
algorithm is designed in such a way, that it outputs the smallest such circle,
or it stops determining that no separating circle exists. In some cases, it
is possible that the smallest separating circle has an infinite radius, that is
when the polygons are separable by a line, but not by any finite circle. The
following lemmas specify the condition for two polygons to be separable by
a circle.

Lemma 1 Consider two polygons P and Q with disjoint interiors, such that
Int(P)∩CH(Q) 6= ∅ and Int(Q)∩CH(P) 6= ∅. There exist a line l and four
points x1, x2, x3 and x4, lying in that order on l, such that x1, x3 ∈ Int(P),
and x2, x4 ∈ Int(Q) (see Figure 2).

x1

x2
x3

x4

x1

x2

x3

x4

Figure 2: There exist four points x1, x2, x3 and x4, lying in that order on a
line, such that x1, x3 ∈ Int(P), and x2, x4 ∈ Int(Q)

5

Proof : We first define a pocket of Q as a region of CH(Q) \Q, limited
by an edge E of CH(Q) which is not an edge of Q and a part of Q joining
the endpoints of E. If Int(P) ∩ CH(Q) 6= ∅, there exist a line l1 and
three points q1, p3, q2 in that order on l1 such that q1, q2 ∈ Int(Q) and
p3 ∈ Int(P). Indeed, Int(P) has to intersect at least one of the pockets R
of Q. Then the line going through a point p3 ∈ Int(P) ∩R and parallel to
the edge E = R∩CH(Q) intersects int(Q) on both sides of p3 and thus is a
convenient solution for l1. In the same way, there is a line l2 and three points
p1, q3, p2 in that order on l2 such that p1, p2 ∈ Int(P) and q3 ∈ Int(Q).

Let l3 be the line through p3 and q3 (see Figure 3). We show now that at
least one of the three lines l1, l2 or l3 meets the requirement of the lemma.
We note [q1,∞] the infinite part of l1 originating in q1 and not including
q2. In the same way, we note [q2,∞], [p1,∞] and [p2,∞] the infinite parts
of l1 and l2. Let i, j ∈ {1, 2, 3}, i 6= j. There is a path γqi,qj included in
Int(Q) and joining qi to qj. In the same way, we shall note γpi,pj a path
included in Int(P) and joining pi to pj. Let us assume that neither l1 nor
l2 meets the requirement of the lemma and show that in that case l3 will
do. Since l2 does not meet this requirement, γq1,q2 does not intersect [p1,∞]
nor [p2,∞]. Then, we claim that γq1,q2 has to intersect [p3,∞], the infinite
part of l3 originating in p3 and not including q3. Indeed, let [pi,∞] with
i = 1 or 2 be one of the infinite portions of l2 that does not intersect l1.
The concatenation of [p3,∞], γp3,pi and [pi,∞] intersects line l1 in the single
point p3 and thus separates q1 from q2. As γq1,q2 cannot intersect γp3,pi nor
[pi,∞] it has to intersect [p3,∞]. In the same way γp1,p2 has to intersect
[q3,∞], the other infinite part of l3, and l3 meets the requirement of the
lemma. ♦

Lemma 2 Two polygons P and Q with disjoint interiors cannot be sepa-
rated by a circle, if and only if there exists a circle C and four points x1, x2,
x3 and x4, in that order on the boundary of C, such that x1, x3 ∈ Int(Q),
and x2, x4 ∈ Int(P) (see Figure 4).

Proof: We prove first that the existence of a circle C satisfying the above
condition implies that the two polygons are not separable by a circle. Circle
C is split by the points x1, x2, x3 and x4 into four arcs. Observe that any
Jordan curve ζ separating P and Q must intersect each of these four arcs.
As any two non-identical circles intersect at two points at most, ζ cannot

6

q1 q2

q3

p1

p2

p3l1

l2

l3

Figure 3: For the proof of Lemma 1

be a circle.

Assume now that there exists no circle C satisfying the above property.
We prove that P and Q are separable by a circle. Observe first, that either
Int(Q)∩CH(P) = ∅ or Int(P)∩CH(Q) = ∅, otherwise, by Lemma 1, there
would exist four points x1, x2, x3 and x4 on a line l contradicting our hypoth-
esis. Suppose, that Int(Q)∩CH(P) = ∅, the other case being symmetrical.
Let Σ denote the smallest circle enclosing P . Consider P1, P2, ..., Pk , the se-
quence of points of tangency of Σ and P , in counterclockwise order around
Σ. Denote by PPiPj

the part of boundary of P , extending counterclockwise
from Pi to Pj , and denote by ΣPiPj

the arc of Σ extending counterclockwise
from Pi to Pj . As Σ is the smallest circle enclosing P , each arc ΣPiPi+1

is
not greater than π (see Figure 5(a)).

