Circular Separability of Polygons*

Jean-Daniel Boissonnat ${ }^{\dagger}$ Jurek Czyzowicz ${ }^{\ddagger}$ Olivier Devillers ${ }^{\dagger}$
Mariette Yvinec ${ }^{\dagger}$

July 27, 2021

Abstract

Two planar sets are circularly separable if there exists a circle enclosing one of the sets and whose open interior disk does not intersect the other set. This paper studies two problems related to circular separability. A linear-time algorithm is proposed to decide if two polygons are circularly separable. The algorithm outputs the smallest separating circle. The second problem asks for the largest circle included in a preprocessed, convex polygon, under some point and/or line constraints. The resulting circle must contain the query points and it must lie in the halfplanes delimited by the query lines.

[^0]
1 Introduction

Let \mathcal{C} denote a family of orientable surfaces in the Euclidean space E^{d}. We say that $P \subset E^{d}$ and $Q \subset E^{d}$ are \mathcal{C}-separable, if there exists $\Sigma \in \mathcal{C}$, such that every point of P lies on one side of Σ and every point of Q lies on the other side. In the last decade, diverse aspects of the separability problem attracted research interest, with \mathcal{C} most often being considered as the families of hyperplanes, spheres and polyhedra. For P and Q being two finite sets of points, the hyperplane separability may be solved by linear programming Meg84. In the case of P and Q being two convex polyhedra, this problem is efficiently solved in DK85.

The problem of finding a polygon with minimum number of vertices, separating two finite sets of points was studied in EP88]. In ABO 89 the same problem of minimal polygonal separation was solved for the case of two nested, convex polygons. Das and Joseph DJ90 proves that finding a separating polyhedron, having minimum number of faces for two nested convex polyhedra is NP-complete.

In MS95] and BG95] the problem of finding a separating polyhedron with approximatively minimum number of faces is tackled. In Mou92, Mount proposes a $O(n \log n)$ algorithm computing an enveloping triangulation of simple polygons. After such preprocessing, given arbitrary location of two polygons, the minimum link polygonal curve separating them may be computed efficiently.

The interest in circular separability was fueled by applications in pattern recognition and image processing, [KA84] Fis86]. Notice that for two finite sets of points, following the idea of Lay Lay71, an instance of a spherical separability problem in E^{d} may be transformed into a linear separability problem in E^{d+1}, using a stereographic projection. Kim and Anderson KA84] presented a quadratic algorithm solving the circular separability problem for two finite sets of points. Bhattacharya Bha88 improves this bound to $O(n \log n)$, computing the entire region at which may be centered all the circles separating the two point sets. O'Rourke, Kosaraju and Megiddo OKM86 proposed optimal algorithms, finding in $O(n)$ time the smallest separating circle, and in $O(n \log n)$ time all largest separating circles for two sets of points. They use the paraboloid transformation to get an instance of a convex, quadratic minimization problem in three dimensions.

In this paper we study two types of problems related to circular separability. In section 3 , we propose a linear time algorithm determining whether two given simple polygons are separable by a circle. The algorithm simultaneously scans two structures: (1) the list of edges of one polygon, and (2) a path in the furthest point Voronoi diagram of the vertices of the other polygon. The resulting separating circle, which is the smallest possible, is always centered on this path. In section 4, we address a dynamic version of another circular separability problem. We preprocess a convex polygon P, so that the largest circle inscribed in P, subject to some query points and/or line constraints may be found efficiently. The resulting circle must contain the query points, and/or it must lie in the halfplanes delimited by the query lines. Our interest in the problem was motivated by an application in motion planning, where convex paths of bounded curvature inside a convex polygon were to be computed BCD^{+94}.

2 Preliminaries

Suppose that we are given a set S of obstacles in the plane, and we are looking for circles that do not intersect the interior of any of the obstacles. The largest such circle, centered at a query point p, may be found quickly, if the Voronoi diagram of S has been precomputed. When a query point p is localized in a Voronoi cell, the obstacle closest to p is determined, and the largest circle centered at p may be easily found.

When the set of obstacles are edges of a convex polygon P, its Voronoi diagram, also called its skeleton partitions of P into convex polygonal cells. As each cell of this partition is adjacent to an edge of P, the skeleton is a tree. This tree, rooted at the vertex which is the center of the largest circle inscribed in P, will be called skeleton tree and denoted $S k T(P)$. A useful way to represent $S k T(P)$ is by means of a convex polyhedral surface obtained in the following way. For each edge e of P consider a plane containing e, having 45 degrees angle with the plane of P, and such that P lies below this plane. Take the lower envelope of the arrangement of all planes obtained this way. It forms a convex polyhedral surface which will be denoted $\operatorname{Skel}(P)$. Obviously, $\operatorname{SkT}(P)$ is the projection of the edges of $\operatorname{Skel}(P)$ onto the plane of P.

In the following, a circle is said to be internal to a polygon P if it is included in the closure of the region which is the interior of P. There exists a standard mapping ϕ from circles lying in the $x y$-plane to points of the threedimensional space. A circle Σ of radius r, centered at (x_{0}, y_{0}) is mapped to the point $\phi(\Sigma)=\left(x_{0}, y_{0}, r\right)$. The points on the vertical line, passing through $\left(x_{0}, y_{0}\right)$, are images of the circles centered at $\left(x_{0}, y_{0}\right)$. As each such vertical line intersects $S k e l(P)$ in a single point $\left(x_{0}, y_{0}, z_{0}\right)$, points below z_{0} represent circles internal to P, and points above z_{0} represent circles intersecting or enclosing P. In consequence, the question of finding the largest internal circle centered at a query point $\left(x_{0}, y_{0}\right)$ is equivalent to vertical ray-shooting from $\left(x_{0}, y_{0}, 0\right)$ to $\operatorname{Skel}(P)$.

