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Abstract. We present a 16-vertex tetrahedralization of S3 (the 3-sphere) for which no
topological bistellar flip other than a 1-to-4 flip (i.e., a vertex insertion) is possible. This
answers a question of Altshuler et al. which asked if any two n-vertex tetrahedralizations
of S3 are connected by a sequence of 2-to-3 and 3-to-2 flips. The corresponding geometric
question is whether two tetrahedralizations of a finite point set S inR3 in “general position”
are always related via a sequence of geometric 2-to-3 and 3-to-2 flips. Unfortunately, we
show that this topologically unflippable complex and others with its properties cannot be
geometrically realized in R3.

1. Introduction

Bistellar flips (also known as “Topological flips” or “Pachner moves”) are operations
which transform one simplicial decomposition of a manifold to another simplicial de-
composition of the same manifold. Definitions of geometric and topological bistellar
flips can be found in Section 2. Due to their simplicity and power, these operations have
enjoyed many uses in geometric and topological computations. Among the most famous
appearances of geometric bistellar flips in Computational Geometry are: Lawson’s al-
gorithm for transforming an arbitrary triangulation of a planar point set to its Delaunay
triangulation [La]; the improved analysis of the incremental version by Guibas et al.
[GKS]; and the generalization of the incremental algorithm to arbitrary dimension by
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Edelsbrunner and Shah [ES]. In a similar vein, bistellar flips can form the basis of
algorithms to delete [De] and move a point in a Delaunay triangulation of any dimension
while maintaining the triangulation. In Mesh Generation, bistellar flips are often used
to improve the quality of elements in two- and three-dimensional unstructured Finite-
Element meshes [CDE+]. In Computational Topology, bistellar flips are used to reduce
a simplicial complex to a smaller, topologically equivalent one, giving a useful method
to recognize a manifold [BL]. In Mathematical Physics, bistellar moves are used for
simplicial quantum gravity simulations [ACM].

This paper is concerned with Flip graph connectivity questions in both the geometric
and topological setting. The Flip graph of a set of simplicial complexes N is defined as
follows. Let N be the vertices. Place an edge between two complexes µ, ν in N if there
exists a bistellar move which transforms µ to ν. In particular we are interested in two
analogous questions:

1. Is the flip graph connected when N is the set of all geometric tetrahedralizations
of a fixed point set S in R3?

2. Is the flip graph connected when N is the set of all topological tetrahedralizations
of S3 on n vertices?

When considering the first question, we will assume the points of S are in general
position. When considering both questions, note that we cannot allow bistellar flips
which change the number of verticies. Thus, we will consider only 2-to-3 and 3-to-2
flips in either case. We now describe the motivation for these questions and review what
is known about them.

1.1. Geometric Flip-Graph Connectivity Questions

The flip-graph connectivity of the geometric tetrahedralizations of a set of points in R3

is an important open question. The question probably arose from attempts to generalize
Lawson’s algorithm for computing the Delaunay triangulation of a set of points S in
the plane to three and higher dimensions. Briefly, given a triangulation of a set of n
planar points, S, Lawson showed how to compute the Delaunay triangulation of S using
a sequence of at most O(n2) geometric bistellar flips. Thus, it is clear that the flip graph
of triangulations of a planar point set is connected. However, the three-dimensional
generalization Lawson’s algorithm—perform bistellar flips to replace pairs (triples) of
tetrahedra which are not locally Delaunay with triples (pairs) that are—can dead-end in
a tetrahedralization which is not Delaunay [Jo]. It is natural to wonder if a better selected
sequence of bistellar flips would lead to the Delaunay tetrahedralization; doing so raises
the flip-graph connectivity question we address (see [Jo] and [EPW]).

de Lorea [dL] has examples of point sets in R3 whose flip graphs are of “low con-
nectivity,” suggesting that there may be others which are disconnected. Further, there
are point sets in R6 for which no geometric bistellar move is possible other than a point
insertion [Sa]. In contrast, it is known that the flip graph defined over the regular tetrahe-
dralizations of a point set is connected [BS]; moreover, an efficient algorithm is known
[CDE+].
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1.2. Topological Bistellar Flips

A classic theorem in Combinatorial Topology due to Pachner implies the following: If N
is the set of all simplicial decompositions of a particular piecewise-linear manifold, the
flip graph is connected. Moreover, two simplicial decompositions cannot be connected by
a sequence of bistellar flips if they are not piecewise-linearly homeomorphic. Pachner’s
theorem is given in [Pa]; a more accessible proof can be found in [Li]. Nevertheless,
Pachner’s theorem says nothing about the number of vertices which may have to be
added to transform one simplicial decomposition to another.