Denote by ℜi,i+1 the region bounded by PPiPi+1
and ΣPiPi+1

, i = 1, 2, ..., n.
The set of regions {ℜi,i+1, i = 1, 2, ...n} constitutes a partition of Int(Σ)\P .
If Σ does not separate P and Q, one of ℜi,i+1 must intersect Int(Q). Let
Pr and Ps denote two consecutive points of tangency of P and Σ, such
that ℜr,s intersects Int(Q). Observe that no other region ℜi,i+1 intersects
Int(Q), otherwise, after shrinking Σ, we obtain a circle C having the prop-
erty mentioned in the lemma.

7

x1

x2

x3

x4

P

Q

Figure 4: No circle separates P and Q.

Continuously increase the radius of circle Σ, keeping it tangent to Pr and
Ps, until either some new vertex Pq of P becomes tangent to ΣPrPs or until
region ℜr,s no longer meets Int(Q). In the latter case, observe that at the
moment Q is externally tangent to ΣPrPs (cf. Figure 5(c)) Int(Q) cannot
intersect the opposite region ℜs,r, otherwise the conditions of existence of
circle C would be met. Thus, at that moment the current position of Σ
must separate P and Q. In the former case, the point Pq splits the arc
ΣPrPs into two sub-arcs ΣPrPq and ΣPqPs . Region ℜr,s is thus split into
two subregions ℜr,q and ℜq,s. As only one region among ℜr,q and ℜq,s, say
ℜr,q, still intersects Int(Q), replace ℜr,s by ℜr,q and continue the process
(cf. Figure 5(b)). Observe that the radius of Σ increases continuously, Σ
encloses P being tangent in Pr and Ps, and arc ΣPrPs remains smaller than
π. As CH(P) ∩ Int(Q) = ∅, at some point ℜr,s will no longer intersect
Int(Q). ♦

Note that in a special case, when some point of the boundary of Q

intersects the interior of some edge PrPs of CH(P), the process of increasing
Σ stops when the radius of Σ reaches infinity. The only circle separating P

and Q will then be a circle of infinite radius, being the line of segment PrPs.
The following lemma states that, in any case, the separating circle found in
Lemma 2 will be the smallest possible.

Lemma 3 If Circle C of radius r intersects polygon P in two points p1 and

8

P1

P2

P3

P

ℜ1,2

ℜ3,1

ℜ2,3

Q Q

Q

P1

P3

P4
ℜ4,1

ℜ3,4

ΣP
ℜ1,3

P

P1
P4

ℜ4,1

ℜ1,4

P

(a) (b)

(c)

Figure 5: Illustrating existence of the separating circle

p2 and polygon Q in point q, such that arc p1qp2 is smaller than π, any circle
enclosing P and separating P from Q must have its radius greater than r.

Proof: obvious.

3.1 The Algorithm

To determine the separability of two polygons P and Q, the algorithm first
looks for the smallest circle enclosing P and whose interior disk does not
intersect Int(Q), then looks for the smallest circle enclosing Q not intersect-
ing Int(P). For the first purpose, the algorithm uses two data structures :
the list Q of edges of polygon Q and the forest FSArcs(P), of arcs of the
furthest site Voronoi circles for the set of vertices of P . For any arc spsq of

9

FSArcs(P) and a planar figure F we say that A cuts F , if the convex hull
of arc spsq intersects the interior of F .

The algorithm follows the idea of the proof of Lemma 2. We first de-
termine an arc A of the smallest circle enclosing P which cuts Q. The list
Q of edges of Q is then scanned until an edge E of Q which actually cuts
A is found. A path of a tree of FSArcs(P) is now traversed until the cur-
rent arc A admits no children cutting the current edge E. This traversal of
FSArcs(P) corresponds to the process of increasing the radius of the circle
enclosing P , until edge E no longer intersects the circle. Then the scanning
of list Q resumes alternatively with the traversal of a branch of FSArcs(P)
until an arc A is found which intersects Q and whose children do not. Then,
let Arc be the arc extending between the endpoints of A and externally tan-
gent to Q. If the circle of Arc does not intersect Q, we are done, otherwise
there is no circle separating P and Q.

