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Abstract. For a region X in the plane, we denote by area(X) the area of X and by �(∂(X))

the length of the boundary of X . Let S be a convex set in the plane, let n ≥ 2 be an integer,
and let α1, α2, . . . , αn be positive real numbers such that α1 + α2 + · · · + αn = 1 and
0 < αi ≤ 1

2 for all 1 ≤ i ≤ n. Then we shall show that S can be partitioned into n disjoint
convex subsets T1, T2, . . . , Tn so that each Ti satisfies the following three conditions:
(i) area(Ti ) = αi × area(S); (ii) �(Ti ∩ ∂(S)) = αi × �(∂(S)); and (iii) Ti ∩ ∂(S) consists
of exactly one continuous curve.

1. Introduction

We begin with a motivation of the original problem related to our results. Some children
attend a birthday party, and there is a big non-circular birthday cake. We want to divide
the cake among all the children in such a way that each child gets the same amount of cake
and the same amount of icing (exposed area) and holds it easily (i.e., each cake is convex
and has exactly one icing side) [1]. If the height of the cake is constant, then the above
problem can be said as follows. Let S be a convex set in the plane, which corresponds
to the base of the cake. Then is it possible to partition S into n convex subsets so that
each subset has the same area and has exactly one continuous part of the boundary of S
with the same length (Fig. 1)? If such a partition exists, we say that S can be perfectly
partitioned into n convex subsets, and call this partition a perfect n-partition.

It was proved in [2] that a perfect partition always exists for every n ≥ 3, that is, the
following theorem was obtained.
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Fig. 1. (a), (b) Perfect partitions and (c), (d) non-perfect partitions.

Theorem 1 [2]. Every convex set in the plane has a perfect n-partition for every integer
n ≥ 3 (Fig. 1).

For a domain X in the plane, we denote by area(X) the area of X and by ∂(X) the
boundary of X . For a curve C in the plane, �(C) denotes the length of C . In particular,
�(∂(X)) denotes the length of the boundary of X .

In this paper we prove the following Theorem 2, which is a generalization of Theo-
rem 1, and the partition given in Theorem 2 is called a generalized perfect n-partition.

Theorem 2. Let S be a convex set in the plane, let n ≥ 2 be an integer, and let
α1, α2, . . . , αn be positive real numbers such that α1+α2+· · ·+αn = 1 and 0 < αi ≤ 1

2
for all 1 ≤ i ≤ n. Then S can be partitioned into n convex subsets T1, T2, . . . , Tn

so that each Ti satisfies the following three conditions: (i) area(Ti ) = αi × area(S);
(ii) �(Ti ∩ ∂(S)) = αi × �(∂(S)); and (iii) Ti ∩ ∂(S) consists of exactly one continuous
curve (Fig. 2).

If 1
2 < α1 < 1 and α1 + α2 = 1, then it is impossible to partition a circle C into two

subsets satisfying the conditions of Theorem 2 since the area of a convex subset T1 with
�(T1 ∩ ∂(C)) = α1 × �(∂(C)) is always greater than α1 × area(C). Hence we need the
condition that αi ≤ 1

2 for all i .
We now explain the relationship between a perfect n-partition and the result on bal-

anced partitions of two sets of points in the plane. The following theorem was conjectured
and proved for n = 1, 2 in [6] and [7], and was recently proved independently for every
n ≥ 1 in [4], [5], and [9]. Note that other interesting results related to our topic are found
in [3], where partitions by fans are considered.

Theorem 3 [4], [5], [9]. Let m ≥ 1, n ≥ 1 and k ≥ 2 be positive integers. Let R be a
set of mk red points and B a set of nk blue points in the plane such that no three points

T5

T1
T2

T3

T4

S

Fig. 2. A generalized perfect 5-partition of a convex set S with the emphasis of T5 and T5 ∩ ∂(S).
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of R ∪ B lie on the same line. Then R ∪ B can be partitioned into k disjoint subsets
X1, X2, . . . , Xk so that every Xi (1 ≤ i ≤ k) contains exactly m red points and n blue
points, and conv(Xi ) ∩ conv(X j ) = ∅ for all i 
= j , where conv(Xi ) denotes the convex
hull of Xi .

