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Abstract. Let En
2 = {−1, 1}n be the discrete cube in R

n . For every N ≥ n we consider
the class of convex bodies KN = co{±x1, . . . ,±xN } which are generated by N random
points x1, . . . , xN chosen independently and uniformly from En

2 . We show that if n ≥ n0

and N ≥ n(log n)2, then, for a random KN , the inradius, the volume radius, the mean width
and the size of the maximal inscribed cube can be determined up to an absolute constant as
functions of n and N . This geometric description of KN leads to sharp estimates for several
asymptotic parameters of the corresponding n-dimensional normed space X N .

1. Introduction

The use of random spaces in the study of finite-dimensional normed spaces provided a
way of proving the existence of spaces or operators with extremal properties. Several
important problems of the theory were solved by introducing a suitable probability space
consisting of n-dimensional spaces and showing that random selection of its elements
gives objects with the desired properties. Among many existence results proved in this
way, we mention the existence of a pair of n-dimensional spaces with Banach–Mazur
distance of order as large as n [18], the existence of a space whose unconditional basis
constant [15] or basis constant [33], [19] has order as large as

√
n, the existence of a

space whose Banach–Mazur distance to �n
∞ is greater than c

√
n log n [34]. In particular,

random n-dimensional subspaces of �N
∞ with N = λn, λ > 1 (i.e. spaces whose unit balls

are random sections of the cube QN of dimension proportional to N ), provided examples
of spaces which exhibited pathology with respect to various asymptotic parameters of
the theory: this line of thought has its origin in [23] and [16] (see also [32], [35], [13]
and the articles mentioned above).

In this article we consider convex hulls of random subsets of the set of vertices of
the cube and the class of random spaces they generate. In order to define our probability
space precisely, we consider the discrete cube En

2 = {−1, 1}n in R
n equipped with the
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uniform probability measure, and fix N ≥ n. Next, we consider N independent random
points x1, . . . , xN uniformly distributed over En

2 , and for every choice x1, . . . , xN , we
write MN for the convex hull

MN := M(x1, . . . , xN ) = co{x1, . . . , xN }

and KN for the absolute convex hull

KN := K (x1, . . . , xN ) = co{±x1, . . . ,±xN }.

The symmetric convex body KN (if non-degenerate) induces a norm on R
n . We write

X N for the normed space whose unit ball is KN . In this way, for every N ≥ n we obtain
a class of random n-dimensional spaces, which we denote by BN . The dual space of X N

is denoted by X∗
N and the class of dual spaces by B∗

N .
Section 2 is devoted to the study of the geometry of a random KN . We say that a

property (P) holds for a random KN if the probability of the N -tuples (x1, . . . , xN ) for
which KN has (P) is greater than 1 − exp(−n) (it tends to 1 “exponentially” as the
dimension n grows to infinity). There are three basic sources of information on a random
KN , depending on the number N of vertices. First, we prove that if N ≥ λ0n where
λ0 > 1 is a fixed constant, then (with high probability) KN contains a centered ball of
radius independent of n and N .

Fact 1. If N ≥ λ0n, then KN ⊇ c1 Bn
2 with high probability, where Bn

2 is the Euclidean
unit ball and λ0 > 1, c1 > 0 are absolute constants.

Since KN ⊆ Qn := [−1, 1]n , this estimate is clearly optimal, the interesting point
being that it starts being true for a random KN when N is as low as of the order of n.
The proof of this fact is a consequence of the observation that a random “small” set
of vertices of the cube is already enough to substitute En

2 in the classical Khintchine
inequality: for all a1, . . . , an ∈ R,

1

|A|
∑
ε∈A

|ε1a1 + · · · + εnan| � (a2
1 + · · · + a2

n)
1/2, (1.1)

if m ≥ λ0n and A is a random subset of En
2 of cardinality |A| = m.

Our second main result is that if N ≥ n(log n)2, then KN contains (with high proba-
bility) a centered cube whose edges have length

√
log(N/n)/

√
n.

Fact 2. There exists n0 ∈ N with the following property: if n ≥ n0 and N ≥ n(log n)2,
then

KN ⊇ c(
√

log(N/n)Bn
2 ∩ Qn) ⊇ (c2

√
log(N/n)/

√
n)Qn

with probability greater than 1 − e−n , where c2 > 0 is an absolute constant.

In the range N ≥ exp((log n)2), the first inclusion was recently proved by Bárány
and Pór in [4] (see the remarks after Theorem 2.2). Fact 2 should be compared with
the following result which was proved in [17]: There exists a constant κ > 0 with the
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following property: for every δ ∈ (0, 1) and every convex body K with centroid at the
origin in R

n , N ≥ c(δ)nκ points x1, . . . , xN chosen uniformly and independently from
K satisfy with probability greater than 1 − δ,

K ⊇ MN = co{x1, . . . , xN } ⊇ c log N

n
K ,

where c > 0 is an absolute constant. Fact 2 may be viewed as a discrete version of
the case K = Qn in the above result. The argument in [17] makes essential use of
the Brunn–Minkowski inequality: the main point there is that the Lψ1 -norm of linear
functionals on convex bodies is bounded by their L1-norm. Note that the dependence on
N in Fact 2 is better (this reflects the fact that linear functionals f on the cube satisfy
the stronger inequality ‖ f ‖Lψ2

≤ c‖ f ‖L1 ).
Finally, we observe that combining Fact 2 with well-known volume estimates from

[20] and [9] one can determine the volume radius of KN and K ◦
N up to an absolute

constant.