10

Algorithm Smallest Separating Circle

Input: A simple polygon P of m vertices and a simple polygon Q of n
vertices.

Output: The smallest circle containing P and disjoint with Int(Q), if one
exists.

1. Compute FSArcs(P).

2. if no root of FSArcs(P) cuts Q

then OUTPUT(the smallest circle enclosing P);STOP.

else A← a root of FSArcs(P) which cuts Q.

3. while Q is not empty do

3.1. E ← next(Q)

3.2. while A does not cut E do

if Q is empty, go to 4

else E ← next(Q).

3.3. while there exists a childc(A) which cuts E do

A← childc(A).

3.4 if A is a terminal arc of FSArcs(P)

then OUTPUT(’CH(P) and Q intersect’); STOP.

4. Arc ← the arc externally tangent to Q and passing through the end-
points of A.

5. if the complementary arc of Arc cuts the polygon Q

then OUTPUT(’CH(P) and Q are not separable’).

else OUTPUT(circle of Arc).

End of the Algorithm

11

3.2 The Correctness of the Algorithm

We prove here that the algorithm outputs the smallest circle enclosing P

and external to Q if such a circle exists.

First, we observe that if the algorithms terminates in step 2, it outputs
the smallest circle enclosing P which is clearly the smallest circle enclosing
P and external to Q if this circle does not intersect Q.

Then notice that if algorithm stops with a terminal arc in step 3.4, the
current edge E of Q intersects that terminal arc which is an edge of CH(P),
thus CH(P) and Q intersect and there is no separating circle.

If the algorithms does not stop in step 3.4, the while loop of step 3
terminates when the list Q is empty. Then, the current arc A is not a
terminal arc and it cuts Q but its children do not. Indeed, every edge of Q
scanned while the current arc is A does not cut A, and hence these edges
do not cut the children of A because the convex hull of any arc contains
the convex hull of any of its descendant in FSArcs(P). Before arc A is the
current arc , any scanned edge was compared with an ancestor of A and
found as not cut by the children of this ancestor of A, therefore the children
of A do not cut such an edge.

Let us show that the arc Arc computed in step 4 is uniquely defined. Let
sp and sq be the endpoints of the current arc A at the end of step 3. The
segment joining the center of the circle including arc A and the center of the
circle including its children is an edge of the furthest site Voronoi diagram
of P ; this edge is the locus of the centers of circles that enclose P and pass
through sp and sq. The arc spsq of the circle including A cuts Q while the
arc spsq of the circle including the children of A does not. By continuity,
there is a point on this furthest site Voronoi edge which is the center of a
circle through sp and sq, enclosing P and whose arc spsq is tangent to Q.
This circle is the extension of Arc.

In step 5, when the complementary arc sqsp of Arc cuts the polygon
Q, there exists a small disk d internal to Q and centered in some point x

on spsq. Recall that Arc is not greater than π and that it is tangent at
some point y to an edge of Q. Thus it is possible to modify the circle of
Arc slightly, so that it encloses point y but neither of sp and sq, and still

12

intersects a part of disk d. Then, the condition of Lemma 2 is satisfied and
there exists no circle separating P and Q. Note that, as step 2 does not
compute all the roots cutting Q, and step 4.2 does not test all the children
of A for cutting Q the non-separability of P and Q is not detected earlier.

Finally, when the complementary arc of Arc does not cut polygon Q,
no edge of Q cuts the interior of the circle of Arc, and the circle encloses
P . Hence, it is a separating circle. On the other hand, by the construction
of Arc, it follows from Lemma 3, that this circle is the smallest separating
circle enclosing P .

3.3 The Complexity of the Algorithm

The first step relies on well known optimal algorithms. By [Lee83], the
convex hull of P is computed in O(m) time. Within the same complexity,
[AGSS89] computes the furthest site Voronoi diagram of a convex polygon,
which results in the construction of FSArcs(P) and the smallest circle en-
closing P .

Step 2 may be computed easily within O(m + n) time in the following
way. In O(n) time, all edges of Q are tested for intersection with the interior
of the smallest circle enclosing P . Then any of the edges found to intersect
this disk is tested for cutting by the roots of FSArcs(P). Since there are m
roots at most, this is done in O(m) time.