Take a cone originating at $\left(x_{0}, y_{0}, 0\right)$ with vertical axis and 45 degrees apex angle. The points on the surface of such cone are images of the circles passing through $\left(x_{0}, y_{0}\right)$. The image of the largest circle internal to P and passing through $\left(x_{0}, y_{0}\right)$ is the point with the largest z-coordinate of the intersection of this cone with $\operatorname{Skel}(P)$.

The furthest site Voronoi diagram for a set S of m given sites $s_{1}, s_{2}, \ldots, s_{m}$ is a partition of the plane into convex regions $F S V\left(s_{1}\right), F S V\left(s_{2}\right), \ldots, F S V\left(s_{m}\right)$, such that any point in $F S V\left(s_{i}\right)$ is farther from s_{i} than from any other site. The region $F S V\left(s_{i}\right)$ is non empty if and only if site s_{i} is a vertex of the convex hull of set S, all non empty regions $F S V\left(s_{i}\right)$ are unbounded and their boundaries form a tree. Each of the vertices of this tree is the center of a circle enclosing S passing through vertices of S, which hereafter is called a furthest site Voronoi circle or an FS-Voronoi circle for short. Except for the smallest circle enclosing S which may pass through only two points of S, each FS-Voronoi circle passes through at least three points of S.

In this paper, the furthest site Voronoi diagram will be represented by a forest $F S \operatorname{Arcs}(S)$ in the following way. The vertices of $F S \operatorname{Arcs}(S)$ are in one-to-one correspondence with the arcs of the FS-Voronoi circles extending between two consecutive points of S and smaller than π. The roots of $F S \operatorname{Arcs}(S)$ are the arcs of the smallest circle enclosing S. Let us consider an edge E of the furthest site Voronoi diagram which is the common boundary of two cells $F S V\left(s_{i}\right)$ and $F S V\left(s_{j}\right)$. Edge E is the locus of the centers of circles enclosing S and passing through s_{i} and s_{j}. The endpoints of E are the center of two FS-Voronoi circles C_{-}and C_{+}which are respectively the smallest and the largest circles passing through s_{i} and s_{j} and enclosing S
(with an exception when $s_{i} s_{j}$ is the diameter of the smallest circle enclosing $S)$. If segment $s_{i} s_{j}$ is a diameter of C_{-}, we assume w.l.o.g. that the arc $s_{i} s_{j}$ of C_{-}joining counterclockwisely s_{i} and s_{j} is smaller than π. If segment $s_{i} s_{j}$ is not an edge of the convex hull of S, the arc $s_{i} s_{j}$ of C_{+}includes at least a point s_{k} of S and, in the forest $\operatorname{FSArcs}(S)$ the arcs $s_{i} s_{k}$ and $s_{k} s_{j}$ of C_{+}are the children of the arc $s_{i} s_{j}$ of C_{-}. If segment $s_{i} s_{j}$ is an edge of the convex hull of S, C_{+}is the line through s_{i} and s_{j} and a terminal node corresponding to the segment $s_{i} s_{j}$ is the child of the arc $s_{i} s_{j}$ of C_{-}. Observe that the arcs of a descending path of $\operatorname{FSArcs}(S)$ have monotonically increasing radii. Obviously, $\operatorname{FSArcs}(S)$ has $O(m)$ complexity.

Figure 1: The furthest point Voronoi diagram of S and the associated forest $F S \operatorname{Arcs}(S)$

We will use the hierarchical representation of convex polyhedra introduced in DK85. A hierarchical representation of convex polyhedron D is a nested sequence $D_{0} \supset D_{1} \supset \ldots \supset D_{k}$ of convex polyhedra, such that (i) D_{0} is a tetrahedron and D_{k} is the polyhedron D and (ii) the set of faces F_{i} of D_{i} is obtained from F_{i+1} by removing a subset I_{i+1} of pairwise non adjacent faces of D_{i+1}. Polyhedron D_{i} is then formed from D_{i+1} by extending remaining faces $F_{i+1} \backslash I_{i+1}$. It may be proved, that in any polygon D_{i+1} it is always possible to find a set I_{i+1} of $O\left(\left|F_{i+1}\right|\right)$ faces of bounded degree. Computing of a hierarchical representation of a convex polyhedron with n vertices may be done within $O(n \log n)$ time and $O(n)$ space. The hierarchical representation supports line intersection queries in $O(\log n)$ time.

3 Circles Separating Simple Polygons

Let P and Q be two simple polygons. We called the interior of P and Q respectively the regions bounded by P and Q denoted $\operatorname{Int}(P)$ and $\operatorname{Int}(Q)$, respectively. The regions $\operatorname{Int}(P)$ and $\operatorname{Int}(Q)$ are considered as open regions. Let us assume that P and Q have disjoint interiors. We say that circle Σ separates P from Q if the open disk which is the interior of Σ contains $\operatorname{Int}(P)$ and no point of $\operatorname{Int}(Q)$ or vice versa. In this section, we propose an efficient algorithm to find a circle that separates two given polygons. The algorithm is designed in such a way, that it outputs the smallest such circle, or it stops determining that no separating circle exists. In some cases, it is possible that the smallest separating circle has an infinite radius, that is when the polygons are separable by a line, but not by any finite circle. The following lemmas specify the condition for two polygons to be separable by a circle.