Fact 3. If N ≥ n(log n)2, then for a random KN we have

(a) |KN |1/n � √
log(N/n)/

√
n and |K ◦

N |1/n � 1/
√

n log(N/n),
(b) w(KN )w(K ◦

N ) ≤ c3
√

log n
√

log N/
√

log(N/n),

where w(·) denotes mean width and c3 > 0 is an absolute constant.

Combining all three facts we have a precise description of the unit ball of X N . A ran-
dom KN belongs to a rather restricted class of convex bodies for which many asymptotic
parameters can be estimated through known methods. This is done in Section 3, where
we start by studying unconditionality properties of X N as a function of N . Our first result
concerns the Banach–Mazur distance from a random X N to the class U of spaces with
1-unconditional basis.

Fact 4. For every δ ∈ (0, 1) we can find c(δ) = O(log(δ−1)) such that: if N ≥ c(δ)n,
then X N ∈ BN satisfies

d(X N ,U) ≥ c4
√

n√
log(2N/n)

with probability greater than 1 − δ, where c4 > 0 is an absolute constant and d denotes
Banach–Mazur distance.

Fact 2 shows that when N ≥ n(log n)2, then d(X N ,U) is “attained” for �n
∞ and has

exactly the order given by Fact 4. Also, for suitable N � n, Fact 4 shows the existence of
a space whose distance fromU is of the maximal possible order

√
n (this is a well-known

fact; see [15]).
Facts 1 and 3(b) show that the Euclidean ball is “equivalent” to the distance and �-

ellipsoid of KN . Thus, although the unconditional basis constant of X N is large, we may
apply the method of random orthogonal factorizations to obtain upper estimates for the
Banach–Mazur distance from X N to special classes of spaces. In particular, we prove
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the following:

Fact 5. For every N ≥ n and for a random X N , d(X N , X∗
N ) ≤ C

√
n log n where

C > 0 is an absolute constant.

Finally, we obtain estimates for the isotropic constant of the unit balls of spaces in the
classes BN and B∗

N . For a random K ◦
N , N ≥ n(log n)2, the isotropic constant is bounded

by an absolute constant.

Fact 6. There exist absolute constants c,C > 0 with the following property:

(a) If n ≤ N ≤ n(log n)2, then L K ◦
N

≤ c
√

log(2N/n) ≤ C
√

log log n.
(b) If N ≥ n(log n)2, then L K ◦

N
≤ C for a random K ◦

N .

Some estimates for the isotropic constant of a random KN may be given as well.

Fact 7. Let N ≥ n(log n)2. For a random KN we have

L KN ≤ C
min{log N ,

√
n}√

log(N/n)
,

where C > 0 is an absolute constant.

Notation. We will be working in R
n , which is equipped with the Euclidean structure

〈·, ·〉. All n-dimensional normed spaces in this paper are of the form X = (Rn, ‖ · ‖).
The unit ball of X is a centrally symmetric convex body in R

n which is denoted by
BX . Conversely, every centrally symmetric convex body K induces the norm ‖x‖K =
min{λ ≥ 0: x ∈ λK } to R

n , and K is the unit ball of X K = (Rn, ‖ · ‖K ). The dual norm
is defined by ‖y‖∗ = max{|〈x, y〉|: x ∈ BX }, and the unit ball of X∗ = (Rn, ‖ · ‖∗) is
the polar body BX∗ = B◦

X of BX .
We write Bn

2 and Sn−1 for the Euclidean unit ball and sphere, respectively, and

‖x‖p =
(

n∑
i=1

|xi |p

)1/p

for the �n
p-norm of x = (x1, . . . , xn) ∈ R

n , 1 ≤ p < ∞ (in the case p = ∞, ‖x‖∞ =
maxi≤n|xi |). The rotationally invariant probability measure on Sn−1 is denoted by σ . We
use the notation |A| for the volume of a convex body and for the cardinality of a finite
set.

The support function of a convex body K is defined by hK (y) = maxx∈K 〈x, y〉. The
mean width of K is the quantity

w(K ) =
∫

Sn−1
[hK (θ)+ hK (−θ)]σ(dθ) = 2

∫
Sn−1

hK (θ)σ (dθ). (1.2)

Let X and Y be two n-dimensional normed spaces. Their Banach–Mazur distance
d(X, Y ) is defined by

d(X, Y ) = min{‖T ‖ · ‖T −1‖ | T : X → Y an isomorphism}. (1.3)
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John’s theorem [21] shows that d(X, �n
2) ≤ √

n for every X . It follows that d(X, Y )
is always bounded by n. On the other hand, as we already mentioned, Gluskin [18]
proved that there exists an absolute constant c > 0 such that for every n one can find
n-dimensional spaces Xn, Yn with d(Xn, Yn) ≥ cn.