Thus, one might ask if the flip graphs of n-vertex triangulations of d-spheres are
connected, if only to gain insight into the geometric problem. In the two-dimensional
case an affirmative result has been known for many years [Wa]. In [ABS] Altshuler et
al. asked whether all n-vertex tetrahedralizations of S3 are related by bistellar operations
which preserve the number of vertices. We show his question, our Question 2, is false
in Section 3 where we exhibit a 16-vertex tetrahedralization of S3 for which no bistellar
move which preserves the number of vertices is possible. An interesting property of
tetrahedralizations of S3 is that not all of them have straight-line geometric realizations
in R3, unlike triangulations of S2. If they did, our counterexample would resolve the
flip-graph connectivity question for tetrahedralization of point sets. Unfortunately, our
counterexample does not admit such a realization, which we demonstrate.

2. Bistellar Flips

In this section we enumerate the two- and three-dimensional bistellar flips. An algebraic
definition of a bistellar flip, independent of the dimension of the simplicial complex, can
be found in [Li].

In two dimensions, a bistellar flip is either a vertex insertion (type 1-to-3), a vertex
deletion (type 3-to-1), or an edge flip (type 2-to-2), as illustrated in Fig. 1. Notice that a
1-to-3 flip is always possible: pick a triangle and add a new vertex. However, a 3-to-1 flip
to remove a vertex v can occur only if v has exactly three incident edges. Further, there
are restrictions on the “flippability” of an edge. Suppose edge (a, b) has two incident
triangles (a, b, c) and (a, b, d). We say (a, b) is topologically unflippable if the edge
(c, d) is also present in the triangulation. In a geometric setting, an edge (a, b) can be
geometrically unflippable even if it is topologically flippable. See Fig. 2. For this reason
we distinguish between a geometric bistellar flip and a topological bistellar flip.

In three dimensions, a bistellar flip is either a 1-to-4, 4-to-1, 2-to-3, or a 3-to-2 flip,
corresponding to a vertex insertion, vertex removal, face-to-edge flip, or an edge-to-

2-2
1-3

3-1

Fig. 1. Bistellar flips in two dimensions.



312 R. Dougherty, V. Faber, and M. Murphy

e
d

a

cd

a

b
b

c

(a) (b)

Fig. 2. (a) No geometric bistellar flip from edge (a, b) to (c, d) is possible because (c, d) lies outside the
quadrilateral (a, b, c, d). However, edge (a, b) is topologically flippable in the abstract triangulation given by
the facets (a, b, c), (a, b, d), (b, c, e), and (b, d, e). (b) Edge (a, b) is topologically unflippable because edge
(c, d) is already in the triangulation.

face flip, respectively. See Fig. 3. An edge is topologically unflippable if does not have
exactly three incident faces or the face that would replace it is already in the complex.
A face is topologically unflippable if the edge that would replace it is already in the
complex. Again, in a geometric setting, a face can be geometrically unflippable even if
it is topologically flippable. This occurs when there is a dihedral angle of an edge of the
face which is reflex. See Fig. 4. An edge is geometrically unflippable if it is topologically
unflippable or if it is on the boundary of the complex. There is one additional geometric
possibility to consider: four coplanar points triangulated by an edge with four incident
tetrahedra. This complication involves introducing the 4-to-4 flip or making a “general
position assumption.” It is not relevant topologically because it can be simulated with a
sequence of other bistellar operations.

3. An Unflippable Tetrahedralization, U of S3

We present a pure abstract tetrahedral complex, U , comprised of 16 vertices, 120 edges,
208 triangles, and 104 tetrahedra, having the following two properties:

1. The 1-skeleton of U is the complete graph.
2. Each pair of vertices comprises four or more tetrahedra.

The first property guarantees that U has neither a 2-to-3 flip nor a 4-to-1 flip. The second
property guarantees that U has no topological 3-to-2 flip. Thus, the only possible bistellar
flip from U is a 1-to-4 flip.

2-3

3-2
1-4

4-1

Fig. 3. Bistellar flips in three dimensions.



Unflippable Tetrahedral Complexes 313

e
a

b

c

d

Fig. 4. Face (b, c, d) is geometrically unflippable. If edge (a, e) were part of the complex, (b, c, d) would
be topologically unflippable as well.

A computer search method borrowed from combinatorial design theory and used
quite successfully to generate manifolds in Lutz’s thesis [Lu1] was used to find U . The
method uses orbits of vertex-transitive groups.