Steps 3.1 and 3.2 are executed at most O(n) times overall, as each exe-
cution results in skipping an element of Q. Step 3.3 is executed O(m) times
at most, as FSArcs(P) has O(m) complexity. Step 3.4 is executed at most
once. Hence, the overall complexity of step 3 is O(m+ n).

Step 4 is executed in constant time and Step 5 in O(m) time, thus we
conclude with the following result.

Theorem 4 In O(m+n) time and space it is possible to determine whether
two given polygons, one with m and the other one with n vertices, are sep-
arable by a circle. The smallest separating circle may be found within the
same bounds.

13

Step 5 of the algorithm can be easily extended to exhibit a witness (as
given by Lemma 2) when the two polygons are not separable by a circle.

Observe that, although it makes no sense to ask for a circle separating
two polygons with non-disjoint interiors, Algorithm Smallest Separating Cir-
cle still works in this case. The algorithm will either detect the intersection
of the two polygons in step 2 or stops with a terminal arc in step 3.3. The
algorithm also works in the case when polygon Q is not necessarily simple.
Moreover, the algorithm extends to the case when the first polygonal curve
contains the second one, i.e. when we want to separate the unbounded region
lying outside the external curve, from the region bounded by the internal
curve. It is easy to observe that the algorithm generalizes also to the case of
separation of connected planar straight line graphs. We say that two graphs
are separated by a circle if no edge of the first graph intersects the interior
of the circle while no edge of the second graph intersects the exterior of the
circle. Indeed, in linear time each graph may be transformed to a polygon,
obtained by the traversal of the external face of the graph. As some edges
may be traversed twice, the polygon is not simple in general. However, the
algorithm still works in this case.

Furthermore notice that our method can be extended to answer separa-
bility query when the allowed separating curves are the homothets of a given
convex curve. Indeed, the algorithm relies on Lemma 3 which still holds if
the circles are replaced by the homothets of a given convex curve because
two homothets convex curve intersect in at most two points. In that case,
the algorithm computes the furthest site Voronoi diagram of polygon P for
the convex distance associated with the given convex curve. This can be
done in O(m logm) time, giving a total complexity of O(n+mlogm).

4 Largest Circles Inscribed in Convex Polygons

In this section we study another version of the problem of circular separa-
bility. Suppose that we want to separate a convex polygon P from a set of
points lying inside the polygon. Suppose as well, that the polygon P may
be preprocessed, so that for each set S of points given as a query, separation
of P from S may be decided efficiently. We also address the question when
a part of the query is the line, delimiting a halfplane in which the separating

14

circle must lie.

4.1 Point Set Queries

We start by the case of single point queries.

Theorem 5 It is possible to preprocess a convex n-gon P in O(n) time
and space, so that given a query point x, the largest circle enclosing x and
internal to P may be found in O(log n) time.

Proof: Compute SkT (P) and a planar partition of P induced by SkT (P)
in the following way. Each vertex of SkT (P) is the center of a circle internal
to P which has at least three tangent points with P and is called a Voronoi
circle. For each Voronoi circle, we consider the arcs extending between
two consecutive tangent points. Each such arc which is not greater than
π is included in the planar map (see Figure 6). In this way we obtain a
partition of the interior of P . One region is the interior of the largest circle
C inscribed in P . Other regions are bounded by two circular arcs and two
parts of edges of P . Regions adjacent to vertices of P may be considered
of the same type, with one of the arcs degenerated to a single point. As
SkT (P) is computed in O(n) time and space using [AGSS89], the planar
map may be computed within the same bounds. Observe that if the query
point x lies inside C, the largest separating circle is C itself. If point x lies
outside C, the largest separating circle passes through x and is tangent to the
two portions of edges of P , bounding the region of the map which contains
point x. Thus, the largest separating circle may be found in constant time,
once point x has been located in the planar map. By well-known methods,
following the idea of [Kir83], a trapezoidal decomposition of our planar map
can be preprocessed in O(n) time and space, so that point location can be
performed in O(log n) time. ♦

Theorem 6 It is possible to preprocess a convex n-gon P in O(n) time and
space, so that given as a query a set S of k points, the largest circle enclosing
S and internal to P may be computed in O(k log n) time and O(n+k) space.