The letters c, c1, c2, c′, etc., are reserved for absolute positive constants, which may
change from line to line. Wherever we write a � b, this means that there exist absolute
constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. We refer the reader to the books [26],
[30] and [37] for basic facts that we use throughout the text.

2. Geometry of the Unit Ball

As was mentioned in the Introduction, we say that a random KN has a certain property
(P) if

Prob((x1, . . . , xN ) ∈ En
2 × · · · × En

2 : (P) holds for KN ) ≥ 1 − e−n,

where KN = co(±x1, . . . ,±xN ). In this section we give a description of the unit ball
KN of a random element of BN :

Theorem A. There exists n0 ∈ N such that if n ≥ n0 and N ≥ n(log n)2, then a
random KN has the following properties:

(a) KN ⊇ c1 Bn
2 ,

(b) KN ⊇ (c2

√
log(N/n)/

√
n)Qn ,

(c) |KN |1/n � √
log(N/n)/

√
n and |K ◦

N |1/n � 1/
√

n log(N/n),
(d) w(KN )w(K ◦

N ) ≤ c3
√

log n
√

log N/
√

log(N/n),

where c1, c2 and c3 are absolute positive constants.

The proofs of these facts are presented in the next four subsections.

2.1. Inradius of KN

We first show that if N ≥ c log(δ−1)n, then, with probability greater than 1 − δ, KN

contains a Euclidean ball of radius independent from n and N . Our main tool is the
fact that, with high probability, few vertices of the cube represent En

2 in the classical
Khintchine inequality. This statement was first proved in [31] (see also [17] for the
formulation we use in this paper).

Lemma 2.1. Let δ ∈ (0, 1). If N ≥ c log(δ−1)n, then N points x1, . . . , xN chosen
uniformly and independently from En

2 satisfy with probability greater than 1 − δ the
inequality

c1‖y‖2 ≤ 1

N

N∑
i=1

|〈y, xi 〉| ≤ c2‖y‖2 (2.1)

for all y ∈ R
n , where c, c1, c2 > 0 are absolute constants.
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In particular, Lemma 2.1 holds true with δ = e−n provided that N ≥ cn2. We assume
that Lemma 2.1 applies for the vertices ±x1, . . . ,±xN of KN . Note that if W1,W2 are
convex bodies, then W1 ⊆ W2 if and only if hW1 ≤ hW2 . By Lemma 2.1 we have

hKN (y) = max
j≤N

|〈xj , y〉| ≥ 1

N

N∑
j=1

|〈xj , y〉|

≥ c1‖y‖2 = c1hBn
2
(y)

for every y ∈ R
n , which shows that KN ⊇ c1 Bn

2 . Thus, we have proved the following.

Proposition 2.1. Let δ ∈ (0, 1). If N ≥ c log(δ−1)n, then KN ⊇ c1 Bn
2 with probability

greater than 1 − δ.

2.2. Affine Cubes Inside KN

Our next aim is to show that if n is big enough and N ≥ n(log n)2, then KN contains (with
high probability) a centered cube P such that |KN |1/n � |P|1/n . This is a consequence
of the following theorem.

Theorem 2.1. There exist n0 ∈ N and an absolute constant c > 0 with the following
property: if n ≥ n0 and N > n(log n)2, then N random points x1, . . . , xN chosen
independently and uniformly from En

2 satisfy, with probability greater than 1 − e−n ,

MN := co{x1, . . . , xN } ⊇ c(
√

log(N/n)Bn
2 ∩ Qn), (2.2)

where Qn = [−1, 1]n is the unit cube in R
n .

The proof makes heavy use of a theorem of Montgomery-Smith. Consider the interpo-
lation norm

K1,2(x, t) = inf{‖y‖1 + t‖x − y‖2: y ∈ R
n}, (2.3)

where x ∈ R
n and t > 0. We need the main result from [27].

Fact. There exists an absolute constant r ≥ 1 such that for every y ∈ R
n and every

t > 0,

P({x ∈ En
2 : 〈x, y〉 > r−1 K1,2(y, t)}) ≥ r−1 exp(−r t2). (2.4)

The geometric interpretation of K1,2 is the following: Fix α > 0 and consider the
symmetric convex body

C(α) = r−1(αBn
2 ∩ Qn). (2.5)

Then the support function of C(α) is given by

hC(α)(x) = r−1 inf{‖y‖1 + α‖x − y‖2: y ∈ R
n} = r−1 K1,2(x, α). (2.6)
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With this notation, we have:

Lemma 2.2. Let α > 0. For every θ ∈ Sn−1,

P({x ∈ En
2 : 〈x, θ〉 ≥ hC(α)(θ)}) ≥ r−1 exp(−rα2). (2.7)