Lemma 1 Consider two polygons P and Q with disjoint interiors, such that $\operatorname{Int}(P) \cap C H(Q) \neq \emptyset$ and $\operatorname{Int}(Q) \cap C H(P) \neq \emptyset$. There exist a line l and four points x_{1}, x_{2}, x_{3} and x_{4}, lying in that order on l, such that $x_{1}, x_{3} \in \operatorname{Int}(P)$, and $x_{2}, x_{4} \in \operatorname{Int}(Q)$ (see Figure Q 2).

Figure 2: There exist four points x_{1}, x_{2}, x_{3} and x_{4}, lying in that order on a line, such that $x_{1}, x_{3} \in \operatorname{Int}(P)$, and $x_{2}, x_{4} \in \operatorname{Int}(Q)$

Proof : We first define a pocket of Q as a region of $C H(Q) \backslash Q$, limited by an edge E of $C H(Q)$ which is not an edge of Q and a part of Q joining the endpoints of E. If $\operatorname{Int}(P) \cap C H(Q) \neq \emptyset$, there exist a line l_{1} and three points q_{1}, p_{3}, q_{2} in that order on l_{1} such that $q_{1}, q_{2} \in \operatorname{Int}(Q)$ and $p_{3} \in \operatorname{Int}(P)$. Indeed, $\operatorname{Int}(P)$ has to intersect at least one of the pockets \mathcal{R} of Q. Then the line going through a point $p_{3} \in \operatorname{Int}(P) \cap \mathcal{R}$ and parallel to the edge $E=\mathcal{R} \cap C H(Q)$ intersects $\operatorname{int}(Q)$ on both sides of p_{3} and thus is a convenient solution for l_{1}. In the same way, there is a line l_{2} and three points p_{1}, q_{3}, p_{2} in that order on l_{2} such that $p_{1}, p_{2} \in \operatorname{Int}(P)$ and $q_{3} \in \operatorname{Int}(Q)$.

Let l_{3} be the line through p_{3} and q_{3} (see Figure (3). We show now that at least one of the three lines l_{1}, l_{2} or l_{3} meets the requirement of the lemma. We note $\left[q_{1}, \infty\right]$ the infinite part of l_{1} originating in q_{1} and not including q_{2}. In the same way, we note $\left[q_{2}, \infty\right],\left[p_{1}, \infty\right]$ and $\left[p_{2}, \infty\right]$ the infinite parts of l_{1} and l_{2}. Let $i, j \in\{1,2,3\}, i \neq j$. There is a path $\gamma_{q_{i}, q_{j}}$ included in $\operatorname{Int}(Q)$ and joining q_{i} to q_{j}. In the same way, we shall note $\gamma_{p_{i}, p_{j}}$ a path included in $\operatorname{Int}(P)$ and joining p_{i} to p_{j}. Let us assume that neither l_{1} nor l_{2} meets the requirement of the lemma and show that in that case l_{3} will do. Since l_{2} does not meet this requirement, $\gamma_{q_{1}, q_{2}}$ does not intersect $\left[p_{1}, \infty\right]$ nor $\left[p_{2}, \infty\right]$. Then, we claim that $\gamma_{q_{1}, q_{2}}$ has to intersect $\left[p_{3}, \infty\right]$, the infinite part of l_{3} originating in p_{3} and not including q_{3}. Indeed, let $\left[p_{i}, \infty\right]$ with $i=1$ or 2 be one of the infinite portions of l_{2} that does not intersect l_{1}. The concatenation of $\left[p_{3}, \infty\right], \gamma_{p_{3}, p_{i}}$ and $\left[p_{i}, \infty\right]$ intersects line l_{1} in the single point p_{3} and thus separates q_{1} from q_{2}. As $\gamma_{q_{1}, q_{2}}$ cannot intersect $\gamma_{p_{3}, p_{i}}$ nor $\left[p_{i}, \infty\right]$ it has to intersect $\left[p_{3}, \infty\right]$. In the same way $\gamma_{p_{1}, p_{2}}$ has to intersect $\left[q_{3}, \infty\right]$, the other infinite part of l_{3}, and l_{3} meets the requirement of the lemma.

Lemma 2 Two polygons P and Q with disjoint interiors cannot be separated by a circle, if and only if there exists a circle C and four points x_{1}, x_{2}, x_{3} and x_{4}, in that order on the boundary of C, such that $x_{1}, x_{3} \in \operatorname{Int}(Q)$, and $x_{2}, x_{4} \in \operatorname{Int}(P)$ (see Figure (4).

Proof: We prove first that the existence of a circle C satisfying the above condition implies that the two polygons are not separable by a circle. Circle C is split by the points x_{1}, x_{2}, x_{3} and x_{4} into four arcs. Observe that any Jordan curve ζ separating P and Q must intersect each of these four arcs. As any two non-identical circles intersect at two points at most, ζ cannot

Figure 3: For the proof of Lemma 1
be a circle.
Assume now that there exists no circle C satisfying the above property. We prove that P and Q are separable by a circle. Observe first, that either $\operatorname{Int}(Q) \cap C H(P)=\emptyset$ or $\operatorname{Int}(P) \cap C H(Q)=\emptyset$, otherwise, by Lemma [1, there would exist four points x_{1}, x_{2}, x_{3} and x_{4} on a line l contradicting our hypothesis. Suppose, that $\operatorname{Int}(Q) \cap C H(P)=\emptyset$, the other case being symmetrical. Let Σ denote the smallest circle enclosing P. Consider $P_{1}, P_{2}, \ldots, P_{k}$, the sequence of points of tangency of Σ and P, in counterclockwise order around Σ. Denote by $P_{P_{i} P_{j}}$ the part of boundary of P, extending counterclockwise from P_{i} to P_{j}, and denote by $\Sigma_{P_{i} P_{j}}$ the arc of Σ extending counterclockwise from P_{i} to P_{j}. As Σ is the smallest circle enclosing P, each $\operatorname{arc} \Sigma_{P_{i} P_{i+1}}$ is not greater than π (see Figure 5(a)).