For a given convex set S in the plane, if we uniformly put a lot of red points on ∂(S)

and a lot of blue points on S, then by the above Theorem 3, we can partition S into k
convex subsets {Xi } so that each Xi contains the same number of red points and the
same number of blue points, that is, the length of Xi ∩ ∂(S) is constant and the area
of Xi is also constant. However, we cannot say that Xi ∩ ∂(S) consists of exactly one
continuous curve (Fig. 1(d)). Thus even a perfect n-partition cannot be obtained directly
from Theorem 3.

We conclude this section with a remark on Theorem 4 and a conjecture. When we
consider a convex polygon in the plane instead of a convex set, we can similarly partition
the convex polygon into some convex polygons under weaker conditions. This partition
is given in Theorem 4. The following conjecture is a generalization of Theorem 3. Note
that it is shown in [8] that if either m1 + m2 + · · · + mk ≤ 8, or 1 ≤ mi ≤ 2 for every
1 ≤ i ≤ k, then the conjecture holds.

Conjecture A. Let k ≥ 1 be a positive integer. Let m1 ≥ m2 ≥ · · · ≥ mk ≥ 1 and
n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 be positive integers such that m1 ≤ (m1 + m2 + · · · + mk)/3
and

n1

m1
= n2

m2
= · · · = nk

mk
.

Let R be a set of m1 + m2 + · · · + mk red points and let B be a set of n1 + n2 + · · · + nk

blue points in the plane such that no three points of R ∪ B lie on the same line. Then
R ∪ B can be partitioned into k disjoint subsets X1, X2, . . . , Xk so that each Xi contains
exactly mi red points and ni blue points and conv(Xi ) ∩ conv(X j ) = ∅ for all i 
= j .

2. Proof of Theorem 2

We define some notations. For two points X and Y in the plane, we denote by XY the
straight-line segment joining X to Y and by |XY | the length of XY , which is equal to
the distance between X and Y .

A quadrilateral with consecutive vertices (P1, P2, P3, P4), a hexagon with consecutive
vertices (Q1, Q2, . . . , Q6), and an octagon with consecutive vertices (R1, R2, . . . , R8)

are denoted by quad(P1 P2 P3 P4), hex(Q1 Q2 · · · Q6), and octagon(R1 R2 · · · R8), respec-
tively.

We begin with a theorem on partitions of convex polygons, which might be of interest
in itself and is used in the proof of Theorem 2.

Theorem 4. Let n and m be integers such that 3 ≤ n and 1 ≤ m ≤ n. Let P be
a convex polygon in the plane with n vertices, and let β1, β2, . . . , βm be positive real
numbers such that β1 +β2 +· · ·+βm = area(P). Then for given m edges e1, e2, . . . , em
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Fig. 3. A partition {Qi } of P , and the figure in the proof.

of P , P can be partitioned into m disjoint convex polygons Q1, Q2, . . . , Qm so that each
Qi (1 ≤ i ≤ m) contains the edge ei and has area βi (Fig. 3).

Proof. We prove the theorem by induction on m. If m = 1, then Q1 = P is the desired
partition. If m = 2, then there exists a line that partition P into two sub-polygons R1

and R2 in such a way that R1 contains e1 but not e2 and has area β1, which gives us the
desired partition. So we may assume that m ≥ 3.

Let V1, V2, . . . , Vn be the consecutive vertices of P . By a new labeling of {Vi } and
{βi }, we may assume that e1 = V1V2, e2 = Vr Vr+1 and no edges of P between V2 and
Vr are chosen in {ei }.