Let x1, . . . , xN be chosen independently and uniformly from En
2 , and consider their

convex hull MN := M(x1, . . . , xN ). Since

hMN (θ) = max
j≤N

〈xj , θ〉,

we have

P(hMN (θ) ≤ hC(α)(θ)) = (P({x ∈ En
2 : 〈x, θ〉 < hC(α)(θ)}))N

≤ (1 − r−1 exp(−rα2))N

≤ exp

(
− N

r
exp(−rα2)

)

for every θ ∈ Sn−1.
Let δ ∈ (0, 1). We choose a ρ-net N of Sn−1, with cardinality |N | ≤ (1 + (2/ρ))n

(see p. 7 of [26]). Then the estimate above proves the following fact:

Lemma 2.3. Let N ≥ n and ρ, δ ∈ (0, 1), α > 0. If(
1 + 2

ρ

)n

≤ δ exp

(
N

r
exp(−rα2)

)
,

then, with probability greater than 1 − δ, N random points x1, . . . , xN chosen indepen-
dently and uniformly from En

2 satisfy

hMN (θ) ≥ hC(α)(θ),

for every θ ∈ N .

Proof of Theorem 2.1. Let N ≥ n(log n)2. We choose α = (1/2
√

r)
√

log(N/n) and
apply Lemma 2.3 with δ = e−n: If

1 + log

(
1 + 2

ρ

)
≤ N

rn
exp

(
−1

4
log

(
N

n

))
= 1

r

(
N

n

)3/4

, (2.8)

then with probability greater than 1 − e−n the convex hull MN of x1, . . . , xN satisfies

hMN (θ) ≥ hC(α)(θ)

for every θ in a ρ-net of Sn−1.
Let u ∈ Sn−1. There exists θ ∈ N such that ‖u − θ‖2 < ρ. Then

hMN (u) ≥ hMN (θ)− hMN (θ − u) ≥ hC(α)(θ)− hMN (θ − u)

≥ hC(α)(u)− [hC(α)(θ − u)+ ‖θ − u‖1].
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For n large enough (depending on r ) we have α ≥ 1. It follows that

1

r
Bn

2 ⊆ C(α) ⊆ α

r
Bn

2

and hence

hC(α)(θ − u)+ ‖θ − u‖1 ≤
(α

r
+ √

n
)
ρ ≤ 2r

√
nρhC(α)(u).

It follows that

hMN (u) ≥ hC(α)(u)

2
(2.9)

if we choose ρ = 1/(4r
√

n). With this choice of α and ρ, it remains to check that (2.8)
is satisfied for large enough n. The condition is equivalent to

c(r) log n ≤
(

N

n

)3/4

(2.10)

and, since N > n(log n)2, this is satisfied if (log n)1/2 > c(r) which holds true for
n ≥ n0 = exp(c2(r)). The theorem follows with c = 1/(4r3/2).

Since Qn ⊇ Bn
2 , Theorem 2.1 implies Proposition 2.1 in the case N ≥ n(log n)2.

Also, since
√

nBn
2 ⊇ Qn we get the second part of Theorem A:

Theorem 2.2. There exist n0 ∈ N and an absolute constant c > 0 with the following
property: if n ≥ n0 and N > n(log n)2, then N random points x1, . . . , xN chosen
independently and uniformly from En

2 satisfy, with probability greater than 1 − e−n ,

KN ⊇ c

√
log (N/n)√

n
Qn.

Remarks. An earlier version of this paper included a self-contained and elementary
proof of Theorem 2.2 for N polynomial in n (N ≥ nκ , where κ > 0 is a fixed constant).
It turned out that analogous statements had already appeared in the literature.

One of the referees informed us that this result can be derived (if one goes inside the
proofs) from the methods of Dyer et al. in [12]. In a very recent paper, Bárány and Pór
[4] showed the existence of 0-1 polytopes with superexponential number of facets. One
main step in their argument is a statement equivalent to Theorem 2.1 (Lemma 4.3 in [4])
which is proved by a refinement of the method of [12] for the range N ≥ exp((log n)2).

We are grateful to a second referee for pointing out that Montgomery-Smith’s theorem
is also sufficient for proving Theorem 2.2. In fact, making full use of [27] one gets a
proof of Theorem 2.1 for N ≥ n(log n)2.

2.3. Volume Estimates

We now pass to volume estimates. Consider the polar body

K ◦
N = {y ∈ R

n: |〈y, xi 〉| ≤ 1, i = 1, . . . , N }.
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This is an intersection of symmetric strips, and very precise lower bounds for its volume
are available (see [20], [9], [3], [2] and [8] for related results):

Lemma 2.4. There exists an absolute constant c > 0 such that, for every N ≥ n,

|K ◦
N |1/n ≥ c√

n log(2N/n)
.

Combining this estimate with the Blaschke–Santaló inequality |KN | · |K ◦
N | ≤ |Bn

2 |2,
we get

|KN |1/n ≤ c′
√

log(2N/n)√
n

. (2.11)

On the other hand, Theorem 2.2 shows that if N ≥ n(log n)2, then KN contains a cube
of about the same volume.