Denote by $\Re_{i, i+1}$ the region bounded by $P_{P_{i} P_{i+1}}$ and $\Sigma_{P_{i} P_{i+1}}, i=1,2, \ldots, n$. The set of regions $\left\{\Re_{i, i+1}, i=1,2, \ldots n\right\}$ constitutes a partition of $\operatorname{Int}(\Sigma) \backslash P$. If Σ does not separate P and Q, one of $\Re_{i, i+1}$ must intersect $\operatorname{Int}(Q)$. Let P_{r} and P_{s} denote two consecutive points of tangency of P and Σ, such that $\Re_{r, s}$ intersects $\operatorname{Int}(Q)$. Observe that no other region $\Re_{i, i+1}$ intersects $\operatorname{Int}(Q)$, otherwise, after shrinking Σ, we obtain a circle C having the property mentioned in the lemma.

Figure 4: No circle separates P and Q.

Continuously increase the radius of circle Σ, keeping it tangent to P_{r} and P_{s}, until either some new vertex P_{q} of P becomes tangent to $\Sigma_{P_{r} P_{s}}$ or until region $\Re_{r, s}$ no longer meets $\operatorname{Int}(Q)$. In the latter case, observe that at the moment Q is externally tangent to $\Sigma_{P_{r} P_{s}}$ (cf. Figure $\mathrm{E}^{(\mathrm{c})}$) Int (Q) cannot intersect the opposite region $\Re_{s, r}$, otherwise the conditions of existence of circle C would be met. Thus, at that moment the current position of Σ must separate P and Q. In the former case, the point P_{q} splits the arc $\Sigma_{P_{r} P_{s}}$ into two sub-arcs $\Sigma_{P_{r} P_{q}}$ and $\Sigma_{P_{q} P_{s}}$. Region $\Re_{r, s}$ is thus split into two subregions $\Re_{r, q}$ and $\Re_{q, s}$. As only one region among $\Re_{r, q}$ and $\Re_{q, s}$, say $\Re_{r, q}$, still intersects $\operatorname{Int}(Q)$, replace $\Re_{r, s}$ by $\Re_{r, q}$ and continue the process (cf. Figure ${ }^{\text {(b) }}(\mathrm{b})$). Observe that the radius of Σ increases continuously, Σ encloses P being tangent in P_{r} and P_{s}, and arc $\Sigma_{P_{r} P_{s}}$ remains smaller than π. As $C H(P) \cap \operatorname{Int}(Q)=\emptyset$, at some point $\Re_{r, s}$ will no longer intersect $\operatorname{Int}(Q)$.

Note that in a special case, when some point of the boundary of Q intersects the interior of some edge $P_{r} P_{s}$ of $C H(P)$, the process of increasing Σ stops when the radius of Σ reaches infinity. The only circle separating P and Q will then be a circle of infinite radius, being the line of segment $P_{r} P_{s}$. The following lemma states that, in any case, the separating circle found in Lemma 2 will be the smallest possible.

Lemma 3 If Circle C of radius r intersects polygon P in two points p_{1} and

Figure 5: Illustrating existence of the separating circle
p_{2} and polygon Q in point q, such that arc $p_{1} q p_{2}$ is smaller than π, any circle enclosing P and separating P from Q must have its radius greater than r.

Proof: obvious.

3.1 The Algorithm

To determine the separability of two polygons P and Q, the algorithm first looks for the smallest circle enclosing P and whose interior disk does not intersect $\operatorname{Int}(Q)$, then looks for the smallest circle enclosing Q not intersecting $\operatorname{Int}(P)$. For the first purpose, the algorithm uses two data structures : the list \mathcal{Q} of edges of polygon Q and the forest $\operatorname{FSArcs}(P)$, of arcs of the furthest site Voronoi circles for the set of vertices of P. For any arc $s_{p} s_{q}$ of
$F \operatorname{SArcs}(P)$ and a planar figure F we say that A cuts F, if the convex hull of arc $s_{p} s_{q}$ intersects the interior of F.

The algorithm follows the idea of the proof of Lemma 2. We first determine an $\operatorname{arc} A$ of the smallest circle enclosing P which cuts Q. The list \mathcal{Q} of edges of Q is then scanned until an edge E of Q which actually cuts A is found. A path of a tree of $\operatorname{FSArcs}(P)$ is now traversed until the current $\operatorname{arc} A$ admits no children cutting the current edge E. This traversal of $F S \operatorname{Arcs}(P)$ corresponds to the process of increasing the radius of the circle enclosing P, until edge E no longer intersects the circle. Then the scanning of list \mathcal{Q} resumes alternatively with the traversal of a branch of $\operatorname{FSArcs}(P)$ until an $\operatorname{arc} A$ is found which intersects Q and whose children do not. Then, let $A r c$ be the arc extending between the endpoints of A and externally tangent to Q. If the circle of Arc does not intersect Q, we are done, otherwise there is no circle separating P and Q.

Algorithm Smallest Separating Circle

Input: A simple polygon P of m vertices and a simple polygon Q of n vertices.

Output: The smallest circle containing P and disjoint with $\operatorname{Int}(Q)$, if one exists.