Let P1 be the sub-polygon with vertex set {V1, V2, . . . , Vr }, which is obtained from P
by dividing by the diagonal V1Vr (Fig. 3). If area(P1) ≥ β1, then we can find a point X1

on the edges V2V3 ∪ · · · ∪ Vr−1Vr such that the area of the sub-polygon divided by V1 X1

is equal to β1. Then we can apply the inductive hypothesis to the remaining polygon.
Therefore we may assume that area(P1) < β1.

Let P2 be the sub-polygon with vertex set {V1, V2, . . . , Vr , Vr+1}. If area(P2) ≥
β1 + β2, then area(�V1Vr Vr+1) ≥ β1 − area(P1) + β2, and so we can easily find a point
X2 in �V1Vr Vr+1 such that

area(�X2V1Vr ) = β1 − area(P1) and area(�X2Vr Vr+1) = β2,

which implies that the convex polygon P1 + �X2V1Vr has area β1 (Fig. 3). Then we
apply the inductive hypothesis to the remaining convex polygon, and get the desired
partition of P . Hence we may assume that area(P2) < β1 + β2.

Put γ = β1 + β2 − area(P2) > 0. We consider the polygon P − P2 together with
the edges {V1Vr+1, e3, . . . , em} and the positive real numbers γ, β3, . . . , βm . Then by the
inductive hypothesis, P−P2 can be partitioned into m−1 convex subsets R, Q3, . . . , Qm .
It is easy to see that R ∪ P2 is a convex polygon with area β1 +β2, and can be partitioned
into two convex polygons that contain e1 and e2, respectively, and have areas β1 and β2,
respectively. Consequently, the theorem is proved.

In order to prove our theorem, we need some lemmas. The following lemma was
proved in [2].

Lemma 5. Let �ABC be a triangle in the plane, and let S be a convex set that is
contained in �ABC and contains BC . Let arc(BC) = ∂(S) − BC . If ∠B ≥ ∠C , then
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Fig. 4. Triangles �ABC and convex sets S.

for a point X on AB such that |B X |+|XC | = �(arc(BC)), it follows that area(�X BC) ≤
area(S) (Fig. 4).

Lemma 6. Let �ABC , S and arc(BC) be the same as Lemma 5 above. Let h denote
the height of �ABC relative to base AB or AC (Fig. 5(a)–(c)). Then

area(S) < 1
2 h × �(arc(BC)). (1)

Proof. Without loss generality, we may assume that h is the height of �ABC relative
to base AB. Let D be the foot of the perpendicular dropped from C to the line containing
AB. Then h = |C D|. We first assume that ∠B ≤ π/2, that is, ∠B is acute (Fig. 5(a),(b)).

If D is outside of �ABC , then

area(S) ≤ area(�ABC) = 1
2 |AB|h < 1

2 h × �(arc(BC)).

Thus we may assume that D lies on AB. Let E , if any, be the intersection of CD and
arc(BC) (Fig. 5(d)). If E does not exist, then S is contained in �DBC , and so area(S) ≤
area(�DBC) = (h/2)|B D| < (h/2) × �(arc(BC)). Thus we may assume that the
intersection E exists. Then S is divided into two subset S1 = S ∩ �ADC and S2 =
S ∩ �DBC by the line CD. We have

area(S2) ≤ �DBC = 1
2 h|DB| ≤ 1

2 h × �(arc(B E)).

Since S1 is clearly contained in a rectangle R with edge CD and height �(arc(C E))/2,
it follows that

area(S1) < area(R) = 1
2 h × �(arc(EC)).

Therefore we get the desired inequality in this case.
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Fig. 5. Triangles �ABC and convex sets S.
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Fig. 6. Arc(P Q), lune(P Q), arc(Pi Pi+1) and lune(Pi Pi+1).

Next suppose that ∠B > π/2 (Fig. 5(c)). Let H be the foot of the perpendicular
dropped from B to line AC. In this case we can show that the following inequality holds
by the same argument as above:

area(S) < 1
2 |B H | × �(arc(BC)).