Proposition 2.2. If N ≥ n(log n)2, then a random KN contains a centered cube P
such that ( |KN |

|P|
)1/n

≤ C,

where C > 0 is an absolute constant.

This fact shows that Theorem 2.2 is optimal in a very strong sense: a random KN has
the maximal possible volume. It also determines the volume radius of KN and K ◦

N :

Proposition 2.3. If N ≥ n(log n)2, then for a random KN we have

|KN |1/n �
√

log(N/n)√
n

, |K ◦
N |1/n � 1√

n log(N/n)

up to absolute constants.

2.4. Mean Width

Let X be an n-dimensional normed space. Figiel and Tomczak-Jaegermann [14] defined
the �-norm of T ∈ L(�n

2, X) by

�(T ) = √
n

(∫
Sn−1

‖T y‖2σ(dy)

)1/2

. (2.12)

Equivalently, if {ej } is any orthonormal basis in R
n , and if g1, . . . , gn are independent

Gaussian random variables with distribution N (0, 1) on some probability space �, we
have

�(T ) =

∫

�

∥∥∥∥∥
n∑

i=1

gi (ω)T (ei )

∥∥∥∥∥
2

dω




1/2

. (2.13)
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From well-known results of Lewis [24], Figiel and Tomczak-Jaegermann [14] and Pisier
[29] it follows that for every X = (Rn, ‖ · ‖) we can define a Euclidean structure 〈·, ·〉
(called the �-structure) on R

n , for which

�(I : �n
2 → X)�(I : �n

2 → X∗) ≤ cn log[d(X, �n
2)+ 1], (2.14)

where c > 0 is an absolute constant and I denotes the identity operator. It is not hard to
check that

�(I : �n
2 → Z) =

∫
�

∥∥∥∥∥
n∑

j=1

gj (ω)ej

∥∥∥∥∥
Z

dω � √
nw(B◦

Z ), (2.15)

for every n-dimensional space Z , and, hence, (2.14) is equivalent to the following fact:
for every symmetric convex body K in R

n there exists a linear image K̃ = T (K ),
T ∈ GL(n), of K (K̃ is often called the “�-position” of K ) for which

w(K̃ )w(K̃ ◦) ≤ c log[d(X K , �
n
2)+ 1]. (2.16)

In view of Urysohn’s inequality which states that for every convex body K in R
n ,

w(K ) ≥ 2

( |K |
|Bn

2 |
)1/n

≥ c
√

n|K |1/n, (2.17)

where c > 0 is an absolute constant, (2.16) and John’s theorem show that, up to a log n-
term, a body which is in �-position has the “minimal possible mean width”: K̃ satisfies
the inequality

w(K̃ ) ≤ c′√n log n|K̃ |1/n. (2.18)

In this subsection we get similar upper bounds for the mean width of a random KN

and K ◦
N .

Assume that N ≥ n(log n)2. Starting with KN , we write xj = √
nuj where uj ∈ Sn−1,

j ≤ N , and hence

w(KN ) =
∫

Sn−1
max
j≤N

|〈xj , θ〉|σ(dθ) = √
n
∫

Sn−1
max
j≤N

|〈uj , θ〉|σ(dθ). (2.19)

Now, by the spherical isoperimetric inequality we have

σ(θ : |〈uj , θ〉| ≥ ct/
√

n) ≤ exp(−t2) (2.20)

for large t (see [26]), which implies∫
Sn−1

max
j≤N

|〈uj , θ〉|σ(dθ) ≤ c1

√
log N√

n
, (2.21)

therefore w(KN ) ≤ c2
√

log N . Note that by Urysohn’s inequality and the volume esti-
mate in Proposition 2.3,

c3

√
log(N/n) ≤ w(KN ) ≤ c2

√
log N (2.22)
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for a random KN . For the mean width of K ◦
N we use Theorem 2.2. Since KN ⊃

(c
√

log(N/n)/
√

n)Qn , we have

hK ◦
N
(θ) = ‖θ‖KN ≤ c4

√
n√

log(N/n)
‖θ‖∞, (2.23)

therefore

w(K ◦
N ) ≤ c4

√
n√

log(N/n)

∫
Sn−1

max
i≤n

|θi |σ(dθ) �
√

log n√
log(N/n)

. (2.24)

This is again close to the lower bound, apart from the
√

log n term. In particular,

w(KN )w(K
◦
N ) ≤ c5

√
log N√

log(N/n)

√
log n, (2.25)

that is KN satisfies an inequality analogous to (2.16). This fact will be later used in
Banach–Mazur distance estimates.

Proposition 2.4. If n ≥ n0 and N ≥ n(log n)2, then for a random KN we have

c
√

log(N/n) ≤ w(KN ) ≤ c′√log N

and
c√

log(N/n)
≤ w(K ◦

N ) ≤ c′√log n√
log(N/n)

,

where c, c′ > 0 are absolute constants.