1. Compute $F S \operatorname{Arcs}(P)$.
2. if no root of $F S \operatorname{Arcs}(P)$ cuts Q
then OUTPUT(the smallest circle enclosing P);STOP.
else $A \leftarrow$ a root of $F \operatorname{SArcs}(P)$ which cuts Q.
3. while \mathcal{Q} is not empty do
3.1. $E \leftarrow \operatorname{next}(\mathcal{Q})$
3.2. while A does not cut E do
if \mathcal{Q} is empty, go to 4
else $E \leftarrow \operatorname{next}(\mathcal{Q})$.
3.3. while there exists a child $d_{c}(A)$ which cuts E do

$$
A \leftarrow \operatorname{child}_{c}(A)
$$

3.4 if A is a terminal arc of $F S \operatorname{Arcs}(P)$
then OUTPUT(${ }^{\prime} C H(P)$ and Q intersect'); STOP.
4. Arc \leftarrow the arc externally tangent to \mathcal{Q} and passing through the endpoints of A.
5. if the complementary arc of Arc cuts the polygon Q
then OUTPUT(${ }^{\prime} C H(P)$ and Q are not separable'). else OUTPUT(circle of $A r c)$.

End of the Algorithm

3.2 The Correctness of the Algorithm

We prove here that the algorithm outputs the smallest circle enclosing P and external to Q if such a circle exists.

First, we observe that if the algorithms terminates in step 2, it outputs the smallest circle enclosing P which is clearly the smallest circle enclosing P and external to Q if this circle does not intersect Q.

Then notice that if algorithm stops with a terminal arc in step 3.4, the current edge E of Q intersects that terminal arc which is an edge of $C H(P)$, thus $C H(P)$ and Q intersect and there is no separating circle.

If the algorithms does not stop in step 3.4, the while loop of step 3 terminates when the list \mathcal{Q} is empty. Then, the current arc A is not a terminal arc and it cuts Q but its children do not. Indeed, every edge of Q scanned while the current arc is A does not cut A, and hence these edges do not cut the children of A because the convex hull of any arc contains the convex hull of any of its descendant in $\operatorname{FSArcs}(P)$. Before arc A is the current arc, any scanned edge was compared with an ancestor of A and found as not cut by the children of this ancestor of A, therefore the children of A do not cut such an edge.

Let us show that the arc Arc computed in step 4 is uniquely defined. Let s_{p} and s_{q} be the endpoints of the current arc A at the end of step 3 . The segment joining the center of the circle including arc A and the center of the circle including its children is an edge of the furthest site Voronoi diagram of P; this edge is the locus of the centers of circles that enclose P and pass through s_{p} and s_{q}. The arc $s_{p} s_{q}$ of the circle including A cuts \mathcal{Q} while the $\operatorname{arc} s_{p} s_{q}$ of the circle including the children of A does not. By continuity, there is a point on this furthest site Voronoi edge which is the center of a circle through s_{p} and s_{q}, enclosing P and whose arc $s_{p} s_{q}$ is tangent to \mathcal{Q}. This circle is the extension of Arc.

In step 5, when the complementary arc $s_{q} s_{p}$ of Arc cuts the polygon Q, there exists a small disk d internal to Q and centered in some point x on $s_{p} s_{q}$. Recall that Arc is not greater than π and that it is tangent at some point y to an edge of Q. Thus it is possible to modify the circle of Arc slightly, so that it encloses point y but neither of s_{p} and s_{q}, and still
intersects a part of disk d. Then, the condition of Lemma 2 is satisfied and there exists no circle separating P and Q. Note that, as step 2 does not compute all the roots cutting Q, and step 4.2 does not test all the children of A for cutting Q the non-separability of P and Q is not detected earlier.

Finally, when the complementary arc of Arc does not cut polygon Q, no edge of Q cuts the interior of the circle of Arc, and the circle encloses P. Hence, it is a separating circle. On the other hand, by the construction of $A r c$, it follows from Lemma 3, that this circle is the smallest separating circle enclosing P.

3.3 The Complexity of the Algorithm

The first step relies on well known optimal algorithms. By Lee83], the convex hull of P is computed in $O(m)$ time. Within the same complexity, AGSS89 computes the furthest site Voronoi diagram of a convex polygon, which results in the construction of $\operatorname{FSArcs}(P)$ and the smallest circle enclosing P.

Step 2 may be computed easily within $O(m+n)$ time in the following way. In $O(n)$ time, all edges of Q are tested for intersection with the interior of the smallest circle enclosing P. Then any of the edges found to intersect this disk is tested for cutting by the roots of $F S \operatorname{Arcs}(P)$. Since there are m roots at most, this is done in $O(m)$ time.

Steps 3.1 and 3.2 are executed at most $O(n)$ times overall, as each execution results in skipping an element of \mathcal{Q}. Step 3.3 is executed $O(m)$ times at most, as $\operatorname{FSArcs}(P)$ has $O(m)$ complexity. Step 3.4 is executed at most once. Hence, the overall complexity of step 3 is $O(m+n)$.

Step 4 is executed in constant time and Step 5 in $O(m)$ time, thus we conclude with the following result.

Theorem 4 In $O(m+n)$ time and space it is possible to determine whether two given polygons, one with m and the other one with n vertices, are separable by a circle. The smallest separating circle may be found within the same bounds.

Step 5 of the algorithm can be easily extended to exhibit a witness (as given by Lemma (2) when the two polygons are not separable by a circle.