Since h = |C D| > |B H |, the above inequality implies the desired inequality (1) of the
lemma.

For two points P and Q on the boundary of a convex set S, the boundary of S is
divided into two arcs by P and Q, and arc(P Q) denotes one of the arcs between P
and Q that is easily determined from the context and is the shorter one in almost every
case (Fig. 6). If it is not easily determined, we explain it more precisely. Moreover, we
denote by lune(P Q) the lune surrounded by the arc arc(P Q) and by the line segment
P Q (Fig. 6).

Lemma 7. Let n ≥ 3 be an integer, and let S and α1, α2, . . . , αn be the same as in
Theorem 2. Let P1, P2, . . . , Pn be n points on ∂(S) such that for every 1 ≤ i ≤ n,
�(arc(Pi Pi+1)) = αi × �(∂(S)). Then area(lune(Pi Pi+1)) < αi × area(S) for all 1 ≤
i ≤ n except at most one certain integer, where Pn+1 = P1 (Figure 6).

Proof. Suppose that the lemma does not hold. By a new suitable labeling of {Pi }, we
may assume that there exist n points P1, P2, . . . , Pn on ∂(S) such that �(arc(Pi Pi+1)) =
αi × �(∂(S)) for all 1 ≤ i ≤ n,

area(lune(P1 P2)) ≥ α1area(S) and area(lune(Pr Pr+1)) ≥ αr area(S)

for some r, 2 ≤ r ≤ n. We first consider the case that 3 ≤ r ≤ n − 2 (i.e., the case
where arc(P1 P2) and arc(Pr Pr+1) have no common vertex).

Since S is a convex set, there exist lines tangent to S at P1, P2, Pr and Pr+1, respec-
tively. We first consider the case where these four lines makes a quadrilateral, that is, we
first assume that the quadrilateral quad(B1 B2 B3 B4) given in Fig. 7 exists.

Consider the triangle �P1 Pr+1 B1 and the convex subset S ∩ �P1 Pr+1 B1. Without
loss of generality, we may assume that ∠P1 ≤ ∠Pr+1 since otherwise we can apply
the same argument to B1 P1 instead of B1 Pr+1. Let Y be the point on B1 Pr+1 such that
|P1Y | + |Y Pr+1| = �(arc(P1 Pr+1)). Then by Lemma 5, we have

area(�Y P1 Pr+1) ≤ area(S ∩ �P1 Pr+1 B1).
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Fig. 7. Quad(B1 B2 B3 B4) and the convex set T .

By the same argument as above, for the convex subset S ∩ �P2 B3 Pr and for the point
X on P2 B3 (or B3 Pr ) with |P2 X | + |X Pr | = �(arc(P2 Pr )), we have

area � X Pr P2 ≤ area(S ∩ �P2 B3 Pr ).

Let

T := (S − (lune(P2 Pr ) ∪ lune(Pr+1 P1))) ∪ �Y P1 Pr+1 ∪ �X Pr P2

(Fig. 7). Then T is a convex set with �(∂(T )) = �(∂(S)) and area(T ) ≤ area(S), and
is contained in a quadrilateral quad(C X DY ). The following equalities and inequalities
immediately hold:

�(arc(P1 P2)) = α1�(∂(T )), �(arc(Pr Pr+1)) = αr�(∂(T )),

area(lune(P1 P2)) ≥ α1area(T ), area(lune(Pr Pr+1)) ≥ αr area(T ).