15

Figure 6: Planar map induced by the arcs of Voronoi circles

Proof: Construct the planar map, as in Figure 6 in the preprocessing
step. SkT (P) is the dual graph of the map. Let p be a point of S. We
observe that all maximal disks included in Int(P) and containing p are
centered on a subtree of SkT (P) rooted at the center of the largest internal
circle passing through p. Thus, if two points p and q of S belong to two
different cells of the planar map which correspond to the unrelated vertices
of SkT (P), i.e. such that neither of these two vertices is an ancestor of the
other one, no circle internal to P contains both points p and q. Hence, if
S is enclosed in a circle internal to P , all points of S must belong to cells,
whose duals belong to a descending path of SkT (P). To answer the query,
we perform first the point location in the map of each element of S. We
check next if the cells of the query points correspond to a descending path
in SkT (P). For each query point q we compute the largest circle inscribed
in P and containing q. The smallest among all these circles is the candidate
for the circle containing S. It is sufficient if all points of S belong to the
candidate circle. The complexity of the algorithm is dominated by the point
location step, taking O(k log n) time. ♦

Remark, that the smallest circle internal to P , and containing a set of
k points, may be computed using the technique from the previous section.
The set of k points must first be connected to form the set of vertices of a

16

polygon. We can conclude by the following alternative result

Corollary 7 Given a convex n-gon P and a set S of k points, the largest
circle containing S and internal to P may be found in O(k log k + n) time
and O(n+ k) space.

4.2 Queries Involving Lines

We consider first the case when the query consists of a single line, determin-
ing a halfplane which must contain the resulting circle.

Theorem 8 It is possible to preprocess a convex n-gon P in O(n log n) time
and space, so that given a query line l, the largest circle internal to P and
lying in a closed halfplane H+

l , determined by l, may be found in O(log n)
time.

Proof: Let vf ∈ H+
l be the vertex of P which lies at the largest distance

from l. The part of the boundary of P lying in H+
l is split by vf into two

chains of edges. The largest circle C inscribed in P ∈ H+
l must be tangent

to each of these two chains. C is then centered on the path of SkT (P)
joining its root with vertex vf . See Figure 7.

To answer the query, we first find in O(log n) time vertex vf . Then we
perform a binary search on the path joining the root of SkT (P) with vertex
vf , to find an edge of SkT (P) containing the center of C. Now we can find
C in constant time.

In order to perform above algorithm, an appropriate search structure
must be build in the preprocessing time. It is sufficient to add to each vertex
of SkT (P) the pointers to its ancestors at distance 2i, for i = 1, 2, ..., ⌊log n⌋.
It is possible to construct such structure in O(n log n) time and space, during
a standard tree-traversal of SkT (P). ♦

Our next result considers the case when the query is given as a pair of
lines, determining a wedge in which the solution circle must be contained.

17

l

H+

l

v0

vf

Figure 7: The largest circle contained in P ∩ H+
l is centered on the path

joining vf and vO

Theorem 9 It is possible to preprocess a convex n-gon P in O(n log n) time
and space, so that given as a query two lines l1 and l2, the largest circle C

internal to P , and lying in the closed wedge determined by l1 and l2 may be
found in O(log n) time.

Proof: Three cases are possible. The resulting circle C is tangent to
both lines l1 and l2, it is tangent to one of them, or C does not meet any of
the two lines. Suppose that C is tangent to l1 and l2. Consider the space
of circles introduced in the Preliminaries section. Take a halfplane Hl1 ,
originating at line l1 of x-y plane, having 45 degrees angle with the vertical
axis. When C is tangent to l1, φ(C) must belong to Hl1 . In our case φ(C) is
the intersection of the line δ = Hl1 ∩Hl2 with Skel(P). Hence, the problem
reduces to finding an intersection of a line with a convex polyhedron, which
may be answered in O(log n) time, supposing O(n log n) computation of the
hierarchical representation of Skel(P) in the preprocessing time.