Observe that, although it makes no sense to ask for a circle separating two polygons with non-disjoint interiors, Algorithm Smallest Separating Circle still works in this case. The algorithm will either detect the intersection of the two polygons in step 2 or stops with a terminal arc in step 3.3. The algorithm also works in the case when polygon Q is not necessarily simple. Moreover, the algorithm extends to the case when the first polygonal curve contains the second one, i.e. when we want to separate the unbounded region lying outside the external curve, from the region bounded by the internal curve. It is easy to observe that the algorithm generalizes also to the case of separation of connected planar straight line graphs. We say that two graphs are separated by a circle if no edge of the first graph intersects the interior of the circle while no edge of the second graph intersects the exterior of the circle. Indeed, in linear time each graph may be transformed to a polygon, obtained by the traversal of the external face of the graph. As some edges may be traversed twice, the polygon is not simple in general. However, the algorithm still works in this case.

Furthermore notice that our method can be extended to answer separability query when the allowed separating curves are the homothets of a given convex curve. Indeed, the algorithm relies on Lemma 3 which still holds if the circles are replaced by the homothets of a given convex curve because two homothets convex curve intersect in at most two points. In that case, the algorithm computes the furthest site Voronoi diagram of polygon P for the convex distance associated with the given convex curve. This can be done in $O(m \log m)$ time, giving a total complexity of $O(n+m \log m)$.

4 Largest Circles Inscribed in Convex Polygons

In this section we study another version of the problem of circular separability. Suppose that we want to separate a convex polygon P from a set of points lying inside the polygon. Suppose as well, that the polygon P may be preprocessed, so that for each set S of points given as a query, separation of P from S may be decided efficiently. We also address the question when a part of the query is the line, delimiting a halfplane in which the separating
circle must lie.

4.1 Point Set Queries

We start by the case of single point queries.

Theorem 5 It is possible to preprocess a convex n-gon P in $O(n)$ time and space, so that given a query point x, the largest circle enclosing x and internal to P may be found in $O(\log n)$ time.

Proof: Compute $S k T(P)$ and a planar partition of P induced by $S k T(P)$ in the following way. Each vertex of $S k T(P)$ is the center of a circle internal to P which has at least three tangent points with P and is called a Voronoi circle. For each Voronoi circle, we consider the arcs extending between two consecutive tangent points. Each such arc which is not greater than π is included in the planar map (see Figure 6). In this way we obtain a partition of the interior of P. One region is the interior of the largest circle C inscribed in P. Other regions are bounded by two circular arcs and two parts of edges of P. Regions adjacent to vertices of P may be considered of the same type, with one of the arcs degenerated to a single point. As $S k T(P)$ is computed in $O(n)$ time and space using AGSS89, the planar map may be computed within the same bounds. Observe that if the query point x lies inside C, the largest separating circle is C itself. If point x lies outside C, the largest separating circle passes through x and is tangent to the two portions of edges of P, bounding the region of the map which contains point x. Thus, the largest separating circle may be found in constant time, once point x has been located in the planar map. By well-known methods, following the idea of Kir83, a trapezoidal decomposition of our planar map can be preprocessed in $O(n)$ time and space, so that point location can be performed in $O(\log n)$ time.

Theorem 6 It is possible to preprocess a convex n-gon P in $O(n)$ time and space, so that given as a query a set S of k points, the largest circle enclosing S and internal to P may be computed in $O(k \log n)$ time and $O(n+k)$ space.

Figure 6: Planar map induced by the arcs of Voronoi circles

Proof: Construct the planar map, as in Figure 6 in the preprocessing step. $S k T(P)$ is the dual graph of the map. Let p be a point of S. We observe that all maximal disks included in $\operatorname{Int}(P)$ and containing p are centered on a subtree of $S k T(P)$ rooted at the center of the largest internal circle passing through p. Thus, if two points p and q of S belong to two different cells of the planar map which correspond to the unrelated vertices of $S k T(P)$, i.e. such that neither of these two vertices is an ancestor of the other one, no circle internal to P contains both points p and q. Hence, if S is enclosed in a circle internal to P, all points of S must belong to cells, whose duals belong to a descending path of $S k T(P)$. To answer the query, we perform first the point location in the map of each element of S. We check next if the cells of the query points correspond to a descending path in $S k T(P)$. For each query point q we compute the largest circle inscribed in P and containing q. The smallest among all these circles is the candidate for the circle containing S. It is sufficient if all points of S belong to the candidate circle. The complexity of the algorithm is dominated by the point location step, taking $O(k \log n)$ time.

Remark, that the smallest circle internal to P, and containing a set of k points, may be computed using the technique from the previous section. The set of k points must first be connected to form the set of vertices of a
polygon. We can conclude by the following alternative result

Corollary 7 Given a convex n-gon P and a set S of k points, the largest circle containing S and internal to P may be found in $O(k \log k+n)$ time and $O(n+k)$ space.

4.2 Queries Involving Lines

We consider first the case when the query consists of a single line, determining a halfplane which must contain the resulting circle.

Theorem 8 It is possible to preprocess a convex n-gon P in $O(n \log n)$ time and space, so that given a query line l, the largest circle internal to P and lying in a closed halfplane H_{l}^{+}, determined by l, may be found in $O(\log n)$ time.

Proof: Let $v_{f} \in H_{l}^{+}$be the vertex of P which lies at the largest distance from l. The part of the boundary of P lying in H_{l}^{+}is split by v_{f} into two chains of edges. The largest circle C inscribed in $P \in H_{l}^{+}$must be tangent to each of these two chains. C is then centered on the path of $\operatorname{SkT}(P)$ joining its root with vertex v_{f}. See Figure ${ }^{7}$.

To answer the query, we first find in $O(\log n)$ time vertex v_{f}. Then we perform a binary search on the path joining the root of $S k T(P)$ with vertex v_{f}, to find an edge of $S k T(P)$ containing the center of C. Now we can find C in constant time.