3. Asymptotic Properties of XN

Theorem A provides enough information on the geometry of the unit ball of X N . In fact,
KN and K ◦

N belong to a rather restricted class of random convex bodies, and this allows
us to determine several asymptotic parameters of the corresponding spaces.

3.1. Unconditionality Properties of X N

We first show that unconditionality properties of X N are of the worst possible order as
N decreases to n. This fact is expected in view of well-known results from [13] and [1]
about random proportional sections of �m

∞ which exhibit the same pathology. The source
of our estimates is Lemma 2.1 which is the analogue of Kashin’s theorem [23] in our
context. However, our information on a random KN allows us to give an estimate for the
full range of values of N .

Recall that an n-dimensional normed space Y has 1-unconditional basis if there exists
a basis {e1, . . . , en} of Y with the property∥∥∥∥∥

n∑
i=1

ti ei

∥∥∥∥∥
Y

=
∥∥∥∥∥

n∑
i=1

|ti |ei

∥∥∥∥∥
Y

for every choice of reals t1, . . . , tn .
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Theorem 3.1. If N ≥ c log(δ−1)n, then X N ∈ BN satisfies, with probability greater
than 1 − δ,

d(X N , Y ) ≥ c
√

n√
log (2N/n)

for every n-dimensional normed space Y with a 1-unconditional basis.

Proof. Consider the identity operator I : X∗
N → �n

2. Recall (see [28]) that the 1-
summing norm π1(T : Y ∗ → �n

2) of an operator T : Y ∗ → �n
2 is the minimum of

all positive constants A with the following property: for every m ∈ N and every choice
of vectors z1, . . . , zm ∈ Y ∗,

m∑
j=1

‖T zj‖2 ≤ A sup
y∈BY

m∑
j=1

|〈y, zj 〉|. (3.1)

We first prove the following claim:

Claim 1. If x1, . . . , xN satisfy the conclusion of Lemma 2.1, then π1(I ) � 1.

Proof. Let z1, . . . , zm ∈ X∗
N . Using Lemma 2.1, we write

m∑
j=1

‖zj‖2 ≤ 1

c1
· 1

N

N∑
i=1

m∑
j=1

|〈xi , zj 〉| ≤ 1

c1
· sup

y∈KN

m∑
j=1

|〈y, zj 〉|, (3.2)

therefore, π1(I ) ≤ c−1
1 . On the other hand, by the definition of π1(I ) we must also have

1

N

N∑
j=1

‖xj‖2 ≤ π1(I ) sup
y∈KN

1

N

N∑
j=1

|〈y, xj 〉|. (3.3)

From the upper estimate in Lemma 2.1 we get

sup
y∈KN

1

N

N∑
j=1

|〈y, xj 〉| ≤ c2 sup
y∈KN

‖y‖2. (3.4)

Since KN ⊆ Qn ⊆ √
nBn

2 and ‖xj‖2 = √
n for every j = 1, . . . , N , we conclude that√

n ≤ c2π1(I )
√

n, which proves our claim.

Claim 2. Let Q be a parallelepiped contained in K ◦
N . Then

|Q|1/n ≤ 2π1(I )

n
. (3.5)

Proof. This fact was proved by Ball [1]. We include the argument for self-completeness.
Consider a linear map S: R

n → R
n which takes Bn

∞ onto Q. Applying Hadamard’s



Random Spaces Generated by Vertices of the Cube 267

inequality, the arithmetic-geometric means inequality and the definition of π1(S: �n
∞ →

�n
2), we have

|Q|1/n = 2|det S|1/n ≤ 2

(
n∏

i=1

‖Sei‖2

)1/n

≤ 2

n

n∑
i=1

‖Sei‖2

≤ 2

n
π1(S: �n

∞ → �n
2) · sup

y∈Bn
1

n∑
i=1

|〈y, ei 〉|

= 2π1(S: �n
∞ → �n

2)

n
. (3.6)

Since

π1(S: �n
∞ → �n

2) ≤ ‖S: �n
∞ → X∗

N ‖ · π1(I : X∗
N → �n

2),

the result follows because S(Bn
∞) = Q ⊆ K ◦

N .

We can now complete the proof of Theorem 3.1. Let Y be an n-dimensional space with
1-unconditional basis. If d = d(X∗

N , Y ), we may assume that d BY ⊇ K ◦
N ⊇ BY . From

a result of Losanovskii (see Chapter 3 of [30]), we can find a parallelepiped Q ⊆ BY

with |BY |/|Q| ≤ nn/n!. Then, using our two claims, we get

|K ◦
N |1/n ≤ d|BY |1/n ≤ cd|Q|1/n ≤ c′d/n. (3.7)

Now, Lemma 2.4 implies that d(X∗
N , Y ) = d ≥ c′′√n/

√
log(2N/n), and the theorem

follows by duality.

Remark. A suitable choice of λ > 1 shows the existence of a space X N with N = λn
for which d(X N , Y ) ≥ c

√
n for every space Y with 1-unconditional basis.