The algorithm takes four cases into consideration. In the first case, the
largest circle inscribed in P is output as the solution as long as it does not

18

intersect l1 nor l2. In the second case, the largest circle contained in P∩H+
l1
is

computed. This circle is the solution of our problem if it does not intersect
l2. Similarly, in the third case, the largest circle contained in P ∩ H+

l2
is

computed and then checked for the intersection with l1. Finally, the largest
circle contained in P∩H+

l1
∩H+

l2
is found using the above method. Obviously,

the solution exists only when P ∩H+
l1
∩H+

l2
6= ∅. Except for the first case,

our algorithm uses O(log n) time, supposing O(n log n) time preprocessing.
♦

A similar technique is used to solve the mixed query problem, when the
resulting circle must contain a given point, and it must lie on one side of a
given line.

Theorem 10 It is possible to preprocess a convex n-gon P in O(n log n)
time and space, so that given a query consisting of a line l and a point
x ∈ H+

l , the largest circle C internal to P , enclosing x and lying in the
closed halfplane H+

l , may be found in O(log n) time.

Proof: Suppose that C is tangent to l and contains x on its boundary.
φ(C) lies then on a parabola ℘, being the intersection ofH+

l1
with the vertical

cone originating at x, having 45 degrees apex. It is possible to adapt the
algorithm for line intersection queries to the case of the intersections between
Skel(T) and parabola ℘. Indeed, the parabola ℘ intersects Skel(T) and
each polyhedron of the hierarchical decomposition of Skel(T) in at most
two points. To prove the claim, consider the set of circles C passing through
x and tangent to l. These circles are centered on the parabola ℘′ obtained
by projecting ℘ onto the xy plane. The claim follows from the fact that the
subset of circles of C that intersect P are centered on a single arc of ℘′.

The algorithm checks if the largest circle inscribed in P contains x and
lies in H+

l . If this is not the case we find, as in Theorem 5, the largest circle
containing x, and we output this circle if it lies in H+

l . Otherwise, we con-
tinue, as in Theorem 8, computing the largest circle inscribed in P , which
lies in H+

l . We output this circle if it contains x. Finally, if no circle was
output yet, we find circle C tangent to l and containing x on its boundary
using the above method. The solution does not exist when the parabola
℘ does not intersect Skel(P). The complexity of the query algorithm is
O(log n). The preprocessing is dominated by the O(n log n) hierarchical de-

19

composition and the construction of the search structure needed in Theorem
8. ♦

Observe that Theorems 5, 6, 7 and 8 can be easily generalized to queries
concerning the homothets of a given convex curve. In the same way, Theo-
rems 9 and 10 can be generalized : the mapping φ from the homothet convex
curves to points in the three dimensional space is defined analogously than in
the case of circles by choosing a reference point internal to the convex curve
and a particular point on the convex curve whose (Euclidean) distance to
the reference point will be consider as the radius of the convex curve. Then
the locus of points that are the images of curve internal to P and tangent
to P is still a polyhedron Skel(P), and the locus of points that are images
of curves tangent to a line l is still an hyperplane Hl. The cone which is
the image of the convex curves passing through a point x is no longer a
circular cone but a cone whose sections perpendicular to the vertical axis
are the homothets of a convex curve dual to the given convex curve. The
complexity results have to be adapted depending on the complexity of the
new basic operations used in the algorithms.

5 Conclusion and Open Problems

The paper studied two types of problems concerning circular separability.
In Section 3, the problem of separability of two simple polygons is solved.
Section 4 concerns the problem of the largest circle inscribed in a convex
polygon, given some query point and/or line constraints. The natural way
to approach the circular separability problems is to employ some mixture
of the furthest point and the closest point Voronoi diagrams. However, in
many cases the naive way of making use of this method leads to a quadratic
algorithm. Consider, for example, the case of the largest circle separating
two simple polygons. Such circle is of one of the two possible types: it is
either tangent to three edges of the external polygon, or it is tangent to
two edges of the external polygon and one vertex of the internal one. The
circle of the first type may be found in O(n logm) time, considering Voronoi
circles centered at vertices of V or(Q), the closest point Voronoi diagram of
the external polygon, and localizing their centers in FSV or(P), the furthest
site Voronoi diagram of the internal polygon. To find the separating circle of
the second type, we may superimpose V or(Q) and FSV or(P). Taking into

20

consideration, one by one, each portion of an edge of V or(Q), lying in some
face of FSV or(P), leads to the investigation of all the candidate circles of
the second type. However, such structure needs O(mn) space. We strongly
believe, that the largest circle separating two simple polygons may be found
in better than quadratic time.

Using a convex distance to compute the Voronoi diagram, our method
can be adapted to answer separation queries for separating curves which are
the homothets of a given convex curve.