Put �∗ = �(∂(T )), x1 = |Y P1|, x2 = |X P2|, x3 = |X Pr |, x4 = |Y Pr+1| and a =
�(arc(P1 P2)) = α1�

∗, b = �(arc(Pr Pr+1)) = αr�
∗. Let h1 and h2 the heights of �C P2 P1

relative to bases C P1 and C P2, respectively, and let h3 and h4 be the heights of �D Pr+1 Pr

relative to bases D Pr and D Pr+1, respectively. Then we obtain the following inequalities
by Lemma 6:

area(lune(P1 P2)) < 1
2 ah1, area(lune(P1 P2)) < 1

2 ah2,

area(lune(Pr Pr+1)) < 1
2 bh3, area(lune(Pr Pr+1)) < 1

2 bh4,

area(quad(XY P1 P2)) = area(�X P1 P2) + area(�XY P1)

≥ area(�X P1 P2) + area(�Y P1 P2) (2)

= 1
2 (x2h2 + x1h1),

area(quad(X Pr Pr+1Y )) ≥ area(�X Pr Pr+1) + area(�Y Pr Pr+1)

= 1
2 (x3h3 + x4h4).
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By symmetry, we may assume that h1 is the smallest among all the hi ’s. Then

area(hex(X Pr Pr+1Y P1 P2)) ≥ 1
2 (x1 + x2 + x3 + x4)h1

= 1
2 (1 − α1 − αr )�

∗h1,

area(hex(X Pr Pr+1Y P1 P2)) = area(T ) − area(lune(P1 P2)) − area(lune(Pr Pr+1))

≤ (1 − α1 − αr )area(T ) ≤ (1 − α1 − αr )area(S).

Hence �∗h1/2 ≤ area(S), and thus

area(lune(P1 P2)) ≥ α1area(S) ≥ α1�
∗h1

2
.

However, this contradicts the fact that

area(lune(P1 P2)) < 1
2 ah1 = α1�

∗h1

2
(by (2)).

We next assume that the quadrilateral quad(B1 B2 B3 B4) does not exist, that is, we
assume that the configuration given in Figs. 8 or 9 occurs. We first consider the case of
Fig. 8. Let B1, B2, B3 be the intersections of lines tangent to S at P2, Pr , Pr+1, P1. We
take two points X and Y on P2 B1 ∪ B1 Pr and Pr+1 B3 ∪ B3 P1, respectively, which satisfy
the conditions of Lemma 5. Let D be the intersection of the two lines containing X Pr

and Y Pr+1, respectively. Let h1 and h2 be the heights of �Pr D Pr+1 relative to bases
D Pr+1 and D Pr , respectively. Then by Lemmas 5 and 6, we have

area(lune(Pr Pr+1)) < 1
2 h1�(arc(Pr Pr+1)),

area(lune(Pr Pr+1)) < 1
2 h2�(arc(Pr Pr+1)),

|P2 X | + |X Pr | = �(arc(P2 Pr )), area(�P2 X Pr ) ≤ area(lune(P2 Pr )),

|Pr+1Y | + |Y P1| = �(arc(Pr+1 P1)), area(�Pr+1Y P1) ≤ area(lune(Pr+1 P1)).

P2

B1

B2

Pr

Pr+1

B3
P1

P2

X

Pr

Pr+1

Y
P1

D

S h2

h1

X

Y

H

Fig. 8. The convex set S and hex(P2 X Pr Pr+1Y P1).
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Put �∗ = �(∂(S)). By the symmetry of h1 and h2, we may assume that h1 ≤ h2. Then
we obtain

(1 − α1 − αr )area(S) ≥ area(hex(P2 X Pr Pr+1Y P1)),

> area(�P2 X Pr+1) + area(�X Pr Pr+1)

+ area(�P1Y Pr ) + area(�Y Pr+1 Pr )

≥ 1
2 |P2 X |h2 + 1

2 |X Pr |h2

+ 1
2 |P1Y |h1 + 1

2 |Y Pr+1|h1 (by |Pr+1 H | ≥ h2)

= 1
2�(arc(P2 Pr ))h2 + 1

2�(arc(Pr+1 P1))h1

≥ 1
2 h1(1 − α1 − αr )�

∗.

Therefore area(S) > 1
2 h1�

∗. Then it follows from Lemma 5 that

area(lune(Pr Pr+1)) < 1
2 h1�(arc(Pr Pr+1)) = 1

2 h1αr�
∗ < αr area(S).