In order to perform above algorithm, an appropriate search structure must be build in the preprocessing time. It is sufficient to add to each vertex of $S k T(P)$ the pointers to its ancestors at distance 2^{i}, for $i=1,2, \ldots,\lfloor\log n\rfloor$. It is possible to construct such structure in $O(n \log n)$ time and space, during a standard tree-traversal of $S k T(P)$.

Our next result considers the case when the query is given as a pair of lines, determining a wedge in which the solution circle must be contained.

Figure 7: The largest circle contained in $P \cap H_{l}^{+}$is centered on the path joining v_{f} and v_{O}

Theorem 9 It is possible to preprocess a convex n-gon P in $O(n \log n)$ time and space, so that given as a query two lines l_{1} and l_{2}, the largest circle C internal to P, and lying in the closed wedge determined by l_{1} and l_{2} may be found in $O(\log n)$ time.

Proof: Three cases are possible. The resulting circle C is tangent to both lines l_{1} and l_{2}, it is tangent to one of them, or C does not meet any of the two lines. Suppose that C is tangent to l_{1} and l_{2}. Consider the space of circles introduced in the Preliminaries section. Take a halfplane $\mathcal{H}_{l_{1}}$, originating at line l_{1} of $x-y$ plane, having 45 degrees angle with the vertical axis. When C is tangent to $l_{1}, \phi(C)$ must belong to $\mathcal{H}_{l_{1}}$. In our case $\phi(C)$ is the intersection of the line $\delta=\mathcal{H}_{l_{1}} \cap \mathcal{H}_{l_{2}}$ with $\operatorname{Skel}(P)$. Hence, the problem reduces to finding an intersection of a line with a convex polyhedron, which may be answered in $O(\log n)$ time, supposing $O(n \log n)$ computation of the hierarchical representation of $\operatorname{Skel}(P)$ in the preprocessing time.

The algorithm takes four cases into consideration. In the first case, the largest circle inscribed in P is output as the solution as long as it does not
intersect l_{1} nor l_{2}. In the second case, the largest circle contained in $P \cap H_{l_{1}}^{+}$is computed. This circle is the solution of our problem if it does not intersect l_{2}. Similarly, in the third case, the largest circle contained in $P \cap H_{l_{2}}^{+}$is computed and then checked for the intersection with l_{1}. Finally, the largest circle contained in $P \cap H_{l_{1}}^{+} \cap H_{l_{2}}^{+}$is found using the above method. Obviously, the solution exists only when $P \cap H_{l_{1}}^{+} \cap H_{l_{2}}^{+} \neq \emptyset$. Except for the first case, our algorithm uses $O(\log n)$ time, supposing $O(n \log n)$ time preprocessing. \diamond

A similar technique is used to solve the mixed query problem, when the resulting circle must contain a given point, and it must lie on one side of a given line.

Theorem 10 It is possible to preprocess a convex n-gon P in $O(n \log n)$ time and space, so that given a query consisting of a line l and a point $x \in H_{l}^{+}$, the largest circle C internal to P, enclosing x and lying in the closed halfplane H_{l}^{+}, may be found in $O(\log n)$ time.

Proof: Suppose that C is tangent to l and contains x on its boundary. $\phi(C)$ lies then on a parabola \wp, being the intersection of $H_{l_{1}}^{+}$with the vertical cone originating at x, having 45 degrees apex. It is possible to adapt the algorithm for line intersection queries to the case of the intersections between $\operatorname{Skel}(T)$ and parabola \wp. Indeed, the parabola \wp intersects $\operatorname{Skel}(T)$ and each polyhedron of the hierarchical decomposition of $\operatorname{Skel}(T)$ in at most two points. To prove the claim, consider the set of circles \mathcal{C} passing through x and tangent to l. These circles are centered on the parabola \wp^{\prime} obtained by projecting \wp onto the $x y$ plane. The claim follows from the fact that the subset of circles of \mathcal{C} that intersect P are centered on a single arc of \wp^{\prime}.

The algorithm checks if the largest circle inscribed in P contains x and lies in H_{l}^{+}. If this is not the case we find, as in Theorem 廻, the largest circle containing x, and we output this circle if it lies in H_{l}^{+}. Otherwise, we continue, as in Theorem 8, computing the largest circle inscribed in P, which lies in H_{l}^{+}. We output this circle if it contains x. Finally, if no circle was output yet, we find circle C tangent to l and containing x on its boundary using the above method. The solution does not exist when the parabola \wp does not intersect $\operatorname{Skel}(P)$. The complexity of the query algorithm is $O(\log n)$. The preprocessing is dominated by the $O(n \log n)$ hierarchical de-
composition and the construction of the search structure needed in Theorem 8.

Observe that Theorems 5, 6,7 and 8 can be easily generalized to queries concerning the homothets of a given convex curve. In the same way, Theorems 9 and 10 can be generalized : the mapping ϕ from the homothet convex curves to points in the three dimensional space is defined analogously than in the case of circles by choosing a reference point internal to the convex curve and a particular point on the convex curve whose (Euclidean) distance to the reference point will be consider as the radius of the convex curve. Then the locus of points that are the images of curve internal to P and tangent to P is still a polyhedron $\operatorname{Skel}(P)$, and the locus of points that are images of curves tangent to a line l is still an hyperplane \mathcal{H}_{l}. The cone which is the image of the convex curves passing through a point x is no longer a circular cone but a cone whose sections perpendicular to the vertical axis are the homothets of a convex curve dual to the given convex curve. The complexity results have to be adapted depending on the complexity of the new basic operations used in the algorithms.