Let N ≥ n(log n)2. Theorem 2.2 shows that d(X N , �
n
∞) ≤ c

√
n/
√

log(2N/n) for a
random X N . Combining this fact with Theorem 3.1, we see that �n

∞ is the space with
1-unconditional basis which is “closest” to X N .

Theorem 3.2. If N ≥ n(log n)2, then for a random X N we have

d(X N ,U) � d(X N , �
n
∞) �

√
n√

log(N/n)
,

where U is the class of n-dimensional spaces with 1-unconditional basis.

3.2. Banach–Mazur Distance Estimates

Propositions 2.1 and 2.4 indicate that the geometric distance between KN and Bn
2 and

the mean width of KN are simultaneously controlled for a random X N . This allows us
to use the method of random orthogonal factorizations (which has its origin in work of
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Tomczak-Jaegermann [36], and was later developed in [5] and [11]) in order to estimate
from above Banach–Mazur distances from a random X N to various classes of spaces.

The main point of the above method is the following result of Benyamini and Gordon
[5], which makes use of an inequality of Chevet [10].

Lemma 3.1. Let X and Y be two n-dimensional normed spaces. Then

d(X, Y ) ≤ c

n
[‖I : X → �n

2‖�(I : �n
2 → Y )+ ‖I : �n

2 → Y‖�(I : �n
2 → X∗)]

× [‖I : Y → �n
2‖�(I : �n

2 → X)+ ‖I : �n
2 → X‖�(I : �n

2 → Y ∗)],

where c > 0 is an absolute constant.

We apply this method to estimate the distance d(X N , X∗
N ). The best known general

estimate on this question is due to Bourgain and Milman [7] who have proved that

d(X, X∗) ≤ cn5/6 logβ n (3.8)

for every n-dimensional normed space X . The proof of (3.8) is again based on random
orthogonal factorizations. If X has a 1-unconditional basis or enough symmetries, then
it gives a much better bound of the order of

√
n logβ n.

As we will see, despite the lack of unconditionality exhibited by X N , we have a bound
of this order for d(X N , X∗

N ).

Theorem 3.3. There exists an absolute constant C > 0 such that d(X N , X∗
N ) ≤

C
√

n log n for any N ≥ n and a random X N .

Proof. We apply Lemma 3.1 with X = X N and Y = X∗
N . Taking into account (2.15),

we get

d(X N , X∗
N ) ≤ c‖I : X N → �n

2‖ · ‖I : �n
2 → X N ‖ · w(KN )w(K

◦
N ). (3.9)

We first consider the case N ≥ n2. By Proposition 2.4, for a random KN we have

w(KN ) ≤ c2

√
log N , w(K ◦

N ) ≤ c3
√

log n√
log N

. (3.10)

Since KN ⊆ Qn ⊆ √
nBn

2 , we have

‖I : X N → �n
2‖ = max

x∈KN

‖x‖2 ≤ √
n, (3.11)

and by Proposition 2.1 we have cBn
2 ⊆ KN for a random KN , therefore

‖I : �n
2 → X N ‖ = max

x∈Bn
2

‖x‖KN ≤ c−1. (3.12)

Combining the above, we get

d(X N , X∗
N ) ≤ C

√
n log n (3.13)

for a random X N , N ≥ n2.
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If N ≤ n2, we argue in a different way. Since KN has nα vertices and K ◦
N has nβ

facets, with α = β ≤ 2, we can employ a well-known estimate from [16] to get

d(X N , X∗
N ) ≤ c

√
n log n. (3.14)

Hence, we can find C > 0 such that, independently of N , d(X N , X∗
N ) ≤ C

√
n log n for

a random X N .

3.3. Isotropic Constants

Recall the definition of the isotropic position of a convex body W in R
n . There exists

T0 ∈ GL(n) such that the body W̃ = T0(W ) has volume 1 and satisfies the isotropic
condition ∫

W̃
〈x, θ〉2 dx = L2

W (3.15)

for every θ ∈ Sn−1 (see [25] for a detailed account on this topic). This position is unique
up to orthogonal transformations, therefore LW is an invariant of the linear class of W ,
and it is called the isotropic constant of W . One can check that the isotropic position of
W minimizes the quantity

1

|T (W )|1+2/n

∫
T (W )

‖x‖2
2 dx (3.16)

over all T ∈ GL(n). In particular,

nL2
W ≤ 1

|W |1+2/n

∫
W

‖x‖2
2 dx. (3.17)

It is conjectured that there exists an absolute constant C > 0 such that LW ≤ C for
every n ∈ N and every convex body W in R

n . The best known general estimate is due
to Bourgain [6] who proved that LW ≤ c 4

√
n log n for every symmetric convex body W .

The conjecture is related to the slicing problem, which asks if there exists an absolute
constant c > 0 such that every convex body with volume 1 has a hyperplane section
whose volume exceeds c. The connection comes from the fact that

c1 ≤ LW · |W ∩ θ⊥| ≤ c2 (3.18)

for every θ ∈ Sn−1 and every isotropic convex body W , where c1, c2 > 0 are absolute
constants (see [25]).