This contradicts the assumption that area(lune(Pr Pr+1)) ≥ αr area(S).
We next consider the case of Fig. 9, where K P2, K Pr , B P1 and B Pr+1 are tangent

to S at P2, Pr , P1 and Pr+1, respectively. By considering lune(P2 Pr ) and �P2 K Pr , we
take a point R on P2 K ∪ K Pr which satisfies the conditions of Lemma 5. Let D be the
intersection of the line passing through BR and ∂(S). We draw a line AC tangent to S at
D, and take two points X and Y on D A ∪ AP1 and DC ∪ C Pr+1, respectively, which
satisfy the conditions of Lemma 5 (Fig. 9).

Let E be the intersection of AB and a line containing R P2, and let F be the intersection
of BC and a line containing R Pr . Let k1 and k2 denote the heights of �P1 E P2 and
�Pr F Pr+1, respectively. Then we obtain the following inequalities, where we may
assume that two lines passing through P1 Pr+1 and R P2 intersect at some point above
BD since otherwise two lines passing through P1 Pr+1 and R Pr intersect at some point
below BD and the similar arguments given below can be applied:

�(arc(P1 P2)) = α1�(∂(S)), area(lune(P1 P2)) ≥ α1area(S),

�(arc(Pr Pr+1)) = αr�(∂(S)), area(lune(Pr Pr+1)) ≥ αr area(S),

B
D

Pr+1

P2

P1 X

Y

Pr

B
D

Pr+1

P2

P1 X

Y

Pr

E

R

E

R

k1

k2

F

L

Q

M
NA

C

K

G

H
S

I

Fig. 9. The convex set S and octagon(X P1 P2 R Pr Pr+1Y D).
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�(arc(P2 Pr )) = |P2 R| + |R Pr |, area(lune(P2 Pr )) ≥ area(�P2 R Pr ),

�(arc(D P1)) = |DX | + |X P1|, area(lune(D P1)) ≥ area(�DX P1),

�(arc(Pr+1 D)) = |Pr+1Y | + |Y D|, area(lune(Pr+1 D)) ≥ area(�Pr+1Y D),

area(�X P1 P2) ≥ 1
2 |X P1|k1, area(�X P2 R) = 1

2 |P2 R||X N | > 1
2 |P2 R|k1,

|RL| ≥ |RQ| ≥ |M P1| > k1, area(�X RD) > 1
2 |X D|k1,

|Pr I | > |Pr G| > k2, area(�Y Pr Pr+1) ≥ 1
2 |Y Pr+1|k2,

area(�Y R Pr ) > 1
2 |R Pr |k2,

|RH| ≥ |RQ| ≥ |M P1| > k1, area(�Y RD) > 1
2 |Y D|k1.

Hence we have

area(octagon(X P1 P2 R Pr Pr+1Y D))

> 1
2 (|DX | + |X P1| + |P2 R| + |Y D|)k1 + 1

2 (|R Pr | + |Pr+1Y |)k2.

We first assume that k1 ≤ k2. Put �∗ = �(∂(S)). Then

(1 − α1 − αr )area(S) ≥ area(octagon(X P1 P2 R Pr Pr+1Y D))

> 1
2 (|DX | + |X P1| + |P2 R| + |Y D| + |R Pr | + |Pr+1Y |)k1

= (1 − α1 − αr )�
∗k1.

Therefore area(S) ≥ 1
2 k1�

∗, and thus

α1�
∗k1

2
≤ α1area(S) ≤ area(lune(P1 P2)) < 1

2�(arc(P1 P2))k1 = α1�
∗k1

2
.

This is a contradiction.
We next assume k2 < k1. Then we can similarly show that area(S) ≥ 1

2 k2�
∗. Thus

we can derive a contradiction as follows:

αr�
∗k2

2
≤ αr area(S) ≤ area(lune(Pr Pr+1)) < 1

2�(arc(Pr Pr+1))k2 = αr�
∗k2

2
.