5 Conclusion and Open Problems

The paper studied two types of problems concerning circular separability. In Section 3, the problem of separability of two simple polygons is solved. Section 4 concerns the problem of the largest circle inscribed in a convex polygon, given some query point and/or line constraints. The natural way to approach the circular separability problems is to employ some mixture of the furthest point and the closest point Voronoi diagrams. However, in many cases the naive way of making use of this method leads to a quadratic algorithm. Consider, for example, the case of the largest circle separating two simple polygons. Such circle is of one of the two possible types: it is either tangent to three edges of the external polygon, or it is tangent to two edges of the external polygon and one vertex of the internal one. The circle of the first type may be found in $O(n \log m)$ time, considering Voronoi circles centered at vertices of $\operatorname{Vor}(Q)$, the closest point Voronoi diagram of the external polygon, and localizing their centers in $F \operatorname{VVor}(P)$, the furthest site Voronoi diagram of the internal polygon. To find the separating circle of the second type, we may superimpose $\operatorname{Vor}(Q)$ and $F \operatorname{SVor}(P)$. Taking into
consideration, one by one, each portion of an edge of $\operatorname{Vor}(Q)$, lying in some face of $F S \operatorname{Vor}(P)$, leads to the investigation of all the candidate circles of the second type. However, such structure needs $O(m n)$ space. We strongly believe, that the largest circle separating two simple polygons may be found in better than quadratic time.

Using a convex distance to compute the Voronoi diagram, our method can be adapted to answer separation queries for separating curves which are the homothets of a given convex curve.

It is natural to try to extend our approach to higher dimensions. The method from OKM86, detecting the spherical separability of two sets of points, is based on linear programming and it gives $O(n)$ solution in any dimension. However, the paraboloid transformation method, used in OKM86, seems not applicable in the case of simple polygons. Our algorithm achieves the linear bound scanning two structures: (1) the list of edges of one polygon, and (2) a path in the furthest point Voronoi diagram of the vertices of another polygon. The solution circle is always centered on this path. In the three-dimensional space, the center of the separating sphere may not belong to a Voronoi edge of either of the two polyhedra. Our "edge-marching" approach is then not directly applicable to the higher dimensional case.

It is also tempting to ask for the solutions of the higher-dimensional version of the problems from section 4 . The single point queries may be solved in $O(\log n)$ time by the similar, point location approach. The separating spheres are tangent to two or three polyhedral faces. The cells are separated by parts of disks, orthogonal to polyhedral edges, as well as spherical and conical surfaces. However, it is not clear how to answer queries involving two or more points.

Acknowledgments. Authors thanks the anonumous referees for they helpfull comments which improve the clarity of this paper.

References

$\left[\mathrm{ABO}^{+} 89\right]$ A. Aggarwal, H. Booth, J. O'Rourke, Subhash Suri, and C. K. Yap. Finding minimal convex nested polygons. Inform. Comput.,

83(1):98-110, October 1989.
[AGSS89] A. Aggarwal, Leonidas J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom., 4(6):591-604, 1989.
[$\left.\mathrm{BCD}^{+} 94\right]$ Jean-Daniel Boissonnat, Jurek Czyzowicz, Olivier Devillers, Jean-Marc Robert, and Mariette Yvinec. Convex tours of bounded curvature. In Proc. 2nd Annu. European Sympos. Algorithms, volume 855 of Lecture Notes Comput. Sci., pages 254265. Springer-Verlag, 1994. to appear in CGTA.
[BG95] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom., 14:263-279, 1995.
[Bha88] B. K. Bhattacharya. Circular separability of planar point sets. In G. T. Toussaint, editor, Computational Morphology, pages 25-39. North-Holland, Amsterdam, Netherlands, 1988.
[DJ90] G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In Proc. 2nd Canad. Conf. Comput. Geom., pages 296-301, 1990.
[DK85] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the separation of convex polyhedra. J. Algorithms, 6:381-392, 1985.
[EP88] H. Edelsbrunner and F. P. Preparata. Minimum polygonal separation. Inform. Comput., 77:218-232, 1988.
[Fis86] S. Fisk. Separating points by circles and the recognition of digital discs. IEEE Trans. Pattern Anal. Mach. Intell., 8(4):554-556, 1986.
[KA84] C. E. Kim and T. Anderson. Digital disks. IEEE Trans. Pattern Anal. Mach. Intell., PAMI-6(5):639-645, 1984.
[Kir83] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12(1):28-35, 1983.
[Lay71] S.R. Lay. On separation by spherical surfaces. Amer. Math. Monthly, 78:1112-1113, 1971.
[Lee83] D. T. Lee. On finding the convex hull of a simple polygon. Internat. J. Comput. Inform. Sci., 12:87-98, 1983.
[Meg84] N. Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM, 31:114-127, 1984.
[Mou92] D. M. Mount. Intersection detection and separators for simple polygons. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 303-311, 1992.
[MS95] Joseph S. B. Mitchell and Subhash Suri. Separation and approximation of polyhedral objects. Comput. Geom. Theory Appl., 5:95-114, 1995.
[OKM86] J. O'Rourke, S. R. Kosaraju, and N. Megiddo. Computing circular separability. Discrete Comput. Geom., 1:105-113, 1986.

[^0]: * This work has been supported in part by the ESPRIT Basic Research Actions Nr. 7141 (ALCOM II) and Nr. 6546 (PROMotion), NSERC, FCAR and F ODAR. A first version of this paper was published in SODA 1995
 ${ }^{\dagger}$ INRIA, 2004 Route des Lucioles, B.P.109, 06561 Valbonne cedex, France Phone : +33 936577 38, E-mails : firstname.name@sophia.inria. fr
 ${ }^{\ddagger}$ Département d'informatique, Université du Québec à Hull