It is natural to try to extend our approach to higher dimensions. The
method from [OKM86], detecting the spherical separability of two sets of
points, is based on linear programming and it gives O(n) solution in any di-
mension. However, the paraboloid transformation method, used in [OKM86],
seems not applicable in the case of simple polygons. Our algorithm achieves
the linear bound scanning two structures: (1) the list of edges of one poly-
gon, and (2) a path in the furthest point Voronoi diagram of the vertices of
another polygon. The solution circle is always centered on this path. In the
three-dimensional space, the center of the separating sphere may not belong
to a Voronoi edge of either of the two polyhedra. Our ”edge-marching”
approach is then not directly applicable to the higher dimensional case.

It is also tempting to ask for the solutions of the higher-dimensional ver-
sion of the problems from section 4. The single point queries may be solved
in O(log n) time by the similar, point location approach. The separating
spheres are tangent to two or three polyhedral faces. The cells are sepa-
rated by parts of disks, orthogonal to polyhedral edges, as well as spherical
and conical surfaces. However, it is not clear how to answer queries involving
two or more points.

Acknowledgments. Authors thanks the anonumous referees for they help-
full comments which improve the clarity of this paper.

References

[ABO+89] A. Aggarwal, H. Booth, J. O’Rourke, Subhash Suri, and C. K.
Yap. Finding minimal convex nested polygons. Inform. Comput.,

21

83(1):98–110, October 1989.

[AGSS89] A. Aggarwal, Leonidas J. Guibas, J. Saxe, and P. W. Shor. A
linear-time algorithm for computing the Voronoi diagram of a
convex polygon. Discrete Comput. Geom., 4(6):591–604, 1989.

[BCD+94] Jean-Daniel Boissonnat, Jurek Czyzowicz, Olivier Devillers,
Jean-Marc Robert, and Mariette Yvinec. Convex tours of
bounded curvature. In Proc. 2nd Annu. European Sympos. Al-
gorithms, volume 855 of Lecture Notes Comput. Sci., pages 254–
265. Springer-Verlag, 1994. to appear in CGTA.

[BG95] H. Brönnimann and M. T. Goodrich. Almost optimal set covers
in finite VC-dimension. Discrete Comput. Geom., 14:263–279,
1995.

[Bha88] B. K. Bhattacharya. Circular separability of planar point sets.
In G. T. Toussaint, editor, Computational Morphology, pages
25–39. North-Holland, Amsterdam, Netherlands, 1988.

[DJ90] G. Das and D. Joseph. The complexity of minimum convex
nested polyhedra. In Proc. 2nd Canad. Conf. Comput. Geom.,
pages 296–301, 1990.

[DK85] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for
determining the separation of convex polyhedra. J. Algorithms,
6:381–392, 1985.

[EP88] H. Edelsbrunner and F. P. Preparata. Minimum polygonal sep-
aration. Inform. Comput., 77:218–232, 1988.

[Fis86] S. Fisk. Separating points by circles and the recognition of digital
discs. IEEE Trans. Pattern Anal. Mach. Intell., 8(4):554–556,
1986.

[KA84] C. E. Kim and T. Anderson. Digital disks. IEEE Trans. Pattern
Anal. Mach. Intell., PAMI-6(5):639–645, 1984.

[Kir83] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM
J. Comput., 12(1):28–35, 1983.

[Lay71] S.R. Lay. On separation by spherical surfaces. Amer. Math.
Monthly, 78:1112–1113, 1971.

22

[Lee83] D. T. Lee. On finding the convex hull of a simple polygon. In-
ternat. J. Comput. Inform. Sci., 12:87–98, 1983.

[Meg84] N. Megiddo. Linear programming in linear time when the di-
mension is fixed. J. ACM, 31:114–127, 1984.

[Mou92] D. M. Mount. Intersection detection and separators for simple
polygons. In Proc. 8th Annu. ACM Sympos. Comput. Geom.,
pages 303–311, 1992.

[MS95] Joseph S. B. Mitchell and Subhash Suri. Separation and approx-
imation of polyhedral objects. Comput. Geom. Theory Appl.,
5:95–114, 1995.

[OKM86] J. O’Rourke, S. R. Kosaraju, and N. Megiddo. Computing cir-
cular separability. Discrete Comput. Geom., 1:105–113, 1986.

23