Consequently the proof of the case of Fig. 9 is complete.
We next consider the case that r = 2. In this case we have two configurations

given in Figs. 10 and 11. Since these figures are very similar to Figs. 8 and 9, we can
similarly derive a contradiction in each case by almost the same arguments given above.
Consequently the lemma is proved.

Lemma 8. Let S, n and α1, α2, . . . , αn be the same as in Theorem 2. Then there exist n
points P1, P2, . . . , Pn on ∂(S) such that �(arc(Pi Pi+1)) = αi�(∂(S)) and area(lune(Pi×
Pi+1)) ≤ αi area(S) for every 1 ≤ i ≤ n, where Pn+1 = P1.
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Fig. 10. The convex set S and hex(DX P1 P2 P3Y ).

Proof. By Lemma 7 and by a new labeling of {Pi }, we may assume that there exist n
points Q1, . . . , Qn on ∂(S) such that �(arc(Qi Qi+1)) = αi�(∂(S)) for all 1 ≤ i ≤ n,
area(lune(Q1 Q2))> α1area(S) and area(lune(Qj Qj+1)) ≤ αj area(S) for all 2 ≤ j ≤ n.

If there exist n points R1, R2, . . . , Rn such that �(arc(Ri Ri+1)) = αi�(∂(S)) for all
1 ≤ i ≤ n and area(lune(R1 R2)) ≤ α1area(S), then by Lemma 7, when we continuously
move {Qi } to {Ri }, we obtain the desired n points {Pi } satisfying the conditions of the
lemma. So it is sufficient to show the existence such n points R1, R2, . . . , Rn . Moreover,
if there exists two points Y1 and Y2 on ∂(S) for which �(arc(Y1Y2)) = α1�(∂(S)) and
area(lune(Y1Y2)) ≤ α1area(S), then add the remaining n − 2 points Y3, . . . , Yn on
∂(S) − arc(Y1Y2) so that �(arc(Yi Yi+1)) = αi�(∂(S)) for 2 ≤ i ≤ n. Then by Lemma 7,
these n points Y1, Y2, . . . , Yn are the desired n points {Ri }.

We now show the existence of two such points Y1 and Y2. Since α1 < 1
2 , there exist

at least three points Z1, Z2, . . . , Zm (m ≥ 3) such that �(arc(Zi Zi+1)) = α1�(∂(S)) for
all 1 ≤ i ≤ m − 1 and �(arc(Zm Z1)) < α1�(∂(S)). By applying Lemma 7 to the points
Z1, Z2, . . . , Zm , we can say that at least one of lune(Z1 Z2) and lune(Z2 Z3) has area less
than α1area(S). Therefore the lemma is proved.

Proof of Theorem 2. By Lemma 8, there exist n points {Pi } on ∂(S) such that �(arc(Pi×
Pi+1)) = αi�(∂(S)) and area(lune(Pi Pi+1)) ≤ αi area(S) for all 1 ≤ i ≤ n. Let P∗ be
the polygon with vertex set {P1, P2, . . . , Pn}, and let {e1, e2, . . . , em} be the set of edges
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Fig. 11. The convex set S and hex(DX P1 P2 P3Y ).
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ek = Pj Pj+1 such that area(lune(Pj Pj+1)) < αj area(S) for some 1 ≤ j ≤ n. Define
positive real numbers β1, β2, . . . , βm by

βk = αj area(S) − area(lune(Pj Pj+1)).

Then by Theorem 4, P∗ can be partitioned into m convex subsets Q1, Q2, . . . , Qm

such that each Qk has area βk and contains ej . Since S is a convex set, it is clear that
lune(Pj Pj+1)∪ Qk is a convex subset. It is also obvious that lune(Pj Pj+1)∪ Qk has area
αj area(S) and one continuous part of ∂(S) with length �(arc(Pj Pj+1)) = αi�(∂(S)).
Consequently the theorem is proved.
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