In this subsection we give upper bounds for the isotropic constant of KN and K ◦
N . We

make use of the following lemma [25].

Lemma 3.2. Let W be a symmetric convex body in R
n . Then

LW ≤ c

n
· 1

|W |1+1/n

∫
W

‖x‖1 dx. (3.19)

Also, LW ≤ cd(XW , Y ) for every Y ∈ U .
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Theorem 3.4. Let N ≥ n(log n)2. With probability greater than 1 − e−n we have
L K ◦

N
≤ C , where C > 0 is an absolute constant.

Proof. By Theorem 2.2, with probability greater than 1 − e−n we have KN ⊇
(c
√

log(N/n)/
√

n)Qn , where c > 0 is an absolute constant. It follows that

‖x‖1 ≤ c1
√

n√
log(N/n)

‖x‖K ◦
N

(3.20)

for all x ∈ R
n , where c1 = 1/c. Using Lemma 3.2 we get

L K ◦
N

≤ c2√
n log(N/n)

1

|K ◦
N |1+1/n

∫
K ◦

N

‖x‖K ◦
N

dx ≤ c2√
n log(N/n)|K ◦

N |1/n
. (3.21)

In view of Lemma 2.4, the proof is complete.

Remark. Junge [22] has proved that if X is an n-dimensional subspace of an N -
dimensional space with 1-unconditional basis, then

L BX ≤ c
√

log(2N/n)

for some absolute constant c > 0. This estimate applies to any symmetric convex body
with N facets. Using this result for B∗

N when n ≤ N ≤ n(log n)2, we may summarize
as follows:

Corollary 3.1. There exist absolute constants c,C > 0 with the following property:

(a) If n ≤ N ≤ n(log n)2, then L K ◦
N

≤ c
√

log(2N/n) ≤ C
√

log log n.
(b) If N ≥ n(log n)2, then L K ◦

N
≤ C for a random K ◦

N .

Observe that we have a
√

log log n estimate for a random X∗
N ∈ B∗

N , which holds true
in the full range of values of N .

We conclude this article with some simple estimates for the isotropic constant of KN .

Proposition 3.1. Let N ≥ n(log n)2. For a random KN we have

L KN ≤ C
min{log N ,

√
n}√

log(N/n)
,

where C > 0 is an absolute constant.

Proof. Since d(X N , �
n
∞) � √

n/
√

log(N/n) for a random X N , the estimate L KN ≤
c1

√
n/
√

log(N/n) is an immediate consequence of Lemma 3.2.
If N is not too big, then one can argue in a different way: consider the external volume

ratio evr(W ) = inf (|E |/|W |)1/n of W , where the infimum is taken over all ellipsoids E
which contain W . Then we have the following.
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Claim. Let z1, . . . , zN ∈ R
n . If W = co{±x1, . . . ,±xN }, then

LW ≤ c log N
evr(W )√

n
, (3.22)

where c > 0 is an absolute constant.

Proof. The formulation of the claim is invariant under linear transformations, therefore
we may assume that W is isotropic. Let E be the ellipsoid of minimal volume which
contains W . There exists a symmetric and positive T ∈ GL(n) such that T (E) = Bn

2 .
Then ∫

W
〈T x, x〉 dx = [tr(T )]L2

W ≥ nL2
W |det T |1/n. (3.23)

The equality comes from the isotropic condition (3.15) and the inequality is the arith-
metic-geometric means inequality for the eigenvalues of T . On the other hand,∫

W
〈T x, x〉 dx ≤

∫
W

‖T x‖W ◦ dx =
∫

W
max
j≤N

|〈zj , T x〉| dx

=
∫

W
max
j≤N

|〈T zj , x〉| dx.

Since the ψ1-norm of linear functionals on W is equivalent to their 1-norm (see [25]),
we get ∫

W
max
j≤N

|〈T zj , x〉| dx ≤ (c log N )LW · max
j≤N

‖T zj‖2. (3.24)

Since zj ∈ E , we have ‖T zj‖2 ≤ 1, j = 1, . . . , N . It follows that

n|det T |1/n LW ≤ c log N (3.25)

and the result follows from |det T |−1/n|Bn
2 |1/n = |E |1/n = evr(W ).

We can now show that L KN ≤ c2

√
log(N/n): we observe that KN ⊆ √

nBn
2 and

using the fact that (c3

√
log(N/n)/

√
n)Qn ⊆ KN we get

evr(KN ) ≤ √
n

|Bn
2 |1/n

|KN |1/n
≤ c

√
n√

log(N/n)
. (3.26)

Then our claim completes the proof.

Remark. On the other hand, Junge [22] has proved that the unit balls of projections
of N -dimensional spaces with 1-unconditional basis have isotropic constant bounded by
c log N . Since KN is the unit ball of a projection of �N

1 , we see that L KN ≤ c log n if
N ≤ n(log n)2.
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