Theorem 1. The flip graph can be disconnected when N is the set of all tetrahedral-
izations of S3 on n nodes. Consider the following complex, U , with tetrahedra:

0 1 8 9 1 2 9 10 2 3 10 11 3 4 11 12 4 5 12 13
5 6 13 14 6 7 14 15 0 7 8 15 0 1 8 10 1 2 9 11
2 3 10 12 3 4 11 13 4 5 12 14 5 6 13 15 0 6 7 14
1 7 8 15 0 2 8 9 1 3 9 10 2 4 10 11 3 5 11 12
4 6 12 13 5 7 13 14 6 8 14 15 0 7 9 15 0 1 4 9
1 2 5 10 2 3 6 11 3 4 7 12 4 5 8 13 5 6 9 14
6 7 10 15 0 7 8 11 1 8 9 12 2 9 10 13 3 10 11 14
4 11 12 15 0 5 12 13 1 6 13 14 2 7 14 15 0 3 8 15
0 1 4 6 1 2 5 7 2 3 6 8 3 4 7 9 4 5 8 10
5 6 9 11 6 7 10 12 7 8 11 13 8 9 12 14 9 10 13 15
0 10 11 14 1 11 12 15 0 2 12 13 1 3 13 14 2 4 14 15
0 3 5 15 0 1 6 14 1 2 7 15 0 2 3 8 1 3 4 9
2 4 5 10 3 5 6 11 4 6 7 12 5 7 8 13 6 8 9 14
7 9 10 15 0 8 10 11 1 9 11 12 2 10 12 13 3 11 13 14
4 12 14 15 0 5 13 15 0 1 10 14 1 2 11 15 0 2 3 12
1 3 4 13 2 4 5 14 3 5 6 15 0 4 6 7 1 5 7 8
2 6 8 9 3 7 9 10 4 8 10 11 5 9 11 12 6 10 12 13
7 11 13 14 8 12 14 15 0 9 13 15 0 2 9 13 1 3 10 14
2 4 11 15 0 3 5 12 1 4 6 13 2 5 7 14 3 6 8 15
0 4 7 9 1 5 8 10 2 6 9 11 3 7 10 12 4 8 11 13
5 9 12 14 6 10 13 15 0 7 11 14 1 8 12 15

One can see the 1-skeleton of U is a complete graph and every edge is contained in
four or more tetrahedra. To determine that U is a tetrahedralization of S3, we considered
guaranteed 3-sphere recognition algorithms such as those in [Th]. However, they ap-
peared difficult to implement. Somewhat ironically, we used BISTELLAR, a flip-based
simulated annealing program for shrinking a simplicial complex [Lu2]. Since U is un-
flippable, we had to modify it by adding a few verticies and performing a few random
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2-to-3 flips. With this modification, BISTELLAR rapidly flipped U down to a 4-simplex,
thus proving U is a tetrahedralization of S3 by Pachner’s theorem.

We now show that tetrahedralizations of S3 with the properties listed in Section 3
cannot be realized as a tetrahedralization of any point set. To be precise about what we
mean by geometrically realizable, we use the notion of a d-diagram, defined in [Zi].

Theorem 2. Tetrahedralizations of S3 whose 1-skeleton is the complete graph and
every edge is contained in four or more tetrahedra do not have combinatorially equivalent
3-diagrams.

Proof. Let U be a tetrahedralization of S3 with those properties and suppose U has
a combinatorially equivalent 3-diagram, call it C . Then the outside face of C would
be a tetrahedron t . We claim that there is a vertex a of t such that removing a and all
simplices incident upon it from C would yield a convex 3-polytope with n − 1 vertices.
(Convexity follows because the 1-skeleton of U is the complete graph.) This convex
3-polytope would be tetrahedralized with no interior vertices. Now, each internal edge in
the tetrahedralization of this polytope has four or more tetrahedra containing it. Further,
there are (n−1)(n−2)/2 edges in the tetrahedralized polytope, including the boundary
edges. Therefore the tetrahedralization of the polytope is unflippable. However, this
contradicts the results in [dLSU] which shows that any tetrahedralization of a convex
polytope in R3 with no interior vertices always has flips.

4. Conclusion

We have shown that topologically unflippable tetrahedralizations ofS3 whose 1-skeletons
are the complete graph cannot resolve the flip-graph connectivity question for tetrahe-
dralizations of point sets in R3. Nevertheless, it is not obvious that it is necessary that
the 1-skeleton of a tetrahedralization of S3 be a complete graph to be topologically un-
flippable. Indeed, we have found topologically unflippable tetrahedralizations of other
manifolds whose 1-skeletons are not the complete graph. It would be interesting to know
if such tetrahedralizations exist for S3. If so, can they be geometrically realized
in R3?
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